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Highlights Impact and implications
� Transcriptomic analyses were performed to investigate the
involvement of the PNPLA3 I148M variant in the pro-fibrogenic
features of HSCs.

� HSCs carrying the PNPLA3 I148M variant are characterized by
mitochondrial dysfunction and decreased antioxidant capacity.

� HSCs carrying the PNPLA3 I148M variant have increased TGFB1
signalling which reduces the antifibrotic activity of its endogenous
inhibitor NR4A1.

� The ECM of cirrhotic liver further exacerbates the effects of the
PNPLA3 I148M variant on HSC behaviour.
https://doi.org/10.1016/j.jhep.2024.01.032
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Hepatic stellate cells (HSCs) play a key role in the fibrogenic
process associated with chronic liver disease. The PNPLA3
genetic mutation has been linked with increased risk of fibro-
genesis, but its role in HSCs requires further investigation.
Here, by using comparative transcriptomics and a novel 3D
in vitro model, we demonstrate the impact of the PNPLA3 ge-
netic mutation on primary human HSCs’ behaviour, and we
show that it affects the cell’s mitochondrial function and anti-
oxidant response, as well as the antifibrotic gene NR4A1. Our
publicly available transcriptomic data, 3D platform and our
findings on NR4A1 could facilitate the discovery of targets to
develop more effective treatments for chronic liver diseases.
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Background & Aims: The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of
chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects
HSC biology using transcriptomic data and validated findings in 3D-culture models.
Methods: RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity,
genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured
on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-
B) treatment.
Results: Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways
related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were
dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was
linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive
oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds.
TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor
NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic
3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in
PNPLA3-I148M HSCs.
Conclusion: HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and
increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM,
highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
Chronic liver disease (CLD) is a leading cause of death world-
wide with an estimated number of cases of around 1.5 billion.1

The most common causes are non-alcoholic liver disease
(NAFLD) or MAFLD (metabolic dysfunction-associated fatty
liver disease) (59%),2 chronic HBV (29%) and HCV (9%) in-
fections, and alcohol-related liver disease (ALD) (2%).1 NAFLD
affects approximately 25% of the world’s adult population,3

with a percentage of patients progressing to non-alcoholic
steatohepatitis (NASH) which can then lead to cirrhosis and
hepatocellular carcinoma.4 Fibrosis stage has been identified
as the most important predictor of prognosis in patients with

NAFLD.5 Liver fibrosis is defined as the progressive deposition
of fibrillar extracellular matrix (ECM) associated with gradual
nodular regeneration of the liver parenchyma leading to
cirrhosis.6,7 The excessive deposition of fibrillary ECM is
mediated by hepatic stellate cells (HSCs),8 liver-specific peri-
cytes which undergo a phenotypical modulation into myofi-
broblasts in response to several micro-environmental
disturbances.9 Among these are the release of cytokines and
chemokines by platelets and inflammatory cells,10 the secretion
of damage-associated reactive oxygen species (ROS), the
generation of lipid peroxides and apoptotic bodies by damaged
hepatocytes11,12 and a major disturbance of ECM homeostasis

Keywords: Hepatic stellate cells; PNPLA3; fibrosis; 3-dimensional (3D) models; extracellular matrix (ECM); transcriptomics; mitochondrial dysfunction;
oxidative stress; TGFB1; NR4A1 (Nur77).
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Fig. 1. Gene expression profiled by NGS and analysed by IPA of in vitro-cultured primary human HSCs and human biopsies genotyped for PNPLA3-WT-
I148M mutations. IPA of in vitro-cultured primary human HSCs (n = 3 per genotype) stratified according to carriage of the PNPLA3-I148M variant. (A-B) Significantly
enriched (A) upstream regulators predicted as activated (red) or inhibited (blue) (-2.25 <− Z-score >− 2.25, p <0.05) or (B) canonical pathways predicted as up- or
downregulated (-0.5 <− Z-score >− 0.5, p <0.05). (C) Selection of significantly enriched biofunctions (-3 <− Z-score >− 3, p <0.05). (D) Major upregulated or downregulated
target genes identified by NGS, p <0.05. Comparative IPA of in vitro-cultured primary human HSCs and human biopsies of patients (n = 60 WT and n = 56 I148M)
stratified according to carriage of the I148M. (E) Comparison of transcriptomic data (NGS), showing shared number of significantly deregulated genes (p <0.05). (F–H)
Comparative analysis of shared (F) significant canonical pathways. (-1 <− Z-score >− 1 for at least one dataset (human or in vitro) and going in the same direction for the
other dataset, p <−0.05, red asterisk indicates regulation by TGFB1) or (G) predicted upstream regulators (-4 <− Z-score >− 4 for at least one dataset (human or in vitro) and
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in the space of Disse.13 Genetic variants are a key determinant
of the risk of development and progression of NAFLD.14 Among
them, the most robustly characterized and the one that ac-
counts for the largest fraction of disease heritability15 and
susceptibility to develop steatohepatitis16 is the I148M variant
of the PNPLA3 gene. Patatin-like phospholipase domain-
containing 3 (PNPLA3, also called adiponutrin, ADPN) is a
membrane-bound protein with lipase and transacylase activity
towards triglycerides/phospholipids in hepatocytes and retinyl
esters in HSCs.17,18 PNPLA3 is highly expressed in HSCs,
where it is regulated by retinol and lipid homeostasis.19 Several
studies have proven the association between PNPLA3 I148M
and the development and severity of liver fibrosis, which might
be at least partially independent from the predisposition to
hepatic fat accumulation. Further, the PNPLA3 I148M variant
has been associated with hepatocellular carcinoma develop-
ment20–22 and previous studies have shown how the PNPLA3
I148M variant facilitates HSC activation and how its expression
is associated with a pro-fibrogenic, pro-inflammatory
myofibroblast-like phenotype compared to wild-type
PNPLA3.23,24 While the presence of the PNPLA3 I148M
variant in HSCs has been associated with a deregulation of Yap
signalling25 and cholesterol metabolism,26 a comprehensive
study of the different mechanisms driving the progression of
liver disease via PNPLA3 variants has still to be provided. An
obstacle to the analysis of the effects of the PNPLA3 variant is
the lack of adequate pre-clinical models. Although genetically
modified mouse models carrying the PNPLA3 I148M variant
have been generated,27–29 PNPLA3 expression is highest in
adipose tissue in mice,30 whereas it is highest in the liver in
humans.31 Meanwhile, the most commonly used human cell
lines (HepG2 and LX2) are already carriers of the PNPLA3
I148M mutation, thus hampering the possibility of observing
differences between a wild-type and mutant genotype.32 In
addition, the complex remodelling of the tissue microenviron-
ment and cellular organization observed during liver fibrosis
progression33 can hardly be replicated in a classic 2D plastic
culture dish. Among the newly developed models, human-
derived liver 3D ECM scaffold cultures can recapitulate the
tissue microarchitecture, ECM microenvironment and stiffness
of both the healthy and cirrhotic human liver as we previ-
ously demonstrated.34–37

