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ABSTRACT Understanding the role of the tumor microenvironment (TME) in lung cancer is critical

to improving patient outcomes. We identified four histology-independent archetype
TMEs in treatment-naive early-stage lung cancer using imaging mass cytometry in the TRACERx study
(n=81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells
and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for
niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs
were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by
sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially
separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had
frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding sub-
clones and had a shorter disease-free survival independent of stage. These findings delineate genomic,
immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis.

SIGNIFICANCE: This study provides novel insights into the spatial organization of the lung cancer TME
in the context of tumor immunogenicity, tumor heterogeneity, and cancer evolution. Pairing the tumor
evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor pro-

gression and metastasis with implications for patient outcome and treatment.

INTRODUCTION

The tumor microenvironment (TME) confers a selective pres-
sure on the clonal evolution of lung tumors. Whether the
TME promotes or suppresses tumor growth is linked to its
spatial organization and cell phenotypes. Recently, highly mul-
tiplexed technologies such as imaging mass cytometry (IMC)
have unveiled the complexities in the composition and structure
of the TME across several cancer types (1-9). These studies
have demonstrated the clinical relevance of in-depth spatial
approaches, identifying multicellular organizations associated
with patient outcomes, tumor phenotypes, and therapy response
in lung adenocarcinoma (LUAD), breast cancer, and glioma.

TME spatial organization can, in turn, be modulated by
somatic alterations incurred throughout tumor evolution.
IMC studies in breast cancer have identified distinct spatial
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TME structures associated with somatic driver mutations and
histology-specific outcomes (2, 4), demonstrating the value of
such integrative analyses. We previously showed that increased
immune infiltration, inferred from transcriptomic signatures,
was associated with frequent cancer cell-intrinsic immune-
escape mechanisms that impact neoantigen presentation,
includingloss of heterozygosity (LOH) of human leukocyte anti-
gen (HLA) alleles, in non-small cell lung cancer (NSCLC; refs.
10, 11). These results suggested the selection of immune eva-
sive tumor cell populations in a predatory microenvironment.
However, spatially resolved information is required to further
understand immune pressures through, for example, cell-to-cell
interactions and physical barriers to immune surveillance that
impact tumor evolution. NSCLC studies that pair spatial detail
from high-dimensional imaging with genomics and transcrip-
tomics in clinically well-defined cohorts representing the major
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histologic subtypes remain to be undertaken. Such studies are
needed to provide mechanistic insights into immune escape and
the TME pressures on cancer evolution.

Here, we used multiregion IMC to comprehensively charac-
terize TME composition and spatial organization in 198 tumor
and normal regions from 81 treatment-naive patients with
NSCLC in the TRACERx 100 cohort (12). TRACERx [TRAck-
ing Cancer Evolution through therapy (Rx); ClinicalTrials.
gov: NCT01888601] is a prospective study of tumor evolution
through multiregion tumor sampling in patients with early-
stage resectable disease. Using paired IMC, pathology, whole-
exome sequencing (WES), and RNA-sequencing data (13-15),
we studied the link between TME organization, tumor immuno-
genicity, and evolutionary history. We investigated how the TME
may be shaped by high neoantigen burden, intrinsic immune-
escape mechanisms, and evolutionary patterns associated with
poor outcomes. This work begins to unravel the complex TME
relationships with NSCLC tumor evolution. By examining TME
spatial heterogeneity, this study furthers the current knowledge
of a critical open question—how to address TME heterogeneity
and utilize the TME context for clinical applications.

RESULTS

Building an Atlas of the Early-Stage Non-Small
Cell Lung Cancer Microenvironment

With the aim of understanding the role of the TME in
tumor evolution, we performed an in-depth spatial and phe-
notypic analysis of the TME in early-stage (I-IIIA), treat-
ment-naive NSCLC. We characterized the diversity in cell
phenotypes, recurrent spatial communities, and broader
TME classes in the TRACERx 100 multiregion cohort (12).
Using IMC, we profiled the in situ expression of 38 markers
on tissue microarrays (TMA) of spatially separated tumor
and adjacent normal lung samples acquired at surgical resec-
tion (Fig. 1A). The TME organization was analyzed using the
pan-immune antibody panel targeting innate and adaptive
immune cell types (» = 80, 185 cores; Fig. 1B; Supplemen-
tary Table S1). Additional T-cell differentiation states and
nonimmune stromal cells were interrogated using the T cells
and stroma panel (n = 79, 181 cores). The major histologic
subtypes of NSCLC were represented in the cohort, includ-
ing LUAD (n = 39 tumors, 76 cores, pan-immune panel),
lung squamous cell carcinoma (LUSC; »n = 23, 50 cores), and
other NSCLC histologies (NSCLC-Other; n = 6, 13 cores) as
well as adjacent normal lung samples (n = 46, 46 cores). IMC
data from multiple tumor cores were available for 41 of the
tumors represented. Twelve patients only had IMC data avail-
able from adjacent normal lung cores. The majority of cores

were profiled with both IMC panels (168/198) and had paired
WES and RNA sequencing (RNA-seq) data available (Supple-
mentary Fig. S1A-S1C; Supplementary Table S2; Methods).

To comprehensively characterize the cell phenotypes in situ,
deep learning-guided cell segmentation was performed and
followed by single-cell phenotyping (Fig. 1C; Supplementary
Fig. S2A-S2D). We identified 2.3 million cells per antibody
panel from seven major immune cell types and 29 immune
cell subtypes, in addition to epithelial, endothelial, and aSMA*
cells (Fig. 1C-E; Supplementary Fig. S2B; Supplementary
Fig. S3A). Additional pathologist-guided labels were created
using paired IMC and hematoxylin and eosin (H&E)-stained
images to distinguish features unresolvable by marker expres-
sion alone. These pathologist labels further distinguished
aSMA" perivascular stroma and aSMA" fibroblasts, alveo-
lar macrophages, and tumor and nontumor epithelial cells,
which were used to interrogate tumor cell-specific phenotypes
and spatial metrics (Fig. 1C; Supplementary Fig. S2C and
S2D). Cell phenotypes were quantified on the basis of marker
positivity, examining, for example, hypoxia (CAIX), lactate
metabolism (MCT4), proliferation (Ki-67), the exhausted ter-
minally differentiated dysfunctional (TDT) T-cell state (CD39,
CDS57; ref. 16), and immune-checkpoint molecules (Fig. 1B
and D; Methods).

Macrophages were the most prevalent major immune cell
type in NSCLC cores (median 40% of immune cells, tumor cores;
Fig. 1F; Supplementary Fig. S3B), in line with other studies (1),
with CD163*CD206" macrophages comprising a greater pro-
portion than CD163™ macrophages (37% vs. 2%; Supplementary
Fig. S3C). Notably, B cells in LUAD and myeloid cells-other,
predominantly comprising neutrophils, in LUSC made up >25%
of immune cells in a subset of tumor cores (14/76 LUAD, 13/50
LUSC; Fig. 1F; Supplementary Fig. S3C). From the T cells and
stroma panel, aSMA* cells were the most abundant nonepi-
thelial cell populations in tumor cores (median 16% of all cells;
Supplementary Fig. S3D). Subtypes of CD4 and CD8 T cells
were categorized as regulatory T cells (Treg), naive, cytotoxic,
memory, and exhausted populations (Supplementary Fig. S3E).
Endothelial cells made up a greater proportion of total cells in
adjacent normal cores than tumor cores (22% vs. 7%), in accord-
ance with the physiologic function of the lung in gas transfer
through blood flow (Supplementary Fig. S3B and S3D).

To investigate the spatial context of the identified cell
phenotypes, we quantified cell densities within two tissue
compartments, tumor nest/epithelium, and stroma (Fig. 1F;
Supplementary Fig. S2A). Additionally, we performed analysis
of local cellular neighborhoods in NSCLC, which have recently
been shown to correlate with clinical outcomes in LUAD (1),
and revealed 10 recurrent geographical communities (CO-C9)

>

Figure 1. IMC workflow defines the single-cell spatial landscape of the NSCLC tumor microenvironment. A, TRACERx 100 IMC cohort. We developed
and applied two IMC antibody panels, Pan-immune and T cells and stroma, to tissue microarrays (TMA) from clinical samples collected at surgical resec-
tion (created with BioRender.com). B, Targets of antibodies described in this study. Bold text indicates targets detected in both IMC panels. C, IMC data
were acquired from stained TMAs and processed to identify single cells and their phenotypes. D, 40,000 um? crops of IMC images representing the
markers from B with corresponding cell types from the pan-immune panel, unless annotated with an asterisk for the T cells and stroma panel only. E, A
heat map of the z-score normalized median intensities of markers from the pan-immune panel across the identified cell subtypes. F, Proportion of major
immune cell types identified in the pan-immune IMC data set per TMA core, calculated over the total tissue area (illustrated as blue and gold domains),
tumor/epithelial compartment (gold domain), or the stromal compartment (blue domain). In two normal cores, the epithelial cell signal reflected very thin
cells, which were not resolved into an epithelial compartment. All data from these cores are represented by the stroma compartment. Cell types color
legend applies to D and F, where asterisks denote cell types identified in T cells and stroma panel only. LUAD, lung adenocarcinoma; LUSC, lung squamous
cell carcinoma; NSCLC, non-small cell lung cancer; other, other non-small cell lung cancer histologies; IMC, imaging mass cytometry.
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of frequently colocalizing cells within tumor cores across his-
tologic subtypes (Supplementary Fig. S3F and S3G; Methods).

We assessed the relationship of cell populations and com-
munities with clinical variables (Supplementary Fig. S4A-
S4C; Methods). In both LUAD and LUSC, densities of the
community C9:B cells and plasma cells and plasma cells, when
tested separately, were associated with a high tumor muta-
tional burden (TMB). High TMB was further associated with
increased densities of CD163™ macrophages and CD4 Tem in
LUAD and CD8-exhausted TDTs in LUSC, similar to previ-
ous observations (16). Among the significant associations,
the C6:macrophages and T cells community, as well as several
cell subtypes that characterize this community, were enriched
in current smokers compared with ex- and never-smokers
in LUAD.

Together, we integrated spatial and phenotypic informa-
tion from multiplexed imaging with pathology annotations
to develop a framework for studying the TME composition
and organization in NSCLC.

Immune Composition in Tumor Nests and
Surrounding Stroma Reveals Four TME
Classes in NSCLC

Three broad immune classes have been previously described
for solid tumors through histologic examination of tumor-
infilerating lymphocytes (TIL) quantity and location within
tumor sections: inflamed, immune-excluded, and cold (17).
The TME subtypes and their spatial heterogeneity in NSCLC
remain to be comprehensively characterized in association with
genetic, molecular, and cellular mechanisms of immune escape.

To understand how TME organization is associated with
immune escape and tumor evolution, we performed a broad
classification based on the densities of major immune cell
types and identified common TME architectures in NSCLC.
We quantified the densities of major cell types of adaptive and
innate immunity defined within the tumor nest and stroma
tissue compartments. Through unsupervised hierarchical
clustering, we observed four common TME classes defined
across all histologic subtypes in NSCLC (Fig. 2A-C; Sup-
plementary Fig. SSA-S5C). These TME classes were distin-
guished by differential cell densities of three broad immune
cell populations—TILs (T cells and B cells), macrophages
(M¢), and neutrophils—within the tumor nest (T) or stroma
(S) of one TME class compared with other TME classes and
annotated accordingly as TS: TIL+M® high, T:TIL+M® excluded,
TS:Immune low, and TS:Neutrophil high. For a small propor-
tion of tumor cores in the cohort (11.5%), the TME class was
labeled undefined (Supplementary Fig. S5A; Methods).

The TS:TIL+M® high class, accounting for 28% of NSCLC
tumor cores (n =21 LUAD, 13 LUSC, 5§ NSCLC-Other cores),
consisted of immunologically “hot” tumors characterized
by high infiltration of TILs and M¢s in both the tumor nest
and stroma region (TS; Fig. 2D). Most of the identified TIL
and M¢ subtypes, ranging from naive CD8 T cells to CD8-
exhausted TDTs, were enriched in this class compared with
other TME classes (Supplementary Fig. S5D).

Across all histologic subtypes, we observed a subset of
tumor cores with low infiltration of TILs and M¢s in the
tumor nest and high infiltration of B cells, CD4 T cells, and
a subset of myeloid cells excluding neutrophils and mac-
rophages in the stroma (Fig. 2D). Because of the statistically
lower infiltration of TILs and M¢s in the tumor nest (T), these
cores were labeled T:TIL+M® excluded (24% of NSCLC cores,
n =20 LUAD, 12 LUSC, 1 NSCLC-other cores).

A smaller proportion of tumor cores (17%) had signifi-
cantly lower TS infiltration of T cells and M¢s compared with
those from other TME classes, termed TS:Immune low (n = 13
LUAD, 8 LUSC, 3 NSCLC-other cores).

Finally, we observed a distinct TME class, TS:Neutrophil high,
in 19% of tumor cores (n = 11 LUAD, 15 LUSC, 1 NSCLC-
Other cores) with lower infiltration of TILs and M¢ in both
the tumor nest and stroma and significant enrichment of
neutrophils in the tumor nest or the stroma (TS) compared
with tumor cores from other TME classes. Although the TME
classes were defined for all histologic subtypes combined,
LUSC cores were enriched for neutrophils in the tumor nest
more frequently than LUAD cores (Supplementary Fig. S5D).

To assess the intratumor heterogeneity (ITH) of these
TME classes, we estimated the probability of observing the
same TME class across all cores of a tumor (n = 41 tumors,
bootstrap sampling of two to four cores per tumor, Methods).
The TS:Neutrophil high TME had the highest probability to be
detected in all cores (0.5), followed by TS:Immune low (0.38),
TS: TIL+M® high (0.3), and TS:TIL+M® excluded (0.21).

