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INTRODUCTION
The tumor microenvironment (TME) confers a selective pres-

sure on the clonal evolution of lung tumors. Whether the 
TME promotes or suppresses tumor growth is linked to its 
spatial organization and cell phenotypes. Recently, highly mul-
tiplexed technologies such as imaging mass cytometry (IMC) 
have unveiled the complexities in the composition and structure 
of the TME across several cancer types (1–9). These studies 
have demonstrated the clinical relevance of in-depth spatial 
approaches, identifying multicellular organizations associated 
with patient outcomes, tumor phenotypes, and therapy response 
in lung adenocarcinoma (LUAD), breast cancer, and glioma.

TME spatial organization can, in turn, be modulated by 
somatic alterations incurred throughout tumor evolution. 
IMC studies in breast cancer have identified distinct spatial 

TME structures associated with somatic driver mutations and 
histology-specific outcomes (2, 4), demonstrating the value of 
such integrative analyses. We previously showed that increased 
immune infiltration, inferred from transcriptomic signatures, 
was associated with frequent cancer cell–intrinsic immune-
escape mechanisms that impact neoantigen presentation, 
including loss of heterozygosity (LOH) of human leukocyte anti-
gen (HLA) alleles, in non–small cell lung cancer (NSCLC; refs. 
10, 11). These results suggested the selection of immune eva-
sive tumor cell populations in a predatory microenvironment. 
However, spatially resolved information is required to further 
understand immune pressures through, for example, cell-to-cell 
interactions and physical barriers to immune surveillance that 
impact tumor evolution. NSCLC studies that pair spatial detail 
from high-dimensional imaging with genomics and transcrip-
tomics in clinically well-defined cohorts representing the major 

ABSTRACT Understanding the role of the tumor microenvironment (TME) in lung cancer is critical 
to improving patient outcomes. We identified four histology-independent archetype 

TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study 
(n = 81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells 
and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for 
niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs 
were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by 
sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially 
separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had 
frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding sub-
clones and had a shorter disease-free survival independent of stage. These findings delineate genomic, 
immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis.
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evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor pro-
gression and metastasis with implications for patient outcome and treatment.
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histologic subtypes remain to be undertaken. Such studies are 
needed to provide mechanistic insights into immune escape and 
the TME pressures on cancer evolution.

Here, we used multiregion IMC to comprehensively charac-
terize TME composition and spatial organization in 198 tumor 
and normal regions from 81 treatment-naïve patients with 
NSCLC in the TRACERx 100 cohort (12). TRACERx [TRAck-
ing Cancer Evolution through therapy (Rx); ClinicalTrials.
gov: NCT01888601] is a prospective study of tumor evolution 
through multiregion tumor sampling in patients with early-
stage resectable disease. Using paired IMC, pathology, whole-
exome sequencing (WES), and RNA-sequencing data (13–15), 
we studied the link between TME organization, tumor immuno-
genicity, and evolutionary history. We investigated how the TME 
may be shaped by high neoantigen burden, intrinsic immune-
escape mechanisms, and evolutionary patterns associated with 
poor outcomes. This work begins to unravel the complex TME 
relationships with NSCLC tumor evolution. By examining TME 
spatial heterogeneity, this study furthers the current knowledge 
of a critical open question—how to address TME heterogeneity 
and utilize the TME context for clinical applications.

RESULTS
Building an Atlas of the Early-Stage Non–Small 
Cell Lung Cancer Microenvironment

With the aim of understanding the role of the TME in 
tumor evolution, we performed an in-depth spatial and phe-
notypic analysis of the TME in early-stage (I–IIIA), treat-
ment-naïve NSCLC. We characterized the diversity in cell 
phenotypes, recurrent spatial communities, and broader 
TME classes in the TRACERx 100 multiregion cohort (12). 
Using IMC, we profiled the in situ expression of 38 markers 
on tissue microarrays (TMA) of spatially separated tumor 
and adjacent normal lung samples acquired at surgical resec-
tion (Fig. 1A). The TME organization was analyzed using the 
pan-immune antibody panel targeting innate and adaptive 
immune cell types (n =  80, 185 cores; Fig.  1B; Supplemen-
tary Table  S1). Additional T-cell differentiation states and 
nonimmune stromal cells were interrogated using the T cells 
and stroma panel (n =  79, 181 cores). The major histologic 
subtypes of NSCLC were represented in the cohort, includ-
ing LUAD (n  =  39 tumors, 76 cores, pan-immune panel), 
lung squamous cell carcinoma (LUSC; n = 23, 50 cores), and 
other NSCLC histologies (NSCLC-Other; n = 6, 13 cores) as 
well as adjacent normal lung samples (n = 46, 46 cores). IMC 
data from multiple tumor cores were available for 41 of the 
tumors represented. Twelve patients only had IMC data avail-
able from adjacent normal lung cores. The majority of cores 

were profiled with both IMC panels (168/198) and had paired 
WES and RNA sequencing (RNA-seq) data available (Supple-
mentary Fig. S1A–S1C; Supplementary Table S2; Methods).

To comprehensively characterize the cell phenotypes in situ, 
deep learning–guided cell segmentation was performed and 
followed by single-cell phenotyping (Fig.  1C; Supplementary 
Fig.  S2A–S2D). We identified 2.3 million cells per antibody 
panel from seven major immune cell types and 29 immune 
cell subtypes, in addition to epithelial, endothelial, and αSMA+ 
cells (Fig.  1C–E; Supplementary Fig.  S2B; Supplementary 
Fig.  S3A). Additional pathologist-guided labels were created 
using paired IMC and hematoxylin and eosin (H&E)–stained 
images to distinguish features unresolvable by marker expres-
sion alone. These pathologist labels further distinguished 
αSMA+ perivascular stroma and αSMA+ fibroblasts, alveo-
lar macrophages, and tumor and nontumor epithelial cells, 
which were used to interrogate tumor cell–specific phenotypes 
and spatial metrics (Fig.  1C; Supplementary Fig.  S2C and 
S2D). Cell phenotypes were quantified on the basis of marker 
positivity, examining, for example, hypoxia (CAIX), lactate 
metabolism (MCT4), proliferation (Ki-67), the exhausted ter-
minally differentiated dysfunctional (TDT) T-cell state (CD39, 
CD57; ref.  16), and immune-checkpoint molecules (Fig.  1B  
and D; Methods).

Macrophages were the most prevalent major immune cell 
type in NSCLC cores (median 40% of immune cells, tumor cores; 
Fig. 1F; Supplementary Fig. S3B), in line with other studies (1), 
with CD163+CD206+ macrophages comprising a greater pro-
portion than CD163− macrophages (37% vs. 2%; Supplementary 
Fig.  S3C). Notably, B cells in LUAD and myeloid cells-other, 
predominantly comprising neutrophils, in LUSC made up >25% 
of immune cells in a subset of tumor cores (14/76 LUAD, 13/50 
LUSC; Fig. 1F; Supplementary Fig. S3C). From the T cells and 
stroma panel, αSMA+ cells were the most abundant nonepi-
thelial cell populations in tumor cores (median 16% of all cells; 
Supplementary Fig.  S3D). Subtypes of CD4 and CD8 T cells 
were categorized as regulatory T cells (Treg), naïve, cytotoxic, 
memory, and exhausted populations (Supplementary Fig. S3E). 
Endothelial cells made up a greater proportion of total cells in 
adjacent normal cores than tumor cores (22% vs. 7%), in accord-
ance with the physiologic function of the lung in gas transfer 
through blood flow (Supplementary Fig. S3B and S3D).

To investigate the spatial context of the identified cell 
phenotypes, we quantified cell densities within two tissue 
compartments, tumor nest/epithelium, and stroma (Fig.  1F; 
Supplementary Fig. S2A). Additionally, we performed analysis 
of local cellular neighborhoods in NSCLC, which have recently 
been shown to correlate with clinical outcomes in LUAD (1), 
and revealed 10 recurrent geographical communities (C0–C9) 

Figure 1. IMC workflow defines the single-cell spatial landscape of the NSCLC tumor microenvironment. A, TRACERx 100 IMC cohort. We developed 
and applied two IMC antibody panels, Pan-immune and T cells and stroma, to tissue microarrays (TMA) from clinical samples collected at surgical resec-
tion (created with BioRender.com). B, Targets of antibodies described in this study. Bold text indicates targets detected in both IMC panels. C, IMC data 
were acquired from stained TMAs and processed to identify single cells and their phenotypes. D, 40,000 μm2 crops of IMC images representing the 
markers from B with corresponding cell types from the pan-immune panel, unless annotated with an asterisk for the T cells and stroma panel only. E, A 
heat map of the z-score normalized median intensities of markers from the pan-immune panel across the identified cell subtypes. F, Proportion of major 
immune cell types identified in the pan-immune IMC data set per TMA core, calculated over the total tissue area (illustrated as blue and gold domains), 
tumor/epithelial compartment (gold domain), or the stromal compartment (blue domain). In two normal cores, the epithelial cell signal reflected very thin 
cells, which were not resolved into an epithelial compartment. All data from these cores are represented by the stroma compartment. Cell types color 
legend applies to D and F, where asterisks denote cell types identified in T cells and stroma panel only. LUAD, lung adenocarcinoma; LUSC, lung squamous 
cell carcinoma; NSCLC, non–small cell lung cancer; other, other non–small cell lung cancer histologies; IMC, imaging mass cytometry.
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of frequently colocalizing cells within tumor cores across his-
tologic subtypes (Supplementary Fig. S3F and S3G; Methods).

We assessed the relationship of cell populations and com-
munities with clinical variables (Supplementary Fig.  S4A–
S4C; Methods). In both LUAD and LUSC, densities of the 
community C9:B cells and plasma cells and plasma cells, when 
tested separately, were associated with a high tumor muta-
tional burden (TMB). High TMB was further associated with 
increased densities of CD163− macrophages and CD4 Tem in 
LUAD and CD8-exhausted TDTs in LUSC, similar to previ-
ous observations (16). Among the significant associations, 
the C6:macrophages and T cells community, as well as several 
cell subtypes that characterize this community, were enriched 
in current smokers compared with ex- and never-smokers 
in LUAD.

Together, we integrated spatial and phenotypic informa-
tion from multiplexed imaging with pathology annotations 
to develop a framework for studying the TME composition 
and organization in NSCLC.

Immune Composition in Tumor Nests and 
Surrounding Stroma Reveals Four TME 
Classes in NSCLC

Three broad immune classes have been previously described 
for solid tumors through histologic examination of tumor-
infiltrating lymphocytes (TIL) quantity and location within 
tumor sections: inflamed, immune-excluded, and cold (17). 
The TME subtypes and their spatial heterogeneity in NSCLC 
remain to be comprehensively characterized in association with 
genetic, molecular, and cellular mechanisms of immune escape.

To understand how TME organization is associated with 
immune escape and tumor evolution, we performed a broad 
classification based on the densities of major immune cell 
types and identified common TME architectures in NSCLC. 
We quantified the densities of major cell types of adaptive and 
innate immunity defined within the tumor nest and stroma 
tissue compartments. Through unsupervised hierarchical 
clustering, we observed four common TME classes defined 
across all histologic subtypes in NSCLC (Fig.  2A–C; Sup-
plementary Fig.  S5A–S5C). These TME classes were distin-
guished by differential cell densities of three broad immune 
cell populations—TILs (T cells and B cells), macrophages 
(Mφ), and neutrophils—within the tumor nest (T) or stroma 
(S) of one TME class compared with other TME classes and 
annotated accordingly as TS:TIL+MΦ high, T:TIL+MΦ excluded, 
TS:Immune low, and TS:Neutrophil high. For a small propor-
tion of tumor cores in the cohort (11.5%), the TME class was 
labeled undefined (Supplementary Fig. S5A; Methods).

The TS:TIL+MΦ high class, accounting for 28% of NSCLC 
tumor cores (n = 21 LUAD, 13 LUSC, 5 NSCLC-Other cores), 
consisted of immunologically “hot” tumors characterized 
by high infiltration of TILs and Mφs in both the tumor nest 
and stroma region (TS; Fig. 2D). Most of the identified TIL 
and Mφ subtypes, ranging from naïve CD8 T cells to CD8-
exhausted TDTs, were enriched in this class compared with 
other TME classes (Supplementary Fig. S5D).

Across all histologic subtypes, we observed a subset of 
tumor cores with low infiltration of TILs and Mφs in the 
tumor nest and high infiltration of B cells, CD4 T cells, and 
a subset of myeloid cells excluding neutrophils and mac-
rophages in the stroma (Fig. 2D). Because of the statistically 
lower infiltration of TILs and Mφs in the tumor nest (T), these 
cores were labeled T:TIL+MΦ excluded (24% of NSCLC cores, 
n = 20 LUAD, 12 LUSC, 1 NSCLC-other cores).

A smaller proportion of tumor cores (17%) had signifi-
cantly lower TS infiltration of T cells and Mφs compared with 
those from other TME classes, termed TS:Immune low (n = 13 
LUAD, 8 LUSC, 3 NSCLC-other cores).

Finally, we observed a distinct TME class, TS:Neutrophil high, 
in 19% of tumor cores (n =  11 LUAD, 15 LUSC, 1 NSCLC-
Other cores) with lower infiltration of TILs and Mφ in both 
the tumor nest and stroma and significant enrichment of 
neutrophils in the tumor nest or the stroma (TS) compared 
with tumor cores from other TME classes. Although the TME 
classes were defined for all histologic subtypes combined, 
LUSC cores were enriched for neutrophils in the tumor nest 
more frequently than LUAD cores (Supplementary Fig. S5D).

To assess the intratumor heterogeneity (ITH) of these 
TME classes, we estimated the probability of observing the 
same TME class across all cores of a tumor (n = 41 tumors, 
bootstrap sampling of two to four cores per tumor, Methods). 
The TS:Neutrophil high TME had the highest probability to be 
detected in all cores (0.5), followed by TS:Immune low (0.38), 
TS:TIL+MΦ high (0.3), and TS:TIL+MΦ excluded (0.21).

