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SUMMARY

Cell size varies during the cell cycle and in
response to external stimuli. This requires the tight
coordination, or ‘‘scaling,’’ of mRNA and protein
quantities with the cell volume in order to maintain
biomolecule concentrations and cell density.
Evidence in cell populations and single cells indi-
cates that scaling relies on the coordination of
mRNA transcription rates with cell size. Here, we
use a combination of single-molecule fluorescence
in situ hybridization (smFISH), time-lapse micro-
scopy, and mathematical modeling in single fission
yeast cells to uncover the precise molecular mech-
anisms that control transcription rates scaling with
cell size. Linear scaling of mRNA quantities is
apparent in single fission yeast cells during a
normal cell cycle. Transcription of both constitutive
and periodic genes is a Poisson process with tran-
scription rates scaling with cell size and without
evidence for transcriptional off states. Modeling
and experimental data indicate that scaling relies
on the coordination of RNA polymerase II (RNAPII)
transcription initiation rates with cell size and that
RNAPII is a limiting factor. We show using real-
time quantitative imaging that size increase is
accompanied by a rapid concentration-indepen-
dent recruitment of RNAPII onto chromatin. Finally,
we find that, in multinucleated cells, scaling is set
at the level of single nuclei and not the entire cell,
making the nucleus a determinant of scaling. Inte-
grating our observations in a mechanistic model
of RNAPII-mediated transcription, we propose
that scaling of gene expression with cell size is
the consequence of competition between genes
for limiting RNAPII.
Current Biology 30, 1217–1230,
This is an open access article und
INTRODUCTION

Gene expression is coordinated with cell size in order tomaintain

biomolecule concentrations. Understanding the mechanisms

that mediate this coordination, hereafter called ‘‘scaling,’’ is a

fundamental and intriguing problem in cell biology [1, 2].

Messenger RNAs (mRNA) and proteins are synthesized from

the cell DNA genome, which is one of the few cellular compo-

nents that do not scale with size. Because cell volume increases

during the cell cycle and mRNA half-lives are typically short [3],

constant rates of mRNA or protein production cannot lead

to gene expression scaling. Recent work in yeast [4], animal [5,

6], and plant cells [7] has shown that mRNA synthesis rates

instead are coordinated globally with cell size and are a major

mechanism of scaling. Conversely, mRNA degradation seems

to be mostly unconnected to scaling [4, 5, 7], although evidence

suggests that degradation rates are adjusted early after budding

yeast asymmetric division [8] and when growth rate changes

[9, 10]. Scaling is pervasive, and only few mRNAs deviate from

its regulation [11–13]. Interestingly, two of them participate in

the control of size homeostasis [11, 12].

What could be the molecular mechanism behind transcription

scaling? For a gene with an active promoter, mRNA numbers

follow a Poisson distribution [14]. Transcription is however often

discontinuous, and periods of RNA synthesis or ‘‘bursts’’ alter-

nate with periods of promoter inactivity (off state) [15]. Work in

single mammalian cells has shown that scaling of mRNA

numbers results from a coordination of the size of the transcrip-

tion bursts with cell volume and not from their frequency [5].

Therefore, the mechanism behind scaling may not be related

to activation of transcription but rather to properties of active

promoters. Critically, transcription is a complex process and is

regulated at many levels, including RNA polymerase II (RNAPII)

initiation, pause/release, elongation, and termination [16–19].

Which of these processes is coordinatedwith cell size tomediate

scaling remains unclear.

How could a complex set of molecular reactions, such as tran-

scription, become more efficient as cell size increases? In an

elegant experiment, Padovan-Merhar and colleagues fused cells
April 6, 2020 ª 2020 The Authors. Published by Elsevier Ltd. 1217
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of small and large size and found that the number of mRNAs pro-

duced from a gene encoded in the small cell genome increased

in response to the large cell environment. However, it only

reached about half the concentration observed in the small

cell. This suggests that scaling responds to both cell volume

and DNA content [5]. This is consistent with the observation

that the cell synthesis capacity is split between genome copies

in diploid budding yeast cells [11]. Importantly, changes in

gene dosage, in the case of increased ploidy, are associated

with overall cell size increase in many organisms [1]. This indi-

cates that the number of genome copies present in a cell is linked

to its volume and number ofmacromolecules. This also suggests

that the cell’s overall synthetic capacity could be limiting and

have a determining role in setting its size [20]. It is therefore likely

that scaling depends on a limiting factor involved in transcription,

but its identity and regulation with the cell volume is not known

[20, 21].

In this study, wemeasured gene expression in over 20,000 sin-

gle cells of the fission yeast Schizosaccharomyces pombe by

single-molecule fluorescence in situ hybridization (smFISH)

(Tables S1, S2, and S3) [22]. We combined these data with

agent-based models of growing and dividing cells [23–25], sto-

chastic models of gene expression [14, 26, 27], and Bayesian

inference [28–34] to investigate the quantitative parameters of

gene expression that mediate scaling. This integrative approach

enabled us to determine which step of the transcription process

is scaling with cell size andwhichmolecular event connects tran-

scription with the cell volume.

RESULTS

Gene Expression Scaling Is an Attribute of Constitutive
and Inducible Gene Expression
We first tested whether scaling of gene expression with cell size

is an attribute of single fission yeast cells during rapid prolifera-

tion. To do this, wemeasured mRNA levels of 7 constitutively ex-

pressed genes in wild-type haploids (WT) and in conditional mu-

tants of the Wee1 (wee1-50) and Cdc25 (cdc25-22) cell cycle

regulators by smFISH (Figure 1A; Table S1). At semi-permissive

temperature, mutant cells divide at smaller and larger sizes than

WT, respectively (Figure S1A) [4]. Consistent with population

microarray data, mean numbers of the 7 mRNAs measured in

single cells scale with the average size of the three strains (Fig-

ure 1B) [4].

We then wondered whether scaling could be detected as cells

elongate during a normal cell cycle. The fission yeast elongation

phase is restricted to G2. Confounding effects arising from

changes in genome content during DNA replication are therefore

unlikely. Using cell length as a measure of size (STAR Methods),

we analyzed rpb1 mRNA expression relative to cell size in WT,

mutant, and diploid cells and observed linear scaling within

each genotype across a wide range of sizes (Figures 1C and

1F). Linear scaling during the cell cycle was apparent for all the

constitutive genes analyzed in this study (Figures S1B and

S1C). This indicates that gene expression scaling is not an arti-

fact of mutations in the wee1 and cdc25 cell-cycle regulators.

Moreover, the mutant data demonstrate that gene expression

scales over a dynamic range of sizes larger than that observed

in WT cells. Together with earlier studies in cell populations,
1218 Current Biology 30, 1217–1230, April 6, 2020
this analysis establishes fission yeast as a powerful model for

studying scaling [4].

We next analyzed the relation of scaling with ploidy using

diploid cells. Diploids follow scaling parameters (slope and inter-

cept) similar to smaller haploids (Figures 1C and 1F). Interest-

ingly, for a given size, mRNA numbers in diploids and in

cdc25-22 haploids were similar (Figures S1D–S1F). Moreover,

when analyzing 3 diploid strains bearing heterozygous deletions

of single genes, we observed significant linear scaling of the cor-

responding mRNA but decreased concentrations compared to

both diploid and cdc25-22 cells (Figures S1D–S1F). This sug-

gests that scaling of single gene copies in fission yeast is coor-

dinated with the cell genome content and that the machinery

behind scaling may be limiting.

At the level of single genes, is scaling a property of constitutive

expression or do genomes of larger cells have a globally higher

gene expression capacity? To answer this question, we analyzed

three mRNAs induced during specific phases of the cell cycle

(Figure S1G). All of them showed stronger induction levels in

larger cells when comparing WT, wee1-50, and cdc25-22 mu-

tants (Figures 1D, 1G, S1I, and S1J). This indicates that scaling

is not restricted to constitutive genes and extends to inducible

transcripts, which were not expressed in smaller cells at the

beginning of the cycle.