The aim of this study was to unravel the main HSC-related
mechanisms driving the progression of liver disease in car-
riers of the PNPLA3 I148M variant, by using transcriptomic
analysis of patient-isolated human HSCs genotyped for
PNPLA3. Selection of the main pathways modulated by the
PNPLA3 variant in HSCs, but also important for the overall
progression of liver disease, was achieved by combining tran-
scriptomic data from HSCs with data from whole biopsies of
patients with NAFLD. Targets were validated using a 3D in vitro
model of HSCs recapitulating the microenvironment of healthy
and cirrhotic human livers.

Materials and methods
Please refer to the supplementary materials and methods
section for more detailed descriptions.

Study population

The cohort was formed of 116 individuals with obesity previ-
ously characterized in the study by Baselli and colleagues.38

Briefly, liver biopsy was performed by needle gauge during
bariatric surgery. Steatosis was graded based on the percent-
age of affected hepatocytes; disease activity was assessed
according to the NAFLD activity score; fibrosis was staged
according to the recommendations of the NAFLD clinical
research network.39 A complete overview of the clinical fea-
tures of the patients is provided in Table S2.

Primary human HSC isolation and culture

Human primary HSCs were isolated according to Rombouts
et al., and cells were isolated from normal human liver (i.e.,
without inflammation and fibrosis), obtained after wedge sec-
tion surgery in patients with liver metastasis from extrahepatic
cancers (REC reference 21/WA/0388) (Table S6).40 Cells were
cultured in Iscove’s Modified DMEM (Thermo Fisher Scientific,
Watlham, USA), supplemented with 20% foetal bovine serum
(Thermo Fisher Scientific, Watlham, USA), 2 mM Glutamine, 1X
non-essential amino acids, 1.0 mM sodium pyruvate, 1X
antibiotic-antimycotic (Life Technologies, Carlsbard, USA), and
maintained under standard conditions in a humidified incubator
under 5% CO2 in air at 37 �C. Medium was refreshed twice a
week and cells were passaged when subconfluent with 1X
Trypsin (Gibco, Thermo Fisher Scientific, Watlham, USA). Ex-
periments were performed on cell preparations used between
passage 5 and 8.

Preparation of 3D human liver scaffolds and primary human
HSC culture

Livers were obtained after approval by the UCL Royal Free
BioBank Ethical Review Committee (NRES Rec Reference: 21/
WA/0388). Informed consent was obtained for each donor and
confirmed via the NHSBT ODT organ retrieval pathway. Healthy
human livers were retrieved for transplantation but judged un-
suitable due to prolonged cold ischemic time, the presence of
extrahepatic cancer, or other significant extrahepatic diseases
in donors or recipients. Cirrhotic liver was explanted from a
patient with alcohol-related cirrhosis. Healthy liver was defined
if there was no evidence of fibrosis and fat accumulation. 3D
human liver scaffolds were prepared (Table S1) and quality
control (Fig. S4) was performed according to the methodolo-
gies developed by Mazza G and colleagues.35,36 3D human
liver scaffolds were then sterilized using 0.1% peracetic acid
(Sigma-Aldrich, St. Louis, USA) and repopulated with primary
HSCs as previously described.35

=
going in the same direction for the other dataset, p <−0.05) or (H) Biofunctions (-4 <− Z-score >− 4 for at least one group and going in the same direction for other groups, p
<−0.05). (I) Major upregulated or downregulated target genes identified by NGS, p <0.05. Red asterisk indicates regulation by TGFB1. (J) Schematic representation of the
upstream regulator, canonical pathways and target genes highlighted by IPA and selected for further investigation. HSCs, hepatic stellate cells; IPA, Ingenuity Pathway
Analysis; NGS, next-generation sequencing; WT, wild-type.
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Data analysis and statistics

The statistical analysis was performed using GraphPad Prism
9.0c software for Windows (Graph Pad CA, USA). Values are
expressed as mean (SD). Sample groups were tested for
normal distribution utilizing the Shapiro-Wilk test. Statistical
significance was analysed using Student’s t test or one/two-
way or three-way ANOVA with Tukey’s multiple compari-
son test.