Comparison by clinical variables showed that the 
TS:Immune low class was associated with low TMB and <1% 
PD-L1 immunohistochemistry (IHC) tumor score in LUAD 
and LUSC (Fig. 2B) and tumors from never and ex-smokers 
in LUAD (Supplementary Fig.  S5E). IHC PD-L1 tumor cell 
positivity was also absent (<1%) in TS:Neutrophil high LUSCs, 
whereas a positivity score of ≥1% was significantly enriched 
with TS:TIL+MΦ high LUADs and T:TIL+MΦ excluded LUSCs 
compared with cores from other TME classes. In LUSC, the 
TS:TIL+MΦ high class was enriched in stage II and III tumors 
compared with stage I (Supplementary Fig. S5E). The tumor 
cores with a TS:Neutrophil high class in LUAD more frequently 

Figure 2. Four TME classes in NSCLC defined by immune composition in tumor nests and surrounding stroma. A, Tumor cores were classified into four 
TME classes, derived by clustering immune cell densities in the tumor nest and stroma. Only LUAD (n = 65 cores, 35 tumors) and LUSC (n = 48, 23 tumors) 
tumor cores are featured, and corresponding clinical annotations are displayed. Regional growth patterns are shown for LUAD: lepidic (low grade), acinar 
and papillary (mid-grade), solid and cribriform (high grade). B, TME classifications displayed separately for LUAD and LUSC. Numbers indicate the number 
of cores with a given TME class for each histology subtype. The barplot shows the total expressed neoantigen count for all predicted HLA alleles in the 
range 0–269 for LUAD and 23–160 for LUSC, colored by their clonal and subclonal status. Horizontal lines connect tumor cores from the same multire-
gion tumor (n = 33 tumors). The annotation bars display tumor genomic features and PD-L1 tumor cell (TC) staining (SP142 IHC) for the corresponding 
tumor cores. C, Composite images and cell type maps of representative examples for each TME class. Crop insets are 82 μm in diameter. D, A heat map 
of T values derived from an LMEM of the major cell type density across TME classes, adjusted for histology subtype as a fixed effect and patient as a 
random effect. Significant relationships are indicated with an asterisk for P ≤ 0.05. TIL, tumor-infiltrating lymphocyte; MΦ, macrophage; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, non–small cell lung cancer; TME, tumor microenvironment; TMB, tumor mutation burden; 
muts/Mb, mutations per megabase; panCK, pancytokeratin; LMEM, linear mixed effects model.
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had a high-grade growth pattern compared with low and mid-
grade patterns combined (50% vs. 10%, P =  0.048, Fig.  2A). 
These results align with previous reports of TIL associations 
with tumor cell PD-L1 expression and TMB (18).

Multicellular Communities Associate with 
Neoantigen Burden and Intrinsic Immune Evasion

We sought to understand how the observed TME organi-
zation was related to neoantigen presentation and cancer 
cell–intrinsic mechanisms of immune evasion and identify 
potential tumor-extrinsic mediators of immune evasion. 
Using samples with paired IMC, WES, and RNA-seq data, we 
investigated the relationships of the spatially resolved cell sub-
types, cellular communities, and TME classes with neoantigen 
burden and antigen presentation machinery (APM) defects.

We first correlated IMC-derived densities of cellular com-
munities with the number of expressed neoantigens pre-
dicted to bind intact HLA alleles (Methods). We identified 
histology-specific correlations between spatial communities 
and neoantigen burden, correcting for multiregion sampling 
and patient smoking status. In LUAD, clonal neoantigen 
burden was associated with community C6:macrophages and 
T cells (linear mixed-effects model, LME P  =  0.04), a com-
munity enriched in TS:TIL+MΦ high TMEs and depleted in 
TS:Immune low TMEs (Fig. 3A–C). Community C6:macrophages 
and T cells was characterized by increased densities of several 
CD4 and CD8 T-cell populations relative to other commu-
nities, including cytotoxic CD8 T cells and CD8 T resident 
memory (Trm) cells; however, enrichment of CD163− and 
CD163+CD206+ macrophage populations distinguished 
C6:macrophages and T cells from C2:T-cell enriched (Supple-
mentary Fig.  S3F). A minority of cell subtypes were sig-
nificantly associated with clonal neoantigen burden when 
considered independently of community localization (Sup-
plementary Fig.  S6A), suggesting the local niches in which 
they reside are relevant to understanding the antitumor  
immune response.

In LUSC, the burden of expressed clonal and total neoanti-
gens predicted to bind intact HLA alleles was correlated with 
C9:B cells and plasma cells (LME P < 0.03), a community enriched 
in T:TIL+MΦ excluded TMEs and depleted in TS:Neutrophil high 
TMEs (Fig. 3A, B, and D). Both B cells and plasma cells were 

enriched in community C9:B cells and plasma cells, but only 
stroma-localized plasma cell densities were significantly corre-
lated with clonal and total neoantigen burden in LUSC (Sup-
plementary Figs. S3F and S6A). This spatial analysis reveals 
that plasma cells and the community in which they reside are 
associated not only with high TMB but also with the burden 
of clonal and total neoantigens in early-stage LUSC.

Of note, the T-cell–enriched community, which harbored 
CD4 T cells, CD8 T cells, and B cells, was only associated 
with the burden of clonal neoantigens in LUAD and sub-
clonal neoantigens in LUSC when HLA LOH was not consid-
ered (HLA LOH-uncorrected, LME P < 0.018; Supplementary 
Fig.  S6B). The T-cell–enriched community was also signifi-
cantly correlated with stromal and tumor-infiltrating Tregs 
in LUSC, which may suggest hindered antitumor immunity 
in regions with a high burden of subclonal neoantigens (HLA 
LOH-uncorrected, LME P = 1.9e−05, LME P = 0.015; Supple-
mentary Fig. S6C). Communities associated with HLA LOH-
uncorrected neoantigen burden, including the T-cell enriched 
community, were enriched in TS:TIL+MΦ high TMEs, adding 
further resolution on cell organization in inflamed environ-
ments (LME P < 0.02; Fig. 3B; Supplementary Fig. S6B).

We next sought to establish the spatial immune context asso-
ciated with HLA LOH and other somatic disruptions to HLA 
class I APM genes, hereafter referred to as class I/APM disrup-
tion (Methods). In LUAD, tumor regions with class I/APM dis-
ruption had increased densities of communities C6:macrophages 
and T cells and C7:macrophage enriched (LME P  =  0.001, LME 
P = 0.023; Supplementary Fig. S6D). In LUSC, class I/APM dis-
ruption was observed more frequently in TS:TIL+MΦ high tumor 
cores compared with other TME classes (91% vs. 60% cores with 
available HLA data; Supplementary Fig. S6E).

These results uncover spatial niches of immune cells in 
high neoantigen burden tumors, including the spatial context 
of effector CD8 T-cell populations. Consideration of HLA 
LOH identified different spatial communities that are further 
affected by neoantigen clonality and NSCLC histology subtype.

Peritumoral αSMA+ Fibroblasts Spatially Separate 
CD8 T Cells and Tumor Cells in Immune-Low TMEs

The exclusion of T cells from the tumor nest has been associ-
ated with the limited efficacy of immunotherapies. Previous 

Figure 3. Spatial features associated with neoantigen burden and immune low TMEs. A, Correlation of densities of spatial cellular communities and 
the burden of expressed clonal, subclonal and total neoantigens predicted to bind intact HLA alleles, after accounting for HLA LOH, in LUAD (n = 31, 
51 tumor cores) and LUSC (n = 17, 37 tumor cores). Bar plot shows the median neoantigen burden with whiskers extending to the 75th percentile. B, 
Comparison of the densities of spatial cellular communities in a given TME class compared with all other TME classes combined. LUAD: n = 21 TS:TIL+MΦ 
high cores, n = 20 T:TIL+MΦ excluded cores, n = 13 TS:Immune low cores, n = 11 TS:Neutrophil high cores. LUSC: n = 13 TS:TIL+MΦ high cores, n = 12 
T:TIL+MΦ excluded cores, n = 8 TS:Immune low cores, n = 15 TS:Neutrophil high cores. Box sizes in A and B correspond to T values. C, Community and cell 
subtype maps from a LUAD tumor core with a high burden of expressed clonal neoantigens and high densities of C2:T-cell enriched and C6:macrophage 
and T cells communities. D, Community and cell subtype maps from a LUSC tumor core with a high burden of expressed clonal neoantigens and high densi-
ties of community C9:B cells and plasma cells. Single cells in C and D are colored by community according to the color legend below D or cell subtype 
as indicated. Scale bars, 200 μm. Middle, an enlargement of the area highlighted with a white box in the left plot with matched cell subtypes shown in 
the right plot. E, Schematic of αSMA+ fibroblast barrier score calculation. The barrier score measures the degree of spatial interpositioning of tumor 
cell–adjacent αSMA+ fibroblasts between CD8 T cells and their nearest tumor cell(s) in a tissue core. In the lower half of the schematic, three nearest 
tumor cells are defined for the green CD8 T cell, all six hops away. Tumor cell–adjacent αSMA+ fibroblasts are found on two of these three paths from 
CD8 T-cell to tumor cell, resulting in a barrier score of ⅔. F, Boxplot comparing the αSMA+ fibroblast barrier scores in a given TME class compared with 
all other TME classes combined in LUAD (n = 36, 57 tumor cores) and LUSC (n = 22, 45 tumor cores). Boxplots show median and lower and upper quartile 
values, and whiskers extend up to 1.5 × IQR above and below the quartiles. G, Representative IMC images and cell type maps from LUAD and LUSC tumor 
cores classified as TS:Immune low with a high barrier score. Scale bars, 200 μm. P values in A, B, and F and T values in A and B were calculated in a linear 
mixed-effects model with patient as a random effect, using smoking status as a fixed effect in A with a P value < 0.05 considered significant. LUAD, 
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; panCK, pancytokeratin; TS, tumor/stroma; T, tumor; TIL, tumor-infiltrating lymphocytes; 
MΦ, macrophage; *, P < 0.05; **, P < 0.01.
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work in NSCLC has found that dense fibrous stroma surround-
ing tumor islets in human lung tumor slices can limit T-cell 
ingress, likely mediated by distinct collagen-producing cancer-
associated fibroblast (CAF) subsets (19, 20) and that the geo-
metrical complexity of the tumor–stroma interface has been 
shown to be increased with overall low compared with high 
lymphocytic infiltrate (21). Both of these studies highlight a 
potential role for CAFs in T-cell exclusion in NSCLC. How-
ever, the diversity of cell subtypes interrogated in these works  
was limited.

Building on this, we harnessed the αSMA marker on our T 
cells and stroma antibody panel and explored whether immune 
TME classes were associated with distinct αSMA+ fibroblast 
arrangements, which may represent potential barriers to 
tumor–immune engagement. Using a barrier metric derived 
from constructing a cellular spatial graph for each tumor core 
(Fig.  3E, Methods), we found that TS:Immune low TMEs were 
characterized by a higher degree of physical occlusion of CD8 
T cells from tumor cells by tumor-adjacent αSMA+ fibroblasts 
than other TMEs combined in both LUAD and LUSC (LME 
P =  0.02, P =  0.04, respectively, Fig.  3F and G). Barrier score 
distributions across TME classes did not reflect overall densities 
of αSMA+ fibroblasts in tumor cores (Supplementary Fig. S6F).

However, notably, αSMA+ fibroblast barriers were insuf-
ficient to explain the lack of immune cell infiltration into 
tumor nests in the T:TIL+MΦ excluded TME class in LUAD 
or LUSC, although high barrier scores were noted in indi-
vidual cases (Fig. 3F). Nevertheless, cytotoxic CD8 T cells and 
leukocytes-other had significant avoiding relationships with 
tumor cells in T:TIL+MΦ excluded TMEs compared with other 
TME classes in LUAD and LUSC, respectively (Supplementary  
Fig. S6G).

Collectively, these results suggest that peritumoral αSMA+ 
fibroblasts may represent a feature of early-stage NSCLC TMEs 
with overall low levels of immune infiltration and a putative 
physical barrier to CD8 T-cell and tumor cell engagement.

Tumors Infiltrated with Neutrophils and Sparse 
T Cells Are Metabolically Rewired and Distant 
from Vasculature

Immune classification revealed a distinct TME class with 
high neutrophil cell densities and sparse TIL infiltration in 
the tumor nest and stroma, TS:Neutrophil high, which was 
detected in at least one core in 28% of NSCLCs (n =  18/64 
tumors with defined TME). Studies of NSCLC showing a 
neutrophil gene signature as the strongest immune predictor 

of mortality (22) and high neutrophil content inversely cor-
relating with T-cell infiltration (23) led us to investigate a 
potential tumor-promoting role of this TME class. Of note, 
neutrophil infiltration levels in LUSC were higher than in 
LUAD tumor cores by a factor of two (median of 752 cells/
mm2 compared with 343 cells/mm2, respectively); therefore, 
the TS:Neutrophil high TME class was examined separately and 
compared between the major histologic subtypes.

We assessed signaling pathways that were differentially reg-
ulated in this TME class, using paired TRACERx 100 RNA-seq 
data (n = 18 tumors, 38 regions). In LUSC, overrepresentation 
analysis of gene ontology (GO) biological processes showed 
upregulation of several processes, including protein kinase 
B (PKB) signaling, angiogenesis, and transcriptional pro-
grams associated with wound healing and myeloid leukocyte 
migration in TS:Neutrophil high tumor cores relative to cores 
from other TME classes (FDR  <  0.01, Fig.  4A; Supplemen-
tary Fig. S7A). Additionally, we identified hallmark gene sets 
enriched in TS:Neutrophil high, which included epithelial–mes-
enchymal transition (EMT) and hypoxia (Fig. 4B). Although 
several metabolic processes including oxidative phospho-
rylation (OXPHOS) were significantly downregulated, gly-
colysis was upregulated in TS:Neutrophil high cores compared 
with those with other TME classes (FDR =  3e−06; Fig.  4C), 
suggesting metabolic reprogramming of the tumor cells in  
this class.

Tumor cells can increase glycolytic activity (24, 25) and 
upregulate the lactate transporter, MCT4, to shuttle excess 
lactate, a product of glycolysis, into the microenvironment 
(26). Therefore, we compared the levels of MCT4 expres-
sion on tumor cells and observed a greater proportion in 
TS:Neutrophil high than other TME classes in LUSC (LME 
P = 0.002; Fig. 4D). MCT4 expression by nontumor epithelial 
cells was negligible (Supplementary Fig.  S7B). Therefore, 
LUSC tumors with TS:Neutrophil high TMEs downregulated 
the OXPHOS transcriptional program, while increasing 
MCT4+ protein expression, likely leading to increased glyco-
lytic activity and lactate accumulation in the TME.