We next analyzed the induction of two genes that respond to

acute changes in external conditions. The urg1mRNA responds

to changes in uracil concentration, while sib1 is induced by 2,2-

dipyridyl (DIP) [35, 36]. Induction of urg1was heterogeneous and

scaled across size mutants (Figures 1E, 1H, and S1H). The sib1

mRNA showed a much more homogeneous response scaled

within and across cell types (Figure S1K). This is evidence for

scaling occurring in response to unexpected changes in external

conditions. Taken together, these data indicate that scaling is

universal and does not depend on the mode of gene regulation.

Scaling does not result from a passive accumulation of mRNA

during the cell cycle but requires a change in the cell gene

expression capacity that is coordinated with cell size.

Coupling of mRNA Decay Rates with Cell Size Is Not a
Mechanism of Scaling
mRNA quantities are regulated at the level of transcription but

also post-transcriptionally through modulation of degradation

rates [37]. Three studies have reported that mRNA degradation

rates are not regulated with cell size in fission yeast, plant, and

mammals [4, 5, 7]. To test these observations in single fission

yeast cells, we analyzed expression of 3 genes by smFISH in

WT,wee1-50, and cdc25-22 cells treated with thiolutin, which in-

hibits S. pombe transcription efficiently (Figure S2A) [12]. We

derived mRNA half-lives within each strain using cells binned

by size (Figure S2B). We observed mRNA half-lives of around

30–40 min for the rpb1 and rpb2 mRNAs consistent with previ-

ous observations [3]. In wee1-50 and cdc25-22 mutants, both

mRNAs showed half-lives similar to WT, consistent with an

absence of scaling of mRNA degradations rates. In addition,

within strains, this analysis did not show consistent positive or

negative coordination of degradation rates with cell size,

although one dataset showed a significant decrease in stability

in cdc25-22 cells (Figure S2B, left). The absence of consistent

scaling of mRNA degradation rates was further confirmed using
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Figure 1. Gene Expression Scaling Is an Attribute of Constitutive and Inducible Gene Expression

(A) smFISH images of rpb1, rpb2, and rpb3mRNA inwee1-50, cdc25-22, andWT cells and of all channels overlaid with DAPI (last column).White scale bars, 5 mm.

(B) Mean expression of 7 mRNAs inwee1-50 (green) and cdc25-22 (red) cells plotted against their expression in WT cells. Lines show equality (plain) and a 23 up

or down interval (dotted).

(C–E) Expression of the rpb1 (C), ace2 (D), and urg1 (E) genes plotted against cell length for wee1-50 (green), WT (blue), cdc25-22 (red), and WT diploid (orange)

cells. Cells in (E) were analyzed 3 h after uracil addition.

(F–H) Same as (C)–(E), respectively, with all cells in gray. Median counts in running windows sampled from 100 experimental data bootstrap samples (line) and

95% confidence intervals (shaded area) are shown. Cells expressing each mRNA above the dotted line cutoff are included in the running window. Pearson

correlation coefficients and p values are shown.

See also Figure S1 and Tables S1, S2, and S3.

Current Biology 30, 1217–1230, April 6, 2020 1219



an orthogonal promoter switch-off approach for the rpb1, rpb2,

and rtp1 genes, where only rpb2 showed a slight significant

change in half-life (Figure S2B, right). Finally, as discussed in

the next section, mathematical modeling and inference do not

support scaling of degradation rate. Overall, in agreement with

previous studies, our analysis indicates that mRNA degradation

is not a major mediator of scaling.

Coupling of Transcription Rates to Cell Size and Not
Burst Frequency Mediates Scaling
We next explored the contribution of transcription rates to

scaling using smFISH and mathematical modeling. This com-

bined approach allowed us to study dynamic transcription rates

based on static smFISH measurements in single cells. We

developed agent-based models that incorporate the two-state

model of gene expression inside growing and dividing cells,

which are themselves described by phenomenological models

of cell growth and size control (Figure 2A; STAR Methods). We

used an approximate Bayesian computation (ABC) inference

approach on cell size and smFISH measurements to infer mech-

anism of scaling by competing models with different assump-

tions. This inference approach determines the simplest model

that captures the statistics of the experimental measurements

and returns posteriors of the parameters andmodel probabilities

for all models (STAR Methods). We used 2 classes of gene

expression models that are the limiting cases of the two-state

model (Figure 2A). The first class describes the switching of tran-

scription between off and on states explicitly (called hereafter

bursting) and comprises three models: one assuming constant

transcription rates ðvÞ (burst size constant); one assuming tran-

scription rates ðvÞ coupled to cell size (burst size scaling); and

one assuming burst frequency ðkonÞ coupled to cell size (burst

frequency scaling). The second class assumes no transcriptional

off state, resulting in a simple birth-death process that produces

Poisson distributions. It comprises two models, the first

assuming constant transcription rates ðvÞ (Poisson constant)

and the second assuming transcription rates ðvÞ linearly coupled
to cell size (Poisson scaling; Figure 2A; Tables 1 and S4; STAR

Methods).

We performed model selection between these five models

on the smFISH WT data for 7 constitutively expressed genes.

This analysis generated two clear conclusions. First, models

assuming bursty transcription were strongly penalized and sup-

ported by small-model probabilities (Figure 2B, compare propor-

tion of blue and red colors). This was the case even when burst

frequency parameters (kon) were coupled to cell size. Second,

among the Poisson models, the one assuming transcription

scaling with size was preferred for all but one mRNA (rpb3 in Fig-

ure 2B, compare orange and dark red colors). From this, we

conclude that transcription of constitutively expressed genes

in fission yeast is Poissonian (non-bursty) and scales with cell

size.

We then asked whether transcription regulated during the cell

cycle or by external cues followed the same paradigm.We found

that, as for constitutively expressed genes, the mRNA distribu-

tions of cell-cycle-regulated genes can be explained by cell-

cycle-dependent Poissonian transcription (Figure 2B, middle).

This indicates that transcription, even when regulated in defined

sections of the cell cycle falls into the Poisson regime (non-
1220 Current Biology 30, 1217–1230, April 6, 2020
bursty). In terms of scaling, model selection is in overall support

of scaling of transcription rate with cell size as it is for constitutive

genes (Figure 2B, middle). mRNAs that respond to external stim-

uli showed a different picture. Model selection favored the

bursting models but was inconclusive on whether burst size or

burst frequency was coupled to cell size (Figure 2B, right). This

could point to bursty transcription of inducible genes, to the

presence of strong extrinsic noise, or to a scenario where cells

respond heterogeneously to external signals.

In order to validate the model selection analysis, we generated

simulations for all constitutive and cell-cycle-regulated genes

from Figure 2B, using models where transcription rates scale

with cell size and follow a Poisson regime. This analysis repro-

duced quantitatively the mean and coefficient of variation (CV)

of all experimental measurements (Figure 2C). Notably, our

experimental data showed noise levels identical to those pro-

duced by a simple birth-death process of mRNA in growing

and dividing cells (compare red dots and gray Poisson line).

This indicates that their low noise levels do not show the devia-

tion from the Poisson distribution typical of bursty transcription

dynamics, supporting our model selection analysis. The cell-cy-

cle-regulated mRNA (ace2, fkh2, and mid2) deviate from the

Poisson line as their expression is restricted to specific phases

of the cell cycle (Figures 1D, 1G, S1I, and S1J). Importantly,

this additional source of noise had been incorporated in the

model selection analysis (STAR Methods).

We then used the inferred parameters from the Poisson

models to simulate expression of multiple genes in single cells

and compared them to smFISH data where 3 different mRNAs

were measured per cell (STAR Methods). This analysis suggests

that most gene-to-gene expression correlations are explained

by scaling of transcription rates with cell size andmay not require

extensive additional regulation (Figure 2D). However, our data

also suggest that, for some gene pairs (e.g., rpb1-rpb2), correla-

tions can be explained better by including additional extrinsic

variability.

We finally asked whether our modeling approach was in

support of a negligible role of mRNA degradation in scaling.

We performed model selection and simulation analyses on the

transcription shutoff experiment from Figure S2 using models

that consider either scaling of transcription rates or degradation

rates (STAR Methods; Figure 2E). This analysis shows that the

model assuming transcriptional scaling with constant rates of

mRNA degradation with cell size is overwhelmingly chosen (Fig-

ure 2E), in line with our analysis in Figure S2B.