Comparison by clinical variables showed that the
TS:Immune low class was associated with low TMB and <1%
PD-L1 immunohistochemistry (IHC) tumor score in LUAD
and LUSC (Fig. 2B) and tumors from never and ex-smokers
in LUAD (Supplementary Fig. SSE). IHC PD-L1 tumor cell
positivity was also absent (<1%) in TS:Neutrophil high LUSCs,
whereas a positivity score of >1% was significantly enriched
with TS:TIL+M® high LUADs and T:TIL+M® excluded LUSCs
compared with cores from other TME classes. In LUSC, the
TS:TIL+M® high class was enriched in stage II and III tumors
compared with stage I (Supplementary Fig. SSE). The tumor
cores with a TS:Neutrophil high class in LUAD more frequently

>

Figure 2. Four TME classes in NSCLC defined by immune composition in tumor nests and surrounding stroma. A, Tumor cores were classified into four
TME classes, derived by clustering immune cell densities in the tumor nest and stroma. Only LUAD (n =65 cores, 35 tumors) and LUSC (n =48, 23 tumors)
tumor cores are featured, and corresponding clinical annotations are displayed. Regional growth patterns are shown for LUAD: lepidic (low grade), acinar
and papillary (mid-grade), solid and cribriform (high grade). B, TME classifications displayed separately for LUAD and LUSC. Numbers indicate the number
of cores with a given TME class for each histology subtype. The barplot shows the total expressed neoantigen count for all predicted HLA alleles in the
range 0-269 for LUAD and 23-160 for LUSC, colored by their clonal and subclonal status. Horizontal lines connect tumor cores from the same multire-
gion tumor (n =33 tumors). The annotation bars display tumor genomic features and PD-L1 tumor cell (TC) staining (SP142 IHC) for the corresponding
tumor cores. C, Composite images and cell type maps of representative examples for each TME class. Crop insets are 82 um in diameter. D, A heat map
of T values derived from an LMEM of the major cell type density across TME classes, adjusted for histology subtype as a fixed effect and patient as a
random effect. Significant relationships are indicated with an asterisk for P <0.05. TIL, tumor-infiltrating lymphocyte; M®, macrophage; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, non-small cell lung cancer; TME, tumor microenvironment; TMB, tumor mutation burden;
muts/Mb, mutations per megabase; panCK, pancytokeratin; LMEM, linear mixed effects model.
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had a high-grade growth pattern compared with low and mid-
grade patterns combined (50% vs. 10%, P = 0.048, Fig. 2A).
These results align with previous reports of TIL associations
with tumor cell PD-L1 expression and TMB (18).

Multicellular Communities Associate with
Neoantigen Burden and Intrinsic Immune Evasion

We sought to understand how the observed TME organi-
zation was related to neoantigen presentation and cancer
cell-intrinsic mechanisms of immune evasion and identify
potential tumor-extrinsic mediators of immune evasion.
Using samples with paired IMC, WES, and RNA-seq data, we
investigated the relationships of the spatially resolved cell sub-
types, cellular communities, and TME classes with neoantigen
burden and antigen presentation machinery (APM) defects.

We first correlated IMC-derived densities of cellular com-
munities with the number of expressed neoantigens pre-
dicted to bind intact HLA alleles (Methods). We identified
histology-specific correlations between spatial communities
and neoantigen burden, correcting for multiregion sampling
and patient smoking status. In LUAD, clonal neoantigen
burden was associated with community C6:macrophages and
T cells (linear mixed-effects model, LME P = 0.04), a com-
munity enriched in TS:TIL+M® high TMEs and depleted in
TS:Immune low TMEs (Fig. 3A-C). Community C6:macrophages
and T cells was characterized by increased densities of several
CD4 and CD8 T-cell populations relative to other commu-
nities, including cytotoxic CD8 T cells and CD8 T resident
memory (Trm) cells; however, enrichment of CD163™ and
CD163"CD206* macrophage populations distinguished
C6:macrophages and T cells from C2:T-cell enriched (Supple-
mentary Fig. S3F). A minority of cell subtypes were sig-
nificantly associated with clonal neoantigen burden when
considered independently of community localization (Sup-
plementary Fig. S6A), suggesting the local niches in which
they reside are relevant to understanding the antitumor
immune response.

In LUSC, the burden of expressed clonal and total neoanti-
gens predicted to bind intact HLA alleles was correlated with
C9:B cells and plasma cells (LME P < 0.03), a community enriched
in T'TIL+M® excluded TMEs and depleted in TS:Neutrophil high
TMEs (Fig. 3A, B, and D). Both B cells and plasma cells were

enriched in community C9:B cells and plasma cells, but only
stroma-localized plasma cell densities were significantly corre-
lated with clonal and total neoantigen burden in LUSC (Sup-
plementary Figs. S3F and S6A). This spatial analysis reveals
that plasma cells and the community in which they reside are
associated not only with high TMB but also with the burden
of clonal and total neoantigens in early-stage LUSC.

Of note, the T-cell-enriched community, which harbored
CD4 T cells, CD8 T cells, and B cells, was only associated
with the burden of clonal neoantigens in LUAD and sub-
clonal neoantigens in LUSC when HLA LOH was not consid-
ered (HLA LOH-uncorrected, LME P < 0.018; Supplementary
Fig. S6B). The T-cell-enriched community was also signifi-
cantly correlated with stromal and tumor-infiltrating Tregs
in LUSC, which may suggest hindered antitumor immunity
in regions with a high burden of subclonal neoantigens (HLA
LOH-uncorrected, LME P = 1.9e-05, LME P = 0.015; Supple-
mentary Fig. S6C). Communities associated with HLA LOH-
uncorrected neoantigen burden, including the T-cell enriched
community, were enriched in TS:TIL+Ma® high TMEs, adding
further resolution on cell organization in inflamed environ-
ments (LME P < 0.02; Fig. 3B; Supplementary Fig. S6B).

We next sought to establish the spatial immune context asso-
ciated with HLA LOH and other somatic disruptions to HLA
class I APM genes, hereafter referred to as class I/APM disrup-
tion (Methods). In LUAD, tumor regions with class I/APM dis-
ruption had increased densities of communities C6:macrophages
and T cells and C7:macrophage enriched (LME P = 0.001, LME
P =0.023; Supplementary Fig. S6D). In LUSC, class I/APM dis-
ruption was observed more frequently in TS:TIL+M® high tumor
cores compared with other TME classes (91% vs. 60% cores with
available HLA data; Supplementary Fig. S6E).

These results uncover spatial niches of immune cells in
high neoantigen burden tumors, including the spatial context
of effector CD8 T-cell populations. Consideration of HLA
LOH identified different spatial communities that are further
affected by neoantigen clonality and NSCLC histology subtype.

Peritumoral aSMA* Fibroblasts Spatially Separate
CD8 T Cells and Tumor Cells in Imnmune-Low TMEs

The exclusion of T cells from the tumor nest has been associ-
ated with the limited efficacy of immunotherapies. Previous

.

Figure 3. Spatial features associated with neoantigen burden and immune low TMEs. A, Correlation of densities of spatial cellular communities and
the burden of expressed clonal, subclonal and total neoantigens predicted to bind intact HLA alleles, after accounting for HLA LOH, in LUAD (n =31,

51 tumor cores) and LUSC (n=17, 37 tumor cores). Bar plot shows the median neoantigen burden with whiskers extending to the 75th percentile. B,
Comparison of the densities of spatial cellular communities in a given TME class compared with all other TME classes combined. LUAD: n=21 TS:TIL+M®
high cores, n=20 T:TIL+M® excluded cores, n =13 TS:Immune low cores, n=11 TS:Neutrophil high cores. LUSC: n=13 TS:TIL+M@® high cores,n=12
T-TIL+Md excluded cores, n =8 TS:Immune low cores, n =15 TS:Neutrophil high cores. Box sizes in A and B correspond to T values. C, Community and cell
subtype maps from a LUAD tumor core with a high burden of expressed clonal neoantigens and high densities of C2:T-cell enriched and C6:macrophage
and T cells communities. D, Community and cell subtype maps from a LUSC tumor core with a high burden of expressed clonal neoantigens and high densi-
ties of community C9:B cells and plasma cells. Single cells in Cand D are colored by community according to the color legend below D or cell subtype

as indicated. Scale bars, 200 pm. Middle, an enlargement of the area highlighted with a white box in the left plot with matched cell subtypes shown in

the right plot. E, Schematic of aSMA* fibroblast barrier score calculation. The barrier score measures the degree of spatial interpositioning of tumor
cell-adjacent aSMA* fibroblasts between CD8 T cells and their nearest tumor cell(s) in a tissue core. In the lower half of the schematic, three nearest
tumor cells are defined for the green CD8 T cell, all six hops away. Tumor cell-adjacent aSMA* fibroblasts are found on two of these three paths from
CD8 T-cell to tumor cell, resulting in a barrier score of %. F, Boxplot comparing the aSMA* fibroblast barrier scores in a given TME class compared with

all other TME classes combined in LUAD (n =36, 57 tumor cores) and LUSC (n= 22, 45 tumor cores). Boxplots show median and lower and upper quartile
values, and whiskers extend up to 1.5 x IQR above and below the quartiles. G, Representative IMC images and cell type maps from LUAD and LUSC tumor
cores classified as TS:Immune low with a high barrier score. Scale bars, 200 um. P values in A, B, and F and T values in A and B were calculated in a linear
mixed-effects model with patient as a random effect, using smoking status as a fixed effect in A with a P value < 0.05 considered significant. LUAD,

lung adenocarcinoma; LUSC, lung squamous cell carcinoma; panCK, pancytokeratin; TS, tumor/stroma; T, tumor; TIL, tumor-infiltrating lymphocytes;

M, macrophage; *, P < 0.05; **, P < 0.01.
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work in NSCLC has found that dense fibrous stroma surround-
ing tumor islets in human lung tumor slices can limit T-cell
ingress, likely mediated by distinct collagen-producing cancer-
associated fibroblast (CAF) subsets (19, 20) and that the geo-
metrical complexity of the tumor-stroma interface has been
shown to be increased with overall low compared with high
lymphocytic infiltrate (21). Both of these studies highlight a
potential role for CAFs in T-cell exclusion in NSCLC. How-
ever, the diversity of cell subtypes interrogated in these works
was limited.

Building on this, we harnessed the aSMA marker on our T
cells and stroma antibody panel and explored whether immune
TME classes were associated with distinct aSMA" fibroblast
arrangements, which may represent potential barriers to
tumor-immune engagement. Using a barrier metric derived
from constructing a cellular spatial graph for each tumor core
(Fig. 3E, Methods), we found that TS:Immune low TMEs were
characterized by a higher degree of physical occlusion of CD8
T cells from tumor cells by tumor-adjacent aSMA" fibroblasts
than other TMEs combined in both LUAD and LUSC (LME
P = 0.02, P = 0.04, respectively, Fig. 3F and G). Barrier score
distributions across TME classes did not reflect overall densities
of aSMA" fibroblasts in tumor cores (Supplementary Fig. S6F).

However, notably, aSMA" fibroblast barriers were insuf-
ficient to explain the lack of immune cell infiltration into
tumor nests in the T'TIL+M® excluded TME class in LUAD
or LUSC, although high barrier scores were noted in indi-
vidual cases (Fig. 3F). Nevertheless, cytotoxic CD8 T cells and
leukocytes-other had significant avoiding relationships with
tumor cells in T"TIL+M® excluded TMEs compared with other
TME classes in LUAD and LUSC, respectively (Supplementary
Fig. S6G).

Collectively, these results suggest that peritumoral aSMA*
fibroblasts may represent a feature of early-stage NSCLC TMEs
with overall low levels of immune infiltration and a putative
physical barrier to CD8 T-cell and tumor cell engagement.

Tumors Infiltrated with Neutrophils and Sparse
T Cells Are Metabolically Rewired and Distant
from Vasculature

Immune classification revealed a distinct TME class with
high neutrophil cell densities and sparse TIL infiltration in
the tumor nest and stroma, TS:Neutrophil high, which was
detected in at least one core in 28% of NSCLCs (n = 18/64
tumors with defined TME). Studies of NSCLC showing a
neutrophil gene signature as the strongest immune predictor

of mortality (22) and high neutrophil content inversely cor-
relating with T-cell infiltration (23) led us to investigate a
potential tumor-promoting role of this TME class. Of note,
neutrophil infiltration levels in LUSC were higher than in
LUAD tumor cores by a factor of two (median of 752 cells/
mm? compared with 343 cells/mm?, respectively); therefore,
the TS:Neutrophil high TME class was examined separately and
compared between the major histologic subtypes.

We assessed signaling pathways that were differentially reg-
ulated in this TME class, using paired TRACERx 100 RNA-seq
data (n = 18 tumors, 38 regions). In LUSC, overrepresentation
analysis of gene ontology (GO) biological processes showed
upregulation of several processes, including protein kinase
B (PKB) signaling, angiogenesis, and transcriptional pro-
grams associated with wound healing and myeloid leukocyte
migration in TS:Neutrophil high tumor cores relative to cores
from other TME classes (FDR < 0.01, Fig. 4A; Supplemen-
tary Fig. S7A). Additionally, we identified hallmark gene sets
enriched in TS:Neutrophil high, which included epithelial-mes-
enchymal transition (EMT) and hypoxia (Fig. 4B). Although
several metabolic processes including oxidative phospho-
rylation (OXPHOS) were significantly downregulated, gly-
colysis was upregulated in TS:Neutrophil high cores compared
with those with other TME classes (FDR = 3e-06; Fig. 4C),
suggesting metabolic reprogramming of the tumor cells in
this class.

Tumor cells can increase glycolytic activity (24, 25) and
upregulate the lactate transporter, MCT4, to shuttle excess
lactate, a product of glycolysis, into the microenvironment
(26). Therefore, we compared the levels of MCT4 expres-
sion on tumor cells and observed a greater proportion in
TS:Neutrophil bigh than other TME classes in LUSC (LME
P =0.002; Fig. 4D). MCT4 expression by nontumor epithelial
cells was negligible (Supplementary Fig. S7B). Therefore,
LUSC tumors with TS:Neutrophil high TMEs downregulated
the OXPHOS transcriptional program, while increasing
MCT4* protein expression, likely leading to increased glyco-
lytic activity and lactate accumulation in the TME.