Nutrient-restrictive and hypoxic conditions can drive cancer 
cells to switch to substitute energy sources (27). We, therefore, 
compared the presence of CAIX, a hypoxia-induced enzyme on 
tumor cells, and found that the proportion of CAIX+ tumor 
cells in the TS:Neutrophil high TME class was not significantly 
higher than other TME classes (Supplementary Fig.  S7C). 
However, the proportion of MCT4+ tumor cells strongly cor-
related with the proportion of CAIX+ tumor cells in LUSC in 

Figure 4. Neutrophil infiltration in LUSC is associated with distinct metabolic and immunosuppressive phenotypes. A, Gene Ontology (GO) biologi-
cal processes enriched among upregulated genes in the TS:Neutrophil high TME class (n = 10 cores) compared with other TME classes combined (n = 28 
cores) in LUSC (FDR < 0.01, gene ratio > 0.05). B, GSEA of hallmark gene sets compared between tumor cores from the Tumor/Stroma:Neutrophil high 
TME class and other TME classes combined, using the t-statistic derived from the limma–voom model on TMM-normalized gene expression. Significantly 
enriched pathways were colored by type of pathway (FDR < 0.05). C, Normalized enrichment score derived from single-sample GSEA visualized for 
TS:Neutrophil high and cores from other TME classes. The P value is derived from GSEA of LUSC as shown in A and adjusted for other hallmark pathways 
using the Benjamini–Hochberg method. D, Proportion of tumor cells assigned MCT4+ in TS:Neutrophil high tumor cores compared with tumor cores from 
other TME classes combined in LUSC. E, Spearman correlation coefficient and P value comparing the proportion of MCT4+ and CAIX+ tumor cells in 
TS:Neutrophil high LUSC TMEs. F, Median distance between LUSC tumor cells to their nearest endothelial cell per core in TS:Neutrophil high TME class 
compared with all other TME classes combined. G, Single-channel images and composite image alongside cell type map displaying tumor cells, neutro-
phils (MPO, yellow), endothelial cells (CD31, magenta), and regions of hypoxia (CAIX, cyan) and MCT4 (green) expression. Boxplots show median and lower 
and upper quartile values, and whiskers extend up to 1.5 × IQR above and below the quartiles. P values for D and F were calculated in a linear mixed-
effects model with patient as the random-effect covariate. LUSC, lung squamous cell carcinoma; TS, tumor/stroma; FDR, false discovery rate; TMM, 
trimmed mean of M-values; panCK, pancytokeratin; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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the TS:Neutrophil high TME class (ρ = 0.88, P < 2e−16, Fig. 4E). 
We evaluated the proximity to vasculature as the median dis-
tance between each tumor cell to its nearest endothelial cell 
and found a significantly greater distance in the TS:Neutrophil 
high class compared with other classes in LUSC (Fig. 4F and 
G). The tumor proliferation levels assessed as the proportion 
of Ki-67+ tumor cells were lower in TS:Neutrophil high relative to 
other TME classes in LUSC (Supplementary Fig. S7D). These 
results suggest that the increase in glycolytic activity in this 
TME class is associated with a decrease in oxygen supply in 
tumors at a larger distance to vasculature.

Restricted vascular access consistent with a larger distance 
between tumor and endothelial cells can result in tumor 
necrosis. The presence of necrosis, as evaluated by histo-
pathologic review of paired IMC and H&E images (Methods), 
was frequently detected in TS:Immune low (75% of cores) 
and TS:Neutrophil high (60%) TMEs in LUSC (23%–28% other 
TMEs; Supplementary Fig.  S7E). Notably, the presence of 
necrosis alone was not associated with increased tumor–
endothelial cell distance nor fraction of MCT4+ tumor cells  
(LME n.s.).

The TS:Neutrophil high class in LUAD was also characterized 
by a larger distance of tumor cells from endothelial cells than 
in other TME classes (P =  0.01, LME model; Supplementary 
Fig.  S7F) and a higher frequency of necrosis in 36% of cores 
compared with 4.8% to 7.7% in other TMEs (chi-squared test 
P = 0.01; Supplementary Fig. S7G). As observed for LUSC, gene 
set enrichment analysis (GSEA) of LUAD also showed upregu-
lation of the hallmark gene sets EMT and KRAS signaling, and 
several metabolic processes including OXPHOS were down-
regulated (n = 28 tumors, 49 regions; Supplementary Fig. S7H). 
However, the glycolysis hallmark gene set was depleted, and the 
proportion of MCT4+ and CAIX+ tumor cells were not signifi-
cantly different in the TS:Neutrophil high TME class compared 
with other TME classes in LUAD (Supplementary Fig. S7I–S7J). 
Overall, LUAD tumor cores had a significantly lower propor-
tion of CAIX+ tumor cells compared with LUSC (Supplemen-
tary Fig.  S7K). These results suggest different metabolic and 
hypoxic environmental cues in the TS:Neutrophil high TME class 
between LUAD and LUSC.

In both LUAD and LUSC, the TS:Neutrophil high class had 
sparse TIL infiltration (Supplementary Fig. S5D). Spatial cell-
to-cell interaction analyses revealed an avoiding relationship 
between neutrophils and cytotoxic CD8 T cells in this TME 
class more frequently than in other TME classes in LUAD and 
LUSC. No other significant interactions between neutrophils 

and any of the identified cell subtypes were observed (Sup-
plementary Fig. S7L), suggesting immunosuppression in the 
proximity of neutrophils in both histologic subtypes.

In summary, we identified a distinct TME class defined 
by predominant infiltration of neutrophils, increased dis-
tance from tumor to vasculature, upregulation of EMT, and 
metabolic rewiring of cancer cells in both LUAD and LUSC. 
Although the metabolic cues may differ between LUAD and 
LUSC, TS:Neutrophil high represented an immunosuppressed 
TME with sparse TIL infiltration in both histologic subtypes.

Gain-of-Function Mutations in Phosphoinositide 
3-Kinase (PI3K) Signaling Implicated in Neutrophil 
Recruitment in LUSC Tumors

Cancer cell–intrinsic signaling can regulate tumor metabo-
lism, immunosuppression, and angiogenesis in NSCLC (28, 
29). Here, we set out to dissect genomic aberrations enriched 
in tumors with a TS:Neutrophil high TME that potentially 
enhance fitness, modulate inflammation, or support glyco-
lytic activity. Therefore, we examined whether somatic altera-
tions in components of the transcriptionally upregulated 
pathways, such as KRAS and PKB signaling (Fig. 4A and B; 
Supplementary Fig. S7H), were frequently enriched in tumor 
cores with a TS:Neutrophil high TME.

To systematically examine driver mutations and copy-number 
changes, we expanded our TRACERx 100 cohort to TRACERx 
421 (14). We used pathologist-derived tumor-associated neu-
trophil (TAN) scoring from H&E images of paired regional 
blocks of the study TMAs (region-level TAN score) and tumor-
matched diagnostic blocks (tumor-level TAN score). The TAN 
scoring approach evaluated the TANs in the tumor nest and 
stroma adapting a standardized method used for TIL quantifi-
cation (Fig. 5A; Methods; ref. 30). Tumor cores were stratified 
into TAN-high and TAN-low using the TS:Neutrophil high TME 
as a reference for high TAN scores (Methods). H&E-derived 
TAN scores recapitulated the presence of neutrophils derived 
from paired IMC in LUAD and LUSC (Fig. 5B; Supplementary 
Fig. S8A, Spearman correlation ρ = 0.5–0.6, P < 2.5e−07). The 
probability of detecting a TAN-high TME across all sam-
pled regions was 0.5 in TAN-high tumors (Methods), equal 
to the probability estimated for the TS:Neutrophil high TME 
class. Notably, TAN-high tumor regions were enriched for a 
TAN transcriptional signature (31) and had a higher propor-
tion of IMC-derived PD-L1+ neutrophils and MCT4+ tumor 
cells compared with TAN-low LUSC tumors (Supplementary  
Fig. S8B–S8D).

Figure 5. Neutrophil-rich TMEs are associated with activating mutations in PI3K and tumor-intrinsic CXCL8 upregulation. A, Representative crops 
of tumor-level H&E images with low TAN scores in the tumor nest and stroma (left) and high TAN scores in the tumor nest and stroma (right), inferred 
as the proportion of the neutrophil area in tumor/stroma from the total tumor/stroma tissue area. Scale bar, 50 μm; 400× magnification. B, Neutrophil 
cell density as defined by IMC compared between region-level TAN-low versus TAN-high tumor cores based on H&E scores in LUAD and LUSC. C and 
D, Proportion of tumor cores with (mut) and without (wt) PIK3CA driver mutations compared between TS:Neutrophil high versus other TME classes 
combined (C) and region-level TAN-High versus TAN-Low cores (D) in LUSC. P values were derived from a Chi-square test. E, Neutrophil cell density by 
PIK3CA mutation status, points colored by TME class assignment. F and G, TMM expression values for CXCL8 compared by PIK3CA mutation status 
(F) and between TME classes (G) in LUSC. H, Immunofluorescence images of CXCL8 RNAscope multiplexed with antibody staining of pancytokeratin 
(panCK) or MPO in an LUSC tumor region with a TS:Neutrophil high TME and subclonal PIK3CA mutation, and an LUSC patient with multiple TAN-high 
tumor regions and a clonal PIK3CA mutation. panCK and MPO examples for CRUK0075:R2 illustrate the same region of interest, whereas different 
regions of interest are shown for CRUK0468:R6. Scale bar, 100 μm. P values for B and E were calculated in a linear mixed-effects model with patient as 
the random-effect covariate. P values in F and G were derived from a limma–voom differential expression analysis correcting for multiple regions per 
tumor. ·, P < 0.1; *, P < 0.05; **, P < 0.01; ***, P < 0.001; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TMM, trimmed mean of M-values; 
TS, tumor/stroma; TIL, tumor-infiltrating lymphocyte; MΦ, macrophage; TAN, tumor-associated neutrophils; H&E, hematoxylin and eosin; mt, mutant; 
wt, wild-type.
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Using matched genomic profiles, we assessed whether acti-
vating driver mutations in components of the PKB/PI3K–
AKT signaling pathway were enriched in the TS:Neutrophil high 
TME class of LUSC. We found a higher frequency of gain-of-
function PIK3CA driver mutations within the TS:Neutrophil 
high TME class compared with other TMEs (P  =  0.04, 53% 
vs. 19% cores; Fig.  5C). We further validated this observa-
tion in the extended TRACERx 421 cohort using TAN scores 
(n = 398 cores, 120 LUSC tumors). Driver PIK3CA mutations 
were significantly enriched in TAN-high tumors compared 
with TAN-low tumors (P =  0.03, 25% vs. 5% tumors, tumor 
level) and detected in 32% of TAN-high compared with 7% 
of TAN-low tumor regions (Fig. 5D). Copy-number analysis 
using GISTIC2.0 revealed no evidence of copy-number ampli-
fications and deletions in driver and immune evasion genes 
enriched only in the TAN-high compared with TAN-low 
tumor regions (Supplementary Fig. S8E).

Nearly all PIK3CA mutations were of clonal origin in LUSC 
(n  =  46/53 regions), indicating that these mutations were 
detected in all tumor cores. Tumors with a clonal PIK3CA 
mutation had a twice higher probability of having a TAN-
high TME compared with PIK3CA wild-type tumors (0.47 
vs. 0.25, adjusted for the number of sampled regions). Given 
that tumor cores with a PIK3CA mutation had significantly 
higher neutrophil cell densities than PIK3CA wild-type cores 
in LUSC (LME P = 0.005, Fig. 5E), we examined neutrophil-
attracting chemokines as defined with the GO term neutro-
phil chemotaxis (Methods). We compared their expression 
between tumor cores with a TS:Neutrophil high TME and those 
with other TMEs as well as between PIK3CA mutant and 
PIK3CA wild-type tumor regions in the expanded TRACERx 
421 cohort. The only chemokine unregulated in both com-
parisons was IL-8, encoded by the gene CXCL8 (Supplemen-
tary Fig. S9A). CXCL8 was more highly expressed in PIK3CA 
mutant vs. PIK3CA wild-type tumor cores (P = 0.01, n = 290 
regions, Fig. 5F). Higher expression levels of CXCL8 in PIK3CA 
mutant versus PIK3CA wild-type LUSC was validated in The 
Cancer Genome Atlas (TCGA) data set (n = 464, P = 0.01; Sup-
plementary Fig. S9B). CXCL8 showed the highest expression 
in the TS:Neutrophil high TME compared with other TMEs 
(P = 0.004, 1.4 log fold change; Fig. 5G) and correlated with 
neutrophil cell density (ρ = 0.6, P = 3.5e−05; Supplementary 
Fig. S9C). We performed CXCL8 RNA in situ hybridization to 
determine whether tumor cells expressed the chemokine in 
four PIK3CA mutant cores and two PIK3CA wild-type cores 
with TS:Neutrophil high TMEs or high TAN scores. In addi-
tion to CXCL8 expression by neutrophils, as indicated by 
MPO costaining, CXCL8 expression was detected predomi-
nantly within tumor cells, as indicated by panCK costaining, 
in LUSC cores with TS:Neutrophil high or TAN-high TMEs 
independently of the PIK3CA mutation status (Fig. 5H; Sup-
plementary Fig. S9D). CXCL8 expression correlated positively 
with glycolytic markers in TRACERx 100 and TCGA LUSC 
cohorts (Supplementary Fig. S9E).

Following the observed upregulation of KRAS signaling 
from GSEA, we also assessed whether activating mutations 
in KRAS were enriched in cores with TS:Neutrophil high TMEs. 
KRAS mutations, which were absent in LUSC cores, were 
found in 50% of LUAD cores with this TME class and 41% of 
the TS:TIL+MΦ high class compared with 14% to 18% in other 

classes (n.s., Supplementary Fig.  S9F), suggesting that any 
potential immunomodulatory effects of KRAS driver muta-
tions observed in mouse models in LUAD (32) are not limited 
to the TS:Neutrophil high TME.

In summary, somatic driver mutations in PIK3CA in LUSC 
and transcriptional activation of KRAS signaling in LUAD 
and LUSC were associated with neutrophil infiltration.

TANs Infiltrate Regions with Expanded Tumor 
Subclones and Predict Poor Clinical Outcome 
in NSCLC

We set out to assess the propensity of tumors with dif-
ferent TMEs to evolve, expand, and metastasize. Given the 
protumor features associated with neutrophil-rich TMEs and 
previously reported implications of neutrophils in metastasis 
in animal models (33–35), we investigated whether neutro-
phil infiltration was linked to the risk of disease relapse and 
metastasis in NSCLC. Using clonal analysis of TRACERx 
primary tumor regions and paired metastases, we identified 
the clones that seeded metastases (15). We compared neutro-
phil cell densities using IMC data between primary tumors 
with metastasis-seeding clones detectable at the time of sur-
gery or during follow-up (metastasizing tumors) to tumors 
from patients who remained metastasis-free and recurrence-
free with a minimum of three years of follow-up (discovery 
cohort, n  =  43 LUAD and LUSC patients; Supplementary 
Fig.  S10A). We observed a significant increase in neutro-
phil cell densities in the metastasizing tumors compared 
with tumors from metastasis- and recurrence-free patients, 
in LUAD (P  =  0.03) and LUSC (P  =  0.04 one-tailed test;  
Fig. 6A).