Results

Transcriptomic analysis of PNPLA3-WT and PNPLA3-I148M
HSCs and human liver biopsies

To investigate the impact of the PNPLA3 I148M variant on the
fibrogenic phenotype of HSCs, primary human HSCs were
isolated, genotyped and classified as PNPLA3 rs738409 CC
(wild-type – from now on referred to as PNPLA3-WT) or
PNPLA3 rs738409 CG (heterozygous mutant – from now on
referred to as PNPLA3-I148M). Primary HSCs were cultured on
plastic, and next-generation sequencing (NGS) of bulk tran-
scriptome was used to study the biological processes modu-
lated by the PNPLA3 variant. Ingenuity Pathway Analysis (IPA)
highlighted a wide number of significantly deregulated “Ca-
nonical Pathways”, ranging from increased fibrogenesis,
inflammation, metabolism, and proliferation. Deregulated
pathways were independently validated with specific markers
in an additional experiment where HSCs were cultured on
plastic, confirming differential gene expression and increased
proliferation in I148M vs. PNPLA3-WT HSCs (Fig. S1). Most
pathways modulated by the PNPLA3 variant were related to
mitochondria metabolism and oxidative stress (increased
“Oxidative Phosphorylation” and “NRF2-mediated oxidative
stress response”) or to glucose and lipid metabolism (increased
“Apeline adipocyte signalling pathway” and decreased
“PPARa/RXRa activation”) along with ECM remodelling
(increased “ILK signalling”) (Fig. 1B). Increased fibrogenesis,
synthesis of lipids and reduction of hydrogen peroxide in
PNPLA3-I148M HSCs was also identified by Biofunctions
analysis (Fig. 1C). Analysis of the activation status of the
network of modulators which might drive pathway dysregula-
tion (upstream regulator analysis) predicted a strong activation
of inflammatory and proliferative genes, but also many activa-
tors linked to oxidative stress, lipid metabolism and an
extended number of intracellular mediators of transforming
growth factor-b1 (TGFB1) signalling (Fig. 1A). In addition,
transcriptomic analysis highlighted a group of significantly
upregulated and downregulated target genes (Fig. 1D).

Before proceeding to target validation, a second round of
analysis was performed to select pathways and genes modu-
lated by the PNPLA3 variant in HSCs and potentially relevant
for NAFLD progression. This was achieved by combining
transcriptomic data on primary HSCs isolated from different
donors (in vitro) with transcriptomic data obtained from pa-
tients’ biopsies (Human) where the PNPLA3 variant had

previously been identified as a major driver of NAFLD disease
severity and gene expression variability.38 Comparisons high-
lighted a large pool of significantly modulated genes shared
between the two datasets (Fig. 1E). The selection of shared
pathways and biofunctions was made by choosing pathways
significantly enriched and modulated in the same direction (Z-
score >0 or Z-score <0) in both the datasets. This analysis
confirmed that the presence of the PNPLA3 variant is associ-
ated with the modulation of a large set of pathways related to
mitochondria/oxidative stress (increased “NRF2-mediated
oxidative stress response”), glucose/lipid metabolism
(decreased “Glucose metabolism disorder”) and ECM signalling
(increased “Hepatic Fibrosis”, “ILK Signalling”) (Fig. 1F,H).
Upstream regulator analysis showed a similar trend to the
in vitro analysis, with a large set of activated modulators related
to ECM signalling and TGFB1 having one of the highest acti-
vation Z-scores (Fig. 1G). The analysis predicted TGFB1 to be a
major upstream regulator of half of the deregulated canonical
pathways and most of the target genes identified by tran-
scriptomics (Fig. 1F,I, pathways/genes marked by a red
asterisk, Table S3, Fig. S8). Overall, these data suggest an
impact of the PNPLA3 I148M variant on the fibrogenic
phenotype of HSCs with an involvement of mitochondria/lipid
metabolism and oxidative stress, with TGFB1 playing a key
role. Importantly, these mechanisms seem to be specific to
HSCs, as previously published data on the same liver biopsy
dataset38 identified pathways and target genes related to
inflammation and cancer development as majorly dysregulated,
which are not significantly affected in the RNA sequencing
dataset of primary HSCs (Table S4). Preliminary gene expres-
sion investigations (Fig. S2) and literature study prompted us to
focus on NR4A1 (also known as NUR77), an antifibrotic target
of TGFB1, which can also be modulated by the antioxidant-
related transcription factors JUN and FOS (Fig. 1J).