Nutrient-restrictive and hypoxic conditions can drive cancer
cells to switch to substitute energy sources (27). We, therefore,
compared the presence of CAIX, a hypoxia-induced enzyme on
tumor cells, and found that the proportion of CAIX* tumor
cells in the TS:Neutrophil high TME class was not significantly
higher than other TME classes (Supplementary Fig. S7C).
However, the proportion of MCT4" tumor cells strongly cor-
related with the proportion of CAIX* tumor cells in LUSC in

>

Figure 4. Neutrophil infiltration in LUSC is associated with distinct metabolic and immunosuppressive phenotypes. A, Gene Ontology (GO) biologi-

cal processes enriched among upregulated genes in the TS:Neutrophil high TME class (n= 10 cores) compared with other TME classes combined (n =28
cores) in LUSC (FDR < 0.01, gene ratio > 0.05). B, GSEA of hallmark gene sets compared between tumor cores from the Tumor/Stroma:Neutrophil high
TME class and other TME classes combined, using the t-statistic derived from the limma-voom model on TMM-normalized gene expression. Significantly
enriched pathways were colored by type of pathway (FDR < 0.05). C, Normalized enrichment score derived from single-sample GSEA visualized for
TS:Neutrophil high and cores from other TME classes. The P value is derived from GSEA of LUSC as shown in A and adjusted for other hallmark pathways
using the Benjamini-Hochberg method. D, Proportion of tumor cells assigned MCT4* in TS:Neutrophil high tumor cores compared with tumor cores from
other TME classes combined in LUSC. E, Spearman correlation coefficient and P value comparing the proportion of MCT4* and CAIX* tumor cells in
TS:Neutrophil high LUSC TMEs. F, Median distance between LUSC tumor cells to their nearest endothelial cell per core in TS:Neutrophil high TME class
compared with all other TME classes combined. G, Single-channel images and composite image alongside cell type map displaying tumor cells, neutro-
phils (MPO, yellow), endothelial cells (CD31, magenta), and regions of hypoxia (CAIX, cyan) and MCT4 (green) expression. Boxplots show median and lower
and upper quartile values, and whiskers extend up to 1.5 x IQR above and below the quartiles. P values for D and F were calculated in a linear mixed-
effects model with patient as the random-effect covariate. LUSC, lung squamous cell carcinoma; TS, tumor/stroma; FDR, false discovery rate; TMM,
trimmed mean of M-values; panCK, pancytokeratin; *, P < 0.05; **, P <0.01;**, P < 0.001.
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the TS:Neutrophil high TME class (p = 0.88, P < 2e—16, Fig. 4E).
We evaluated the proximity to vasculature as the median dis-
tance between each tumor cell to its nearest endothelial cell
and found a significantly greater distance in the TS:Neutrophil
high class compared with other classes in LUSC (Fig. 4F and
G). The tumor proliferation levels assessed as the proportion
of Ki-67" tumor cells were lower in TS:Neutrophil high relative to
other TME classes in LUSC (Supplementary Fig. S7D). These
results suggest that the increase in glycolytic activity in this
TME class is associated with a decrease in oxygen supply in
tumors at a larger distance to vasculature.

Restricted vascular access consistent with a larger distance
between tumor and endothelial cells can result in tumor
necrosis. The presence of necrosis, as evaluated by histo-
pathologic review of paired IMC and H&E images (Methods),
was frequently detected in TS:Immune low (75% of cores)
and TS:Neutrophil high (60%) TMEs in LUSC (23%-28% other
TMEs; Supplementary Fig. S7E). Notably, the presence of
necrosis alone was not associated with increased tumor-
endothelial cell distance nor fraction of MCT4" tumor cells
(LME n.s.).

The TS:Neutrophil high class in LUAD was also characterized
by a larger distance of tumor cells from endothelial cells than
in other TME classes (P = 0.01, LME model; Supplementary
Fig. S7F) and a higher frequency of necrosis in 36% of cores
compared with 4.8% to 7.7% in other TMEs (chi-squared test
P=0.01; Supplementary Fig. S7G). As observed for LUSC, gene
set enrichment analysis (GSEA) of LUAD also showed upregu-
lation of the hallmark gene sets EMT and KRAS signaling, and
several metabolic processes including OXPHOS were down-
regulated (n = 28 tumors, 49 regions; Supplementary Fig. S7H).
However, the glycolysis hallmark gene set was depleted, and the
proportion of MCT4" and CAIX* tumor cells were not signifi-
cantly different in the TS:Neutrophil high TME class compared
with other TME classes in LUAD (Supplementary Fig. S7I-S7]).
Overall, LUAD tumor cores had a significantly lower propor-
tion of CAIX* tumor cells compared with LUSC (Supplemen-
tary Fig. S7K). These results suggest different metabolic and
hypoxic environmental cues in the TS:Neutrophil high TME class
between LUAD and LUSC.

In both LUAD and LUSC, the TS:Neutrophil high class had
sparse TIL infiltration (Supplementary Fig. S5D). Spatial cell-
to-cell interaction analyses revealed an avoiding relationship
between neutrophils and cytotoxic CD8 T cells in this TME
class more frequently than in other TME classes in LUAD and
LUSC. No other significant interactions between neutrophils

and any of the identified cell subtypes were observed (Sup-
plementary Fig. S7L), suggesting immunosuppression in the
proximity of neutrophils in both histologic subtypes.

In summary, we identified a distinct TME class defined
by predominant infiltration of neutrophils, increased dis-
tance from tumor to vasculature, upregulation of EMT, and
metabolic rewiring of cancer cells in both LUAD and LUSC.
Although the metabolic cues may differ between LUAD and
LUSC, TS:Neutrophil high represented an immunosuppressed
TME with sparse TIL infiltration in both histologic subtypes.

Gain-of-Function Mutations in Phosphoinositide
3-Kinase (PI3K) Signaling Implicated in Neutrophil
Recruitment in LUSC Tumors

Cancer cell-intrinsic signaling can regulate tumor metabo-
lism, immunosuppression, and angiogenesis in NSCLC (28,
29). Here, we set out to dissect genomic aberrations enriched
in tumors with a TS:Neutrophil high TME that potentially
enhance fitness, modulate inflammation, or support glyco-
lytic activity. Therefore, we examined whether somatic altera-
tions in components of the transcriptionally upregulated
pathways, such as KRAS and PKB signaling (Fig. 4A and B;
Supplementary Fig. S7H), were frequently enriched in tumor
cores with a TS:Neutrophil high TME.

To systematically examine driver mutations and copy-number
changes, we expanded our TRACERx 100 cohort to TRACERx
421 (14). We used pathologist-derived tumor-associated neu-
trophil (TAN) scoring from H&E images of paired regional
blocks of the study TMAs (region-level TAN score) and tumor-
matched diagnostic blocks (tumor-level TAN score). The TAN
scoring approach evaluated the TANs in the tumor nest and
stroma adapting a standardized method used for TIL quantifi-
cation (Fig. 5A; Methods; ref. 30). Tumor cores were stratified
into TAN-high and TAN-low using the TS:Neutrophil high TME
as a reference for high TAN scores (Methods). H&E-derived
TAN scores recapitulated the presence of neutrophils derived
from paired IMC in LUAD and LUSC (Fig. 5B; Supplementary
Fig. S8A, Spearman correlation p = 0.5-0.6, P < 2.5e—07). The
probability of detecting a TAN-high TME across all sam-
pled regions was 0.5 in TAN-high tumors (Methods), equal
to the probability estimated for the TS:Neutrophil high TME
class. Notably, TAN-high tumor regions were enriched for a
TAN transcriptional signature (31) and had a higher propor-
tion of IMC-derived PD-L1" neutrophils and MCT4* tumor
cells compared with TAN-low LUSC tumors (Supplementary
Fig. S8B-S8D).

.

Figure 5. Neutrophil-rich TMEs are associated with activating mutations in PI3K and tumor-intrinsic CXCL8 upregulation. A, Representative crops
of tumor-level H&E images with low TAN scores in the tumor nest and stroma (left) and high TAN scores in the tumor nest and stroma (right), inferred
as the proportion of the neutrophil area in tumor/stroma from the total tumor/stroma tissue area. Scale bar, 50 um; 400x magnification. B, Neutrophil
cell density as defined by IMC compared between region-level TAN-low versus TAN-high tumor cores based on H&E scores in LUAD and LUSC. C and

D, Proportion of tumor cores with (mut) and without (wt) PIK3CA driver mutations compared between TS:Neutrophil high versus other TME classes
combined (C) and region-level TAN-High versus TAN-Low cores (D) in LUSC. P values were derived from a Chi-square test. E, Neutrophil cell density by
PIK3CA mutation status, points colored by TME class assignment. F and G, TMM expression values for CXCL8 compared by PIK3CA mutation status

(F) and between TME classes (G) in LUSC. H, Immunofluorescence images of CXCL8 RNAscope multiplexed with antibody staining of pancytokeratin
(panCK) or MPO in an LUSC tumor region with a TS:Neutrophil high TME and subclonal PIK3CA mutation, and an LUSC patient with multiple TAN-high
tumor regions and a clonal PIK3CA mutation. panCK and MPO examples for CRUKOO75:R2 illustrate the same region of interest, whereas different
regions of interest are shown for CRUK0468:R6. Scale bar, 100 um. P values for B and E were calculated in a linear mixed-effects model with patient as
the random-effect covariate. P values in F and G were derived from a limma-voom differential expression analysis correcting for multiple regions per
tumor.+, P<0.1;% P<0.05;*, P<0.01;* P <0.001; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TMM, trimmed mean of M-values;
TS, tumor/stroma; TIL, tumor-infiltrating lymphocyte; M®, macrophage; TAN, tumor-associated neutrophils; H&E, hematoxylin and eosin; mt, mutant;

wt, wild-type.
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Using matched genomic profiles, we assessed whether acti-
vating driver mutations in components of the PKB/PI3K-
AKT signaling pathway were enriched in the TS:Neutrophil high
TME class of LUSC. We found a higher frequency of gain-of-
function PIK3CA driver mutations within the TS:Neutrophil
high TME class compared with other TMEs (P = 0.04, 53%
vs. 19% cores; Fig. 5C). We further validated this observa-
tion in the extended TRACERx 421 cohort using TAN scores
(n =398 cores, 120 LUSC tumors). Driver PIK3CA mutations
were significantly enriched in TAN-high tumors compared
with TAN-low tumors (P = 0.03, 25% vs. 5% tumors, tumor
level) and detected in 32% of TAN-high compared with 7%
of TAN-low tumor regions (Fig. SD). Copy-number analysis
using GISTIC2.0 revealed no evidence of copy-number ampli-
fications and deletions in driver and immune evasion genes
enriched only in the TAN-high compared with TAN-low
tumor regions (Supplementary Fig. S8E).

Nearly all PIK3CA mutations were of clonal origin in LUSC
(n = 46/53 regions), indicating that these mutations were
detected in all tumor cores. Tumors with a clonal PIK3CA
mutation had a twice higher probability of having a TAN-
high TME compared with PIK3CA wild-type tumors (0.47
vs. 0.25, adjusted for the number of sampled regions). Given
that tumor cores with a PIK3CA mutation had significantly
higher neutrophil cell densities than PIK3CA wild-type cores
in LUSC (LME P = 0.005, Fig. SE), we examined neutrophil-
attracting chemokines as defined with the GO term neutro-
phil chemotaxis (Methods). We compared their expression
between tumor cores with a TS:Neutrophil high TME and those
with other TMEs as well as between PIK3CA mutant and
PIK3CA wild-type tumor regions in the expanded TRACERx
421 cohort. The only chemokine unregulated in both com-
parisons was IL-8, encoded by the gene CXCL8 (Supplemen-
tary Fig. S9A). CXCL8 was more highly expressed in PIK3CA
mutant vs. PIK3CA wild-type tumor cores (P = 0.01, n = 290
regions, Fig. SF). Higher expression levels of CXCL8 in PIK3CA
mutant versus PIK3CA wild-type LUSC was validated in The
Cancer Genome Atlas (TCGA) data set (n =464, P=0.01; Sup-
plementary Fig. S9B). CXCL8 showed the highest expression
in the TS:Neutrophil high TME compared with other TMEs
(P =0.004, 1.4 log fold change; Fig. 5G) and correlated with
neutrophil cell density (p = 0.6, P = 3.5e—05; Supplementary
Fig. S9C). We performed CXCL8 RNA in situ hybridization to
determine whether tumor cells expressed the chemokine in
four PIK3CA mutant cores and two PIK3CA wild-type cores
with TS:Neutrophil high TMEs or high TAN scores. In addi-
tion to CXCL8 expression by neutrophils, as indicated by
MPO costaining, CXCL8 expression was detected predomi-
nantly within tumor cells, as indicated by panCK costaining,
in LUSC cores with TS:Neutrophil high or TAN-high TMEs
independently of the PIK3CA mutation status (Fig. SH; Sup-
plementary Fig. S9D). CXCL8 expression correlated positively
with glycolytic markers in TRACERx 100 and TCGA LUSC
cohorts (Supplementary Fig. S9E).

Following the observed upregulation of KRAS signaling
from GSEA, we also assessed whether activating mutations
in KRAS were enriched in cores with TS:Neutrophil high TMEs.
KRAS mutations, which were absent in LUSC cores, were
found in 50% of LUAD cores with this TME class and 41% of
the TS:TIL+M® high class compared with 14% to 18% in other

classes (n.s., Supplementary Fig. S9F), suggesting that any
potential immunomodulatory effects of KRAS driver muta-
tions observed in mouse models in LUAD (32) are not limited
to the TS:Neutrophil high TME.

In summary, somatic driver mutations in PIK3CA in LUSC
and transcriptional activation of KRAS signaling in LUAD
and LUSC were associated with neutrophil infiltration.

TANs Infiltrate Regions with Expanded Tumor
Subclones and Predict Poor Clinical Outcome
in NSCLC

We set out to assess the propensity of tumors with dif-
ferent TMEs to evolve, expand, and metastasize. Given the
protumor features associated with neutrophil-rich TMEs and
previously reported implications of neutrophils in metastasis
in animal models (33-35), we investigated whether neutro-
phil infiltration was linked to the risk of disease relapse and
metastasis in NSCLC. Using clonal analysis of TRACERx
primary tumor regions and paired metastases, we identified
the clones that seeded metastases (15). We compared neutro-
phil cell densities using IMC data between primary tumors
with metastasis-seeding clones detectable at the time of sur-
gery or during follow-up (metastasizing tumors) to tumors
from patients who remained metastasis-free and recurrence-
free with a minimum of three years of follow-up (discovery
cohort, n = 43 LUAD and LUSC patients; Supplementary
Fig. S10A). We observed a significant increase in neutro-
phil cell densities in the metastasizing tumors compared
with tumors from metastasis- and recurrence-free patients,
in LUAD (P = 0.03) and LUSC (P = 0.04 one-tailed test;
Fig. 6A).

We endeavored to confirm this observation in a separate
validation cohort within TRACERx using the H&E-derived
TAN scoring (n = 332 patients; Supplementary Fig. S10A;
Supplementary Table S3). We hypothesized that primary
NSCLCs with a neutrophil-rich TME more frequently seeded
metastases and, thus, had a higher risk of relapse after
surgical removal of the primary tumor. Univariate disease-
free survival (DFS) analysis showed a significant association
between high tumor-level TAN scores and poorer DES in
NSCLC (P = 1.7e-05), with a median DFS of 21 months for
high compared with longer than 70 months for low TAN
score (Fig. 6B). This prognostic association was independent
of the cutoff used to define TAN scores and was maintained
for both the tumor-level and region-level TAN scores (Sup-
plementary Fig. S10B and S10C; Methods). In addition,
high tumor-level TAN score was also strongly associated
with shorter DES in LUAD (HR = 3.4, P = 2e—05) and LUSC
(HR=2.13, P=0.01), separately (Supplementary Fig. S10C).