We endeavored to confirm this observation in a separate 
validation cohort within TRACERx using the H&E-derived 
TAN scoring (n  =  332 patients; Supplementary Fig.  S10A; 
Supplementary Table  S3). We hypothesized that primary 
NSCLCs with a neutrophil-rich TME more frequently seeded 
metastases and, thus, had a higher risk of relapse after 
surgical removal of the primary tumor. Univariate disease-
free survival (DFS) analysis showed a significant association 
between high tumor-level TAN scores and poorer DFS in 
NSCLC (P = 1.7e−05), with a median DFS of 21 months for 
high compared with longer than 70 months for low TAN 
score (Fig. 6B). This prognostic association was independent 
of the cutoff used to define TAN scores and was maintained 
for both the tumor-level and region-level TAN scores (Sup-
plementary Fig.  S10B and S10C; Methods). In addition, 
high tumor-level TAN score was also strongly associated 
with shorter DFS in LUAD (HR = 3.4, P = 2e−05) and LUSC 
(HR = 2.13, P = 0.01), separately (Supplementary Fig. S10C).

Given the higher frequency of necrosis in the neutrophil 
infiltrated tumors, which has been previously associated with 
advanced stage and worse prognosis in NSCLC (36), we next 
evaluated whether the TAN association with outcome was 
confounded by previously reported predictors of poor DFS. 
In a multivariable model of DFS using TAN score, necrosis, 
age, sex, adjuvant treatment, pack years, histology subtype, and 
TNM stage, TAN score was an independent prognostic factor 
(P < 0.001), alongside necrosis status (P = 0.048), age (P = 0.027), 
and stage (P  ≤  0.006) in NSCLC (Fig.  6C; Supplementary 
Fig. S10D and S10E).
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Figure 6. Neutrophil infiltration is associated with recent 
subclonal expansion and poorer disease-free survival.  
A, Comparison of neutrophil cell density in primary tumors 
with metastasis-seeding clones detectable at time of 
surgery or during follow-up (metastasizing tumors) to 
tumors from patients who were metastasis-free and 
recurrence-free for more than 3 years of follow-up time 
(control) in LUAD (n = 28) and LUSC (n = 15) within the 
TRACERx discovery cohort. Maximum neutrophil density 
taken for tumors with multiple tumor cores. P values derived 
from one-tailed Wilcoxon test. B, Kaplan–Meier curves for 
DFS according to tumor-level TAN score in the validation 
cohort (n = 332 patients). P value derived from univariate 
Cox model adjusted for histology. C, Multivariable Cox 
proportional hazard regression analysis of DFS using tumor-
level TAN score and tumor-level necrosis evaluation from 
H&E images of diagnostic tumor blocks. D, Recent subclonal 
expansion score, measured as the maximum cancer cell frac-
tion of subclones at the terminus of the phylogenetic tree, 
compared between TAN-high and TAN-low tumor regions in 
LUAD and LUSC patients from the TRACERx 421 cohort. P 
values were derived from a linear mixed effects model with 
patient as random effect. E, Spatial ITH score of cell types 
and communities and ITH probabilities of TME classes in 
multiregion analysis (pan-immune n = 41 tumors, 112 cores). 
ITH score was calculated as the average standard deviation 
of the cell/community density in multiple regions per tumor 
and z-score transformed. ITH score of αSMA+ cells was 
derived from T cells and stroma panel (n = 39 tumors, 105 
cores). ITH probability was calculated as 1 − probability of 
all regions having the same indicated TME class. (continued 
on next page)
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To confirm the prognostic association between the TAN 
scoring approach and DFS, we validated the relationship in a 
second independent cohort using an automated approach for 
granulocyte quantification. We applied the deep-learning model 
PathExplore (37) for cell type and tissue classification on whole-
slide images from TCGA. Similarly to the TAN score, tumors 
were assigned a high score when the granulocyte proportion 
in the tumor nest or stroma was higher than the respective 
tumor nest- or stroma cutoff (Supplementary Fig.  S11A). As 
the high TAN score cutoffs derived from the TRACERx cohort 
were not transferable to the automated scores on the TCGA 
cohort (Methods), the association with DFS was evaluated 

across a range of cutoffs based on the tumor nest and stroma 
proportions. The pattern of high hazard ratios (increased risk 
of recurrence or death) was consistently seen with increasing 
granulocyte proportions in the tumor nest or stroma in mul-
tivariable analyses of DFS using age, sex, adjuvant treatment, 
pack years, histology subtype, and TNM stage (n = 109 patients 
with NSCLC, for which automated scores and information on 
factors used in the multivariable Cox regression model was 
available; Supplementary Fig.  S11B), maintaining a statistical 
significance across all intervals above 3.1% tumor nest propor-
tion and 2.5% stromal proportion (P value for the automated 
score in the multivariable model P < 0.05).
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Figure 6. (Continued) F, Example phylogenetic tree depicting a stage IIIA LUSC case with a clonal PIK3CA mutation, high TAN scores, and recent 
subclonal expansion, including in a region (R5) that seeded a lymph node (LN) metastasis (FLN, FFPE LN). The metastasis-seeding lineage is highlighted in 
orange. Tumor-level TAN scores and regional subclonal expansion (SubExp) scores are reported for primary tumor regions. The reported TAN score rep-
resents the maximum of the tumor nest and stroma scores. Each cluster in the phylogenetic tree is assigned a color that is also represented in the region 
clone maps. The clone maps illustrate the prevalence of each clone within a region. G, IMC images shown for R5 and the LN metastasis. Scale bar, 200 μm. 
H, Summary schematic of the link between tumors with a neutrophil enriched microenvironment with tumor progression. ·, P < 0.1; *, P < 0.05; **, P < 0.01; 
***, P < 0.001; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; ITH, intratumor heterogeneity.
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Finally, given the association of TAN score with poor out-
come, we investigated whether neutrophil infiltrate was associ-
ated with evolutionary patterns previously shown to associate 
with shorter DFS in TRACERx (14). Specifically, we investi-
gated a genomic measure of recent subclonal expansion in 
primary tumors, defined as the size of the largest subclone 
terminal to the phylogenetic tree of a tumor region. TAN-high 
tumor regions had significantly higher subclonal expansion 
scores than TAN-low tumor regions in LUAD and LUSC 
(P  <  0.04; Fig.  6D), suggesting that neutrophil-rich TMEs 
have larger expansions of recent subclones compared with 
other tumor regions and are associated with dynamics of 
tumor evolution implicated in metastasis and poor outcome. 
The presence of PIK3CA mutations was also associated with 
a higher recent subclonal expansion score compared with 
PIK3CA wild-type tumors in LUSC (P = 0.03; Supplementary  
Fig. S11C).

The intratumoral heterogeneity of prognostic factors, 
potential therapeutic targets, or stratification biomarkers 
is of paramount importance for their clinical applicability 
and optimal therapy response. Using deep learning-based 
approaches, a recent LUAD study identified TME features in 
1-mm2 LUAD cores that collectively predict poor prognosis 
(1). The model, however, relied on features that had high 
spatial heterogeneity in NSCLC (Fig.  6E), underscoring the 
importance of accounting for sampling bias in the design of 
clinically actionable assays. Neutrophils, their spatial com-
munity, and TME class had the lowest spatial heterogeneity, 
together with plasma cells, compared with other immune cell 
types and spatial communities (Fig. 6E).

Patient CRUK0468 diagnosed with stage IIIA LUSC, for 
example, harbors a TAN-high tumor with low spatial heteroge-
neity. All of the eight tumor regions sampled from the primary 
tumor had high neutrophil infiltrate with TAN-high score 
and clonal PIK3CA mutation. Seven regions showed a higher 
recent subclonal expansion score than the cohort median, 
including the region that seeded a lymph node metastasis, R5 
(Fig. 6F). The seeding region, R5, and the seeded lymph node 
metastasis shared TME features: high infiltration of neu-
trophils and CAIX+ expression along the tumor nest edges, 
identified with IMC in the primary tumor and the metastasis  
region (Fig. 6G).

Based on these results, we propose LUADs and LUSCs with 
high TAN infiltration harbor recently expanded subclones 
and can be enriched for specific driver mutations acquired 
at the earliest stages of evolution, such as PIK3CA in LUSC 
(Fig.  6H). Tumors with high TAN infiltration had low spa-
tial heterogeneity and a high risk of metastasis or relapse in 
NSCLC independent of stage, necrosis, and other clinical  
variables.

DISCUSSION
In this integrative study of the TME in NSCLC, we used 

high-dimensional tissue imaging and paired sequencing to 
reveal cancer-intrinsic and -extrinsic features underlying 
TME composition and spatial organization. We identified 
neoantigen-directed immune dynamics, fibroblast organiza-
tion, driver mutations, and immune phenotypes as poten-
tial determinants of TME architecture. These TME features, 

common across NSCLC or specific to histologic subtypes, 
reveal potential therapeutic vulnerabilities and challenges. We 
present a ranking of the spatial heterogeneity of these TME 
features, providing a reference for studies seeking to identify 
low spatial heterogeneity targets. The unique structure of the 
TRACERx study and its depth of clinical and genomic infor-
mation enabled us to link the TME to subclonal expansion, 
the seeding of metastases, and clinical outcome.

We defined four distinct, pan-histology TME classes in early-
stage treatment-naïve NSCLC, building on earlier classifica-
tions based on the spatial distribution of TILs alone (17) 
and compositional clustering from gene expression (38–40). 
We described 10 multicellular communities present across 
histologic subtypes of NSCLC, confirming those defined in a 
recent IMC study of LUAD, despite differences in the resolved 
cell subtypes and the histologic composition of each data 
set (1). TME classes captured intratumoral immune infiltra-
tion or exclusion from the tumor nest, whereas spatial com-
munities revealed multicellular clusters that may represent  
functional niches.

One of the unifying features of LUAD and LUSC tumor 
cores was the enhanced spatial interpositioning of peritu-
moral αSMA+ fibroblasts between CD8 T cells and tumor cells 
in TS:Immune low TMEs. We propose that stromal barriers 
represent a potential physical barrier to tumor–T-cell engage-
ment and may affect T-cell entry into tumors. These results 
support previous literature implicating CAFs in immuno-
suppression in different cancer types through both physical 
exclusion of immune cells from tumor nests and secretion of 
cytokines (20, 41, 42). However, the αSMA+ CAF barrier was 
insufficient to explain the immune-excluded TMEs captured 
in this study. In line with this finding, Li and colleagues 
found, using in silico modeling, that chemorepellent expres-
sion rather than fibrotic barriers best described short-range 
T-cell exclusion from tumor islets in triple-negative breast 
cancer (43). Future work should seek to improve segmenta-
tion and resolution of CAF subtypes within and beyond 
αSMA+ fibroblasts, as different CAF subtypes have recently 
been shown to have different prognostic power in treatment-
naïve primary NSCLC (8) and to be differentially localized in 
the NSCLC TME (20).

Clonal neoantigen burden has been associated with 
improved responses to CPI (44, 45), warranting exploration 
of TME structures that may form in response to a high 
burden of clonal neoantigens. Here, we delineate spatial 
multicellular niches that increase in prevalence with clonal 
neoantigen burden and demonstrate that their composition 
varies depending on the clonality of expressed neoantigens, 
the LOH of the presenting HLA allele and the histologic sub-
type. In LUAD, a multicellular niche of macrophages and T 
cells may form in response to a high clonal neoantigen burden 
and influence the selection of cancer cell–intrinsic disruptions 
to MHC class I antigen presentation. Although this com-
munity harbored cytotoxic and resident memory CD8 T-cell 
populations, interactions between macrophages and CD8 T 
cells can inhibit T-cell motility and promote exhaustion (46, 
47). Furthermore, exposure to clonal neoantigens has been 
associated with increased T-cell dysfunction in this data set 
(16). TS:TIL+MΦ high LUAD TMEs harbored enrichment of 
this macrophage and T-cell community, which adds spatial 
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resolution to previous associations between inflamed tumor 
regions and intrinsic immune escape (10). This underscores 
the need to characterize macrophage subsets in the proximity 
of T cells and how these can be targeted therapeutically to sup-
port a tumor-specific effector response directed against clonal 
neoantigens (48).

Plasma cells and their corresponding community were cor-
related with not only clonal but also total neoantigen burden 
in LUSC, as well as high TMB (≥10 mutations/Mb) in both 
LUAD and LUSC. These findings link several features associ-
ated with improved CPI response (44, 45, 49–52). Few papers 
have previously identified links between these cancer cell–
intrinsic and –extrinsic features, reporting no association in 
studies of LUAD alone (53–55). The plasma cell community 
identified in TRACERx may have formed independently of 
tertiary lymphoid structures (TLS), as we did not identify TLS 
in the regional blocks from which TMA cores were derived 
(Methods). This indicates that the tumor-infiltrating plasma 
cells may have derived from the tumor-draining lymph node 
or that TLS were not captured in the tissue analyzed. These 
associations underscore the importance of dissecting anti-
body responses to neoantigens as well as deregulated self-
antigens (53) and their impact on CPI responses.

This work further revealed that high infiltration of neutro-
phils was associated with metastasizing tumors and shorter 
DFS in NSCLC. Although the peripheral neutrophil-to-lym-
phocyte ratio has been linked to adverse outcomes in NSCLC 
(56), reports on the prognostic impact of local, intratumoral 
neutrophils have been conflicting. Among immune cells, neu-
trophil transcriptional signatures have been shown as the 
strongest predictor of poor prognosis in NSCLC (22). However, 
a variable association of intratumoral neutrophils with clini-
cal outcomes has been reported depending on the histologic 
subtype (57), neutrophil location (58), and their phenotype 
(1). Here, we developed and validated a TAN scoring approach 
from routinely collected H&Es that represent TS:Neutrophil 
high TMEs by equally weighting the proportion of neutro-
phils in the tumor nest or stroma. In both LUAD and LUSC, 
this clinically accessible TAN score is a robust prognostic fac-
tor independent of stage and other clinical variables in two  
independent cohorts.