In summary, we show that scaling in a rapidly growing unicel-

lular organism occurs through coordination of transcriptional

rates with cell size as in metazoans. However, we find that tran-

scription during the fission yeast rapid cell cycle is mainly Pois-

sonian except during acute response to external changes, where

we detect signs of bursty expression. This is consistent with pre-

vious observation in the budding yeast Saccharomyces cerevi-

siae [38]. Finally, we find that scaling of transcription rates

explains most of the expression correlation of multiple mRNAs.

Coordination of RNAPII Initiation Rates with Cell Size as
the Main Mechanism of Scaling
We then wondered which specific aspect of the transcription

process is coordinated with cell size to mediate scaling. To
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See also Figure S2 and Tables S1, S2, S3, and S4.
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Table 1. Maximum A Posteriori Estimates of Cell Cycle and Size

Control Parameters Obtained by ABC Inference on the Snap-Shot

Cell Size Data

Strain a b (mm) hb (mm) hd

mg (1/Cell

Cycle)

sg (1/Cell

Cycle)

WT 0.195 11.03 0.253 0.045 1 0.111

pom1D 0.276 8.86 1.70 0.110 1 0.478

Used in Figure 2.
investigate this and to test the model predictions from Figure 2,

we measured transcription rates experimentally. Single cells’

transcription rates can be estimated from smFISH images by

measuring intensities of nuclear transcription sites [38]. As a

model, we used probes directed against the 50 region of the

rpb1 mRNA. This probe design provides strong sensitivity for

detection of nascent transcripts (Figures S3A and S3B). Tran-

scription site intensities and cell size were weakly but signifi-

cantly correlated when comparing WT, wee1-50, and cdc25-

22 cells, confirming modeling results and previous observation

in a metazoan cell line (Figures 3A, 3B, and S3C) [5]. We then

investigated the impact of increased ploidy on transcription rates

scaling by comparing nascent site intensities of four mRNAs in

haploid and diploid cells. We used probes against the 50 end of

rpb1 as above and against three cell-cycle-regulated mRNAs,

because inducible expression increases the sensitivity of

nascent site detection. Intensities of individual transcription sites

were similar between haploid and diploid cells (Figures 3C and

S3D). However, when considering the total intensity per cell, dip-

loids showed increased rates and scaling was apparent again

(Figures 3C and S3D). These data support a model of scaling

where the cell transcriptional capacity is limiting and distributed

between the two gene copies of diploids. This is further strength-

ened by the analysis of the nascent intensity of the rpb1mRNA in

a heterozygous deletion strain, which showed no increased rates

in the remaining copy (Figures 3C and S3D).

To investigate further the mechanism behind scaling of tran-

scription rates, we designed an orthogonal modeling approach

where transcription is modeled as RNAPII particles hopping on

a gene represented by a lattice (Figure 3D). This approach, which

is based on a totally asymmetric simple exclusion process

(TASEP), has been used successfully to study transcription

and translation [7, 39–42]. In our model, the lattice is of length

LG and non-bursty transcription is modeled using three rates:

(1) the transcription initiation rate a is the rate at which RNAPII

molecules enter the first site of the lattice and (2) the elongation

rate b is the rate at which RNAPII molecules hop one site forward

on the lattice. If this site is already occupied by another RNAPII

molecule, the rate of hopping is set to zero (Figure 3D, orange ar-

row); we note that sources of pausing, such as RNAPII

sequence-specific stop or backtracking, are not modeled, as

they are not supported by our chromatin immunoprecipitation

followed by next-generation sequencing (ChIP-seq) data (see

below) [41]. (3) The termination rate g is the rate at which

RNAPII molecules leave the last site of the lattice and produce

full-length mRNAs (Figure 3D). We incorporated this model in

the agent-based framework from Figure 2, assuming each rate

could be linearly coupled to cell size.
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By sampling the rates a;b, and g over physiological timescales

estimated from previous studies (STAR Methods), we found that

coupling of initiation rates with size produced the most robust

linear scaling (Figure 3E) and the strongest positive correlation

of nascent intensities with size (Figure S3E). Although a model

coupling transcription elongation rates with cell size could also

generate linear scaling in some parameter regions (Figures 3E

and S3E), these required elongation rates to be much slower

than the �2 kb/min observed experimentally in either yeast or

metazoans (Figure S3F) [38, 43–47]. Importantly, linear scaling

could only be observed in regimes with slow initiation rates rela-

tive to elongation and termination, indicating that initiation is rate

limiting (Figure S3G). Interestingly, this also suggests that fast,

non-limiting initiation rates could be a mechanism by which

some genes escape scaling (e.g., rpb3; Figure 2B). Scaling of

termination rates does not lead to linear transcription scaling

(Figure 3E) because limiting termination rates generate high

traffic and stalling of polymerases. Finally, these results were

strengthened by ABC inference analysis using the same TASEP

model and nascent sites intensities for 3 genes in different

strains, which showed clear preference for the initiation model

(Figure S3H). This in silico analysis suggests that scaling of initi-

ation rates with cell size could be the mechanism of scaling.

The initiation model generated two important predictions.

First, even for non-bursty genes, cells in a population should

not be transcribing actively at all times and the frequency of

transcribing cells should increase with cell size (Figure S3I).

To test this prediction, we compared the fraction of cells with

a nascent transcription site (‘‘active cell fraction’’) in wee1-50,

WT, cdc15-22, and diploid cells. As predicted by the model, a

clear increase in the fraction of transcriptionally active cells

with size could be observed (Figure 3F). Moreover, a strong

positive correlation of the active cells fraction with cell length

was apparent when calculated in sliding windows of increasing

cell numbers during the normal cell cycle (Figure S3J). The sec-

ond prediction of the initiation scaling model is a positive corre-

lation between the number of transcribing RNAPII and cell size

(Figure S3E). To test this, we analyzed RNAPII occupancy

across the genomes of WT, wee1-50, and cdc25-22 cells by

ChIP-seq. We used three antibodies against total RNAPII and

serine 5 phosphorylation of its carboxy-terminal domain (CTD)

(STAR Methods). Using data normalized to occupancy at his-

tone genes (STAR Methods), we could observe a significant in-

crease in overall RNAPII occupancy with size consistent with

previous observation and supporting model predictions (Fig-

ure 3G; Table S6) [4]. Importantly, we did not find evidence for

a redistribution of RNAPII from the 50 to the 30 of genes in larger

cells, which makes regulation of scaling at the level of RNAPII

pause/release unlikely (Figures 3H and S3K). Similar distribu-

tions of RNAPII molecules could be reproduced quantitatively

by our minimal TASEP model in the case of RNAPII initiation

rates scaling, but not elongation rates, supporting this conclu-

sion further (Figures 3D and S3L). In summary, our in silico

and experimental data indicate that transcriptional scaling is

mediated by an increase in RNAPII initiation rates coordinated

with cell size. In addition, our modeling data together with the

increase in RNAPII occupancy observed in larger cells suggest

that RNAPII could be a limiting factor for transcription as cell

size increases.
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(B) Same as (A) with all the cells in gray. Median intensities in running windows sampled from 100 experimental data bootstrap samples (line) and 95%confidence
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(legend continued on next page)
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Figure 4. Nuclear RNAPII Concentration Increases with Cell Size
(A) Confocal images of Rpb1, Rpb9, and Hta2 proteins tagged with GFP in WT cells. DAPI staining for DNA and overlay of both channels are shown. White scale

bars, 5 mm.

(B) Wide-field fluorescence data from live-cell imaging of the RNAPII subunit Rpb9. Normalized intensity/cell as a proxy for total cellular protein concentration is

plotted along time relative to the mitotic phase of the cell cycle.

(C) As in (B) but showing the total pixel intensity in the area of strong fluorescence signal as a proxy for chromatin-bound amounts.

(D and E) As in (B) and (C) but for the histone Hta2.

See also Figure S4 and Tables S1 and S4.
RNAPII Amounts on Chromatin Increase with Cell Size
If scaling of initiation rates is the mechanism behind scaling and

RNAPII is limiting, the amount of RNAPII complexes on the

genome of single cells should increase during the cell cycle.