Given the higher frequency of necrosis in the neutrophil
infilerated tumors, which has been previously associated with
advanced stage and worse prognosis in NSCLC (36), we next
evaluated whether the TAN association with outcome was
confounded by previously reported predictors of poor DFS.
In a multivariable model of DFS using TAN score, necrosis,
age, sex, adjuvant treatment, pack years, histology subtype, and
TNM stage, TAN score was an independent prognostic factor
(P <0.001), alongside necrosis status (P = 0.048), age (P = 0.027),
and stage (P < 0.006) in NSCLC (Fig. 6C; Supplementary
Fig. S10D and S10E).
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Figure 6. Neutrophil infiltration is associated with recent
subclonal expansion and poorer disease-free survival.

A, Comparison of neutrophil cell density in primary tumors
with metastasis-seeding clones detectable at time of
surgery or during follow-up (metastasizing tumors) to
tumors from patients who were metastasis-free and
recurrence-free for more than 3 years of follow-up time
(control) in LUAD (n=28) and LUSC (n = 15) within the
TRACERXx discovery cohort. Maximum neutrophil density
taken for tumors with multiple tumor cores. P values derived
from one-tailed Wilcoxon test. B, Kaplan-Meier curves for
DFS according to tumor-level TAN score in the validation
cohort (n =332 patients). P value derived from univariate
Cox model adjusted for histology. C, Multivariable Cox
proportional hazard regression analysis of DFS using tumor-
level TAN score and tumor-level necrosis evaluation from
H&E images of diagnostic tumor blocks. D, Recent subclonal
expansion score, measured as the maximum cancer cell frac-
tion of subclones at the terminus of the phylogenetic tree,
compared between TAN-high and TAN-low tumor regions in
LUAD and LUSC patients from the TRACERx 421 cohort. P
values were derived from a linear mixed effects model with
patient as random effect. E, Spatial ITH score of cell types
and communities and ITH probabilities of TME classes in
multiregion analysis (pan-immune n=41 tumors, 112 cores).
ITH score was calculated as the average standard deviation
of the cell/community density in multiple regions per tumor
and z-score transformed. ITH score of aSMA* cells was
derived from T cells and stroma panel (n =39 tumors, 105
cores). ITH probability was calculated as 1 - probability of
all regions having the same indicated TME class. (continued
on next page)
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Figure 6. (Continued) F, Example phylogenetic tree depicting a stage IlIA LUSC case with a clonal PIK3CA mutation, high TAN scores, and recent

subclonal expansion, including in a region (R5) that seeded a lymph node (LN) metastasis (FLN, FFPE LN). The metastasis-seeding lineage is highlighted in
orange. Tumor-level TAN scores and regional subclonal expansion (SubExp) scores are reported for primary tumor regions. The reported TAN score rep-
resents the maximum of the tumor nest and stroma scores. Each cluster in the phylogenetic tree is assigned a color that is also represented in the region
clone maps. The clone maps illustrate the prevalence of each clone within a region. G, IMC images shown for R5 and the LN metastasis. Scale bar, 200 um.
H, Summary schematic of the link between tumors with a neutrophil enriched microenvironment with tumor progression. -, P<0.1;* P < 0.05; **, P < 0.01;
*** P <0.001; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; ITH, intratumor heterogeneity.

To confirm the prognostic association between the TAN
scoring approach and DFS, we validated the relationship in a
second independent cohort using an automated approach for
granulocyte quantification. We applied the deep-learning model
PathExplore (37) for cell type and tissue classification on whole-
slide images from TCGA. Similarly to the TAN score, tumors
were assigned a high score when the granulocyte proportion
in the tumor nest or stroma was higher than the respective
tumor nest- or stroma cutoff (Supplementary Fig. S11A). As
the high TAN score cutoffs derived from the TRACERx cohort
were not transferable to the automated scores on the TCGA
cohort (Methods), the association with DFS was evaluated

across a range of cutoffs based on the tumor nest and stroma
proportions. The pattern of high hazard ratios (increased risk
of recurrence or death) was consistently seen with increasing
granulocyte proportions in the tumor nest or stroma in mul-
tivariable analyses of DFS using age, sex, adjuvant treatment,
pack years, histology subtype, and TNM stage (n = 109 patients
with NSCLC, for which automated scores and information on
factors used in the multivariable Cox regression model was
available; Supplementary Fig. S11B), maintaining a statistical
significance across all intervals above 3.1% tumor nest propor-
tion and 2.5% stromal proportion (P value for the automated
score in the multivariable model P < 0.05).
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Finally, given the association of TAN score with poor out-
come, we investigated whether neutrophil infiltrate was associ-
ated with evolutionary patterns previously shown to associate
with shorter DFS in TRACERx (14). Specifically, we investi-
gated a genomic measure of recent subclonal expansion in
primary tumors, defined as the size of the largest subclone
terminal to the phylogenetic tree of a tumor region. TAN-high
tumor regions had significantly higher subclonal expansion
scores than TAN-low tumor regions in LUAD and LUSC
(P < 0.04; Fig. 6D), suggesting that neutrophil-rich TMEs
have larger expansions of recent subclones compared with
other tumor regions and are associated with dynamics of
tumor evolution implicated in metastasis and poor outcome.
The presence of PIK3CA mutations was also associated with
a higher recent subclonal expansion score compared with
PIK3CA wild-type tumors in LUSC (P = 0.03; Supplementary
Fig. S11C).

The intratumoral heterogeneity of prognostic factors,
potential therapeutic targets, or stratification biomarkers
is of paramount importance for their clinical applicability
and optimal therapy response. Using deep learning-based
approaches, a recent LUAD study identified TME features in
1-mm? LUAD cores that collectively predict poor prognosis
(1). The model, however, relied on features that had high
spatial heterogeneity in NSCLC (Fig. 6E), underscoring the
importance of accounting for sampling bias in the design of
clinically actionable assays. Neutrophils, their spatial com-
munity, and TME class had the lowest spatial heterogeneity,
together with plasma cells, compared with other immune cell
types and spatial communities (Fig. 6E).

Patient CRUK0468 diagnosed with stage IIIA LUSC, for
example, harborsa TAN-high tumor with low spatial heteroge-
neity. All of the eight tumor regions sampled from the primary
tumor had high neutrophil infiltrate with TAN-high score
and clonal PIK3CA mutation. Seven regions showed a higher
recent subclonal expansion score than the cohort median,
including the region that seeded a lymph node metastasis, RS
(Fig. 6F). The seeding region, RS, and the seeded lymph node
metastasis shared TME features: high infiltration of neu-
trophils and CAIX* expression along the tumor nest edges,
identified with IMC in the primary tumor and the metastasis
region (Fig. 6G).

Based on these results, we propose LUADs and LUSCs with
high TAN infiltration harbor recently expanded subclones
and can be enriched for specific driver mutations acquired
at the earliest stages of evolution, such as PIK3CA in LUSC
(Fig. 6H). Tumors with high TAN infiltration had low spa-
tial heterogeneity and a high risk of metastasis or relapse in
NSCLC independent of stage, necrosis, and other clinical
variables.

DISCUSSION

In this integrative study of the TME in NSCLC, we used
high-dimensional tissue imaging and paired sequencing to
reveal cancer-intrinsic and -extrinsic features underlying
TME composition and spatial organization. We identified
neoantigen-directed immune dynamics, fibroblast organiza-
tion, driver mutations, and immune phenotypes as poten-
tial determinants of TME architecture. These TME features,

common across NSCLC or specific to histologic subtypes,
reveal potential therapeutic vulnerabilities and challenges. We
present a ranking of the spatial heterogeneity of these TME
features, providing a reference for studies seeking to identify
low spatial heterogeneity targets. The unique structure of the
TRACERx study and its depth of clinical and genomic infor-
mation enabled us to link the TME to subclonal expansion,
the seeding of metastases, and clinical outcome.

We defined four distinct, pan-histology TME classes in early-
stage treatment-naive NSCLC, building on earlier classifica-
tions based on the spatial distribution of TILs alone (17)
and compositional clustering from gene expression (38-40).
We described 10 multicellular communities present across
histologic subtypes of NSCLC, confirming those defined in a
recent IMC study of LUAD, despite differences in the resolved
cell subtypes and the histologic composition of each data
set (1). TME classes captured intratumoral immune infiltra-
tion or exclusion from the tumor nest, whereas spatial com-
munities revealed multicellular clusters that may represent
functional niches.

One of the unifying features of LUAD and LUSC tumor
cores was the enhanced spatial interpositioning of peritu-
moral aSMA" fibroblasts between CD8 T cells and tumor cells
in TS:Immune low TMEs. We propose that stromal barriers
represent a potential physical barrier to tumor-T-cell engage-
ment and may affect T-cell entry into tumors. These results
support previous literature implicating CAFs in immuno-
suppression in different cancer types through both physical
exclusion of immune cells from tumor nests and secretion of
cytokines (20, 41, 42). However, the aSMA" CAF barrier was
insufficient to explain the immune-excluded TMEs captured
in this study. In line with this finding, Li and colleagues
found, using in silico modeling, that chemorepellent expres-
sion rather than fibrotic barriers best described short-range
T-cell exclusion from tumor islets in triple-negative breast
cancer (43). Future work should seek to improve segmenta-
tion and resolution of CAF subtypes within and beyond
aSMA" fibroblasts, as different CAF subtypes have recently
been shown to have different prognostic power in treatment-
naive primary NSCLC (8) and to be differentially localized in
the NSCLC TME (20).

Clonal neoantigen burden has been associated with
improved responses to CPI (44, 45), warranting exploration
of TME structures that may form in response to a high
burden of clonal neoantigens. Here, we delineate spatial
multicellular niches that increase in prevalence with clonal
neoantigen burden and demonstrate that their composition
varies depending on the clonality of expressed neoantigens,
the LOH of the presenting HLA allele and the histologic sub-
type. In LUAD, a multicellular niche of macrophages and T
cells may form in response to a high clonal neoantigen burden
and influence the selection of cancer cell-intrinsic disruptions
to MHC class I antigen presentation. Although this com-
munity harbored cytotoxic and resident memory CD8 T-cell
populations, interactions between macrophages and CD8 T
cells can inhibit T-cell motility and promote exhaustion (46,
47). Furthermore, exposure to clonal neoantigens has been
associated with increased T-cell dysfunction in this data set
(16). TS:TIL+M® high LUAD TMEs harbored enrichment of
this macrophage and T-cell community, which adds spatial
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resolution to previous associations between inflamed tumor
regions and intrinsic immune escape (10). This underscores
the need to characterize macrophage subsets in the proximity
of T cells and how these can be targeted therapeutically to sup-
port a tumor-specific effector response directed against clonal
neoantigens (48).

Plasma cells and their corresponding community were cor-
related with not only clonal but also total neoantigen burden
in LUSC, as well as high TMB (=10 mutations/Mb) in both
LUAD and LUSC. These findings link several features associ-
ated with improved CPI response (44, 45, 49-52). Few papers
have previously identified links between these cancer cell-
intrinsic and -extrinsic features, reporting no association in
studies of LUAD alone (53-55). The plasma cell community
identified in TRACERx may have formed independently of
tertiary lymphoid structures (TLS), as we did not identify TLS
in the regional blocks from which TMA cores were derived
(Methods). This indicates that the tumor-infiltrating plasma
cells may have derived from the tumor-draining lymph node
or that TLS were not captured in the tissue analyzed. These
associations underscore the importance of dissecting anti-
body responses to neoantigens as well as deregulated self-
antigens (53) and their impact on CPI responses.

This work further revealed that high infiltration of neutro-
phils was associated with metastasizing tumors and shorter
DFS in NSCLC. Although the peripheral neutrophil-to-lym-
phocyte ratio has been linked to adverse outcomes in NSCLC
(56), reports on the prognostic impact of local, intratumoral
neutrophils have been conflicting. Among immune cells, neu-
trophil transcriptional signatures have been shown as the
strongest predictor of poor prognosis in NSCLC (22). However,
a variable association of intratumoral neutrophils with clini-
cal outcomes has been reported depending on the histologic
subtype (57), neutrophil location (58), and their phenotype
(1). Here, we developed and validated a TAN scoring approach
from routinely collected H&Es that represent TS:Neutrophil
high TMEs by equally weighting the proportion of neutro-
phils in the tumor nest or stroma. In both LUAD and LUSC,
this clinically accessible TAN score is a robust prognostic fac-
tor independent of stage and other clinical variables in two
independent cohorts.

TAN-high tumors also displayed low spatial heterogene-
ity, a feature that is essential for overcoming sampling bias.
We observed high spatial heterogeneity of TME features
previously used to predict prognosis in LUAD with a deep-
learning approach, which failed to maintain the level of
prediction accuracy when the number of lineage markers
was reduced (1). Spatial heterogeneity of cell types used in
unsupervised deep-learning models may represent an obsta-
cle to the translation of deep-learning approaches to clini-
cally accessible assays. The low spatial heterogeneity observed
for neutrophils and the spatial structures they formed
support the translational potential of the proposed TAN
scoring approach.

The potential mechanisms behind the prognostic asso-
ciation of TANs remain to be defined. Mounting evidence
depicts neutrophils as highly plastic and adaptable to the
tissue context (59). Therefore, studying the spatial setting of
neutrophils is fundamental to determining the environmental

cues that modulate antitumor and protumor phenotypes.
Neutrophils can exert protumorigenic features through pro-
motion of extracellular matrix degradation, EMT, angiogen-
esis, immunosuppression, and metastasis (33, 60, 61), all of
which were associated with the TS:Neutrophil high TME class
in at least one of LUAD or LUSC. Upregulation of EMT tran-
scriptional programs in tumor cells neighboring neutrophil
clusters was also observed in a recent single-cell transcriptom-
ics study (62). In addition, tumor cores with TS:Neutrophil
high TMEs in LUAD and LUSC had altered metabolic cancer
cell states. However, these metabolic states and the hypoxic
conditions in this class differed between LUAD and LUSC, in
line with previous reports on metabolic differences between
the two histologic subtypes (63). The upregulation of MCT4
and CAIX expression in LUSC suggests that hypoxia or lactate
efflux may contribute to the immunosuppressed phenotype
in this class, for example, through the promotion of PD-L1
expression and T-cell anergy in settings of inflammation
(63, 64), consistent with the increased frequency of PD-L1*
neutrophils.