TAN-high tumors also displayed low spatial heterogene-
ity, a feature that is essential for overcoming sampling bias. 
We observed high spatial heterogeneity of TME features 
previously used to predict prognosis in LUAD with a deep-
learning approach, which failed to maintain the level of 
prediction accuracy when the number of lineage markers 
was reduced (1). Spatial heterogeneity of cell types used in 
unsupervised deep-learning models may represent an obsta-
cle to the translation of deep-learning approaches to clini-
cally accessible assays. The low spatial heterogeneity observed 
for neutrophils and the spatial structures they formed 
support the translational potential of the proposed TAN  
scoring approach.

The potential mechanisms behind the prognostic asso-
ciation of TANs remain to be defined. Mounting evidence 
depicts neutrophils as highly plastic and adaptable to the 
tissue context (59). Therefore, studying the spatial setting of 
neutrophils is fundamental to determining the environmental 

cues that modulate antitumor and protumor phenotypes. 
Neutrophils can exert protumorigenic features through pro-
motion of extracellular matrix degradation, EMT, angiogen-
esis, immunosuppression, and metastasis (33, 60, 61), all of 
which were associated with the TS:Neutrophil high TME class 
in at least one of LUAD or LUSC. Upregulation of EMT tran-
scriptional programs in tumor cells neighboring neutrophil 
clusters was also observed in a recent single-cell transcriptom-
ics study (62). In addition, tumor cores with TS:Neutrophil 
high TMEs in LUAD and LUSC had altered metabolic cancer 
cell states. However, these metabolic states and the hypoxic 
conditions in this class differed between LUAD and LUSC, in 
line with previous reports on metabolic differences between 
the two histologic subtypes (63). The upregulation of MCT4 
and CAIX expression in LUSC suggests that hypoxia or lactate 
efflux may contribute to the immunosuppressed phenotype 
in this class, for example, through the promotion of PD-L1 
expression and T-cell anergy in settings of inflammation 
(63, 64), consistent with the increased frequency of PD-L1+  
neutrophils.

In this study, we showed that TANs were enriched in tumor 
regions with recent expansions of tumor subclones, revealing 
a link between the TME and the evolutionary history of the 
tumor in LUAD and LUSC. This association was independent 
of the presence of necrotic areas and proportions of MCT4+ 
and CAIX+ tumor cells in LUAD and LUSC, implicating neu-
trophils as indicators or promoters of recurrence and metas-
tasis (64). Although neutrophils have been described as the 
mediators of indirect subclonal cooperation but not expan-
sion that promotes metastasis in a breast cancer model (33), 
the results of this study suggest tumor evolution dynamics 
are linked to metastasis in neutrophil enriched tumors. As a 
result of, for example, tumor subclonal expansion outpacing 
its vascular supply, metabolic stress can trigger necrosis and 
neutrophil recruitment, which can be further amplified in a 
positive feedback loop. Within this spatial context, neutro-
phils acquired a TAN phenotype. Therefore, neutrophils dis-
tinguish a unique microenvironment associated with disease 
progression, which could not be explained by, for example, 
necrosis, hypoxia, or glycolysis alone in LUAD and LUSC. 
Based on these findings, we reason that TAN-High LUADs 
and LUSCs likely orchestrate a protumor TME to compen-
sate for restrictive vascular access and metabolic dysregulation 
and polarize neutrophils to a proangiogenic phenotype that 
results in immunosuppression, a higher risk of metastasis, and  
subclonal expansions.

Upregulation of oncogenic signaling pathways was also 
associated with the neutrophil enriched TME, such as KRAS 
signaling in LUAD and LUSC. We previously showed, in a 
LUAD mouse model, that tumors with a KRASG12C muta-
tion had neutrophil aggregates and excluded TILs, whereas 
treatment with the KRAS inhibitor MRTX1257 resulted 
in reduced neutrophil and increased T-cell infiltrates (65). 
However, KRAS driver mutations were not only enriched in 
TS:Neutrophil high TMEs. In LUSC, we observed that TANs 
were associated with PIK3CA driver mutations that may con-
tribute to or support immune escape. LUSCs with PIK3CA 
driver mutations more frequently underwent recent sub-
clonal expansions. In addition, tumor cells with PIK3CA 
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mutations upregulated CXCL8/IL-8, in accordance with pre-
vious work linking PI3K signaling with CXCL8 expression in 
lung tumor and epithelial cells (66, 67). PIK3CA mutations 
have been linked to the regulation of glutamine metabolism 
(68) and nutrient consumption in proliferating tumors (69), 
in addition to proinflammatory cytokine expression (70). 
However, the proportion of Ki-67+ or MCT4+ tumor cells was 
not significantly different between PIK3CA mutant versus 
PIK3CA wild-type regions. Based on this, and their predomi-
nantly clonal status, we propose that these somatic altera-
tions likely predispose the tumor to a neutrophil-rich TME 
and reveal a potential direct or indirect role for PIK3CA muta-
tions in promoting tumor–neutrophil cross-talk in LUSC.

Collectively, these findings have therapeutic implications 
in early-stage resectable NSCLC, a population for which 
neoadjuvant immunotherapy plus chemotherapy is now a 
standard of care. Pathologic complete responses, which are 
associated with increased overall survival, following neoad-
juvant treatment, range between 18% and 25% (71–74), high-
lighting the need to better characterize the TME and identify 
strategies to improve patient outcomes. Both TS:TIL+MΦ 
high and T:TIL+MΦ excluded TMEs were subject to a high 
degree of ITH that may affect checkpoint inhibitor (CPI) 
efficacy. T-cell–enriched spatial niches were predominantly 
found in the TS:TIL+MΦ high TME in LUAD and LUSC. 
These were, however, subject to selective pressures on neoan-
tigen presentation through HLA LOH in LUAD and LUSC. 
These findings build upon previous work in NSCLC, which 
demonstrated an improved association of TMB with CPI 
responses after accounting for HLA LOH (75) and further 
highlight the importance of considering neoantigen clonal-
ity and the histologic subtype when designing neoantigen-
mediated therapeutic strategies. In LUSC, T:TIL+MΦ excluded 
TMEs were associated with tumor cell PD-L1 expression and 
the clonal neoantigen-associated community of plasma and B 
cells. These results underscore the importance of investigat-
ing the predictive value of this low heterogeneity community 
of plasma cells and B cells in the context of CPI in LUSC and 
how spatial organization changes over time.

Although TS:Immune low and TS:Neutrophil high TMEs were 
subject to lower ITH, they may be less responsive to CPI. Dense, 
fibroblast networks may inherently restrict T-cell access and 
consequently CPI therapy response. Combinatorial targeting of 
CAFs and checkpoint molecules has seen success in preclinical 
models (76) and may prove beneficial in tumors with immune 
low TMEs for therapies designed with the increasing knowl-
edge of CAF phenotypes and their functional heterogeneity 
(77). Finally, in neutrophil-enriched TMEs, CPI response may 
be limited due to increased levels of IL-8 expression, which has 
been linked to reduced benefit from CPI therapy based on both 
tumor and circulating IL-8 levels (78, 79). Nevertheless, clinical 
trials targeting neutrophils with anti-CXCR1/2 therapies and 
combinatorial CPI and anti-IL-8 are ongoing (NCT02536469; 
refs. 35, 80) and may provide an advantage in CPI treatment of 
neutrophil-high tumors. Of note, the patients in this study did 
not receive neoadjuvant or adjuvant CPI therapy. Future stud-
ies should seek to evaluate larger cohorts for both prognostic 
factors and predictors of CPI response in neoadjuvant and 
adjuvant settings and metastatic disease.

In conclusion, this study provides novel insights into the 
spatial organization of the early-stage lung cancer TME in 
the context of tumor immunogenicity, tumor heterogeneity, 
and cancer evolution. It highlights the importance of pair-
ing the tumor evolutionary history with its spatially resolved 
TME to draw mechanistic hypotheses on tumor progres-
sion and metastasis with implications for patient outcome  
and treatment.

METHODS
Clinical Samples

The data from this study are part of the first 421 patients prospec-
tively analyzed from the TRACERx cohort (https://clinicaltrials.gov/
ct2/show/NCT01888601). The TRACERx study was approved by an 
independent research ethics committee (REC), the National Research 
Ethics Service (NRES) Committee London–Camden and Islington, 
with the sponsor’s approval of the study by University College Lon-
don (UCL) with the following details: REC reference 13/LO/1546, 
protocol number UCL/12/0279, IRAS project ID: 138871. Written 
informed consent for entry into the TRACERx study was mandatory 
and obtained from every patient. Methods for data obtention have 
been previously described (12, 14). Snap-frozen multiregion sampled 
tumor and adjacent normal tissues distant from the tumor within 
the resection specimen were processed to FFPE blocks after first tak-
ing sufficient material for DNA and RNA-seq. A single representative 
core was taken from each regional FFPE block (1.5 mm diameter) 
and arranged into TMAs representing 81 patients across eight blocks 
(Fig.  1A; Supplementary Fig.  S1A). Control FFPE tissues for panel 
development were obtained from UCL/UCLH Biobank for Studying 
Health and Disease Renewal 2020 (ethics approval 20/YH/0088) and 
the PEACE study (ethics approval 13/LO/0972). Additionally, two 
2-mm diameter cores were sampled from a tonsil FFPE block and 
assembled into a miniature TMA, which served as an internal stain-
ing control in this study.

Clinical Data
The clinical data from this study have been previously described 

(12, 14). Growth patterns associated with regional LUAD tumor cores 
represent the predominant pattern in the corresponding regional 
block from which the core was derived (81). Cribriform, micropa
pillary, and solid patterns were grouped as high grade; lepidic and 
papillary as mid-grade; and acinar as low grade.

IMC Panel Development
The pan-immune and T cells and stroma IMC panels were devel-

oped by testing antibody performance by immunofluorescence (IF) 
and IMC across NSCLC, normal lung, immune-rich tonsil, and 
immune-low cardiac and brain tissues (Supplementary Fig.  S12A). 
H&E slides from FFPE tissue blocks used for panel development were 
assessed by a pathologist to identify cell types and features of interest 
to support staining evaluation and guide IMC scanning. Unconju-
gated antibodies were first evaluated using IF and then reevaluated 
following metal conjugation using IMC (Supplementary Fig. S12B). 
Metal-conjugated antibodies were purchased from Fluidigm, now 
Standard BioTools, and carrier-free antibodies (various suppliers) 
were conjugated to metals in-house using the Maxpar X8 Multimetal 
Labeling Kit (Standard BioTools). Antibody staining was evaluated 
for expected staining specificity, including costaining (e.g., CD20, 
CD79a), mutual exclusivity (e.g., CD4, CD8a), and signal-to-noise 
ratio, and was supported by pathologist evaluation (Supplementary 
Fig. S12C). The dilutions of all antibodies were derived by assessing a 
dilution series using IMC, with the experimental panel information 
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applied to the TRACERx 100 cohort summarized in Supplementary 
Table  S1. Examples of IMC staining across NSCLC, tonsil, car-
diac, and brain tissue for the pan-immune and T cells and stroma 
panels are shown in Supplementary Fig.  S12C. The results of this 
study focus on 38 antibody targets; some antibody results were not 
included as they were either not relevant to the biological conclusions 
of this study or due to technical performance.

Tissue Processing for Immunofluorescence
FFPE tissue blocks were cut to 5 μm thickness. Sections were 

baked at 60°C in preparation for staining. Sections were dewaxed in 
xylene (2 × 5 minutes) and rehydrated in a graded series of alcohol 
(ethanol:deionized water 100:0, 100:0, 70:30, 0:100, 0:100, 1 minute 
each). Heat-mediated antigen retrieval was conducted in Tris-EDTA 
buffer at pH 9 for 30 minutes in a 900 W microwave. Tissue sections 
were slowly cooled in a room temperature water bath to prevent 
buffer crystallization. Sections were then washed in 1× PBS, and the 
tissue area was circled with a hydrophobic PAP pen to create a reagent 
barrier. Samples were dipped briefly in PBS-Tween20 (0.2%), before 
blocking with 1% BSA/PBS for 30 minutes at room temperature. 
Excess blocking solution was flicked off and the primary antibody/
antibodies (diluted in 1% BSA/PBS) was applied and left overnight at 
4°C. The next day, sections were washed three times in PBS (1 minute 
each), dipped briefly in PBS-Tween20, and the secondary antibody/
antibodies was applied and left for 45 minutes at room temperature. 
Sections were washed three times in PBS (1 minute each), dipped 
briefly in PBS-Tween20, and counterstained with DAPI (1:5,000 in 
PBS) for 30 minutes at room temperature. Samples were washed 
three times in PBS (1 minute each) and immersed in 0.1% Sudan 
Black for 20 minutes at room temperature. Samples were thoroughly 
rinsed in cold running tap water until clear and rinsed twice in dis-
tilled water. Coverslips were mounted after adding 2 to 3 drops of 
VectaMount AQ aqueous mounting medium on the slides. Slides 
were stored protected from light until they were imaged using the 
Zeiss Axio Imager M1 system at 20x magnification.

Tissue Processing for IMC
Several serial sections of each TRACERx TMA were cut to 5 μm 

thickness, and a 5 μm section from the tonsil TMA was floated onto 
the bottom of TMA002-TMA007 to serve as an internal staining 
control. Separate sections of tonsil were used as staining controls 
for TMA_REC and TMA001. All sections were floated onto standard 
positively charged slides for immunostaining. Two serial sections 
were selected and baked at 60°C in preparation for antibody stain-
ing; an additional serial section was subjected to H&E staining. Sec-
tions were processed as described for IF. The two metal-conjugated 
antibody cocktails (diluted in 1% BSA/PBS) were applied to serial 
sections and left overnight at 4°C. The next day, sections were washed 
three times in PBS (1 minute each), dipped briefly in PBS-Tween20, 
and counterstained with iridium (1:500 in PBS, Fluidigm) for 30 
minutes at room temperature. Samples were washed three times in 
PBS (1 minute each) and counterstained with ruthenium (1:1,000) 
for 5 minutes on ice in a fumehood (82). Samples were washed 
three times in milliQ water (1 minute each) and left to air dry. Con-
trol tissues were processed following the same procedure during 
panel development.

TRACERx IMC Data Acquisition
Data were acquired using a Hyperion Imaging System using com-

mercial Standard Biotools IMC software (version 6.7). Regions of 
interest (ROI) selection was guided by pathologist review of a serial 
H&E section and were designed to capture each full TRACERx TMA 
core (1.5 mm diameter) or a 1.0 mm diameter tonsil ROI (Supple-
mentary Fig. S12A). A laser ablated tissue ROIs in a rasterized pattern 
at 1 μm resolution and 200 Hz. The instrument was tuned between 

each run using a 3-Element Full Coverage Tuning Slide (Fluidigm, 
PN 201088).