The 3D HSC model recapitulates PNPLA3 I148M-induced
modulation of intracellular pathways observed in human
livers and 2D models

Findings from transcriptomic data were validated using an
established 3D ECM scaffold model.35,36 The healthy and
cirrhotic liver microenvironment was recapitulated by using
acellular scaffolds obtained from healthy and cirrhotic human
livers which were repopulated with patient-isolated PNPLA3-
WT or PNPLA3-I148M HSCs and challenged with chronic
TGFB1 treatment (Fig. S3A). Gene expression analysis on
PNPLA3-WT or PNPLA3-I148M HSCs cultured on healthy and
cirrhotic 3D scaffolds was performed using NanostringTM

Technologies’ nCounter® Human Fibrosis 700 genes panel
(Fig. 2A). Gene set analysis highlighted pathways driving dif-
ferential expression between PNPLA3-WT and -I148M HSCs
and cultured on healthy or cirrhotic ECM scaffolds. The top 30
pathways driving differential expression in WT vs. PNPLA3-
I148M HSCs were related to “Collagen or ECM Biosynthesis
and modification” and “Hippo Pathway” (upregulation of

=
protein expression. (D,E) TGFB1 and SERPINE1 gene expression. (F,G) COL1A1 protein expression. Blots from WT and PNPLA3-I148M HSCs or healthy and cirrhotic
scaffolds were processed in parallel. (H) Pro-COL1A1 protein secretion. (I) BMP1 gene expression; (****p <0.001/***p <0.005/**p <0.01/*p <0.05; n = 1 donor per each
genotype and n = 3/4/6 biological replicates per each condition (protein expression/gene expression/protein secretion); data analysed via three-way ANOVA with
Tukey’s multiple comparison test). ECM, extracellular matrix; GSA, gene set analysis; HSCs, hepatic stellate cells; WT, wild-type.
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Fig. 3. PNPLA3-I148M HSCs have impaired mitochondrial function compared to PNPLA3-WT HSCs. Analysis of expression of genes and proteins in PNPLA3-
I148M vs. WT HSCs. (A,B) VARS2 gene and protein expression in HSCs cultured (A) in 2D for 3 days or (B) in healthy or cirrhotic scaffolds for 14 days. (C,D) Protein
expression of complex IV mitochondrially encoded subunits MTCO1 and MTCO2 in HSCs cultured (C) in 2D for 3 days or (D) in healthy or cirrhotic scaffolds for 14 days.
(E,F) Complex IV and citrate synthase activity in HSCs cultured in 2D, healthy or cirrhotic scaffolds for 3 or 14 days. (G,H) Quantification of mitochondrial respiratory
chain complexes using BN-PAGE in HSCs cultured (G) in 2D for 3 days or (H) on healthy or cirrhotic scaffolds for 14 days; SDHA (Complex II) was used as loading
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thrombospondins and integrins with downregulation of MMPs),
“TGFB1 signalling” (increasing F11R and SERPINE1), lipid
metabolism (“PPAR Signalling”, “De novo lipogenesis” and
“Fatty Acid metabolism”) and “Oxidative stress”. When
comparing HSC cultures in 3D cirrhotic ECM vs. 3D healthy
ECM, the top 30 impacted pathways showed differential
expression of genes related to “Gluconeogenesis”, “Oxidative
Stress”, “Hippo Pathways” but also TGFB1 and PDGF signal-
ling (Fig. 2A).

Next, the TGFB1 signalling pathway was analysed: in
PNPLA3-I148M HSCs and in cells cultured on the 3D cirrhotic
ECM, TGFB1 protein expression was significantly upregulated
(Fig. 2B,C), while latent TGFB1 secretion was significantly
upregulated by 3D cirrhotic ECM in PNPLA3-WT HSCs
(Fig. S3B). Furthermore, in line with TGFB1 upregulation,
PNPLA3-I148M HSCs showed a pro-fibrotic behaviour which
was demonstrated by the upregulation of SERPINE1 (Fig. 2E),
involved in ECM accumulation,39,41 bone morphogenic protein
1 (Fig. 2I), the enzyme cleaving the C-terminal of pro-collagen
1a1 to mature COL1A1, and COL1A1 protein expression
(Fig. 2F,G) and pro-COL1A1 protein secretion (Fig. 2H).

Overall, the pathways that appeared to be modulated in the
3D model were similar to those highlighted by the RNA
sequencing data. In particular, TGFB1 – highlighted by tran-
scriptomic data as a key activated upstream regulator –

showed increased signalling in PNPLA3-I148M HSCs vs.
PNPLA3-WT HSCs and in cirrhotic scaffolds compared to
healthy scaffolds. Hence, the 3D model, which can recapitulate
the changes identified by the RNA sequencing data, was
chosen for further investigation.

The PNPLA3 I48M variant causes mitochondrial
dysfunction in HSCs

In vitro transcriptomic analysis highlighted a dysregulation of
many mitochondrial metabolism-related pathways, including
the mitochondrial enzyme valyl-tRNA synthetase 2 (VARS2),
which was downregulated in PNPLA3-I148M HSCs. This was
confirmed at the gene expression level in HSCs cultured in 2D
with no changes at the protein expression level (Fig. 3A). When
HSCs were cultured on 3D ECM scaffolds, the same trend of
decreased VARS2 gene expression in PNPLA3-I148M HSCs
was observed, with an additional significant decrease of VARS2
protein content observed when both WT and PNPLA3-I148M
HSCs were cultured on cirrhotic scaffolds compared to healthy
scaffolds (Fig. 3B). VARS2 is a key enzyme in the synthesis of
the mitochondrial DNA-encoded subunits of the respiratory
chain enzyme complexes.42 Hence, the abundance of two of
the 13 mitochondrial DNA-encoded subunits and the five
mitochondrial respiratory chain complexes (complexes I–V) was
measured in WT and PNPLA3-I148M HSCs cultured in 2D or
3D scaffolds. The two mitochondrially encoded subunits of
complex IV, mitochondrially encoded cytochrome C oxidase I/II
(MTCO1/MTCO2), were significantly downregulated in cells