To test this hypothesis, we measured localization of RNAPII

in single cells by live-cell imaging. To do this, we tagged com-

ponents of the RNAPII complex with green fluorescent protein

(GFP) and imaged them during the cell cycle (Figures 4A and

S4A). We observed that the cellular concentration of the

RNAPII subunits Rpb1 and Rpb9 remained constant during

S. pombe growth phase in G2 (Figures 4B and S4B). This indi-

cates that scaling of transcription initiation is not controlled by

regulation of the cellular concentration RNAPII. Our image data

show that a very large fraction of the tagged RNAPII subunits

localizes in the nucleus in the DAPI-positive area similar to

the DNA-bound histone protein Hta2 (Figures 4A, S4F, and

S4G). We therefore asked whether the amount of RNAPII on

chromatin changes with cell size during the cell cycle. To

assess this, we measured fluorescence intensities of the nu-

clear region occupied by RNAPII subunits (Figures 4C and
(G) ChIP-seq analysis of RNAPII occupancy in wee1-50 (green), WT (blue), and c

(left, middle) and total Rbp1 (right) are shown. p values for one-sided Wilcoxon t

(H) As in (G) for RNAPII occupancy 50/30 ratios. Note that ratios are not changing

See also Figure S3 and Tables S1, S2, S3, S5, and S6.
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S4C). Strikingly, the signal for Rpb1 and Rpb9 increased

steadily during G2 when most cell elongation occurs (Figures

4C and S4C). Confocal analysis of Rpb1 intensities also

showed a clear increase in signal in the DAPI-positive area of

the nucleus that was correlated with cell size in line with our

live-cell imaging data (STAR Methods; Figure S4D). Impor-

tantly, this was not apparent for another DNA-bound protein,

the histone Hta2 (H2Ab; Figures 4D, 4E, and S4E). These

data are consistent with the predictions of the initiation scaling

model and indicate that RNAPII quantities are likely to be

limiting for transcription. In addition, these experiments indicate

that RNAPII is efficiently imported in the nucleus and rapidly re-

cruited onto chromatin.

A Role of the Nucleus in Scaling
In fission yeast and other organisms, nuclear and cytoplasmic

volumes are intimately connected [48]. As scaling of initiation

rates is coordinated with increased RNAPII levels in the nucleus,

we wondered whether nuclear size rather than cell size itself

could be the quantitative determinant of scaling.
dc25-22 (red) cells. Data for antibodies against serine 5 CTD phosphorylation

ests are shown.

with size and are consistently lower than 1.



To test this idea, we analyzed nascent site intensities of

cdc11-119 mutant cells cultivated at non-permissive tempera-

ture. Under these conditions, cells elongate and undergo

mitosis and nuclear division but do not divide (Figure 5A) [49].

Strikingly, scaling of nascent site intensities from individual

nuclei with cell size was not apparent in this system (R2 =

0.001; Figure 5B, right). Scaling was only restored when all

nascent sites present in a cell were added together (R2 = 0.2;

Figure 5B, left). This mirrors data from multinucleated cells

showing that, although the overall nuclear volume scales with

cell volume, the volume of individual nuclei is proportional to

their surrounding cytoplasmic volume [48]. Consistent with

this, the ratios of nascent site intensities between nuclei of

cdc11-119 cells were weakly correlated with their adjacent

cytoplasmic volume delimited by either the cytoplasmic mem-

brane or half the distance to the next nucleus (STAR Methods;

Figure S5A). This indicates that scaling could be dependent on

physical properties of the nucleus correlated with cell size and

not directly on the cell volume.

We next analyzed scaling in conditions where the correlation

between cell and nuclear size is compromised. Pom1 is a regu-

lator of cell polarity and division whose deletion leads to

increased size variability at birth due to cell partitioning errors

[50]. We analyzed expression of three mRNAs by smFISH in

pom1D mutant cells expressing a marker of the nuclear enve-

lope to allow measurement of nuclear size (Figure 5C). As ex-

pected, cell and nuclear size show smaller correlation in the

pom1D mutants compared to WT cells (Figure S5B). Scaling

in pom1D cells was linear as in WT cells, but mRNA numbers

showed higher y axis intercept when plotted as a function of

cell size (Figure S5C). This indicates that mRNA concentrations

in pom1D cells are the highest in smaller cells after birth and

decrease as cells elongate in G2 (Figure 5D). Although such a

deviation from perfect concentration homeostasis is also

observed in WT cells and has been reported in mammals, it

is exacerbated in the mutant (Figure 5D) [5]. The modeling

approach described in Figure 2, which is based on transcription

scaling with cell size and binomial partitioning of mRNAs based

on daughter cell sizes, failed to capture the increased deviation

from concentration homeostasis of pom1D cells (Figure 5E,

magenta line). However, a modified model coupling transcrip-

tion rates to nuclear size instead captured it well (Figure 5E,

green line). Overall, this analysis indicates that nuclear size

may be a better predictor of scaling than cytoplasmic volume

in multinucleated cells and in cells where the nucleo-cyto-

plasmic ratio is transiently perturbed. This raises the possibility

that properties of the nucleus are direct and quantitative deter-

minants of scaling.

A Mechanistic Model of Scaling
We used the results from this study to develop a mechanistic

model of scaling centered aroundRNAPII-mediated transcription

to integrate and explain the respective role of the cell volume and

nuclear features in predicting scaling (Figure 5F; STAR Methods;

see also [20, 21]). In this model, the rates of RNAPII complex syn-

thesis and maturation scale with cell size. This is consistent with

our smFISH and live-cell imaging data showing that RNAPII sub-

units have a constant cellular concentration during the cell cycle

(Figures 1 and 4). RNAPII is then transported to the nucleuswith a
rapid rate, which is not limiting and is proportional to nuclear size.

This results in depletion of RNAPII from the cytosol (as observed

in live-cell imaging data; Figure 4). Once in the nucleus, RNAPII

binds to DNA with a constant high affinity and transcription rates

are proportional to the numbers of DNA-RNAPII complexes pre-

sent on each gene at any given time to reflect scaling of initiation

rates (Figure 3). Finally, RNAPII levels are set to be limiting in line

with the initiation scaling model (Figure 3), the behavior of diploid

and heterozygous mutants (Figure 3) [11], and the fact that the

cell synthetic capacity is titrated against the number of genes

in heterokaryons [5]. Moreover, this assumption fits the observa-

tion that many RNAPII subunits are limiting for growth in fission

yeast [51–53]. The high affinity and the limiting amount of

RNAPII ensures that the majority of RNAPII molecules are bound

to DNA and increase with cell size consistent with our imaging

data (Figure 4) and with biochemical evidence from mammalian

cells [5]. Finally, DNA replication occurs close to cell division

and each daughter cell inherits about half of the DNA-bound

RNAPII, mostly independent of its size, as observed in our live-

cell experiments (Figures 4C and S4C). This simple model cap-

tures the different features of the data presented in this study.

First, it retrieves the scaling of DNA-bound RNAPII with cell

size, while keeping its overall cellular concentration constant,

as observed in Figure 4 (Figure S5D). Second, it explains the

scaling of mRNA numbers with cell size, including the higher

mRNA concentration observed in smaller cells (Figure 5E, blue

line). Interestingly, based on thismodel, the total rate of transcrip-

tion in a multinucleated cell is proportional to total RNAPII quan-

tities, which is proportional to cell size (Figure 5B). However,

consistent with our data, the amounts of RNAPII imported to

each nucleus are proportional to the nucleus size and determine

transcription rates (Figures 5B and S5A). Overall, this simple

mechanistic model of RNAPII transcription, by integrating the

experimental findings from this study, explains the origin of tran-

scriptional scaling and the role taken by the nucleus. In summary,

it identifies the competition between genes for the limited pool of

transcriptional machinery as central to the phenomenon of tran-

scriptional scaling.

DISCUSSION

We performed an extensive experimental and modeling study

of gene expression scaling with cell size in single fission yeast

cells. We found that scaling is a pervasive feature that impinges

on constitutive and regulated expression. We then showed that

scaling relies on an increase in RNAPII initiation rates with cell

size and a concentration-independent recruitment of a limiting

RNAPII on the genome. Finally, we propose that nuclear size

may participate in setting scaling levels.