Spillover Compensation
To account for isotope signal spillover arising due to isotopic 

impurities, oxidation, and instrument properties (abundance sensi-
tivity), we adapted the Chevrier and colleagues spillover compensa-
tion approach (83) for our two antibody panels. Briefly, data were 
generated using a slide spotted with lot-specific metal-conjugated 
antibodies. Superfrost Plus histology slides (Thermo Fisher) were 
heated on a heat block and coated with a 2% agarose film, ensuring 
an even spread and thin layer (UltraPure Agarose, Thermo Fisher). 
The slides were then left to dry until the agarose fully solidified. 
Metal-conjugated antibodies were mixed 1:1 with Trypan blue and 
spotted on the slide serially, ensuring no merging of spots into each 
other. Once the spots had dried, an ROI was chosen for each sepa-
rate spot on the Hyperion (Fluidigm), corresponding to one metal-
conjugated antibody. Each ROI was 10 pixels high by 200 pixels 
wide and was ablated at a laser power 2 units higher than the tuning  
laser power.

From this experimental spillover data, we calculated compensation 
matrices using the scripts from Chevrier and colleagues (83), with 
minor adaptations made to the code. To address observed median 
pixel-level ion counts that were lower than a threshold required to 
achieve an accurate readout of metal isotope impurities (thresh-
old = 250 counts), for each metal–antibody conjugate ROI in turn, 
we implemented an adaptive binning approach in which pixel count 
data are automatically and progressively aggregated over adjacent 
pixels until the count threshold is reached, having also first restricted 
analysis to the 50% of pixels with the highest ion counts within the 
spot (Code and Data Availability). Experimental spillover matrices 
from the pan-immune panel and the T cells and stroma panel were 
highly similar to the matrix reported by Chevrier and colleagues and 
channel spillover ranged from 0 to 4.1% (Supplementary Fig.  S13A 
and S13B).

Cell Segmentation
To segment nuclei, we trained a UNet++ deep-learning model on a 

large manually labeled data set developed in-house (n = 116 images, 
42,000 nuclei; see Data availability) to predict three semantic features 
of nuclei from ground truth data: nucleus center of mass, all nuclear 
material, and nuclear boundaries, which we then combined via a 
marker controlled watershed procedure into nucleus label masks. 
These nuclear masks were then fed into a multiplexed imaging–spe-
cific whole-cell segmentation procedure, which uses the many inde-
pendent cell marker channels available in IMC to produce final cell 
masks (Supplementary Fig. S14A and S14B).

In brief, we segmented whole cells by first generating a series of 
independent cell masks, one for each of a set of user-defined cell 
lineage markers. To achieve this, deep-learning nuclei were associated 
with each lineage marker in turn, using a minimum overlap criterion 
applied between the nuclei and a lineage marker mask created by 
Otsu-thresholding a preprocessed lineage marker image. Preprocess-
ing steps for lineage marker channels were hot pixel removal and 
median filtering (window size  =  3 px). Nuclei associated with an 
Otsu-thresholded lineage mask were then used as the seeds for line-
age marker-specific cell label generation using propagation-based 
secondary object identification onto the relevant minimally preproc-
essed lineage marker image. This step yielded a set of instance-level 
lineage marker cell labels which were then combined into a consensus 
set of whole-cell labels using a serial masking approach. In this step, 
only pixels with consensus between different lineage marker channels 
were retained in the same single-cell object, the aim of which was to 
minimize segmentation artifacts where mutually exclusive markers 
are found in the same cell.
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We observed extensive nonnucleated and elongated αSMA content 
in our T cells and stroma panel, putatively fibroblasts, and to account 
for this in our segmentation, we implemented an additional step 
to identify these αSMA+ stromal cells without an in-plane nucleus 
for this panel only. To do this, we performed primary object iden-
tification directly on the minimally preprocessed αSMA channel, 
following qualitative optimization of thresholding parameters on a 
representative subset of cores. We filtered nonnucleated cells identi-
fied with this method to ensure overlap with nucleated cell objects 
was minimal (less than ⅓ of the area of any nonnucleated cell) and 
that each identified nonnucleated cell had an area of at least 20 pix-
els following masking by the nucleated cell mask. These steps were 
implemented to reduce the likelihood of double counting cells and 
of assignment of cell debris or artifacts to cell area. The nonnucle-
ated αSMA identification step contributed a median of 560 cells per 
tumor core (median 5.6% of total cells/core).

The whole-cell segmentation procedure was implemented using 
CellProfiler v3.1.9 (84). Single-cell measurements of all IMC marker  
mean intensities were input into the TYPEx multiplexed cell pheno- 
typing module.

Cell Phenotyping
Cell subtypes were identified and quantified in three steps: itera-

tive cell stratification, statistical comparison of marker intensities, 
and cell subtype assignment. The cells were stratified into groups 
with similar marker intensities as follows: (i) cells were assigned to 
the most likely major cell lineage using CellAssign (85) accounting 
for TMA ID as a potential batch effect; (ii) low and high confidence 
assignments were identified as those that changed label by perturb-
ing the input to the CellAssign model and excluding one cell lineage. 
Myeloid cells–other (CD11b) were excluded for the pan-immune 
panel and Vim+ cells (Vimentin) for the T cells and stroma panel; 
and (iii) clustering with FastPG (biorxiv 2020.06.19.159749v2) was 
performed within a major cell lineage and confidence group, where 
the parameter k was set to 30, and no transformation was applied to 
the raw mean pixel intensities per cell prior to clustering. The clus-
ters were compared by the pixel intensities of all markers of interest 
in the panel, and the probability distribution for a cluster to have a 
higher intensity than other clusters was determined. If the probabil-
ity distribution was higher than the background distribution of all 
clusters, the marker was considered positive. This separation ensured 
that rare or unexpected T-cell populations such as CD3−CD8a+, 
CD3−CD4+CD8a+, CD3+CD4+CD8a+ were minimized relative to the 
common T-cell populations, CD3+CD4+ and CD3+CD8a+. Cell sub-
types were assigned automatically based on the combination of 
positive markers, given the cell phenotype definitions in Fig. 1E; Sup-
plementary Fig. S2B, and Supplementary Fig. S3A.

The major cell lineage markers used to build the CellAssign 
model for the pan-immune panel were endothelial cells (CD31), 
epithelial cells (pancytokeratin/panCK), CD4 T cells (CD45, CD3, 
CD4), CD8 T cells (CD45, CD3, CD8a), T cells–other (CD45, CD3), 
B cells (CD45, CD79a, CD20), monocytes (CD45, CD11b, CD14), 
macrophages (CD45, CD11b, CD14, CD68, CD206, CD163), myeloid 
cells–other (CD45, CD11b), mDCs (CD45, CLEC9a), and leukocytes–
other (CD45). For the T cells and stroma panel, the following major 
cell lineages were defined: Vim+  cells (Vimentin), endothelial cells 
(Vimentin, CD31), epithelial cells (panCK), aSMA+  cells (Vimentin, 
aSMA), CD4 T cells (CD45, CD3, CD4), CD8 T cells (CD45, CD3, 
CD8a), T cells–other (CD45, CD3), leukocytes–other (CD45).

To examine potential batch effects arising from staining multi-
ple slides, we compared the raw intensities across tumor cores for 
all TMAs for both the pan-immune and T cells and stroma panels 
(Supplementary Fig.  S15A and s15B). We did not observe batch 
effects in this analysis nor in UMAP representations when data were 
grouped by stained TMA section (Supplementary Fig.  S15C and 
S15D). In addition, we compared the median marker intensities 

across all the cells per image between the two antibody panels (Sup-
plementary Fig.  S16A and S16B). Immune, endothelial, epithelial, 
and total cell densities were highly correlated between the two 
antibody panels, with Spearman correlation coefficients of 0.72 for 
total cells, 0.9 for total T cells, 0.85 for epithelial cells, and 0.82 for  
endothelial cells.

Cell Subtype Definitions
The following cell type definitions were applied to define cell subtypes. 

Macrophage subtypes were defined as follows: CD163+CD206+ mac-
rophages (CD68+CD206+CD163+) and CD163− macrophages (CD68+ 
CD206+/− alone). CD163+CD206+ macrophages that were located 
within pathologist-annotated masks of alveolar macrophages were 
classified as alveolar macrophages (Supplementary Fig. S2C).

Neutrophils were defined as CD11b+MPO+ cells negative for other 
cell subtype-specific markers, such as CD14 (monocytes) and CD68/
CD163/CD206 (macrophages). Additional cell subtypes were defined 
as naïve T cells (CD45RA+), cytotoxic T cells (GZMB+), tissue-resident 
memory T cells (CD103+), exhausted terminally differentiated T cells 
(CD57+CD39+CD103+/−), regulatory T cells (Treg; FOXP3+), central 
memory T cells (Tcm; CD27+/−CCR7+), effector memory T cells (Tem; 
CD27+CCR7−), CD57+ T cells (CD57+), plasma cells (CD79a+CD38+), 
gamma-delta T cells (Tgd; CD3+TCRd+), B cells (CD79a+CD20+), B 
cell lineage–other (CD79a+CD20−CD38−), and a myeloid cells–other 
subtype (CD11b+MPO−CD14−CD68−).

αSMA+ cells with cell centers falling within large vessel mask areas, 
as annotated during pathology review, were assigned as perivascular 
αSMA+ cells. Remaining αSMA+ cells in images were assigned as 
αSMA+ fibroblasts (Supplementary Fig. S2C).

A proportion of unassigned cells in the pan-immune data set are 
likely fibroblasts or other stromal cells, for which this IMC panel did 
not include markers specific for these cell types. A proportion of Vim+ 
cells in the T cells and stroma panel data is attributed to the myeloid 
lineage, which was not readily identified in this panel.

In all analyses using the proportion of tumor cells, we have quan-
tified the proportion of positive tumor cells out of all tumor cells, 
defined as the epithelial cells within pathology expert-annotated 
tumor areas (Supplementary Fig. S2C).

Tissue Segmentation of Tumor Nest and Stroma
A three-class random forest classifier was trained to segment back-

ground, tumor/epithelium, and stroma tissue regions on composite 
images from NSCLC tumor, tumor-adjacent lung tissue, and lymph 
nodes using Ilastik (86). The composite image was generated using 
DNA intercalators and markers with tissue-specific expression for the 
epithelium (pancytokeratin) and stroma (immune-specific biomark-
ers, αSMA, CD31). When available, vimentin (T cells and stroma 
panel), collagen1 (T cells and stroma panel), and panactin (pan-
immune panel) were also considered in areas with mutual exclusivity 
with the epithelial cell markers. Of note, the tissue area that was not 
stained by any of the markers in the antibody panel, such as air space, 
was detected as background. The performance of this classifier was 
validated through pathology review of paired H&E images.

To account for differences in the imaged tissue area, we used cell 
density, i.e., the cell count normalized by the imaged tissue area. The 
imaged tissue area was calculated as the sum of the areas of the tissue 
compartments, TS, derived from tissue segmentation. Median cell 
densities are summarized in Supplementary Table S4.

Pathology Review and Feature Mask Generation
For each imaged ROI, a serial H&E was reviewed by an expert 

pathologist to confirm the presence or absence of invasive tumor 
tissue and to annotate tumor and nontumor epithelium, airways, 
necrosis, large vessels, and alveolar macrophages (Supplemen-
tary Fig.  S17). Annotations were made using NDP.view2 software 
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(version 2.7) on a pseudo-H&E generated directly from the ruthenium 
and iridium channels of our IMC images. Masks for each labeled fea-
ture were created using Groovy scripting in QuPath and aligned with  
study outputs.

H&E images from the regional FFPE tissue block from which 
TMA cores were derived were assessed for the presence of TLS. TLS 
were defined as lymphoid aggregates with the presence of segregated 
T-cell and B cell areas, as well as evidence of an ongoing GC reaction, 
based on the distinction of dark and light zones in GCs. There was 
no evidence for TLS associated with the tumor regions assessed by 
IMC in this study.

Identification of Spatial Cellular Communities
The community identification method (87) was applied to 139 

tumor cores that were imaged with the pan-immune panel to iden-
tify groups of cells that commonly localized near one another. Cell 
subtypes included in the analysis had a minimum average of 10 cells 
per core in all tumor cores. Unassigned and ambiguous cells were 
excluded from community analysis. A window was defined around 
every cell in an image and its 10 nearest neighboring cells including 
the center cell. These windows were clustered by their composition 
with respect to the 18 cell types (with at least 10 cells on average per 
image) using MiniBatchKMeans and k =  10. To identify cell types 
enriched in a community, we calculated if the density of a cell type 
was significantly higher in the community of interest compared 
with all other communities using an LME model with patient as a 
random effect and ANOVA test. Communities were then assigned 
representative names based on the enriched cell types within them 
(Supplementary Fig.  S3F). The community identities were mapped 
onto segmented cells and visualized using Cytomapper (Supple-
mentary Fig. S3G; ref. 88), which were then validated by pathologist 
assessment of serial H&E-stained tissue sections.

To check that the communities we detected in the TME were 
robust, we performed a series of tests to validate our results. To find 
the optimal k number of communities, we varied the number of com-
munities and measured the stability of constituent cell types within 
them. For each window size, we tested k = 1 to 20 communities and 
calculated the distortion score, representing the sum of squared 
distances from each point to its assigned center. Using the elbow 
locator, we found that the optimal number of points that maximized 
the decrease in distortion was k = 10 communities (Supplementary 
Fig.  S18A). We investigated the differences in output by testing 
window sizes of n = 2, 5, 10, 15, 20 nearest neighbors. We observed 
that the composition of the resultant communities was largely 
unchanged, in that they were enriched for similar cell types (results 
not shown). Robustness of clustering was tested by subsampling 
one third of the cells three times and comparing the proportion of 
cells assigned to the same community with each iteration of clus-
tering, resulting in a median concordance of 80% (Supplementary  
Fig. S18B).

All 10 communities were detected across NSCLC histologic sub-
types, with no statistical enrichment in LUAD, LUSC, or NSCLC-
Other (Supplementary Fig. S18C).

Spatial Clustering
We performed spatial clustering of tumor cells in pathologist-

annotated tumor areas as fiducial structures for spatial analysis (Sup-
plementary Fig. S2D). Spatial clustering of cell coordinate data were 
performed using the DBSCAN algorithm from the Python library 
scikit-learn. The eps parameter of the DBSCAN algorithm was set to 
25, resulting in reasonable cell clusters by visual assessment. We used 
a minimum cluster size of 3 cells for spatial analysis. We used the 
Python packages Alphashape and Shapely to determine the bounda-
ries of all spatial clusters and whether any cell was located within a 
given spatial cluster.