carrying the PNPLA3 I148M variant, with MTCO1 content also
being lower in the presence of the 3D cirrhotic ECM compared
to healthy ECM, while no significant difference was observed in
cells cultured in 2D (Fig. 3C,D). Complex IV enzymatic activity
was also lower in PNPLA3-I148M vs. WT HSCs cultured in 2D
or 3D healthy scaffolds, but not in cirrhotic scaffolds (Fig. 3E). In
contrast, the expression of the other mitochondrial respiratory
chain complexes, resolved on blue native gels, was not
significantly affected by the PNPLA3 I148M variant or 3D
cirrhotic ECM (Fig. 3G,H). Furthermore, mitochondrial respira-
tory activity, which was quantified by measuring the oxygen
consumption rate, was decreased in PNPLA3-I148M vs. WT
HSCs. Specifically, while basal respiration was equal regard-
less of the presence of the PNPLA3 I148M mutation, maximal
respiration observed in stress conditions (FCCP injection) was
lower in PNPLA3-I148M HSCs compared to WT (Fig. 3I). These
results suggest a PNPLA3-I148M-driven mitochondrial
dysfunction in HSCs, not due to a lower mitochondrial number
supported by unchanged activity of the citrate enzyme system
(Fig. 3F), but rather to a deficiency in complex IV expression
and activity (Fig. 3E).

Mitochondrial dysfunction and VARS2 depletion have both
been linked to activation of the integrated stress response
(ISR).43,44 Analysis on the RNA sequencing conducted on liver
biopsies highlighted a large pool of deregulated genes linked to
ISR. Nevertheless, the RNA sequencing dataset and the
expression of important ISR genes in the HSCs cultured on liver
scaffolds did not provide conclusive evidence of whether the
ISR pathway might be activated in HSCs due to the presence of
the PNPLA3 mutation (Table S5, Fig. S5). Hence, we next
focused on how mitochondrial dysfunction might affect the
antioxidant capacity of PNPLA3-I148M HSCs.

Antioxidant response is reduced in PNPLA3-I148M HSCs

In the presence of mitochondrial dysfunction, inefficient
nutrient oxidation leads to a low ratio of ATP production/oxy-
gen consumption. This can lead to an increased production of
superoxide anions and consequent oxidative stress, which is
known to play a key role in the progression of fatty liver dis-
ease.45 Given the identification by Ingenuity Pathway Analysis
of several oxidative stress-related pathways which were dys-
regulated by the PNPLA3 I148M variant, and the mitochondrial
dysfunction observed in the 3D model of HSCs, we further
investigated the antioxidant capacity of the cells. Thus, HSCs
grown in the 3D model of healthy and cirrhotic ECM were
exposed to TGFB1, known to be involved in oxidative stress
processes46 and identified as a key upstream regulator of gene
expression variability in PNPLA3-I148M HSCs by NGS. Gene
expression of cytoglobin B (CYGB), an oxygen transporter, was
significantly decreased in HSCs carrying the PNPLA3 I148M
variant or by TGFB1 treatment in healthy scaffolds. Gene
expression of nuclear factor erythroid 2-related factor 2 (NRF2),
a key antioxidant enzyme, followed a similar pattern and its

=
control. (I) Seahorse analysis showing the OCR in HSCs. (**p <0.01/*p <0.05, Gene expression: n = 2 donors per genotype, n = 4 biological replicates per condition;
Protein expression: n = 3 (2D) or 1 (3D) donors per genotype, n = 3 biological replicates per condition; Enzymatic activity: n = 4 donors per genotype, n = 4/5 biological
replicates per condition; BN-PAGE: n = 3 donors per genotype, n = 1 biological replicate per condition; Seahorse: n = 3 donors per genotype, n = 3 biological
replicates; data analysed via Student’s t test or two-way ANOVA with Tukey’s multiple comparison test). HSCs, hepatic stellate cells; OCR, oxygen consumption rate;
WT, wild-type.
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repressor, KEAP1 (kelch like ECH associated protein 1), was
downregulated following TGFB1 treatment in PNPLA3-I148M
vs. WT cells in the presence of the cirrhotic ECM (Fig. 4A).
These results were further confirmed by protein expression
analysis showing a decrease of NRF2 in the presence of the
PNPLA3 I148M variant and in the 3D cirrhotic ECM (Fig. 4B,C).
Interestingly, the amount of superoxide dismutase (SOD)2, the
mitochondrial-specific superoxide dismutase, was decreased
in PNPLA3-I148M vs.WT HSCs, whereas the same pattern was
not observed for the cytoplasmic superoxide dismutase SOD1
(Fig. 4D,E). In addition, measurement of ROS release showed a
significant increase in the amount of lipid peroxidation products
such as 4-hydroxynonenal (4-HNE), driven by the presence of
the PNPLA3 I148M variant and further increased by the 3D
cirrhotic ECM. A similar pattern was not observed in the release
of other endogenous ROS such as H2O2, although this was
increased by TGFB1 treatment in cirrhotic scaffolds (Fig. 4F).
These data indicate an impaired antioxidant response in
PNPLA3-I148M HSCs, which leads to an increase in ROS.
Importantly, this effect is significantly enhanced in the presence
of the cirrhotic ECM or after exposure to TGFB1 and supports
the findings from the transcriptomic data.