Our work supports a simple and robustmodel for the scaling of

gene expression with cell size, in which the competition between

promoters for a limited pool of RNAPII determines their relative

strength. Because RNAPII maintains a constant concentration

as cell size increases (as proteins do in general), the number of

RNAPII complexes increase linearly with cell size. Cell size in-

crease will not affect the relative strength of promoters but will

cause their absolute rate of transcriptional initiation to scale lin-

early with cell size, exactly as required to produce the observed

gene expression scaling.
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Figure 5. A Role for the Nucleus in Scaling

(A) smFISH images for the rpb1 and rpb2 mRNA in cdc11-

119 cells at restrictive temperature. White scale bars, 5 mm.

(B) rpb1 normalized nascent sites intensities per nucleus

(blue) or per cell (orange) plotted as a function of cell size.

Linear fits (red lines) and adjusted R2 are indicated.

(C) smFISH images for the rpb1, rpb2, and shd1mRNA inWT

and pom1D cells carrying the Cut11-GFP nuclear marker

(left column). Overlay is shown on the right. White scale

bars, 5 mm.

(D) mRNA concentration (mRNA/cell length) for the rpb1,

rpb2, and shd1 mRNA in WT (black) and pom1D (red) cells.

Pearson correlations are indicated between parentheses (all

PPearson < 0.05). The solid line shows median counts in

running windows sampled from a count distribution identical

to the experimental data. Shaded area represents 95%

confidence intervals.

(E) rpb1 concentrations plotted as a function of cell length.

Running average for the experimental data (gray) or derived

from model predictions assuming transcription rates scaling

with cell length (magenta), scaling with nuclear area (green),

or predicted from a mechanistic model of RNAPII prediction

(light blue) are shown. Pearson correlation coefficients are

indicated between parentheses.

(F) Cartoon of a mechanistic model of RNAPII transcription

(see STAR Methods for details and parameters).

See also Figure S5 and Tables S1, S2, and S3.
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Our model assumes that the general and specific transcription

factors that regulate relative promoter strength are in excess

even in small cells and thus are not affected by cell size. To

gain a deeper mechanistic understanding of scaling, it will be

important to determine whether this assumption is met for

most regulators or whether some escape the rule. It could also

inform about mechanisms through which some mRNA escape

regulation by scaling, as our modeling results suggest that

non-limiting initiation rates can produce this behavior [11–13].

Another interesting question will be to determine the role of chro-

matin remodelers in facilitating transcription initiation in larger

cells. It is possible that a more permissive chromatin environ-

ment in large cells synergizes with increased RNAPII local con-

centrations to support higher transcription rates of inducible

genes.

Recent evidence suggests that, in mammals, burst size is

regulated at the level of the proximal promoter sequence,

although distal enhancers are involved in setting burst frequency

[54]. Moreover, burst initiation and RNAPII pause/release, but

not RNAPII recruitment, have been shown to be regulated in

response to biological perturbations [55]. Our model of scaling

through initiation of RNAPII transcription fits well with these

data, as this process is independent of both gene activation

and control of burst frequency. It is also consistent with the

observation that promoters maintain their relative expression

levels in changing growth conditions [56].

We find that scaling is regulated at the level of single nuclei

in multinucleated cells and may be linked to nuclear size.

RNA synthesis levels have been connected to nuclear size in

other systems, such as multinucleated muscle cells [57], or

for the HTLV-1 mRNA [58]. It could reflect a higher availability

of RNA polymerases around larger nuclei, as these tend to be

surrounded by larger cytoplasmic volume (Figure S5A) [48,

57]. Interestingly, the nucleus was also found to be an

independent transcriptional unit in mature osteoclasts [59]

and in multinucleated fungi, where nuclei retain local control

of cell cycle periodic transcription [60, 61]. This suggests that

more complex feedback and molecular mechanisms may also

be at play.

An important result from our study, which is not directly related

to scaling, is that transcription rates of most fission yeast genes

tested are constant and show no evidence for off states or bursty

transcription. This is in linewith previous observations in budding

yeast and plants [30, 38, 62]. Further experiments in live cells will

be important to define precisely the molecular mechanisms

behind this observation. Transcriptional bursts result in high

gene expression noise and are associated with Fano factors

(ðs2 =mÞ of mRNA numbers) greater than 1, whereas Poissonian

birth-death processes have a Fano factor = 1. Our finding that

most transcription followed a non-bursty regime relied on our

modeling, taking cell size and the cell cycle into account explic-

itly. Without doing so, all genes in this study would have been

called bursty, as Fano factors calculated on smFISH raw counts

were greater than 1 (not shown). This reiterates the importance of

studying gene expression considering potential confounding

effects of morphological features, such as cell size and the cell

cycle [24, 25, 30, 63, 64].

Finally, in addition to progressing our understanding of the

mechanisms behind scaling, this study provides a large
quantitative dataset of gene expression and cell size measure-

ment in over 20,000 cells in various conditions. This will support

future modeling efforts aimed at understanding regulation of

gene expression.
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research@gmail.com
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Models and simulation data This paper https://github.com/vshahrez/Sun-Bowman-et-al
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timelapse image analysis)
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LEAD CONTACT AND MATERIALS AVAILABLITY

Further information and requests for resources and reagents (including S. pombe strains) should be directed to and will be fulfilled by

the Lead Contact, Samuel Marguerat (samuel.marguerat@imperial.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains and culture conditions
The strains used in this study are listed in Table S1. Genetic crossing confirmed by polymerase chain reaction was used for strains

generated unless otherwise specified. Strains were revived from glycerol frozen stocks on solid yeast extract agar (YE agar), or YE

agar supplemented with 25 mg l-1 adenine, L-histidine, L-leucine, uracil, L-lysine, and L-arginine (Sigma), and with or without appro-

priate antibiotics for selection. YE agar plates were incubated for approximately 48 h at 32�C in a static incubator until visible large

colonies could be observed. Single colonies were transferred into liquid yeast extract medium (YE), in YE supplemented as above

(YES), Edinburgh minimal medium (EMM), or EMM supplemented as above (EMMS), unless otherwise indicated in figure legends,

and incubated at 170 rpm in a shaking incubator. Temperature sensitive strains were grown at 32�C and shifted to 36.5�C for the

time indicated in figure legends. For the induction of sib1 expression, the strains were grown at 25�C to an optical density at

600 nm (OD600) ofz0.4 and treated with 2,2-dipyridyl (DIP; ACROS) at a final concentration of 250 mM for the time indicated in figure

legends, or left untreated. For measuring mRNA decay rates, cells were grown in YE at 25�C to OD600 z0.4; cells were treated with

thiolutin (AXXORA) for the time indicated at a final concentration of 15 mg/ml, or left untreated. For urg1 induction, cells were grown in

EMM supplemented with or without 0.25 mg/ml uracil for the time indicated. For transcription inhibition, log phase cultures

(OD600�0.5) were treated with thiolutin (15 ug/ml) and same volume of DMSO (used for dissolving thiolutin) was added to thiolutin

untreated culture. Sampleswere taken at 0, 25, 35, 45mins and processed as for smFISH. For live-cell experiments, cells were grown

in EMMS in syphonstats – chemostat-like devices (http://klavinslab.org/hardware.html) which maintain the turbidity of liquid cultures

by diluting with fresh medium appropriately – and maintained at OD600 0.4 at 32�C by frequent dilution [65].
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METHOD DETAILS

RNA single molecule fluorescence in situ hybridization (smFISH)
All smFISH datasets are described in Table S2. All themRNA counts, nascent site intensities and cell sizemeasurements are available

in Table S3. smFISH samples were prepared according to a method modified from published protocols [66, 67]. Briefly, cells were

fixed in 4% formaldehyde and the cell wall partially digested using zymolyase. Cells were permeabilised in 70% ethanol, pre-blocked

with bovine serum albumin and salmon sperm DNA, and incubated overnight with custom Stellaris oligonucleotide sets (Biosearch

Technologies) labeled with CAL Fluor Red 610, Quasar 670, or Quasar 570 (probe sequences are listed in Table S7). Cells were

mounted in ProLong Gold antifade mountant with DAPI (Molecular Probes), and imaged on a Leica TCS Sp8 confocal microscope,

using a 63x oil objective (NA 1.40). Optical z sections were acquired (0.3 mm step size) for each scan to cover the entire depth of cells.