Barrier Score Definition
αSMA+ fibroblast barrier scores were adapted from the method of 

Failmezger and colleagues (89) and calculated as follows. First, a near-
est neighbor graph of cell locations was constructed by connecting 
each cell to its five nearest neighbors. To calculate the αSMA+ fibroblast 
barrier for CD8 T cells with respect to tumor cells, we used the breadth-
first search shortest paths algorithm from the Python cuGraph library 
to find the shortest paths from each CD8 T-cell vertex in the network to 
all tumor cell vertices. αSMA+ fibroblasts were then enumerated along 
each path. For originating CD8 T cells which had multiple tumor cells 
at the same distance (e.g., two tumor cells each at a five-hop distance 
from the CD8 T cells), the score was defined as the average number of 
αSMA+ cells across all paths. To restrict the scoring to αSMA+ cells spe-
cifically accruing at the edge of tumor bulk, we counted only αSMA+ 
cells adjacent to tumor cells (i.e., neighboring nodes of the cell spatial 
graph) and only if the tumor cell itself was a member of a spatial clus-
ter of at least 2,000 μm2 as defined by DBSCAN, described above. We 
chose these parameters as the concept of a macroscopic barrier may be 
poorly defined for single and small numbers of tumor cells. Further-
more, to focus analyses on nonperivascular cell populations, including 
nonperivascular αSMA+ cells, cells with centers falling within pathol-
ogist-annotated large vessel masks were annotated as perivascular and 
excluded from measurement. Nonperivascular epithelial cells with 
centers captured within the pathologist-annotated tumor mask area 
were assigned as tumor cells. Barrier scores were calculated as the per-
image mean across all nonperivascular CD8 T cells, where a barrier 
score of 1 is assigned for a CD8 T-cell separated from the nearest tumor 
cell by a tumor cell–adjacent αSMA+ fibroblast (0 otherwise) and where 
the barrier score per CD8 T cell is calculated as the mean score over all 
shortest paths to the nearest tumor cell(s).

TME Classes Definition
Unsupervised hierarchical clustering of z-score normalized cell 

densities was performed using all cores in the study, including nor-
mal, benign tumor–adjacent, and tumor samples of all histologic 
subtypes. The following major cell types were used to define the 
TME clusters: CD8 T cells, CD4 T cells and B-cell lineage (TIL), 
CD163+CD206+ macrophages and CD163− macrophages (Mφ), neu-
trophils and myeloid cells–other (mDC, monocytes, other CD11b+ 
cells). The cell densities for each major cell type were calculated indi-
vidually for the TS. Cells from the B-cell lineage were predominantly 
found in one tissue compartment, stroma (98%). Only a small num-
ber of B-cell lineage cells and myeloid cells–other, fewer than 3,000 
cells or 0.3% from all immune cells, were detected in the tumor nest; 
therefore, the cell densities in the tumor nest for these two cell types 
were not considered for TME classification. All analyzed cell types 
were detected in at least 89% of the analyzed cores.

Four TME clusters were defined as the most concordant clusters 
derived from hierarchical clustering using 75% of the samples in 
1,000 subsampling iterations, using the functions ConsensusClus-
terPlus and calcICL within the ConsensusClusterPlus R package (v 
1.58; Supplementary Fig.  S5A). The clustering was performed on 
normalized cell densities using robust z-scores (median divided by 
median absolute deviation). Clustering was performed using the 
distance metric maximum and the clustering method ward.D. The 
cumulative distribution function (CDF) of the consensus matrix for 
each value of k, where k is the number of clusters, and the difference 
in area under the curve comparing the CDF for k with the CDF for 
k − 1 were included in Supplementary Fig. S5B. The consensus value 
indicates the proportion of instances that two cores are assigned to 
the same cluster out of 1,000 subsampling iterations. We demon-
strated that the largest increase in consensus values was observed 
by increasing the number of clusters from three to four (Supple-
mentary Fig. S5B). This analysis strongly suggests that there are at 
least four TME classes in the cohort. The consensus values continue 
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to increase with k larger than 4 although with a smaller difference, 
suggesting that the spatial TME classification may be refined in sig-
nificantly larger cohorts. Five TME clusters resulted in splitting the 
TS:Neutrophil high TME class predominantly by histology-specific dif-
ferences and CD163− macrophage densities in the tumor nest yield-
ing a predominantly LUSC cluster with a significantly higher density 
of neutrophils in the TS than for other TME clusters combined and 
a predominantly LUAD cluster with a higher density of neutrophils 
and CD163− macrophages in the tumor nest compared with other 
TME clusters. Because of the high similarity of these two clusters, we 
considered four TME classes in this study.

We next identified the criteria that distinguish each cluster, using 
an LME model to compare cores from a given immune cluster to 
those from other clusters and adjust for multiple regions with 
patient as a random effect (Fig.  2D). Specifically, TS:TIL+MΦ high 
cores were selected for cores with higher TIL or macrophage densities 
in the tumor nest compared with other TME classes. TS:Immune low 
cores were selected to have lower immune cell density in the tumor 
nest compared with cores from other TME classes. The criteria for 
the T:TIL+MΦ excluded TME required that TIL/macrophage density 
in the tumor nest was lower than TS:TIL+MΦ high and that TIL/
macrophage density in the stroma was higher than in TS:Immune low 
cores. Finally, as the TS:Neutrophil high cluster was characterized by 
higher neutrophil infiltration in tumor nest or stroma and lower TIL 
infiltration, the criteria for this TME class required that the neutro-
phil proportion from all cells was higher than other TME classes in 
the tumor nest or stroma. The cutoffs for each of these criteria were 
determined automatically using a binomial generalized linear model 
for each immune cluster compared with other clusters and are shown 
in Supplementary Fig. S5C. The performance function in the R pack-
age ROCR v.1.0-11 was used to find the best cutoff as the intersection 
between the sensitivity and specificity curves. Within each cluster, the 
cores that did not fulfill these criteria were labeled undefined (Supple-
mentary Fig. S5A and S5C).

The TME classes were annotated based on cell types with differ-
ential composition in the tumor nest or stroma compartment com-
pared between each TME class versus other TME classes, using an 
LME model with patient as a random effect (Fig. 2D; Supplementary 
Fig. S5D). For NSCLC analysis, histology was added as a fixed effect 
(Fig.  2D). Histology-specific median cell densities are summarized 
per TME class in Supplementary Table S4.

Spatial Heterogeneity of TME Classes and TAN-High Tumors
To evaluate the intratumor spatial heterogeneity of TME classes 

accounting for the different number of sampled regions, we per-
formed bootstrap subsampling with 1,000 iterations. We calculated 
the probability of observing a TME class for a given number of sam-
ples taken per tumor (two, three, and four samples). The heterogene-
ity of a given TME class was estimated as the ratio of the number 
of observations when all samples had that same TME to the total 
number of tumors that have that TME class. This reported prob-
ability of observing the same TME class across all samples represents 
the average ratio across all iterations and across the different number 
of samples taken (two to four). This approach was used to estimate 
the probability of all regions to have a high TAN score and the prob-
ability for any region to have a high TAN score given a clonal PIK3CA 
mutation in the TRACERx 421 (Tx421) cohort, varying the number 
of samples from two to eight (the maximum number of regions in 
the Tx421 cohort).

Spatial Heterogeneity of Cell Types and Communities
A spatial ITH score for cell type and community densities was cal-

culated using z-score normalized density values in patients for which 
data were available from two or more tumor cores (pan-immune panel 
n =  41, T cells and stroma panel n =  39; Supplementary Fig.  S1B).  

The standard deviation was calculated across tumor core data per 
patient. The spatial ITH score per feature represented the cohort 
mean of standard deviation values, per IMC panel.

PD-L1 IHC of Regional Tumor Blocks
FFPE sections (4 μm) were stained with anti–PD-L1 (SP142) 

according to the manufacturer’s instructions (Ventana). Tumor cell 
(TC) scoring was performed as instructed by the manufacturer by 
experienced and qualified pathologists. Briefly, the TC score was 
defined as the proportion of viable tumor cells showing PD-L1 
membranous staining of any intensity. TC scores were categorized 
as <1%, 1% to 49%, and ≥50%. For statistical analysis, TC scores ≥50% 
were rare and were therefore combined with 1% to 49% into a ≥1% 
category. Samples stated as negative for PD-L1 had a staining positiv-
ity rate of <1%.

IHC Validation of Checkpoint Molecule Expression
Multiplexed IHC was performed to validate immune-checkpoint 

molecule expression on immune cells. FFPE tissue sections of a rep-
resentative human lung cancer case and of reactive tonsils were sub-
jected to double immunostaining (Supplementary Fig. S19). Briefly, 
2- to 5-μm tissue sections were cut and transferred on electrically 
charged slides to be stained. To establish optimal staining condi-
tions (i.e., antibody dilution and incubation time, antigen retrieval 
protocols, suitable chromogen), each antibody was tested and opti-
mized on sections of reactive tonsil by conventional single IHC 
using the automated platform Bond-III Autostainer (Leica Microsys-
tems). For double immunostaining, a protocol previously described 
was carried out (90). All slides were stained with anti-MUM-1/
IRF4 clone MUM1p (1:400, Agilent Dako) and costained with one 
of anti–PD-L1 clone SP142 (Ventana Medical Systems), anti-TIM3 
clone D5D5R (1:100, Cell Signaling Technology Inc.), anti-VISTA 
clone CL3975 (1:150, Thermo Fisher Scientific Inc.). Slides were 
counterstained with hematoxylin. Images were acquired on a Nano-
Zoomer 2.0HT whole-slide imaging system (Hamamatsu Photonics) 
at 40× magnification.

TAN Scoring from H&E Images in TRACERx
The densities of TANs were assessed on digitally scanned H&E-

stained 3 μm sections and scored at 400×  magnification. All TANs 
were evaluated within the histologic limits of the tumor itself. The 
TANs in the stromal compartment and tumor island compartment 
were evaluated separately. Calculation of the TANs in the stromal 
compartment was based on the standardized method used for TIL 
quantification, as developed by the International Immuno-Oncology 
Biomarker Working Group on Breast Cancer (30). The tumoral TANs 
were scored in a similar manner but the areas assessed included viable 
tumor islands, and neutrophils free floating within the glandular 
lumen were excluded. As per the published guidelines, the percent-
age was calculated as the area occupied by the neutrophils over the 
total stromal area and total tumoral area, respectively. Stromal TANs 
(sTAN) represent the percentage of stroma compartment area occu-
pied by the TANs; tumoral TANs (tTAN) is the percentage of tumor 
compartment area occupied by the TANs. The average neutrophils 
scoring was calculated across the entire slide rather than focusing on 
the hotspot areas. The percentage is given as a continuous parameter. 
Eighteen patients were excluded from the validation cohort and were 
not scored for TANs when H&E slides were not available or no tumor 
was detected in those sections. Region-level TAN scores were derived 
from scoring H&E images of paired regional blocks of the study 
TMAs, and tumor-level TAN scores were assessed on tumor-matched  
diagnostic blocks.

High TAN score was defined based on whether either the tumor 
(tTAN) or the stromal TAN (sTAN) scores were high. To classify 
tTAN and sTAN scores into high and low, we determined an optimal 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-23-1380/3447974/cd-23-1380.pdf by guest on 25 April 2024



Enfield et al.RESEARCH ARTICLE

OF23 | CANCER DISCOVERY JUNE  2024	 AACRJournals.org

cutoff that best separates the TS:Neutrophil high TME class from the 
other TME classes. We used a binomial generalized linear model of 
the tTAN or sTAN score to predict the presence of a TS:Neutrophil 
high TME class. We used the performance function in the R package 
ROCR v.1.0-11 to find the best cutoff as the intersection between the 
sensitivity and specificity curves. The determined cutoffs were 2%/3% 
for tTAN and 1%/2% for sTAN across all diagnostic slides scores 
in LUAD/LUSC, and 1%/5% for tTAN and 1%/1% for sTAN across 
regional TAN scores in LUAD/LUSC.

RNAscope
FFPE sections (5 μm) were stained on the Leica Bond Rx automated 

stainer using RNAscope LS Multiplex Fluorescent assay (322800 
ACD Bio-Techne) applying a standard 15-minute target retrieval and 
15-minute protease treatment using target probe Hs-IL-8 (310388 
Bio-Techne) with Opal 570 (Akoya Biosciences). Samples were immu-
nostained with MPO 1:2,000 (ab208670 Abcam) or pan-cytokeratin 
1:250 (M3515 Agilent) and detected with Opal 690 (Akoya Bio-
sciences) and counterstained with DAPI. Slides were imaged on the 
PhenoImager HT (Akoya Biosciences).

Neighborhood Analysis
The CellProfiler software (v3.1.9; MeasureObjectNeighbors module) 

was used to compute the neighboring cells for each cell type in an 
image (84). Cells were defined as being in the “neighborhood” of a cell 
of interest if they were detected within a pixel radius of 5 px of the cell 
of interest.

The neighbouRhood tool (91) aggregate_classic function was used 
to define the image-level cell–cell relationship between any two cell  
types: interacting relationship, avoiding relationship or nonsigni- 
ficant relationship.

TME class comparisons, PIK3CAmut/wt, and subclonal expansion score 
high/low: To query if a relationship was significantly enriched in 
one subgroup compared with another, a logistic regression model 
correcting for multiple cores per tumor was applied to assess the 
frequency of a spatial relationship in the TME class of interest com-
pared with all other TME classes (Supplementary Fig. S20), between 
tumor cores with PIK3CA mutation versus PIK3CA wild-type (Sup-
plementary Fig. S21A) and between cores with high compared with 
low subclonal expansion scores (Supplementary Fig.  S21B). Benja-
mini–Hochberg adjustment was performed to correct for multiple 
testing. We report significant (Padj  <  0.05) cell–cell relationships if 
the constituent cell types were present in at least 90% of tumor cores. 
These relationships were visualized in a heat map if they were present 
in at least 10% of cores.

MCT4+/− and CAIX+/− TC neighborhood analyses: Differences in inter-
action and avoidance profiles with other cell subtypes in TS:Neutrophil 
high LUSC tumor cores were analyzed between center MCT4+ and 
MCT4− tumor cells (Supplementary Fig. S22A), and between center 
CAIX+ and CAIX− tumor cells (Supplementary Fig. S22B). We report 
cell–cell relationships if the constituent cell types were present in at 
least 90% of tumor cores (≥14 cores) for both positive (+ve) and nega-
tive (−ve) center tumor cell phenotypes. No significant differences 
were observed between +ve and −ve center cells for either MCT4 or 
CAIX, when applying a Chi-square test and P value adjustment (Ben-
jamini–Hochberg). Only cell subtypes for which at least two cores 
exhibited a significant avoidance or interaction for at least one of the 
two tumor phenotypes were tested.