Antifibrotic NR4A1 is downregulated in PNPLA3-I148M vs.
WT HSCs

NR4A1 is a transcription factor of the nuclear receptors su-
perfamily that governs multiple cell functions including meta-
bolism,47,48 oxidative stress and multiple aspects of wound-
healing.49 NR4A1 is also described as an endogenous anti-
fibrotic gene modulated by TGFB1, i.e. upon chronic TGFB1-
induced NR4A1 phosphorylation, the NR4A1 protein trans-
locates from the nucleus to the cytoplasm, becoming inactive
and unable to counteract the pro-fibrogenic effect of TGFB1.50

NR4A1 was highlighted by NGS as differentially modulated in
the PNPLA3 I148M variant. NR4A1 gene expression was
decreased following chronic TGFB1 treatment only in HSCs
grown in cirrhotic scaffolds (Fig. 5A). In addition, the total
amount of NR4A1 protein was strikingly lower in PNPLA3-
I148M vs. WT HSCs, whereas the phosphorylated fraction of
NR4A1 was higher in PNPLA3-I148M vs. WT HSCs and further
increased by chronic treatment with TGFB1 when cells were
cultured in the 3D cirrhotic scaffold (Fig. 5B,C). Importantly,
inactivation of NR4A1 in PNPLA3-I148M HSCs was confirmed
by the downregulation of gene expression of NR4A1 targets as
analysed by NanostringTM nCounter® for Human Fibrosis and
shown in Fig. 5D. Furthermore, phosphorylation (/inactivation)
of NR4A1 is linked to its cytoplasmic localization.50,51

Accordingly, immunohistochemistry of NR4A1 and phospho-
NR4A1 confirmed the localization of the active NR4A1 mainly
in the cellular nuclei and of the inactive phosphorylated NR4A1
mainly in the cytoplasm in both WT (Fig. 5E) and PNPLA3-
148M HSCs (Fig. 5F).

NR4A1 agonist Csn-B increases NR4A1 only in HSCs
cultured in 3D healthy scaffolds

To further explore whether an increase in NR4A1 affects the
mitochondrial/antioxidant/pro-fibrogenic features of HSCs, and
whether this process can be modulated by PNPLA3 genotype,
HSCs exposed to TGFB1 were supplemented with the NR4A1
natural agonist cytosporone B (Csn-B).52 The dosage of Csn-B

was determined using a dose-response curve of increasing
Csn-B concentrations which were tested on both WT and
PNPLA3-I148M HSCs cultured in 2D and in the 3D healthy
scaffold. Csn-B was toxic for cells cultured in 2D only at the
highest concentration (20 lM), while in the 3D model, toxicity of
Csn-B was detectable at 10 lM (Fig. 6A). Therefore, 1 lM and
5 lM were chosen as low and high concentrations of Csn-B for
the following experiments. First, a single 24-hour treatment with
Csn-B led to an increase in NR4A1 and a decrease of phospho-
NR4A1 in both WT and PNPLA3-I148M HSCs cultured in
healthy scaffolds (Fig. S6). Therefore, the next experiments
were performed in the presence of both chronic TGFB1 and
Csn-B treatment (48 h*3). Gene expression analysis showed a
Csn-B-dependent upregulation of NR4A1 only in PNPLA3-WT
HSCs grown in healthy scaffolds (Fig. 6B), while total NR4A1
protein was significantly increased by Csn-B (1 lM) only in
PNPLA3-I148M HSCs cultured on healthy scaffolds. Interest-
ingly, the phosphorylated fraction of NR4A1 was decreased by
Csn-B (1 lM) in both WT and PNPLA3-I148M HSCs, but only
when the cells were cultured in healthy scaffolds (Fig. 6C,D).

Csn-B attenuates TGFB1-induced production of COL1A1
and increases antioxidant enzymes in both WT and
PNPLA3-I148M HSCs

Treatment with Csn-B (at both 1 lM and 5 lM) decreased
COL1A1 protein expression in both WT and PNPLA3-I148M
HSCs cultured in healthy and cirrhotic scaffolds (Fig. 7A,B).
TGFB1 protein expression was also downregulated by Csn-B in
PNPLA3-WT HSCs, whereas the effect was not significant in
PNPLA3-I148M HSCs or cirrhotic scaffolds (Fig. 7C,D).
Furthermore, secretion of Pro-Col1a1 followed a similar trend
when both WT and PNPLA3-I148M HSCs were cultured in
healthy scaffolds but without reaching statistical significance
(Fig. 7E). Importantly, treatment with Csn-B also increased NFR2
and CYGB gene and protein expression in PNPLA3-I148M
HSCs cultured in healthy scaffolds, with a similar trend observed
in PNPLA3-WT HSCs (Fig. 7F,G). Therefore, a Csn-B-induced
increase of total active NR4A1 with a consequent decrease of
the inactivated phospho-NR4A1 in HSCs resulted in the down-
regulation of pro-fibrogenic markers, with a stronger effect in
PNPLA3-WT HSCs, and an increase in antioxidant enzymes in
PNPLA3-I148M HSCs. Importantly, this effect was not associ-
ated with significant differences when the cells were cultured in
the 3D cirrhotic ECM, clearly indicating an ECM-specific effect.