Cell boundaries were outlined manually and single mRNA molecules were identified and counted using the FISH-quant MATLAB

package [68]. Cell area, length, and width were quantified using custom ImageJ macros. The technical error in FISH-quant detection

was estimated at 6%–7%by quantifying rpb1mRNA foci with two sets of probes labeledwith different dyes. Nascent intensities were

normalized by the mode of the intensities of that gene in a given cell (unless there were not enough intensities in the cell, where the

mode across the whole scan was substituted instead). The nascent mRNA foci were identified and using two approaches. In the first

approach nascent site were identified using an in-built function of the FISH-quant package that relies on DAPI images to identify nu-

clear dots. In the second approach, we defined single mRNA dots with intensities 2.5 to 3-fold above the modal intensity within the

same cell as nascent sites (‘‘threshold method). The quality of the identification of nascent sites was validatedmanually by visualizing

high intensity foci in the nucleus, with an accuracy of over 90% in all three strains (wild-type, cdc25-22, and wee1-50).

ChIP-seq
Chromatin immunoprecipitation (ChIP) assays was carried out essentially according to published methods [69]. In brief, cells were

grown in YES to an OD600 of �0.8 and fixed with formaldehyde solution (1% final) and then quenched with glycine. After washing

twice with cold PBS (phosphate-buffed saline), cells were re-suspended in lysis buffer containing proteases inhibitors and disrupted

vigorously with acid-washed glass beads 8-11 times for 20 s in a FastPrep instrument. Samples were then sonicated in Bioruptor (at

High setting and 6 times 5 mins with 30 s ON/30 s OFF). Chromatin were immunoprecipitated with antibody against Rpb1 (ab817) or

Rpb1 CTD-ser 5 (ab5408 or sigma 04-1572), which were coupled to Dynabead protein-G and protein-A and Dynabead sheep anti-

mouse or rat IgG (Invitrogene). DNA was purified from immunoprecipitated samples using MinElute QIAGEN kit. Quantification of the

DNA was done using Qubit dsDNA HS assay kit and quality was verified using Bioanalyzer.

For sequencing DNA from immunoprecipitated samples, the libraries weremade using the NEBNext ChIP-Seq Library PrepMaster

Mix Set for Illumina (E6240S) with the indexes provided in NEBBext Multiplex Oligos for Illumina (Index Primers Set1,2 and 3). Nega-

tive control DNA are those from the same chromatin extracts without going through immunoprecipitation steps. Pools of libraries

were sequenced on an Illumina HiSeq 2500 instrument at the MRC LMS genomics facility. Paired-end reads (100 nt) were generated

from two pools of 12 or 18 samples per sequencing lane. Data were processed using RTA 1.18.64, with default filter and quality set-

tings. The reads were de-multiplexed with bcl2fastq-1.8.4 (CASAVA, allowing 0 mismatches).

ChIP-seq analysis
A description of ChIP-seq libraries can be found in Table S5. Sequencing reads were aligned to the fission yeast genome as available

in PomBase in July 2019 using BWA [70, 71]. For Figure 3G, RNAPII occupancy counts were extracted for each transcript using

HTseq [72] and the fission yeast annotation available in PomBase in July 2019 [71]. Data were normalized using DESeq2 (Table

S6) and scaled using the mean counts of fission yeast histone genes as a scaling factor to allow comparison of global RNAPII occu-

pancy between size mutants [73]. Amounts of histone proteins are thought to scale with DNA content rather than cell volume and are

commonly used as normalization factors for absolute proteomics measurements [74]. Moreover, average synthesis rates of histones

were found to remain constant across a wide range of sizes in budding yeast (K. Schmoller, personal communication). For Figures 3H

and S3K, RNAPII immunoprecipitation data were normalized with their respective input and average gene analysis was performed

using the deeptools analysis suite [75]. For Figure 3H, RNAPII occupancy values across the length of each genewere divided into 100

bins using the deeptools package. Ratios between mean occupancy in bins 1-50 (50) compared to bins 51-100 (30) are shown.

Live-cell microscopy and analysis
Strains of interest and wild-type ySBM2 were grown from single colonies in 5 mL YES before they were transferred into syphonstats

and maintained at OD600 0.4 overnight in EMMS. Prior to microscopy, ySBM2 cells were mixed at a 1:10 ratio with each strain of in-

terest and diluted to a final OD600 of 0.3 in fresh EMMS. Cells were loaded directly into a CellASIC ONIX Y04C-02 microfluidic plate

(EMDMillipore) according to the manufacturer instructions. Fresh EMMSwas continually perfused through the growth chamber with

a constant pressure of 6.9 kPa (approximately 3 ml/h). Cells were imaged on an Olympus IX70 inverted widefield fluorescence micro-

scopewith an environmental chambermaintained at 32�C,with a high precisionmotorised XYZ stage (ASI), controlledwith mManager

version 1.4.22 [76]. Cells were continually imaged at a 10 min interval with a 40 3 objective (NA 0.95, UPlanSApo; Olympus) with

brightfield (30 ms exposure), GFP (250 ms exposure, emission filter Semrock 514/30 nm), and dsRed (500 ms exposure, emission

filter Semrock 617/73 nm) channels captured by a Hamamatsu Orca Flash 4.0 V2 sCMOS camera, with illumination provided by a

Lumencor Spectra X LED light source set to 20% power. For each of the four growth chambers within the microfluidic plate, three
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positions were defined, each of which was focused using the software autofocus using the brightfield channel; since this feature was

generally inaccurate, a 3 mm Z stack was used around the autofocus position to ensure that at least one Z-position was in focus for

each position.

Initial analysis was performed with Fiji – a derivative of ImageJ – with time-lapses assembled if necessary, and in-focus slices for

each time-point selected using a custom macro (written by Stephen Rothery, Facility for Imaging by Light Microscopy, Imperial

College London), resulting in a 4-dimensional OME-TIFF file for each field-of-view (XYCT). Each file was subsequently analyzed

using a series of custom Python scripts utilizing the scikit-image, SciPy, NumPy, and pandas packages extensively among

others. The scripts have been assembled in a python package called PombeTrack available in github (https://github.com/

ImperialCollegeLondon/PombeTrack/releases/tag/v0.1). The scripts permit the semi-automated definition of cell boundaries (seg-

mentation) within the brightfield channel, followed by the quantification of fluorescence within cell boundaries, identification of nuclei,

further quantification within nuclear boundaries, and assignment of cells into lineages. Cell segmentation was effected using a

custom ‘balloon-filling’ algorithm, in which a connected series of nodes is ‘inflated’ from its center inducing an outward force on

all nodes; this outward force is counteracted by an ‘image force’, which applies an opposing force inversely proportional to the in-

tensity of pixels neighboring the node, this has the effect of preventing nodes from expanding through areas of low light intensity –

which generally surrounds the cell boundary; finally each node is also affected by its direct neighboring nodes which pull each node

sideways according to their position, ensuring smooth contours. Together, after multiple iterations, nodes migrate from a central

location until the forces equilibrate at areas of low light intensity (generally the edge of the cell). This procedure can be performed

in an automated manner in which iterations cease when the area contained within the nodes does not significantly change, or in a

supervisedmanner, in which further iterations are promptedmanually via a keyboard command, with progress displayed via a graph-

ical interface. Initial centers of cells are defined either bymanually clicking, or by the center of the cell in the previous frame. Nuclei are

defined as areas within the cell boundary which have red fluorescence pixel intensity values greater than 1.1 standard deviations

above the mean intensity within the whole cell boundary. Time frommitosis is defined as the number of hours from the point at which

the number of detected nuclei increases from one to two. Fluorescence intensity is adjusted for uneven illumination according to a

series of empty fields imaged using the same settings. Background and autofluorescence is determined fromwild-type cells cultured

within the same field-of-view, with the mean level of fluorescence within these cells subtracted frommeasurements. Fluorescence is

normalized by cell or nuclear area by dividing total fluorescence of all pixels within their respective boundary by the area of that

boundary. Scripts are available upon request.