In this study, we showed that TANs were enriched in tumor
regions with recent expansions of tumor subclones, revealing
a link between the TME and the evolutionary history of the
tumor in LUAD and LUSC. This association was independent
of the presence of necrotic areas and proportions of MCT4*
and CAIX" tumor cells in LUAD and LUSC, implicating neu-
trophils as indicators or promoters of recurrence and metas-
tasis (64). Although neutrophils have been described as the
mediators of indirect subclonal cooperation but not expan-
sion that promotes metastasis in a breast cancer model (33),
the results of this study suggest tumor evolution dynamics
are linked to metastasis in neutrophil enriched tumors. As a
result of, for example, tumor subclonal expansion outpacing
its vascular supply, metabolic stress can trigger necrosis and
neutrophil recruitment, which can be further amplified in a
positive feedback loop. Within this spatial context, neutro-
phils acquired a TAN phenotype. Therefore, neutrophils dis-
tinguish a unique microenvironment associated with disease
progression, which could not be explained by, for example,
necrosis, hypoxia, or glycolysis alone in LUAD and LUSC.
Based on these findings, we reason that TAN-High LUADs
and LUSCs likely orchestrate a protumor TME to compen-
sate for restrictive vascular access and metabolic dysregulation
and polarize neutrophils to a proangiogenic phenotype that
results in immunosuppression, a higher risk of metastasis, and
subclonal expansions.

Upregulation of oncogenic signaling pathways was also
associated with the neutrophil enriched TME, such as KRAS
signaling in LUAD and LUSC. We previously showed, in a
LUAD mouse model, that tumors with a KRASS2¢ muta-
tion had neutrophil aggregates and excluded TILs, whereas
treatment with the KRAS inhibitor MRTX1257 resulted
in reduced neutrophil and increased T-cell infiltrates (65).
However, KRAS driver mutations were not only enriched in
TS:Neutrophil high TMEs. In LUSC, we observed that TANs
were associated with PIK3CA driver mutations that may con-
tribute to or support immune escape. LUSCs with PIK3CA
driver mutations more frequently underwent recent sub-
clonal expansions. In addition, tumor cells with PIK3CA
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mutations upregulated CXCL8/IL-8, in accordance with pre-
vious work linking PI3K signaling with CXCL8 expression in
lung tumor and epithelial cells (66, 67). PIK3CA mutations
have been linked to the regulation of glutamine metabolism
(68) and nutrient consumption in proliferating tumors (69),
in addition to proinflammatory cytokine expression (70).
However, the proportion of Ki-67+ or MCT4" tumor cells was
not significantly different between PIK3CA mutant versus
PIK3CA wild-type regions. Based on this, and their predomi-
nantly clonal status, we propose that these somatic altera-
tions likely predispose the tumor to a neutrophil-rich TME
and reveal a potential direct or indirect role for PIK3CA muta-
tions in promoting tumor-neutrophil cross-talk in LUSC.

Collectively, these findings have therapeutic implications
in early-stage resectable NSCLC, a population for which
neoadjuvant immunotherapy plus chemotherapy is now a
standard of care. Pathologic complete responses, which are
associated with increased overall survival, following neoad-
juvant treatment, range between 18% and 25% (71-74), high-
lighting the need to better characterize the TME and identify
strategies to improve patient outcomes. Both TS:TIL+M®
high and T'TIL+M® excluded TMEs were subject to a high
degree of ITH that may affect checkpoint inhibitor (CPI)
efficacy. T-cell-enriched spatial niches were predominantly
found in the TS:TIL+M® high TME in LUAD and LUSC.
These were, however, subject to selective pressures on neoan-
tigen presentation through HLA LOH in LUAD and LUSC.
These findings build upon previous work in NSCLC, which
demonstrated an improved association of TMB with CPI
responses after accounting for HLA LOH (75) and further
highlight the importance of considering neoantigen clonal-
ity and the histologic subtype when designing neoantigen-
mediated therapeutic strategies. In LUSC, T:TIL+M® excluded
TMESs were associated with tumor cell PD-L1 expression and
the clonal neoantigen-associated community of plasma and B
cells. These results underscore the importance of investigat-
ing the predictive value of this low heterogeneity community
of plasma cells and B cells in the context of CPI in LUSC and
how spatial organization changes over time.

Although TS:Immune low and TS:Neutrophil high TMEs were
subject to lower ITH, they may be less responsive to CPL Dense,
fibroblast networks may inherently restrict T-cell access and
consequently CPI therapy response. Combinatorial targeting of
CAFs and checkpoint molecules has seen success in preclinical
models (76) and may prove beneficial in tumors with immune
low TME:s for therapies designed with the increasing knowl-
edge of CAF phenotypes and their functional heterogeneity
(77). Finally, in neutrophil-enriched TMEs, CPI response may
be limited due to increased levels of IL-8 expression, which has
been linked to reduced benefit from CPI therapy based on both
tumor and circulating IL-8 levels (78, 79). Nevertheless, clinical
trials targeting neutrophils with anti-CXCR1/2 therapies and
combinatorial CPI and anti-IL-8 are ongoing (NCT02536469;
refs. 35, 80) and may provide an advantage in CPI treatment of
neutrophil-high tumors. Of note, the patients in this study did
not receive neoadjuvant or adjuvant CPI therapy. Future stud-
ies should seek to evaluate larger cohorts for both prognostic
factors and predictors of CPI response in neoadjuvant and
adjuvant settings and metastatic disease.

In conclusion, this study provides novel insights into the
spatial organization of the early-stage lung cancer TME in
the context of tumor immunogenicity, tumor heterogeneity,
and cancer evolution. It highlights the importance of pair-
ing the tumor evolutionary history with its spatially resolved
TME to draw mechanistic hypotheses on tumor progres-
sion and metastasis with implications for patient outcome
and treatment.

METHODS

Clinical Samples

The data from this study are part of the first 421 patients prospec-
tively analyzed from the TRACERx cohort (https://clinicaltrials.gov/
ct2/show/NCT01888601). The TRACERx study was approved by an
independent research ethics committee (REC), the National Research
Ethics Service (NRES) Committee London-Camden and Islington,
with the sponsor’s approval of the study by University College Lon-
don (UCL) with the following details: REC reference 13/LO/1546,
protocol number UCL/12/0279, IRAS project ID: 138871. Written
informed consent for entry into the TRACERx study was mandatory
and obtained from every patient. Methods for data obtention have
been previously described (12, 14). Snap-frozen multiregion sampled
tumor and adjacent normal tissues distant from the tumor within
the resection specimen were processed to FFPE blocks after first tak-
ing sufficient material for DNA and RNA-seq. A single representative
core was taken from each regional FFPE block (1.5 mm diameter)
and arranged into TMAs representing 81 patients across eight blocks
(Fig. 1A; Supplementary Fig. S1A). Control FFPE tissues for panel
development were obtained from UCL/UCLH Biobank for Studying
Health and Disease Renewal 2020 (ethics approval 20/YH/0088) and
the PEACE study (ethics approval 13/LO/0972). Additionally, two
2-mm diameter cores were sampled from a tonsil FFPE block and
assembled into a miniature TMA, which served as an internal stain-
ing control in this study.

Clinical Data

The clinical data from this study have been previously described
(12, 14). Growth patterns associated with regional LUAD tumor cores
represent the predominant pattern in the corresponding regional
block from which the core was derived (81). Cribriform, micropa-
pillary, and solid patterns were grouped as high grade; lepidic and
papillary as mid-grade; and acinar as low grade.

IMC Panel Development

The pan-immune and T cells and stroma IMC panels were devel-
oped by testing antibody performance by immunofluorescence (IF)
and IMC across NSCLC, normal lung, immune-rich tonsil, and
immune-low cardiac and brain tissues (Supplementary Fig. S12A).
H&E slides from FFPE tissue blocks used for panel development were
assessed by a pathologist to identify cell types and features of interest
to support staining evaluation and guide IMC scanning. Unconju-
gated antibodies were first evaluated using IF and then reevaluated
following metal conjugation using IMC (Supplementary Fig. S12B).
Metal-conjugated antibodies were purchased from Fluidigm, now
Standard BioTools, and carrier-free antibodies (various suppliers)
were conjugated to metals in-house using the Maxpar X8 Multimetal
Labeling Kit (Standard BioTools). Antibody staining was evaluated
for expected staining specificity, including costaining (e.g., CD20,
CD79a), mutual exclusivity (e.g., CD4, CD8a), and signal-to-noise
ratio, and was supported by pathologist evaluation (Supplementary
Fig. S12C). The dilutions of all antibodies were derived by assessing a
dilution series using IMC, with the experimental panel information
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applied to the TRACERx 100 cohort summarized in Supplementary
Table S1. Examples of IMC staining across NSCLC, tonsil, car-
diac, and brain tissue for the pan-immune and T cells and stroma
panels are shown in Supplementary Fig. S12C. The results of this
study focus on 38 antibody targets; some antibody results were not
included as they were either not relevant to the biological conclusions
of this study or due to technical performance.

Tissue Processing for Inmunofluorescence

FFPE tissue blocks were cut to S pm thickness. Sections were
baked at 60°C in preparation for staining. Sections were dewaxed in
xylene (2 x 5 minutes) and rehydrated in a graded series of alcohol
(ethanol:deionized water 100:0, 100:0, 70:30, 0:100, 0:100, 1 minute
each). Heat-mediated antigen retrieval was conducted in Tris-EDTA
buffer at pH 9 for 30 minutes in a 900 W microwave. Tissue sections
were slowly cooled in a room temperature water bath to prevent
buffer crystallization. Sections were then washed in 1x PBS, and the
tissue area was circled with a hydrophobic PAP pen to create a reagent
barrier. Samples were dipped briefly in PBS-Tween20 (0.2%), before
blocking with 1% BSA/PBS for 30 minutes at room temperature.
Excess blocking solution was flicked off and the primary antibody/
antibodies (diluted in 1% BSA/PBS) was applied and left overnight at
4°C. The next day, sections were washed three times in PBS (1 minute
each), dipped briefly in PBS-Tween20, and the secondary antibody/
antibodies was applied and left for 45 minutes at room temperature.
Sections were washed three times in PBS (1 minute each), dipped
briefly in PBS-Tween20, and counterstained with DAPI (1:5,000 in
PBS) for 30 minutes at room temperature. Samples were washed
three times in PBS (1 minute each) and immersed in 0.1% Sudan
Black for 20 minutes at room temperature. Samples were thoroughly
rinsed in cold running tap water until clear and rinsed twice in dis-
tilled water. Coverslips were mounted after adding 2 to 3 drops of
VectaMount AQ aqueous mounting medium on the slides. Slides
were stored protected from light until they were imaged using the
Zeiss Axio Imager M1 system at 20x magnification.

Tissue Processing for IMC

Several serial sections of each TRACERx TMA were cut to S pm
thickness, and a 5 um section from the tonsil TMA was floated onto
the bottom of TMA002-TMAO0O7 to serve as an internal staining
control. Separate sections of tonsil were used as staining controls
for TMA_REC and TMAOQ01. All sections were floated onto standard
positively charged slides for immunostaining. Two serial sections
were selected and baked at 60°C in preparation for antibody stain-
ing; an additional serial section was subjected to H&E staining. Sec-
tions were processed as described for IF. The two metal-conjugated
antibody cocktails (diluted in 1% BSA/PBS) were applied to serial
sections and left overnight at 4°C. The next day, sections were washed
three times in PBS (1 minute each), dipped briefly in PBS-Tween20,
and counterstained with iridium (1:500 in PBS, Fluidigm) for 30
minutes at room temperature. Samples were washed three times in
PBS (1 minute each) and counterstained with ruthenium (1:1,000)
for 5 minutes on ice in a fumehood (82). Samples were washed
three times in milliQ water (1 minute each) and left to air dry. Con-
trol tissues were processed following the same procedure during
panel development.

TRACERx IMC Data Acquisition

Data were acquired using a Hyperion Imaging System using com-
mercial Standard Biotools IMC software (version 6.7). Regions of
interest (ROI) selection was guided by pathologist review of a serial
H&E section and were designed to capture each full TRACERx TMA
core (1.5 mm diameter) or a 1.0 mm diameter tonsil ROI (Supple-
mentary Fig. S12A). A laser ablated tissue ROIs in a rasterized pattern
at 1 um resolution and 200 Hz. The instrument was tuned between

each run using a 3-Element Full Coverage Tuning Slide (Fluidigm,
PN 201088).

Spillover Compensation

To account for isotope signal spillover arising due to isotopic
impurities, oxidation, and instrument properties (abundance sensi-
tivity), we adapted the Chevrier and colleagues spillover compensa-
tion approach (83) for our two antibody panels. Briefly, data were
generated using a slide spotted with lot-specific metal-conjugated
antibodies. Superfrost Plus histology slides (Thermo Fisher) were
heated on a heat block and coated with a 2% agarose film, ensuring
an even spread and thin layer (UltraPure Agarose, Thermo Fisher).
The slides were then left to dry until the agarose fully solidified.
Metal-conjugated antibodies were mixed 1:1 with Trypan blue and
spotted on the slide serially, ensuring no merging of spots into each
other. Once the spots had dried, an ROI was chosen for each sepa-
rate spot on the Hyperion (Fluidigm), corresponding to one metal-
conjugated antibody. Each ROI was 10 pixels high by 200 pixels
wide and was ablated at a laser power 2 units higher than the tuning
laser power.

From this experimental spillover data, we calculated compensation
matrices using the scripts from Chevrier and colleagues (83), with
minor adaptations made to the code. To address observed median
pixel-level ion counts that were lower than a threshold required to
achieve an accurate readout of metal isotope impurities (thresh-
old = 250 counts), for each metal-antibody conjugate ROI in turn,
we implemented an adaptive binning approach in which pixel count
data are automatically and progressively aggregated over adjacent
pixels until the count threshold is reached, having also first restricted
analysis to the 50% of pixels with the highest ion counts within the
spot (Code and Data Availability). Experimental spillover matrices
from the pan-immune panel and the T cells and stroma panel were
highly similar to the matrix reported by Chevrier and colleagues and
channel spillover ranged from 0 to 4.1% (Supplementary Fig. S13A
and S13B).