Notably, our results also show that regulation of the trans-
lational machinery might be driven by different pathways in
PNPLA3-I148M compared to PNPLA3-WT HSCs. In fact, post-
translational modification of NR4A1 can be mediated by Akt,
Erk or other MAPK kinases in different chronic condi-
tions.50,51,53 Indeed, in PNPLA3-WT HSCs, TGFB1 increased
the phosphorylated form of Akt, and when combined with Csn-
B, this effect was abrogated, suggesting a consequent Akt-
driven phosphorylation of NR4A1. This effect was not
observed in PNPLA3-I148M HSCs (Fig. S7). In contrast, TGFB1
increased the phosphorylated form of Erk, and this effect was
abrogated when combined with Csn-B, in PNPLA3-I148M but
not PNPLA3-WT HSCs (Fig. S7). Therefore, this suggests a
different mechanism of phosphorylation of NR4A1, which is
driven by Akt in PNPLA3-WT HSCs but by Erk in PNPLA3-
I148M HSCs.
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Discussion
The PNPLA3 I148M variant accounts for the largest fraction of
inherited predisposition to the development of any progressive
chronic liver disease, including evolution of cirrhosis and he-
patocellular carcinoma.16,21,54 This variant has been associated
with liver fat accumulation, hepatic inflammation, and suscep-
tibility to developing fibrosing steatohepatitis.16 Several studies
have demonstrated the association between PNPLA3 I148M
and the development and severity of liver fibrosis20–22 and how
PNPLA3 is correlated to HSC activation.23 Nonetheless, the
mechanism(s) underlying the pro-fibrogenic effect of PNPLA3
on human HSCs have not been clarified yet. In a previous
study, transcriptomic analysis of liver biopsies was utilized to
highlight the impact of the PNPLA3 I148M variant on the liver
transcriptome of patients with severe NAFLD and this was
correlated with an increased inflammatory signature specifically
in hepatocytes.38 In our study, comparative transcriptomic
analysis of both in vitro-cultured HSCs and patient liver bi-
opsies identified PNPLA3 I148M-driven disruption of mito-
chondrial function and antioxidant responses in HSCs. This
was accompanied by increased TGFB1 signalling which
dampened the activity of TGFB1’s endogenous antifibrotic in-
hibitor NR4A1.

Mitochondrial dysfunction is related to the development of
various liver diseases55 and has been established as one of the
driving forces for the progression of NAFLD.56 Despite the at-
tempts of the liver to recover from fat accumulation by
increasing oxidative phosphorylation in the initial phase of
NAFLD, mitochondrial adaptation is insufficient to stop the
progress of the disease, leading to impaired mitochondrial
respiration and exhaustion of oxidative phosphorylation in
NASH.57–59 The presence of the PNPLA3 I148M variant has
been associated with a decreased mitochondrial function in
Huh-7 hepatoma cells and LX2 cells.25,60 Importantly, in this
study, we showed that human primary HSCs carrying the
PNPLA3 I148M variant had a lower oxygen consumption rate
compared to wild-type cells. In addition, we demonstrated a
lower expression, which coincided with a lower enzyme func-
tionality of complex IV of the mitochondrial respiratory chain
contributing to this process. Complex IV was shown to be
decreased both in patients with NAFLD,61 animal models of
fatty liver disease,62 and HBV-infected cells63 and is the most
common respiratory chain complex involved in liver failure.59

Importantly, we were able to link complex IV insufficiency to
the PNPLA3 I148M variant and thus with mitochondrial
dysfunction in HSCs. Abnormal reduction of respiratory com-
plexes promotes the production of superoxides,64 which are
associated with the progression of chronic liver disease.65 ROS
are produced in physiological conditions and are important for
physiological redox signalling. Regardless, overproduction of
ROS and impaired capacity of the antioxidant system leads to
oxidative stress.66 Studies have shown that loss of complex IV
in brain and heart tissue causes a three-fold increase in ROS
levels produced at the level of complex I by mitochondria.67

Accordingly, we observed an increased secretion of ROS in

HSCs carrying the PNPLA3 I148M variant. The major increase
was observed for secreted 4-HNE, a product of lipid peroxi-
dation which damages the mitochondrial genome,68,69 and can
directly attack and inactivate respiratory chain components
including complex IV.70 This can lead to a vicious cycle trig-
gering ROS generation by the respiratory chain56 and may act
as a potent pro-fibrogenic stimulus for HSCs.71

In addition, we also observed a decreased antioxidant ca-
pacity in PNPLA3-I148M HSCs, which showed lower levels of
CYGB, NRF2 and SOD2 compared to WT cells. These data
agree with patient and in vivo animal data on NAFLD and
NASH,72–74 as well as with the further hampering of antioxidant
enzyme quantity caused by the presence of TGFB1.

As previously reported, TGFB1 modulates PNPLA3
expression in HSCs25,75 and we demonstrated in the present
study that PNPLA3-I148M HSCs are characterized by
increased TGFB1 signalling, which is known to increase pro-
fibrogenic and inflammatory features76 as well as oxidative
stress in HSCs.46 Recently, NR4A1 was identified as an
endogenous inhibitor of TGFB1 signalling in the context of
chronic fibrogenesis,50 and was reported to be enriched in
HSCs in the liver (Human Protein Atlas, data available from
v21.1.proteinatlas.org77), and proposed as a new anti-
fibrogenic marker.78–80 In the present study, the tran-
scriptomic data suggested a dysregulation of NR4A1, which
was confirmed by a marked decrease and inactivation of its
protein expression in PNPLA3-I148M HSCs, coinciding with an
increase in TGFB1 and COL1A1 expression. This effect was
abolished by treatment with Csn-B, an agonist of NR4A1,
which decreased inactive phosphorylated NR4A1, thus coun-
teracting the pro-fibrogenic effect of TGFB1 and directly
implicating NR4A1 in the mechanism by which PNPLA3-I148M
promotes HSC activation. Interestingly, our data suggest that
the mechanism leading to the phosphorylation of NR4A1 might
be different between PNPLA3-WT and PNPLA3-I148M HSCs.
In fact, Akt appeared to drive the phosphorylation of NR4A1 in
PNPLA3-WT HSCs treated with TGFB1, in agreement with
other studies on fibroblasts in chronic fibrotic conditions.50 On
the other hand, in HSCs carrying the PNPLA3-I148M variant,
the same process appeared to be driven by Erk. This further
supports the existence of different molecular mechanisms and
activated pathways related to the presence of the PNPLA3
I148M variant.