For live cell imaging in Figure S4, cells were imaged in ibidi microfluidic channel slides (mslide VI 0.4, #80601) instead of a CellASIC

ONIX microfluidic plate. 30 mL of cells sampled from syphonstat cultures maintained at OD600 = 0.5 for at least 15 generations

were loaded into channels of a pre-warmed slide. 40 mL of pre-warmed EMMS was then added to each reservoir of channels, fol-

lowed by 10 mL of mineral oil (Sigma, M5904) to prevent evaporation during imaging. Live-cell microscopy was performed as

described above.

Image analysis was semi-automated and performed using custom interactive MATLAB scripts available upon request. Tracks cor-

responding to individual cell cycles are recorded by user clicking. Only cell cycles for which cells remained in in focus for at least the

2 hours precedingmitosis were collected. Local background subtraction was automatically applied to fluorescence images. Cell seg-

mentation was performed automatically based on thresholding of the brighfield images. Nuclear segmentation was performed auto-

matically based on thresholding of the uch2-mCherry fluorescence images.

For the live cell imaging in Figures S4D andS4E, cells were seeded in ibidi microfluidic channel slides as described for Figures S4A–

S4C. Live-cell microscopy was performed on a Leica TCS Sp8 confocal microscope, using a 40x oil immersion objective (NA 1.40)

with pinhole equal 1 and resonant scanning. An environmental chamber was used to maintained temperature at 32�C and GFP with

brightfield were acquired with an optical z stacks of 5mm with 6 steps to ensure covering the whole range of nuclear thickness. The

image analysis was semi-automated and performed using custom scripts in ImageJ.

Cell size measurements
Weextracted both cell area and cell lengthmeasurements form the smFISH images as proxies for cell volume.We observed that both

measurements support robustly data characteristics such as scaling of mRNA numbers and positive intercepts. We used cell length

as a proxy for cell volume throughout themanuscript as it proved to be a simpler andmore consistentmeasure. Importantly, as fission

yeast has a cylindrical shape, its length is directly proportional to its volume. For the nucleus, we acquired area measurements only.

As the nucleus is spherical, area and volume are not proportional. We have therefore derived volume estimates from area measure-

ments assuming a perfect sphere using:

volume= 4
.
3�p� area=pð Þ3=2
Mathematical modeling
We use agent-based simulations of stochastic gene expression coupled to cell size in growing and dividing cells (Figure 2A) [25]. We

assume cells grow exponentially with a constant growth rate from birth to division that is sampled from a truncated Gaussian distri-

bution with meanmg and standard deviation sg. A cell that is born with birth length Li grows until it reaches the division length Lf We
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use a phenomenological model of cell size control that relates the final size to initial size through a noisy linear map, which captures

experimentally observed variability and correlations in cell size [77–79].

Lf = aLi +b+ hb; (Equation 1)

where a and b are size control parameters (a= 0 denotes a sizer mechanism and a= 1 an adder mechanism) and hb is a truncated

Gaussian with mean zero and standard deviation sb. The dividing cell of length Lf produces two daughter cells with birth sizes L0i
and Lf � L0i , where L0i = Lfhd and hd is another truncated Gaussian with mean 0.5 and standard deviation sd. The biomolecules

such as mRNA molecules (except for DNA) are binomially partitioned in the daughter cells with a probability proportional to the

daughter cell size L0iAs shown in Figure 2A, we simulate a fixed number of cells, so upon cell division one of the existing cells (including

one of the newly born daughter cells) is chosen randomly and taken out of the simulation. This ensures we are simulating a constant

number of cells in time and can produce snap-shot data with steady-state cell age and size distribution as observed in the experi-

mental data. This has been used in the simulations used in the ABC inference (Figure 2). For the modeling results shown in Figures 3

and 5, where the results are conditioned on cell size, we have used a simpler scheme [25], where upon cell division only one of the

daughter cells is followed modeling a single lineage (similar to the data generated in a mother machine) [80]. The simulations are per-

formed using a simple algorithm that uses discretized time steps to simulate exactly the Gillespie method [81] with time-dependent

parameters [82]. The simulation code for inference is written in the Julia programming language (ABC code is available at https://

github.com/vshahrez/AdaptiveABC.jl) and the rest of simulations are performed in R. The agent-based simulation codes (used for

Figures 2, 3, and 5) are available on github (https://github.com/vshahrez/Sun-Bowman-et-al).

Our main gene expression model is the so-called telegraph model or the two-state model [83] where the gene can be in an ‘off’ or

an ‘on’ state and transcription can only occur when the gene is on (Figure 2A). If the gene is always on then this model reduces to a

simple non-bursty birth-death process with parameters transcription rate v and mRNA decay rate d. Here the mRNA counts per cell

have a Poisson distribution (in the absence of cell cycle effects). In the limit where the duration of the promotor on-state is shorter than

the mRNA life time we have the bursty limit characterized by 3 parameters of average burst frequency kon, average burst size v=koff
and mRNA decay rate d. In this model, birth events are simulated as geometrically distributed increases in mRNA numbers [84]. For

Figure 2B model selection, we used five variants of this model including two non-scaling models (Poisson or bursty) and three tran-

scription scaling models (Poisson model with transcription scaling or bursty limit with either burst size scaling, or burst frequency

scaling). Transcriptional scaling is modeled as linear dependence of transcription rate or burst size to cell size (v Lð Þ = v�L, where,

v� is a constant and L is the cell length) or burst frequency (konðLÞ = k�onL, where, k�on is a constant and L is the cell length). Themodels

for the cell cycle regulated genes, assume that there is a time point in the cell cycle, where gene expression increases from a basal

level to an active level and there is another time point in the cell cycle, where gene expression switches to basal level again. The infer-

ence in Figure 2 is performed in two steps. First the cell cycle and size control parameters are inferred by ABC on the snapshot size

data for the different strains. The maximum a posteriori estimates are shown in Table 1, which support the idea that fission yeast is

more of a sizer ða� 1Þ and pom1D strain has more variability in cell division. These estimates are then used on the ABC model se-

lection of different models of gene expression scaling in Figures 2B and 2C (samples of the posterior from this ABC model selection

inference is included as Supplementary Table S4). Poisson line in Figure 2C is created by fixing noisy linear map parameters of cell

cycle using the ABC fits to the wt data and varying v� over a range while keeping mRNA life-time constant in the Poisson scaling

model to produce a range of different mean expressions. ABC model selection in Figure 2E is performed on the data from the tran-

scription shut-off experiments of the 3 strains of wt, wee1-50, and cdc25-22. The 3 models included are all the Poisson limit with

different scaling assumptions for transcription and decay rates. Model one assumes transcriptional scaling with a single constant

decay rate across the 3 strains (‘‘Constant single’’), the second model assumes also transcriptional scaling but with 3 different con-

stant decay rates within each strain (‘‘Constant multiple’’). And the third model assumes constant transcription and decay rate that is

proportional to inverse cell size across the 3 strains (d Lð Þ = d�L, where d� is a constant andL is the cell length) (‘‘Scaling’’). The priors

used in the model selection, are wide over a physiological range. The model selection results were not too sensitive to the choice of

the priors.

In Figure 3D amore detailedmodel of transcription is illustrated, which is based on the totally asymmetric simple exclusion process

(TASEP) [7, 39–41]. Here, the promoter is assumed to be always active, i.e., we aremodeling a non-bursty gene. The gene ismodeled

as a lattice of size LG. Transcription starts by initiation through binding of a RNAPII molecule to the first site on the gene with rate a if

the site is empty. Elongation is modeled as hopping of RNAPII forward with rate b if the next site is available (otherwise, the hopping is

blocked, as illustrated in Figure 3D). Termination is modeled with RNAPII leaving the last site on the gene with rate g, which gives rise

to a fully transcribed mRNA. In our model, we have ignored pausing, backtracking and incomplete termination. In Figure 3E, we

compare 3 variants of this model, where size scaling is through linear coupling of initiation a Lð Þ=a�Lð Þ, elongation b Lð Þ= b�Lð Þ or
termination rate g Lð Þ=g�Lð Þ to cell length ðLÞ. We chose LG = 20 for computational efficiency and as it is larger than the typically

observed number of RNAPIIs on the genes, which is related to nascent site intensity (Figure 3A). In each model, we randomly picked

the initiation timescale tI, elongation timescale through the whole gene tE , and termination timescale tT between 0.001-0.1 hours

that produces average mRNA numbers of between 20-30 for a moderately expressed gene. The lower limit on the timescale is signif-

icantly shorter than the mRNA life time and the upper limit represents very slow steps to achieve moderate transcription, given the

mRNA life time, and is also slower than the time-scales reported in the literature [3]. The rates are inversely proportional to the time-

scales as a = 1=tI, b= LG=tE and g = 1=tI. Note that as b is the rate of hopping per site, it is also proportional to the number of sites on

the gene LG. Simulations where run using 500 random sets of a; b and g. For each parameter set 1500 cells are simulated and two
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linear regressions are done on the mRNA numbers versus cell length data for the smaller and larger half of simulated cells. The de-

viation from linearity is estimated as the difference between the linear regression coefficients of small versus large cells. Values close

to zero indicate a linear scaling and larger values indicate saturation of mRNA numbers in large cells. We also performed an ABC

model selection using an implementation of our TASEP model in Julia on several datasets (Figure S3G). We used the same prior

as discussed above.