Cell Segmentation

To segment nuclei, we trained a UNet++ deep-learning model on a
large manually labeled data set developed in-house (» = 116 images,
42,000 nuclei; see Data availability) to predict three semantic features
of nuclei from ground truth data: nucleus center of mass, all nuclear
material, and nuclear boundaries, which we then combined via a
marker controlled watershed procedure into nucleus label masks.
These nuclear masks were then fed into a multiplexed imaging-spe-
cific whole-cell segmentation procedure, which uses the many inde-
pendent cell marker channels available in IMC to produce final cell
masks (Supplementary Fig. S14A and S14B).

In brief, we segmented whole cells by first generating a series of
independent cell masks, one for each of a set of user-defined cell
lineage markers. To achieve this, deep-learning nuclei were associated
with each lineage marker in turn, using a minimum overlap criterion
applied between the nuclei and a lineage marker mask created by
Otsu-thresholding a preprocessed lineage marker image. Preprocess-
ing steps for lineage marker channels were hot pixel removal and
median filtering (window size = 3 px). Nuclei associated with an
Otsu-thresholded lineage mask were then used as the seeds for line-
age marker-specific cell label generation using propagation-based
secondary object identification onto the relevant minimally preproc-
essed lineage marker image. This step yielded a set of instance-level
lineage marker cell labels which were then combined into a consensus
set of whole-cell labels using a serial masking approach. In this step,
only pixels with consensus between different lineage marker channels
were retained in the same single-cell object, the aim of which was to
minimize segmentation artifacts where mutually exclusive markers
are found in the same cell.
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We observed extensive nonnucleated and elongated aSMA content
in our T cells and stroma panel, putatively fibroblasts, and to account
for this in our segmentation, we implemented an additional step
to identify these aSMA" stromal cells without an in-plane nucleus
for this panel only. To do this, we performed primary object iden-
tification directly on the minimally preprocessed aSMA channel,
following qualitative optimization of thresholding parameters on a
representative subset of cores. We filtered nonnucleated cells identi-
fied with this method to ensure overlap with nucleated cell objects
was minimal (less than % of the area of any nonnucleated cell) and
that each identified nonnucleated cell had an area of at least 20 pix-
els following masking by the nucleated cell mask. These steps were
implemented to reduce the likelihood of double counting cells and
of assignment of cell debris or artifacts to cell area. The nonnucle-
ated aSMA identification step contributed a median of 560 cells per
tumor core (median 5.6% of total cells/core).

The whole-cell segmentation procedure was implemented using
CellProfiler v3.1.9 (84). Single-cell measurements of all IMC marker
mean intensities were input into the TYPEx multiplexed cell pheno-
typing module.

Cell Phenotyping

Cell subtypes were identified and quantified in three steps: itera-
tive cell stratification, statistical comparison of marker intensities,
and cell subtype assignment. The cells were stratified into groups
with similar marker intensities as follows: (i) cells were assigned to
the most likely major cell lineage using CellAssign (85) accounting
for TMA ID as a potential batch effect; (ii) low and high confidence
assignments were identified as those that changed label by perturb-
ing the input to the CellAssign model and excluding one cell lineage.
Myeloid cells-other (CD11b) were excluded for the pan-immune
panel and Vim* cells (Vimentin) for the T cells and stroma panel;
and (iii) clustering with FastPG (biorxiv 2020.06.19.159749v2) was
performed within a major cell lineage and confidence group, where
the parameter k was set to 30, and no transformation was applied to
the raw mean pixel intensities per cell prior to clustering. The clus-
ters were compared by the pixel intensities of all markers of interest
in the panel, and the probability distribution for a cluster to have a
higher intensity than other clusters was determined. If the probabil-
ity distribution was higher than the background distribution of all
clusters, the marker was considered positive. This separation ensured
that rare or unexpected T-cell populations such as CD3 CD8a’,
CD3 CD4*CD8a*, CD3*CD4*CD8a" were minimized relative to the
common T-cell populations, CD3*CD4* and CD3*CD8a*. Cell sub-
types were assigned automatically based on the combination of
positive markers, given the cell phenotype definitions in Fig. 1E; Sup-
plementary Fig. S2B, and Supplementary Fig. S3A.

The major cell lineage markers used to build the CellAssign
model for the pan-immune panel were endothelial cells (CD31),
epithelial cells (pancytokeratin/panCK), CD4 T cells (CD45, CD3,
CD4), CD8 T cells (CD45, CD3, CD8a), T cells-other (CD45, CD3),
B cells (CD45, CD79a, CD20), monocytes (CD45, CD11b, CD14),
macrophages (CD45, CD11b, CD14, CD68, CD206, CD163), myeloid
cells-other (CD45, CD11b), mDCs (CD45, CLEC9a), and leukocytes-
other (CD45). For the T cells and stroma panel, the following major
cell lineages were defined: Vim* cells (Vimentin), endothelial cells
(Vimentin, CD31), epithelial cells (panCK), aSMA® cells (Vimentin,
aSMA), CD4 T cells (CD45, CD3, CD4), CD8 T cells (CD45, CD3,
CD8a), T cells-other (CD45, CD3), leukocytes-other (CD45).

To examine potential batch effects arising from staining multi-
ple slides, we compared the raw intensities across tumor cores for
all TMAs for both the pan-immune and T cells and stroma panels
(Supplementary Fig. S15A and s15B). We did not observe batch
effects in this analysis nor in UMAP representations when data were
grouped by stained TMA section (Supplementary Fig. S15C and
S15D). In addition, we compared the median marker intensities

across all the cells per image between the two antibody panels (Sup-
plementary Fig. S16A and S16B). Immune, endothelial, epithelial,
and total cell densities were highly correlated between the two
antibody panels, with Spearman correlation coefficients of 0.72 for
total cells, 0.9 for total T cells, 0.85 for epithelial cells, and 0.82 for
endothelial cells.

Cell Subtype Definitions

The following cell type definitions were applied to define cell subtypes.
Macrophage subtypes were defined as follows: CD163*CD206* mac-
rophages (CD68*CD206"CD163") and CD163™ macrophages (CD68*
CD206" alone). CD163*CD206"* macrophages that were located
within pathologist-annotated masks of alveolar macrophages were
classified as alveolar macrophages (Supplementary Fig. S2C).

Neutrophils were defined as CD11b*MPO" cells negative for other
cell subtype-specific markers, such as CD14 (monocytes) and CD68/
CD163/CD206 (macrophages). Additional cell subtypes were defined
as naive T cells (CD45RA"), cytotoxic T cells (GZMBY), tissue-resident
memory T cells (CD103%), exhausted terminally differentiated T cells
(CDS7*CD39°CD103*"), regulatory T cells (Treg; FOXP3"), central
memory T cells (Tem; CD27*/~CCR7*), effector memory T cells (Tem;
CD27*CCR77), CDS7* T cells (CDS7%), plasma cells (CD79a*CD38"),
gamma-delta T cells (Tgd; CD3*TCRd"), B cells (CD79a*CD20"), B
cell lineage-other (CD79a*CD20"CD38"), and a myeloid cells-other
subtype (CD11b*"MPO~CD14°CD68").

aSMA* cells with cell centers falling within large vessel mask areas,
as annotated during pathology review, were assigned as perivascular
aSMA* cells. Remaining aSMA" cells in images were assigned as
aSMA" fibroblasts (Supplementary Fig. S2C).

A proportion of unassigned cells in the pan-immune data set are
likely fibroblasts or other stromal cells, for which this IMC panel did
not include markers specific for these cell types. A proportion of Vim*
cells in the T cells and stroma panel data is attributed to the myeloid
lineage, which was not readily identified in this panel.

In all analyses using the proportion of tumor cells, we have quan-
tified the proportion of positive tumor cells out of all tumor cells,
defined as the epithelial cells within pathology expert-annotated
tumor areas (Supplementary Fig. S2C).

Tissue Segmentation of Tumor Nest and Stroma

A three-class random forest classifier was trained to segment back-
ground, tumor/epithelium, and stroma tissue regions on composite
images from NSCLC tumor, tumor-adjacent lung tissue, and lymph
nodes using Ilastik (86). The composite image was generated using
DNA intercalators and markers with tissue-specific expression for the
epithelium (pancytokeratin) and stroma (immune-specific biomark-
ers, aSMA, CD31). When available, vimentin (T cells and stroma
panel), collagenl (T cells and stroma panel), and panactin (pan-
immune panel) were also considered in areas with mutual exclusivity
with the epithelial cell markers. Of note, the tissue area that was not
stained by any of the markers in the antibody panel, such as air space,
was detected as background. The performance of this classifier was
validated through pathology review of paired H&E images.

To account for differences in the imaged tissue area, we used cell
density, i.e., the cell count normalized by the imaged tissue area. The
imaged tissue area was calculated as the sum of the areas of the tissue
compartments, TS, derived from tissue segmentation. Median cell
densities are summarized in Supplementary Table S4.

Pathology Review and Feature Mask Generation

For each imaged ROI, a serial H&E was reviewed by an expert
pathologist to confirm the presence or absence of invasive tumor
tissue and to annotate tumor and nontumor epithelium, airways,
necrosis, large vessels, and alveolar macrophages (Supplemen-
tary Fig. S17). Annotations were made using NDP.view2 software
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(version 2.7) on a pseudo-H&E generated directly from the ruthenium
and iridium channels of our IMC images. Masks for each labeled fea-
ture were created using Groovy scripting in QuPath and aligned with
study outputs.

H&E images from the regional FFPE tissue block from which
TMA cores were derived were assessed for the presence of TLS. TLS
were defined as lymphoid aggregates with the presence of segregated
T-cell and B cell areas, as well as evidence of an ongoing GC reaction,
based on the distinction of dark and light zones in GCs. There was
no evidence for TLS associated with the tumor regions assessed by
IMC in this study.

Identification of Spatial Cellular Communities

The community identification method (87) was applied to 139
tumor cores that were imaged with the pan-immune panel to iden-
tify groups of cells that commonly localized near one another. Cell
subtypes included in the analysis had a minimum average of 10 cells
per core in all tumor cores. Unassigned and ambiguous cells were
excluded from community analysis. A window was defined around
every cell in an image and its 10 nearest neighboring cells including
the center cell. These windows were clustered by their composition
with respect to the 18 cell types (with at least 10 cells on average per
image) using MiniBatchKMeans and k = 10. To identify cell types
enriched in a community, we calculated if the density of a cell type
was significantly higher in the community of interest compared
with all other communities using an LME model with patient as a
random effect and ANOVA test. Communities were then assigned
representative names based on the enriched cell types within them
(Supplementary Fig. S3F). The community identities were mapped
onto segmented cells and visualized using Cytomapper (Supple-
mentary Fig. S3G; ref. 88), which were then validated by pathologist
assessment of serial H&E-stained tissue sections.

To check that the communities we detected in the TME were
robust, we performed a series of tests to validate our results. To find
the optimal k number of communities, we varied the number of com-
munities and measured the stability of constituent cell types within
them. For each window size, we tested k = 1 to 20 communities and
calculated the distortion score, representing the sum of squared
distances from each point to its assigned center. Using the elbow
locator, we found that the optimal number of points that maximized
the decrease in distortion was k = 10 communities (Supplementary
Fig. S18A). We investigated the differences in output by testing
window sizes of n =2, 5, 10, 15, 20 nearest neighbors. We observed
that the composition of the resultant communities was largely
unchanged, in that they were enriched for similar cell types (results
not shown). Robustness of clustering was tested by subsampling
one third of the cells three times and comparing the proportion of
cells assigned to the same community with each iteration of clus-
tering, resulting in a median concordance of 80% (Supplementary
Fig. S18B).

All 10 communities were detected across NSCLC histologic sub-
types, with no statistical enrichment in LUAD, LUSC, or NSCLC-
Other (Supplementary Fig. S18C).

Spatial Clustering

We performed spatial clustering of tumor cells in pathologist-
annotated tumor areas as fiducial structures for spatial analysis (Sup-
plementary Fig. S2D). Spatial clustering of cell coordinate data were
performed using the DBSCAN algorithm from the Python library
scikit-learn. The eps parameter of the DBSCAN algorithm was set to
25, resulting in reasonable cell clusters by visual assessment. We used
a minimum cluster size of 3 cells for spatial analysis. We used the
Python packages Alphashape and Shapely to determine the bounda-
ries of all spatial clusters and whether any cell was located within a
given spatial cluster.

Barrier Score Definition

aSMA fibroblast barrier scores were adapted from the method of
Failmezger and colleagues (89) and calculated as follows. First, a near-
est neighbor graph of cell locations was constructed by connecting
each cell to its five nearest neighbors. To calculate the aSMA" fibroblast
barrier for CD8 T cells with respect to tumor cells, we used the breadth-
first search shortest paths algorithm from the Python cuGraph library
to find the shortest paths from each CD8 T-cell vertex in the network to
all tcumor cell vertices. aSMA® fibroblasts were then enumerated along
each path. For originating CD8 T cells which had multiple tumor cells
at the same distance (e.g., two tumor cells each at a five-hop distance
from the CD8 T cells), the score was defined as the average number of
aSMA* cells across all paths. To restrict the scoring to aSMA? cells spe-
cifically accruing at the edge of tumor bulk, we counted only aSMA*
cells adjacent to tumor cells (i.e., neighboring nodes of the cell spatial
graph) and only if the tumor cell itself was a member of a spatial clus-
ter of at least 2,000 um? as defined by DBSCAN, described above. We
chose these parameters as the concept of a macroscopic barrier may be
poorly defined for single and small numbers of tumor cells. Further-
more, to focus analyses on nonperivascular cell populations, including
nonperivascular aSMA* cells, cells with centers falling within pathol-
ogist-annotated large vessel masks were annotated as perivascular and
excluded from measurement. Nonperivascular epithelial cells with
centers captured within the pathologist-annotated tumor mask area
were assigned as tumor cells. Barrier scores were calculated as the per-
image mean across all nonperivascular CD8 T cells, where a barrier
score of 1 is assigned for a CD8 T-cell separated from the nearest tumor
cell by a tumor cell-adjacent aSMA* fibroblast (0 otherwise) and where
the barrier score per CD8 T cell is calculated as the mean score over all
shortest paths to the nearest tumor cell(s).

TME Classes Definition

Unsupervised hierarchical clustering of z-score normalized cell
densities was performed using all cores in the study, including nor-
mal, benign tumor-adjacent, and tumor samples of all histologic
subtypes. The following major cell types were used to define the
TME clusters: CD8 T cells, CD4 T cells and B-cell lineage (TIL),
CD163"CD206" macrophages and CD163™ macrophages (M¢), neu-
trophils and myeloid cells-other (mDC, monocytes, other CD11b*
cells). The cell densities for each major cell type were calculated indi-
vidually for the TS. Cells from the B-cell lineage were predominantly
found in one tissue compartment, stroma (98%). Only a small num-
ber of B-cell lineage cells and myeloid cells-other, fewer than 3,000
cells or 0.3% from all immune cells, were detected in the tumor nest;
therefore, the cell densities in the tumor nest for these two cell types
were not considered for TME classification. All analyzed cell types
were detected in at least 89% of the analyzed cores.