Remarkably, the increase in NR4A1 activity, induced by
treatment with Csn-B, was associated with an increase in the
antioxidant enzyme NRF2 in PNPLA3-I148M HSCs, suggesting
an inhibitory effect of NR4A1 on both the fibrogenic and
oxidative stress pathways in HSCs. NR4A1 is involved in
regulating oxidative stress in different conditions depending on
cell type and pathological conditions investigated.81–84 Impor-
tantly, NR4A1 expression has been found to be beneficial in
mouse hepatocytes by promoting antioxidant fibroblast growth
factor 21 secretion,85 which, together with our findings in
HSCs, makes it an interesting target for the treatment of fatty
liver diseases.

=
WT HSCs cultured on ECM scaffolds (n = 2 donors per genotype, n = 3 biological replicates per ECM condition) obtained from NanostringTM analysis; (E,F) Immu-
nohistochemical staining of NR4A1 and phospho-NR4A1 (brown – NR4A1/phosphoNR4A1, blue/purple – chromatin, scale bar = 0.05 mm). ECM, extracellular matrix;
HSCs, hepatic stellate cells; WT, wild-type.
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Fig. 6. Effect of the natural agonist Csn-B on NR4A1 expression in PNPLA3-WT or PNPLA3-I148M-genotyped HSCs. (A) Viability response of WT or PNPLA3-
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Fig. 7. Effect of the natural agonist Csn-B on activation markers and antioxidant enzymes in PNPLA3-WT or PNPLA3-I148M-genotyped HSCs. Analysis of
expression of genes and proteins in PNPLA3-I148M vs. WT HSCs cultured on healthy or cirrhotic scaffolds with TGFB1 (5 ng/ml) and Csn-B (1 lM or 5 lM). (A-D)
Protein expression of (A,B) COL1A1 and (C,D) TGFB1. Blots from WT and PNPLA3-I148M HSCs or healthy and cirrhotic scaffolds were processed in parallel. (E)
Protein secretion of Pro-COL1A1. (F) Protein expression of NRF2. Blots from WT and PNPLA3-I148M HSCs or healthy and cirrhotic scaffolds were processed in
parallel. (G) Gene expression of CYGB; (***p <0.005/**p <0.01/*p <0.05, n = 1 donor per genotype, n = 3/4 biological replicates per condition (protein expression/gene
expression and protein secretion); data analysed via one-way ANOVA with Tukey’s multiple comparison test). Csn-B, cytosporone B; HSCs, hepatic stellate cells; WT,
wild-type.
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It is important to note the differential responses of both
PNPLA3-WT and I148M HSCs when cultured on 3D cirrhotic
vs. healthy ECM. More specifically, one should note the
imbalance of oxidative stress vs. antioxidant enzyme expres-
sion, the increased TGFB1 and COL1A1 expression, and the
decreased NR4A1 content together with the inability of Csn-B
to increase NR4A1 expression when HSCs were cultured on
the 3D cirrhotic scaffolds. These effects can be attributed to the
differences in ECM protein composition,36 3D-architecture, and
physico-chemical properties,35 as previously shown by our
group.34 Overall, our study indicates the need for a complex 3D
model which includes the presence and tissue architecture of
the healthy, and human cirrhotic ECM that can provide much
more information compared to cell culture on plastic or 3D
models devoid of normal or pathological human-derived liver
ECM. In this study we did not determine the effect of co-
culturing primary HSCs with other single nucleotide
polymorphism-genotyped hepatic cell types; however, we
previously demonstrated the effect of the PNPLA3 variant in
single and co-cultures of LX2 and HepG2 cells bioengineered in
healthy and cirrhotic 3D scaffolds in the context of pro-
fibrogenic and anti-cancer treatment by using first-and sec-
ond-line drugs and identified two different drug-induced

mechanisms depending on the 3D ECM microenvironment.37

In the present study we further deconvoluted the role of pri-
mary human HSCs carrying the PNPLA3 variant vs. PNPLA3-
WT and their cell behaviour in this innovative 3D platform.
One further limitation of this study lies in the fact that no in vivo
model was used. Although genetically modified mouse models
carrying the PNPLA3 I148M variant have shown hepatic fat
accumulation,27–29 variations occur depending on the in vivo
model used, the type of diet, the time points investigated,86,87

as well as gender variation88 which further highlights the
extent of the impact of PNPLA3 on fatty liver disease.

In summary, our study demonstrates the impact of the
PNPLA3 I148M variant on HSC pathways deregulation, linking
it for the first time in detail with mitochondrial and antioxidant
dysfunction. This was achieved by transcriptomic analysis of an
in vitro HSC model and patients’ samples followed by valida-
tion of findings in a complex 3D model of human-derived liver
decellularized scaffolds recapitulating the healthy and cirrhotic
liver microenvironment. Furthermore, our study highlights the
importance of TGFB1 and its endogenous inhibitor NR4A1 in
HSC fibrogenesis and in the context of the PNPLA3 variant,
with NR4A1 being a potential antifibrotic drug target for the
treatment of chronic liver diseases.
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