The nuclear scaling model and the RNAPII model in Figure 5E rely on both cell size and nuclear size dynamics. It is known that

nuclear size scales closely with cell size [48]. There has not beenmuchmodeling of nuclear size control in the literature. We introduce

a phenomenological and passivemodel of cell and nuclear size control, extending the noisy linearmapof cell size control (Equation 1).

We assume cellular exponential growth, cell size control and division as before.We assume nuclear size also grows exponentially and

follows its own noisy linear map:

LNf = aNLNi +bN + hNb

Cell division time is determined when cells reach their final size ðLf Þ.For simplicity, we assume mitosis is taking place at cell division

and the size of the newly divided daughter cells and their nucleus is determined by L0i = Lfhd and L
0
Ni = LNfhNd, where hd and hNd are

truncated correlated Gaussian noise with mean equal 0.5, standard deviations sd and sNd and correlation coefficient of rd. We

choose rd = 0:5 based on analysis of our time-lapse imaging data (Figure 4) and the rest of the parameters of our dual noisy linear

map model of cell and nuclear control were fitted on the static pom1 mutant size data using the ABC inference.

Given, our dual noisy linearmapmodel discussed above, in the nuclear scalingmodel (Figure 5E), we assume transcription rate v to

be linearly dependent on the nuclear size LN but mRNAs are partitioned upon division based on the size of the daughter cells (not

nuclear size of the daughter cells). In this model a small daughter cell is likely to inherit a nucleus of average size, with transcription

rates higher than expected from cell size, resulting in an increase in mRNA concentration for small cells.

The RNAPII model (Figure 5F) provides a mechanistic RNAPII based model of transcriptional scaling. In this hybrid deterministic

and stochastic model, transcription, translation, complex formation and maturation of RNAPII molecules are modeled as simple cell

size dependent production steps. The RNAPII is then transported to the nucleus by a nuclear size dependent rate and it binds to DNA

with high affinity with a rate that is dependent on the concentration of DNA in the nucleus (inversely proportional to nuclear size). In this

model transcription rate of a gene is assumed to be proportional to the amount of DNA-bound RNAPII.

In this hybrid deterministic and stochastic model, RNAPII dynamics are modeled deterministically by a series of ODEs inside

growing and dividing cells, while transcription of mRNA is modeled stochastically. Upon cell division, we assume mRNA are parti-

tioned binomially according to the size of the daughter cells. The free cytosolic and nuclear RNAPII are portioned binomially accord-

ing to the size of the daughter cells and their nucleus. The scaling in this model comes about from sequestration of RNAPII on the

DNA. The model is very robust to different model parameters and assumptions as long as the level of free cytosolic and nuclear

RNAPII ismuch smaller than the DNAboundRNAPII. The qualitativemodel results for Rpb1 shown in Figure 5E, are obtained by using

the parameters of the dual noisy linear map model discussed above for the pom1mutant, tuning RNAPII parameters to obtain about

10% free RNAPII and linear scaling of DNA boundRNAPII, as well as setting the transcription rate tomatch expression levels of Rpb1.

The model without any further tuning recovers deviation from concentration homeostasis observed at small cell sizes, which is

observed for the different genes in the wt and pom1 mutant strains.

ABC inference and model selection
In this study we have used Approximate Bayesian Computation (ABC) for inference. When the likelihood function is intractable, we

require a tool for carrying out inference without it. ABC is precisely such a tool. The algorithm originated in the 1980s and 90 s (see

e.g., [85]). For review of more recent developments, see [15]. ABC aims to carry out Bayesian inference without having to evaluate the

likelihood function. Given data D and model with parameter set q; this is done by approximating the posterior distribution:

PðqjDÞ = PðDjqÞPðqÞ
PðDÞ zPðqjrðD;DqÞ < εÞ;

whereDq is a set of data generated from themodel with parameters q, sampled from the priorPðqÞ, rðD;DqÞ is a distancemeasure that

is defined on the set of such datasets (or their summary statistics) and ε is a tolerance, representing the degree of approximation we

are willing to accept. The simplest ABC algorithm, that is based on sampling q repeatedly and rejecting the ones that produce data

with larger distance than our tolerance (which is called ABC rejection sampling [86]), is too inefficient. Muchwork has been carried out

over the past decade in this area, leading to a variety of different implementations with much more favorable scaling of computation

time with the dimensionality of the parameter space [86]. For the purpose of this project we will use a Sequential Monte Carlo imple-

mentation, based on the implementations of Toni et al. [87] (ABC-SMC) and Lenormand et al. [88] (APMC). In the ABC-SMC, one fixes

the size of the posterior sample, N, and a finite sequence of decreasing tolerances, fεtg, a priori. The primary differences between

APMC and ABC-SMC are first that the sequence of epsilons is not determined a priori; it is dynamically determined from the previous

iteration’s distribution of errors until a stopping criterion ðpaccminÞ is fulfilled and second that simulations from earlier iterations are not

discarded.
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ABC lends itself very naturally to model selection [86, 87]. In essence, all we have to do is to extend our priors to one extra dimen-

sion, representing different models. Formally, we require a joint prior distribution over models and parameters, PðM; qÞ. We have

combined the model selection aspects of ABC-SMC implementation and adaptive aspect of APMC to obtain our APMC with model

selection algorithm.

In order to apply our APMC algorithm, we need to choose an appropriate distance rðD;DqÞ. As the problem at hand is stochastic in

nature, we have chosen to use sum of square differences of summary statistics of the data and simulated data in the distance

measure:

rðD;DqÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�
miðDÞ �miðDqÞ

sdðmiðDÞÞ
�2

vuut ;

where we used central sample moments and cross momentsmiðDÞ of our data up to order 3. With our data sample sizes, moments

beyond the first three are usually too noisy to be useful. Also, each term in the distance measure are weighted by the bootstrap es-

timates of standard deviation of the central moments. This rescales the terms in the sum appropriately and downweighs the noisier

moments, helping to prevent overfitting of the data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of the statistical analysis are reported in each figure legend including center and precision measures. Wilcoxon tests on Fig-

ure 3 are one-sided and those on Figure S3 are two-sided. Boxplots represent median, interquartile range, and most extreme data

points that are not more than 1.5 times the interquartile range. All statistical analysis has been performed in R and mathematical

modeling was performed using code implemented in Julia and R. Detailed description of all the mathematical modeling approaches

are available in the STAR Methods. Number of cells in each smFISH experiment are provided in Table S2.

DATA AND CODE AVAILABILITY

All smFISH, cell size and nuclear size data are available in Table S3. The accession number for the ChIP-seq sequencing data re-

ported in this paper is ArrayExpress: E-MTAB-8522. Processed ChIP-seq data are available in Table S6. Themodel posteriors related

to Figure 2 are available in Table S4. The ABC code for inference is available at https://github.com/vshahrez/AdaptiveABC.jl. The

agent-based simulation codes and simulation results (related to Figures 2, 3, 5, and S3) are available at https://github.com/

vshahrez/Sun-Bowman-et-al. The image analysis scripts use on Figures 4 and S4 have been assembled in a python package called

PombeTrack available at: https://github.com/ImperialCollegeLondon/PombeTrack/releases/tag/v0.1.
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