Four TME clusters were defined as the most concordant clusters
derived from hierarchical clustering using 75% of the samples in
1,000 subsampling iterations, using the functions ConsensusClus-
terPlus and calcICL within the ConsensusClusterPlus R package (v
1.58; Supplementary Fig. SS5A). The clustering was performed on
normalized cell densities using robust z-scores (median divided by
median absolute deviation). Clustering was performed using the
distance metric maximum and the clustering method ward.D. The
cumulative distribution function (CDF) of the consensus matrix for
each value of k, where k is the number of clusters, and the difference
in area under the curve comparing the CDF for k with the CDF for
k — 1 were included in Supplementary Fig. S5B. The consensus value
indicates the proportion of instances that two cores are assigned to
the same cluster out of 1,000 subsampling iterations. We demon-
strated that the largest increase in consensus values was observed
by increasing the number of clusters from three to four (Supple-
mentary Fig. S5B). This analysis strongly suggests that there are at
least four TME classes in the cohort. The consensus values continue
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to increase with k larger than 4 although with a smaller difference,
suggesting that the spatial TME classification may be refined in sig-
nificantly larger cohorts. Five TME clusters resulted in splitting the
TS:Neutrophil high TME class predominantly by histology-specific dif-
ferences and CD163~ macrophage densities in the tumor nest yield-
ing a predominantly LUSC cluster with a significantly higher density
of neutrophils in the TS than for other TME clusters combined and
a predominantly LUAD cluster with a higher density of neutrophils
and CD163~ macrophages in the tumor nest compared with other
TME clusters. Because of the high similarity of these two clusters, we
considered four TME classes in this study.

We next identified the criteria that distinguish each cluster, using
an LME model to compare cores from a given immune cluster to
those from other clusters and adjust for multiple regions with
patient as a random effect (Fig. 2D). Specifically, TS:TIL+M® high
cores were selected for cores with higher TIL or macrophage densities
in the tumor nest compared with other TME classes. TS:Immune low
cores were selected to have lower immune cell density in the tumor
nest compared with cores from other TME classes. The criteria for
the T:TIL+M® excluded TME required that TIL/macrophage density
in the tumor nest was lower than TS:TIL+M® high and that TIL/
macrophage density in the stroma was higher than in TS:Immune low
cores. Finally, as the TS:Neutrophil high cluster was characterized by
higher neutrophil infiltration in tumor nest or stroma and lower TIL
infiltration, the criteria for this TME class required that the neutro-
phil proportion from all cells was higher than other TME classes in
the tumor nest or stroma. The cutoffs for each of these criteria were
determined automatically using a binomial generalized linear model
for each immune cluster compared with other clusters and are shown
in Supplementary Fig. S5C. The performance function in the R pack-
age ROCR v.1.0-11 was used to find the best cutoff as the intersection
between the sensitivity and specificity curves. Within each cluster, the
cores that did not fulfill these criteria were labeled undefined (Supple-
mentary Fig. S5A and S5C).

The TME classes were annotated based on cell types with differ-
ential composition in the tumor nest or stroma compartment com-
pared between each TME class versus other TME classes, using an
LME model with patient as a random effect (Fig. 2D; Supplementary
Fig. S5D). For NSCLC analysis, histology was added as a fixed effect
(Fig. 2D). Histology-specific median cell densities are summarized
per TME class in Supplementary Table S4.

Spatial Heterogeneity of TME Classes and TAN-High Tumors

To evaluate the intratumor spatial heterogeneity of TME classes
accounting for the different number of sampled regions, we per-
formed bootstrap subsampling with 1,000 iterations. We calculated
the probability of observing a TME class for a given number of sam-
ples taken per tumor (two, three, and four samples). The heterogene-
ity of a given TME class was estimated as the ratio of the number
of observations when all samples had that same TME to the total
number of tumors that have that TME class. This reported prob-
ability of observing the same TME class across all samples represents
the average ratio across all iterations and across the different number
of samples taken (two to four). This approach was used to estimate
the probability of all regions to have a high TAN score and the prob-
ability for any region to have a high TAN score given a clonal PIK3CA
mutation in the TRACERx 421 (Tx421) cohort, varying the number
of samples from two to eight (the maximum number of regions in
the Tx421 cohort).

Spatial Heterogeneity of Cell Types and Communities

A spatial ITH score for cell type and community densities was cal-
culated using z-score normalized density values in patients for which
data were available from two or more tumor cores (pan-immune panel
n =41, T cells and stroma panel n = 39; Supplementary Fig. S1B).

The standard deviation was calculated across tumor core data per
patient. The spatial ITH score per feature represented the cohort
mean of standard deviation values, per IMC panel.

PD-L1 IHC of Regional Tumor Blocks

FFPE sections (4 um) were stained with anti-PD-L1 (SP142)
according to the manufacturer’s instructions (Ventana). Tumor cell
(TC) scoring was performed as instructed by the manufacturer by
experienced and qualified pathologists. Briefly, the TC score was
defined as the proportion of viable tumor cells showing PD-L1
membranous staining of any intensity. TC scores were categorized
as <1%, 1% to 49%, and >50%. For statistical analysis, TC scores >50%
were rare and were therefore combined with 1% to 49% into a >1%
category. Samples stated as negative for PD-L1 had a staining positiv-
ity rate of <1%.

IHC Validation of Checkpoint Molecule Expression

Multiplexed IHC was performed to validate immune-checkpoint
molecule expression on immune cells. FFPE tissue sections of a rep-
resentative human lung cancer case and of reactive tonsils were sub-
jected to double immunostaining (Supplementary Fig. S19). Briefly,
2- to S-um tissue sections were cut and transferred on electrically
charged slides to be stained. To establish optimal staining condi-
tions (i.e., antibody dilution and incubation time, antigen retrieval
protocols, suitable chromogen), each antibody was tested and opti-
mized on sections of reactive tonsil by conventional single THC
using the automated platform Bond-III Autostainer (Leica Microsys-
tems). For double immunostaining, a protocol previously described
was carried out (90). All slides were stained with anti-MUM-1/
IRF4 clone MUM1p (1:400, Agilent Dako) and costained with one
of anti-PD-L1 clone SP142 (Ventana Medical Systems), anti-TIM3
clone DSDSR (1:100, Cell Signaling Technology Inc.), anti-VISTA
clone CL3975 (1:150, Thermo Fisher Scientific Inc.). Slides were
counterstained with hematoxylin. Images were acquired on a Nano-
Zoomer 2.0HT whole-slide imaging system (Hamamatsu Photonics)
at 40x magnification.

TAN Scoring from H&E Images in TRACERx

The densities of TANs were assessed on digitally scanned H&E-
stained 3 pum sections and scored at 400x magnification. All TANs
were evaluated within the histologic limits of the tumor itself. The
TANs in the stromal compartment and tumor island compartment
were evaluated separately. Calculation of the TANs in the stromal
compartment was based on the standardized method used for TIL
quantification, as developed by the International Immuno-Oncology
Biomarker Working Group on Breast Cancer (30). The tumoral TANs
were scored in a similar manner but the areas assessed included viable
tumor islands, and neutrophils free floating within the glandular
lumen were excluded. As per the published guidelines, the percent-
age was calculated as the area occupied by the neutrophils over the
total stromal area and total tumoral area, respectively. Stromal TANs
(STAN) represent the percentage of stroma compartment area occu-
pied by the TANs; tumoral TANs (tTAN) is the percentage of tumor
compartment area occupied by the TANs. The average neutrophils
scoring was calculated across the entire slide rather than focusing on
the hotspot areas. The percentage is given as a continuous parameter.
Eighteen patients were excluded from the validation cohort and were
not scored for TANs when H&E slides were not available or no tumor
was detected in those sections. Region-level TAN scores were derived
from scoring H&E images of paired regional blocks of the study
TMAs, and tumor-level TAN scores were assessed on tumor-matched
diagnostic blocks.

High TAN score was defined based on whether either the tumor
(tTAN) or the stromal TAN (sTAN) scores were high. To classify
tTAN and sTAN scores into high and low, we determined an optimal
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cutoff that best separates the TS:Neutrophil high TME class from the
other TME classes. We used a binomial generalized linear model of
the tTAN or sTAN score to predict the presence of a TS:Neutrophil
high TME class. We used the performance function in the R package
ROCR v.1.0-11 to find the best cutoff as the intersection between the
sensitivity and specificity curves. The determined cutoffs were 2%/3%
for tTAN and 1%/2% for sTAN across all diagnostic slides scores
in LUAD/LUSC, and 1%/5% for tTAN and 1%/1% for sTAN across
regional TAN scores in LUAD/LUSC.

RNAscope

FFPE sections (5 pm) were stained on the Leica Bond Rx automated
stainer using RNAscope LS Multiplex Fluorescent assay (322800
ACD Bio-Techne) applying a standard 15-minute target retrieval and
15-minute protease treatment using target probe Hs-IL-8 (310388
Bio-Techne) with Opal 570 (Akoya Biosciences). Samples were immu-
nostained with MPO 1:2,000 (ab208670 Abcam) or pan-cytokeratin
1:250 (M3515 Agilent) and detected with Opal 690 (Akoya Bio-
sciences) and counterstained with DAPIL. Slides were imaged on the
Phenolmager HT (Akoya Biosciences).

Neighborhood Analysis

The CellProfiler software (v3.1.9; MeasureObjectNeighbors module)
was used to compute the neighboring cells for each cell type in an
image (84). Cells were defined as being in the “neighborhood” of a cell
of interest if they were detected within a pixel radius of 5 px of the cell
of interest.

The neighbouRhood tool (91) aggregate_classic function was used
to define the image-level cell-cell relationship between any two cell
types: interacting relationship, avoiding relationship or nonsigni-
ficant relationship.

TME class comparisons, PIK3CAmut/wt, and subclonal expansion score
high/low: To query if a relationship was significantly enriched in
one subgroup compared with another, a logistic regression model
correcting for multiple cores per tumor was applied to assess the
frequency of a spatial relationship in the TME class of interest com-
pared with all other TME classes (Supplementary Fig. S20), between
tumor cores with PIK3CA mutation versus PIK3CA wild-type (Sup-
plementary Fig. S21A) and between cores with high compared with
low subclonal expansion scores (Supplementary Fig. S21B). Benja-
mini-Hochberg adjustment was performed to correct for multiple
testing. We report significant (P,q; < 0.05) cell-cell relationships if
the constituent cell types were present in at least 90% of tumor cores.
These relationships were visualized in a heat map if they were present
in at least 10% of cores.

MCT4"~ and CAIX*~ TC neighborhood analyses: Differences in inter-
action and avoidance profiles with other cell subtypes in TS:Neutrophil
high LUSC tumor cores were analyzed between center MCT4* and
MCT4" tumor cells (Supplementary Fig. S22A), and between center
CAIX" and CAIX™ tumor cells (Supplementary Fig. S22B). We report
cell-cell relationships if the constituent cell types were present in at
least 90% of tumor cores (=14 cores) for both positive (+ve) and nega-
tive (—ve) center tumor cell phenotypes. No significant differences
were observed between +ve and —ve center cells for either MCT4 or
CAIX, when applying a Chi-square test and P value adjustment (Ben-
jamini-Hochberg). Only cell subtypes for which at least two cores
exhibited a significant avoidance or interaction for at least one of the
two tumor phenotypes were tested.

TRACERx 100 WES

WES data were available for 98% of tumor cores in the pan-immune
data set, and for 98% of tumor cores in the T cells and stroma data
set (Supplementary Fig. S1A; Supplementary Table S2). Normal lung
samples were not subjected to WES. WES data were processed as
described (14).

TRACERx 100 RNA-sequencing

RNA-sequencing data were processed as described (13). Paired analysis
of RNA-sequencing and IMC data were performed for tumor cores only
and was available for 78% of the pan-immune and 76% of the T cells and
stroma data sets (Supplementary Fig. S1A; Supplementary Table S2).

TMB Calculation

TMB was calculated using a harmonized approach as the number
of somatic mutations per megabase (muts/Mb) in the coding genomic
regions (92) on the TRACERx 421 mutation data from WES. The TMB
status of each tumor region was categorized as either high (=10 muta-
tions/MDb) or low (<10 mutations/Mb) to match clinical guidelines.

Driver Mutation Analyses

Driver mutation calls are derived from TRACERx 421 driver muta-
tion calling from WES, as described previously (14), and include driver
single-nucleotide variants, insertion-deletion mutations (indels), and
splice mutations in relevant genes. Clonality calls for PIK3CA muta-
tions were derived using TRACERx clonality calling for WES data, as
described in (14).

Statistical analyses of TME class distributions by regional driver
gene mutation status were performed using the Ime4 R package
glmer function (“binomial” distribution). Analyses were undertaken
to compare distributions of one TME class with all other classes com-
bined (for the respective histology subset). Patient ID was included as
a random effect, and ANOVA P values were calculated by comparing
a null model without mutation status as a fixed effect to a model
containing mutation status as a fixed effect.

Nearly all the observed driver mutations in the PI3K pathway
occurred in the gene PIK3CA in TRACERx 421 (23/115 cores). There
were no PIK3CB mutations in TRACERx 100. Gains and amplifica-
tions in regions of the PIK3CA gene were a frequent event in nearly
all LUSC tumors.

Chi-squared test was used to compare the frequency of observa-
tions between PIK3CA mutant and PIK3CA wild-type tumors. In the
case of multiple regions per tumor, we considered whether any tumor
region of a given tumor had a mutation.

Copy-Number Analysis

Somatic copy-number profiles for tumor regions were derived as
previously described (14). To compare somatic copy-number altera-
tion (SCNA) profiles in high and low TAN score regions, the previ-
ously described unpaired analysis method was adapted (15). Within
each of high and low TAN categories separately, for each copy-number
segment within an individual tumor, the maximum and minimum
log, copy-number values from all respectively assigned regions of a
tumor were selected. GISTIC2.0 (93) was then run four times for each
of LUAD and LUSC for the combined TAN validation and discovery
cohorts using these tumor-level data, once with the maximum val-
ues (to examine amplifications) and once with the minimum values
(to examine losses), for each of high and low TAN score categories.
Driver or immune evasion genes deemed to be significantly ampli-
fied/deleted (q<0.1) for the TAN-High group but nonsignificant for
the same SCNA event in the TAN-Low group, and for which the
absolute value of the G-score was higher in the TAN-high com-
pared with the TAN-low group were assessed. No such peaks were
observed in LUAD or LUSC. In this instance, driver genes were defined
as in (14, 15). Immune evasion genes tested were RFXS, RFXANK,
REXAP, TAP1, TAP2, TAPBP, PSMBS, PSMB9, NLRCS, ERAP1, CALR,
CNX, PDIA3, B2M, SPPL3, MOGS, GANAB, CIITA, MARCHF1, CD74,
MARCHFS, CGAS, MB21D1, TMEM173, TBK1, IRF3, IFNB1, CTNNBI,
AXIN1, AXIN2, APC, GSK3, GSK3B, CSNK1A, CSNK1AI, DKK1, PTCH1,
NKDI, PTEN, MYC, PTGS2, CXCL13, CXCL9, IENGRI, IENGR2, JAKI,
JAK2, STATI, STAT2, IRF1, IRF9, SOCS1, [IFNAR1, IFNAR2, SERPINBY,
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SERPINB4, FAS, CFLAR, TNFRSF10A, TNFRSF10B, TNRFSF10C,
TNRFSF10D, TGFB1, TGFB2, TGFB3, CD274, IDO1, and PDCD1LG2.

Class I/APM Disruption

Class I/APM disruption refers to intrinsic mechanisms of immune
escape relating to antigen presentation on MHC class I. Class I/APM
disruption was defined if HLA LOH could be determined in any of
HLA-A, HLA-B, or HLA-C, and/or if mutations were detected in any
of the following antigen presentation (APM) genes: B2M, HLA-A,
HLA-B, HLA-C, CALR, ERAPI, GANAB, MOGS, NLRCS, PSMBS, PSMBY,
PDIA3, REXS, REXANK, REXAP, SPPL3, TAP1, TAP2, TAPBP, and CNX.
Mutations were defined as any of nonsynonymous single-nucleotide
variants (including stoploss and stopgain), and (non-)frameshift
insertions and substitutions, and frameshift deletions. To be included
in the HLA analysis, a gene had to pass the following filters: identified
at least 10 SNPs that passed the minimum coverage of 30; both alleles
of the gene required an expected depth (ED) of 210; the 95% confi-
dence interval in the allelic copy number was <2.5. The ED estimates
the depth of the reads sourced from the cancer cells, which was calcu-
lated from the depth of the matched germline sample and the purity
of the tumor region. At an ED below 10, we did not expect to have the
required coverage to accurately classify LOH, even if it were present.

Whole-Genome Doubling

Whole-genome doubling assignments for TRACERx tumor regions,
referenced in Fig. 2B, were calculated as described previously (14).

Neoantigen Analysis

Neoantigen analysis was performed within LUAD and LUSC his-
tologies and required samples with neoantigen prediction and RNA-
seq. Clonal (detected in all regions of the same tumor), subclonal (not
detected in all regions of the same tumor), and total nonsynonymous
mutations were used to predict neoantigens using NetMHCpan4.1
(94). When bulk transcriptomic data were available, a neoantigen was
considered to be expressed if at least four RNA-seq reads mapped to
the mutation position. Neoantigen counts were further filtered based
on whether they were predicted to bind to the corresponding patient’s
HLA alleles (determined using HLA-HD; ref. 95) that were not subject
to HLA LOH. The HLA-binding predictions were filtered based on
strong binding affinity using a threshold of rank score <0.5%. LOH
status of HLA-A, HLA-B, and HLA-C could not always be determined
(see above). Tumor regions with no data for any of HLA-A, HLA-B, or
HLA-C were excluded from neoantigen analysis requiring HLA status
and represented 3 LUAD tumor regions from 2 patients and 3 LUSC
tumor regions from 1 patient (Supplementary Fig. S1A; Supplemen-
tary Table S2). In tumor regions where LOH of one or two of HLA-A,
HLA-B, or HLA-C was undetermined, the missing HLA was assumed
to be intact. The expression level of neoantigen transcripts and RNA-
level repression of HLA genes were not considered.

Differential Gene Expression, Gene Set Enrichment,
and GO Analyses

Trimmed mean of M-values (TMM) normalized expression values
was analyzed with the limma-voom workflow for differential analysis
(13). The t-statistic generated by limma was used as input for GSEA
for MSigDB hallmark gene sets using the R package fgsea (v1.10.1)
with default parameters. Genes with higher than 2-fold change and
limma-derived unadjusted P < 0.05 were selected for overrepresenta-
tion analysis with GO Biological Processes using the enrichGO func-
tion in the clusterProfiler R package (v 4.2.2).

Recent Subclonal Expansion Score

A recent subclonal expansion score per tumor, reflecting the size
of the largest recent subclonal expansion within each tumor region,

was calculated as described by Frankell and colleagues (14). In
short, using multiregional WES, tumor phylogenetic trees were con-
structed, and for each of them, the terminal nodes on the tree (i.e.,
leaf nodes) were identified. The maximum cancer cell fraction (CCF)
of any of these leaf nodes was then identified. The recent subclonal
expansion score represents the maximum CCF of any of the leaf
nodes in a given tumor region. The recent subclonal expansion score
was compared between the TAN groups using the LME model with
patient as a random-effect covariate. To adjust for the difference
in tumor content, we added purity as a fixed-effect covariate in the
model. The association of high recent subclonal expansion with
TAN-high tumor cores remained significant in LUAD (P = 0.047) but
did not reach significance in LUSC (P = 0.26).

Phylogenetic Tree and cloneMap Visualization

The tumor phylogenetic tree for tumor CRUK0468 in Fig. 6F was
reconstructed using CONIPHER (14, 96) and visualized using the
plot function (igraph R package v1.3.5). The sequenced profiles of
two samples from a lymph node metastasis, one fresh frozen (LN1)
and one FFPE (FLN1), were included with the primary tumor regions
to reconstruct the tumor phylogenetic tree. Tumor region clone
maps were visualized using the cloneMap function (cloneMap R
package v1.0.0.0, bioRxiv 2022.07.26.501523).

Survival Analysis

To evaluate the prognostic value of TANs in lung cancer, we
defined a discovery cohort as the TRACERx100 tumors profiled with
IMC for neutrophil markers (panel 2, » = 68) and a validation cohort
as the nonoverlapping TRACERx421 tumors with a surrogate, H&E-
derived TAN score (» = 332; Supplementary Fig. S10A). In eight cases
with TAN scoring, when the patients harbored synchronous multi-
ple primary lung cancers, we used only data from the tumor of the
highest pathologic TNM stage. We excluded two patients for which
multiregion sequencing data revealed two tumor masses as collision
tumors with two and three independent LUADs in CRUK0881 and
CRUKO0704, respectively, diagnosed histologically as single primary
LUADs (14). One patient (CRUK0682) with synchronous primary
lung cancers (LUAD and LUSC), whose tumor with the highest stage
(LUAD) was not sequenced, was excluded from the survival analysis.

Within the discovery cohort, we distinguished tumors with metasta-
sis-seeding clones (n = 22) as metastasizing tumors, as determined by
multiregional genomic profiles from matched primary and metastases
(15). All tumors seeding lymph node and intrapulmonary metastasis
detectable at the time of surgery (n = 12) as well as any relapse detected
during follow-up were included (n = 10). In addition, we also defined
control tumors as those from patients who did not have metastasis or
recurrence diagnosed for more than 3 years of follow-up time.

DFS was defined as the period from the date of registration to
the time of radiologic confirmation of the recurrence of the primary
tumor registered for the TRACERx or the time of death by any cause.
Lung cancer-specific DFS was defined as the period from the date of
registration to the time of radiologic confirmation of the recurrence
of the primary tumor registered for the TRACERx or the time of
death from lung cancer.

Kaplan-Meier plots were generated based on the univariate model
from the survfit function (survival R package v3.4.0) and compared
with the log-rank test. Hazard ratios and P values were derived using
univariate and multivariable Cox regression analyses with the coxph
function (survival v3.4.0). Cox proportional hazards assumptions
were fulfilled for univariate and multivariable models. Univariate
models also included strata by histology subtype. The multivariable
model was adjusted for necrosis, age, sex, pathologic stage (1, 2, 3),
smoking pack years, receipt of adjuvant therapy, and histology sub-
type. The median follow-up time of the cohort was extracted from
the summary table of the survfic model.
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The necrosis status was evaluated from diagnostic H&E images
by a pathologist. High and low recent subclonal expansion scores
were defined based on the median score. Hazard ratios of age and
pack-years were reported per 10 years. We evaluated several cutoff
approaches to define high and low TAN score, median, upper quar-
tile (vs. rest), and optimal cutoff described above in the section TAN
scoring from HeS'E images in TRACERx. Both regional and diagnostic
TAN scores were evaluated in univariate analysis, whereas the TAN
score used for the multivariable analysis was derived from diagnostic
H&E images. The association with prognosis remained significant
for high TAN tumors in multivariable analyses with median recent
subclonal expansion score or PIK3CA mutation status (Supplemen-

tary Table S5).

Granulocyte Scoring from H&E Images and Survival
Analysis in TCGA

H&E-stained whole-slide images (WSI) from TCGA were analyzed
with PathExplore, a deep learning-based model for cell type and
tissue classification trained on pathologist-expert annotations on
6,918 WSIs from NSCLC tissue (37). The tissue classification model
segments the tumor nests (cancer), cancer stroma, background,
necrosis, and artifacts on H&E images. PathExplore outputs for tis-
sue segments were evaluated by pathologists to assess the model’s
performance in detecting and classifying regions of tissue back-
ground, artifact, tumor nests (cancer), cancer stroma, and necrosis.
Samples with >10% error for segmenting tumor nests (cancer) and
cancer stroma were removed. Samples, for which necrosis, artifacts,
and background were not evaluated or had >20% error were excluded.
The cell type classification model was trained to predict granulocytes.
The granulocyte classification is expected to include eosinophils in
addition to neutrophils.

The automated score derived from applying PathExplore on the
TCGA cohort used the proportion of granulocytes in the tumor nest/
stroma over the total number of cells in the tumor nest/stroma (Sup-
plementary Fig. S11A). The automated score was compatible but not
identical to the pathologist-derived TAN score, which was defined
based on two factors: the area of neutrophils in the tumor nests/
stroma over the area of the tumor nest/stroma. Although the TAN
score was based on the cell area proportion, the automated score
quantified the cell count proportion. As the area of neutrophils is
generally smaller than the area of the cancer cells or fibroblasts in the
TS, the pathologist-scored area proportions would be generally lower
than the automarted cell proportions. Therefore, the TAN score cutoffs
derived using the TRACERx cohort could not be directly applied to
the TCGA samples. Instead of using a single score cutoff in the TCGA
cohort, we used a range of score cutoffs, defined by high granulocyte
proportions in the TS. The TAN score and the PathExplore quantifica-
tion considered only viable tumor islands, excluding necrotic areas and
normal tissue.

DFS was defined based on the annotations of new tumor events
after initial treatment and vital status in the clinical data downloaded
from the TCGA portal (portal.gdc.cancer.gov). The new tumor events
annotated as new primary tumors were not considered as DFS events.
Patients diagnosed with stage IV tumors or treated for prior malig-
nancy were excluded. The hazard ratio was evaluated for a range of
intervals of the two variables: the proportion of granulocytes over all
predicted cells in the tumor nest (tumor nest interval) and the stroma
(stroma interval). Tumors with high scores were defined as those, for
which the proportion of granulocytes in the tumor nest was higher
than the tumor nest interval or the proportion of granulocytes in the
stroma was higher than the stroma interval.

The multivariable model was adjusted for age, sex, pathologic
stage (1, 2, 3), smoking pack years, receipt of adjuvant therapy, and
histology subtype. Hazard ratios of age and pack-years were reported
per 10 years (Supplementary Fig. S11B).

Statistical Analysis

All statistical tests were performed in R. No statistical methods
were used to predetermine sample size. NSCLC-other was excluded
from histology-specific analyses due to a low sample size. Tests
involving comparisons of distributions were done using a two-tailed
nonparametric Wilcoxon rank-sum test, unless specified one-tailed,
using paired or unpaired options where appropriate. Tests involving
the comparison of groups were done using a two-tailed Chi-squared
test. For all statistical tests, the numbers of data points included are
plotted or annotated in the corresponding figure legend. Correlation
coefficients and corresponding P values were calculated with the
Spearman correlation method.

Continuous dependent variable: Where multiple tumor regions/
cores per patient were considered, LME models were applied using
patient ID as a random effect. The Cé:macrophages and T cells com-
munity was associated with smoking status among the clinical fea-
tures; therefore, the LME models with this community corrected for
smoking status as a fixed effect. ANOVA P values were calculated by
comparing the effects model to the null model.

Categorical dependent variable: In the case where multiple tumor
regions/cores per tumor were considered, statistical analyses of distri-
butions of categorical data (e.g., TME class) with relation to an inde-
pendent categorical variable (e.g., smoking status) were performed
using the Ime4 R package glmer function (“binomial” distribution).
Patient ID was included as a random effect, and ANOVA P values
were calculated by comparing the effects model with the null model.

Code and Data Availability

RNA-seq and WES data (in each case from the TRACERx study)
used during this study have been deposited at the European
Genome-phenome Archive (EGA), which is hosted by The European
Bioinformatics Institute and the Centre for Genomic Regulation
(CRG) under the accession codes EGAS00001006517 (RNA-seq) and
EGAS00001006494 (WES); access is controlled by the TRACERx data
access committee. Details on how to apply for access are available
on the linked page. IMC data used or analyzed during this study
are available through the CRUK and UCL Cancer Trials Centre (ctc.
tracerx@ucl.ac.uk) for academic noncommercial research purposes.
Access will be granted upon review of a project proposal, which will
be evaluated by a TRACERx data access committee, and entering
into an appropriate data access agreement, subject to any applicable
ethical approvals.

The code used for IMC analysis in this study was implemented as a Next-
flow pipeline and is available on github along with instructions on how
to run it on a test data set: hteps://github.com/FrancisCrickInstitute/
TRACERx-PHLEX.

The TRACERx Nuclear IMC segmentation data set, trained neural
network model weights, and the test data set can be downloaded
from Zenodo: https://zenodo.org/record/7973724.

The core nuclear prediction model, implemented in Python 3, is
available here: https://github.com/FrancisCrickInstitute/py-imcyto.

Scripts used for adaptive spillover compensation of IMC isotope
channels are available here: https://github.com/FrancisCrickInstitute/
TRACERxIMCSpillover.
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