TRACERx 100 WES
WES data were available for 98% of tumor cores in the pan-immune 

data set, and for 98% of tumor cores in the T cells and stroma data 
set (Supplementary Fig. S1A; Supplementary Table S2). Normal lung 
samples were not subjected to WES. WES data were processed as  
described (14).

TRACERx 100 RNA-sequencing
RNA-sequencing data were processed as described (13). Paired analysis 

of RNA-sequencing and IMC data were performed for tumor cores only 
and was available for 78% of the pan-immune and 76% of the T cells and 
stroma data sets (Supplementary Fig. S1A; Supplementary Table S2).

TMB Calculation
TMB was calculated using a harmonized approach as the number 

of somatic mutations per megabase (muts/Mb) in the coding genomic 
regions (92) on the TRACERx 421 mutation data from WES. The TMB 
status of each tumor region was categorized as either high (≥10 muta-
tions/Mb) or low (<10 mutations/Mb) to match clinical guidelines.

Driver Mutation Analyses
Driver mutation calls are derived from TRACERx 421 driver muta-

tion calling from WES, as described previously (14), and include driver 
single-nucleotide variants, insertion–deletion mutations (indels), and 
splice mutations in relevant genes. Clonality calls for PIK3CA muta-
tions were derived using TRACERx clonality calling for WES data, as 
described in (14).

Statistical analyses of TME class distributions by regional driver 
gene mutation status were performed using the lme4 R package 
glmer function (“binomial” distribution). Analyses were undertaken 
to compare distributions of one TME class with all other classes com-
bined (for the respective histology subset). Patient ID was included as 
a random effect, and ANOVA P values were calculated by comparing 
a null model without mutation status as a fixed effect to a model 
containing mutation status as a fixed effect.

Nearly all the observed driver mutations in the PI3K pathway 
occurred in the gene PIK3CA in TRACERx 421 (23/115 cores). There 
were no PIK3CB mutations in TRACERx 100. Gains and amplifica-
tions in regions of the PIK3CA gene were a frequent event in nearly 
all LUSC tumors.

Chi-squared test was used to compare the frequency of observa-
tions between PIK3CA mutant and PIK3CA wild-type tumors. In the 
case of multiple regions per tumor, we considered whether any tumor 
region of a given tumor had a mutation.

Copy-Number Analysis
Somatic copy-number profiles for tumor regions were derived as 

previously described (14). To compare somatic copy-number altera-
tion (SCNA) profiles in high and low TAN score regions, the previ-
ously described unpaired analysis method was adapted (15). Within 
each of high and low TAN categories separately, for each copy-number 
segment within an individual tumor, the maximum and minimum 
log2 copy-number values from all respectively assigned regions of a 
tumor were selected. GISTIC2.0 (93) was then run four times for each 
of LUAD and LUSC for the combined TAN validation and discovery 
cohorts using these tumor-level data, once with the maximum val-
ues (to examine amplifications) and once with the minimum values 
(to examine losses), for each of high and low TAN score categories. 
Driver or immune evasion genes deemed to be significantly ampli-
fied/deleted (q<0.1) for the TAN-High group but nonsignificant for 
the same SCNA event in the TAN-Low group, and for which the 
absolute value of the G-score was higher in the TAN-high com-
pared with the TAN-low group were assessed. No such peaks were 
observed in LUAD or LUSC. In this instance, driver genes were defined 
as in (14, 15). Immune evasion genes tested were RFX5, RFXANK, 
RFXAP, TAP1, TAP2, TAPBP, PSMB8, PSMB9, NLRC5, ERAP1, CALR, 
CNX, PDIA3, B2M, SPPL3, MOGS, GANAB, CIITA, MARCHF1, CD74, 
MARCHF8, CGAS, MB21D1, TMEM173, TBK1, IRF3, IFNB1, CTNNB1, 
AXIN1, AXIN2, APC, GSK3, GSK3B, CSNK1A, CSNK1A1, DKK1, PTCH1, 
NKD1, PTEN, MYC, PTGS2, CXCL13, CXCL9, IFNGR1, IFNGR2, JAK1, 
JAK2, STAT1, STAT2, IRF1, IRF9, SOCS1, IFNAR1, IFNAR2, SERPINB9, 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-23-1380/3447974/cd-23-1380.pdf by guest on 25 April 2024



Distinct Microenvironments Coevolve with Lung Tumors RESEARCH ARTICLE

	 JUNE  2024 CANCER DISCOVERY | OF24 

SERPINB4, FAS, CFLAR, TNFRSF10A, TNFRSF10B, TNRFSF10C, 
TNRFSF10D, TGFB1, TGFB2, TGFB3, CD274, IDO1, and PDCD1LG2.

Class I/APM Disruption
Class I/APM disruption refers to intrinsic mechanisms of immune 

escape relating to antigen presentation on MHC class I. Class I/APM 
disruption was defined if HLA LOH could be determined in any of 
HLA-A, HLA-B, or HLA-C, and/or if mutations were detected in any 
of the following antigen presentation (APM) genes: B2M, HLA-A, 
HLA-B, HLA-C, CALR, ERAP1, GANAB, MOGS, NLRC5, PSMB8, PSMB9, 
PDIA3, RFX5, RFXANK, RFXAP, SPPL3, TAP1, TAP2, TAPBP, and CNX. 
Mutations were defined as any of nonsynonymous single-nucleotide 
variants (including stoploss and stopgain), and (non-)frameshift 
insertions and substitutions, and frameshift deletions. To be included 
in the HLA analysis, a gene had to pass the following filters: identified 
at least 10 SNPs that passed the minimum coverage of 30; both alleles 
of the gene required an expected depth (ED) of ≥10; the 95% confi-
dence interval in the allelic copy number was <2.5. The ED estimates 
the depth of the reads sourced from the cancer cells, which was calcu-
lated from the depth of the matched germline sample and the purity 
of the tumor region. At an ED below 10, we did not expect to have the 
required coverage to accurately classify LOH, even if it were present.

Whole-Genome Doubling
Whole-genome doubling assignments for TRACERx tumor regions, 

referenced in Fig. 2B, were calculated as described previously (14).

Neoantigen Analysis
Neoantigen analysis was performed within LUAD and LUSC his-

tologies and required samples with neoantigen prediction and RNA-
seq. Clonal (detected in all regions of the same tumor), subclonal (not 
detected in all regions of the same tumor), and total nonsynonymous 
mutations were used to predict neoantigens using NetMHCpan4.1 
(94). When bulk transcriptomic data were available, a neoantigen was 
considered to be expressed if at least four RNA-seq reads mapped to 
the mutation position. Neoantigen counts were further filtered based 
on whether they were predicted to bind to the corresponding patient’s 
HLA alleles (determined using HLA-HD; ref. 95) that were not subject 
to HLA LOH. The HLA-binding predictions were filtered based on 
strong binding affinity using a threshold of rank score <0.5%. LOH 
status of HLA-A, HLA-B, and HLA-C could not always be determined 
(see above). Tumor regions with no data for any of HLA-A, HLA-B, or 
HLA-C were excluded from neoantigen analysis requiring HLA status 
and represented 3 LUAD tumor regions from 2 patients and 3 LUSC 
tumor regions from 1 patient (Supplementary Fig. S1A; Supplemen-
tary Table S2). In tumor regions where LOH of one or two of HLA-A, 
HLA-B, or HLA-C was undetermined, the missing HLA was assumed 
to be intact. The expression level of neoantigen transcripts and RNA-
level repression of HLA genes were not considered.

Differential Gene Expression, Gene Set Enrichment, 
and GO Analyses

Trimmed mean of M-values (TMM) normalized expression values 
was analyzed with the limma–voom workflow for differential analysis 
(13). The t-statistic generated by limma was used as input for GSEA 
for MSigDB hallmark gene sets using the R package fgsea (v1.10.1) 
with default parameters. Genes with higher than 2-fold change and 
limma-derived unadjusted P < 0.05 were selected for overrepresenta-
tion analysis with GO Biological Processes using the enrichGO func-
tion in the clusterProfiler R package (v 4.2.2).

Recent Subclonal Expansion Score
A recent subclonal expansion score per tumor, reflecting the size 

of the largest recent subclonal expansion within each tumor region, 

was calculated as described by Frankell and colleagues (14). In 
short, using multiregional WES, tumor phylogenetic trees were con-
structed, and for each of them, the terminal nodes on the tree (i.e., 
leaf nodes) were identified. The maximum cancer cell fraction (CCF) 
of any of these leaf nodes was then identified. The recent subclonal 
expansion score represents the maximum CCF of any of the leaf 
nodes in a given tumor region. The recent subclonal expansion score 
was compared between the TAN groups using the LME model with 
patient as a random-effect covariate. To adjust for the difference 
in tumor content, we added purity as a fixed-effect covariate in the 
model. The association of high recent subclonal expansion with 
TAN-high tumor cores remained significant in LUAD (P = 0.047) but 
did not reach significance in LUSC (P = 0.26).

Phylogenetic Tree and cloneMap Visualization
The tumor phylogenetic tree for tumor CRUK0468 in Fig. 6F was 

reconstructed using CONIPHER (14, 96) and visualized using the 
plot function (igraph R package v1.3.5). The sequenced profiles of 
two samples from a lymph node metastasis, one fresh frozen (LN1) 
and one FFPE (FLN1), were included with the primary tumor regions 
to reconstruct the tumor phylogenetic tree. Tumor region clone 
maps were visualized using the cloneMap function (cloneMap R 
package v1.0.0.0, bioRxiv 2022.07.26.501523).

Survival Analysis
To evaluate the prognostic value of TANs in lung cancer, we 

defined a discovery cohort as the TRACERx100 tumors profiled with 
IMC for neutrophil markers (panel 2, n = 68) and a validation cohort 
as the nonoverlapping TRACERx421 tumors with a surrogate, H&E-
derived TAN score (n = 332; Supplementary Fig. S10A). In eight cases 
with TAN scoring, when the patients harbored synchronous multi-
ple primary lung cancers, we used only data from the tumor of the 
highest pathologic TNM stage. We excluded two patients for which 
multiregion sequencing data revealed two tumor masses as collision 
tumors with two and three independent LUADs in CRUK0881 and 
CRUK0704, respectively, diagnosed histologically as single primary 
LUADs (14). One patient (CRUK0682) with synchronous primary 
lung cancers (LUAD and LUSC), whose tumor with the highest stage 
(LUAD) was not sequenced, was excluded from the survival analysis.

Within the discovery cohort, we distinguished tumors with metasta-
sis-seeding clones (n = 22) as metastasizing tumors, as determined by 
multiregional genomic profiles from matched primary and metastases 
(15). All tumors seeding lymph node and intrapulmonary metastasis 
detectable at the time of surgery (n = 12) as well as any relapse detected 
during follow-up were included (n = 10). In addition, we also defined 
control tumors as those from patients who did not have metastasis or 
recurrence diagnosed for more than 3 years of follow-up time.

DFS was defined as the period from the date of registration to 
the time of radiologic confirmation of the recurrence of the primary 
tumor registered for the TRACERx or the time of death by any cause. 
Lung cancer–specific DFS was defined as the period from the date of 
registration to the time of radiologic confirmation of the recurrence 
of the primary tumor registered for the TRACERx or the time of 
death from lung cancer.

Kaplan–Meier plots were generated based on the univariate model 
from the survfit function (survival R package v3.4.0) and compared 
with the log-rank test. Hazard ratios and P values were derived using 
univariate and multivariable Cox regression analyses with the coxph 
function (survival v3.4.0). Cox proportional hazards assumptions 
were fulfilled for univariate and multivariable models. Univariate 
models also included strata by histology subtype. The multivariable 
model was adjusted for necrosis, age, sex, pathologic stage (1, 2, 3), 
smoking pack years, receipt of adjuvant therapy, and histology sub-
type. The median follow-up time of the cohort was extracted from 
the summary table of the survfit model.
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The necrosis status was evaluated from diagnostic H&E images 
by a pathologist. High and low recent subclonal expansion scores 
were defined based on the median score. Hazard ratios of age and 
pack-years were reported per 10 years. We evaluated several cutoff 
approaches to define high and low TAN score, median, upper quar-
tile (vs. rest), and optimal cutoff described above in the section TAN 
scoring from H&E images in TRACERx. Both regional and diagnostic 
TAN scores were evaluated in univariate analysis, whereas the TAN 
score used for the multivariable analysis was derived from diagnostic 
H&E images. The association with prognosis remained significant 
for high TAN tumors in multivariable analyses with median recent 
subclonal expansion score or PIK3CA mutation status (Supplemen-
tary Table S5).

Granulocyte Scoring from H&E Images and Survival 
Analysis in TCGA

H&E-stained whole-slide images (WSI) from TCGA were analyzed 
with PathExplore, a deep learning-based model for cell type and 
tissue classification trained on pathologist-expert annotations on 
6,918 WSIs from NSCLC tissue (37). The tissue classification model 
segments the tumor nests (cancer), cancer stroma, background, 
necrosis, and artifacts on H&E images. PathExplore outputs for tis-
sue segments were evaluated by pathologists to assess the model’s 
performance in detecting and classifying regions of tissue back-
ground, artifact, tumor nests (cancer), cancer stroma, and necrosis. 
Samples with >10% error for segmenting tumor nests (cancer) and 
cancer stroma were removed. Samples, for which necrosis, artifacts, 
and background were not evaluated or had >20% error were excluded. 
The cell type classification model was trained to predict granulocytes. 
The granulocyte classification is expected to include eosinophils in 
addition to neutrophils.

The automated score derived from applying PathExplore on the 
TCGA cohort used the proportion of granulocytes in the tumor nest/
stroma over the total number of cells in the tumor nest/stroma (Sup-
plementary Fig. S11A). The automated score was compatible but not 
identical to the pathologist-derived TAN score, which was defined 
based on two factors: the area of neutrophils in the tumor nests/
stroma over the area of the tumor nest/stroma. Although the TAN 
score was based on the cell area proportion, the automated score 
quantified the cell count proportion. As the area of neutrophils is 
generally smaller than the area of the cancer cells or fibroblasts in the 
TS, the pathologist-scored area proportions would be generally lower 
than the automated cell proportions. Therefore, the TAN score cutoffs 
derived using the TRACERx cohort could not be directly applied to 
the TCGA samples. Instead of using a single score cutoff in the TCGA 
cohort, we used a range of score cutoffs, defined by high granulocyte 
proportions in the TS. The TAN score and the PathExplore quantifica-
tion considered only viable tumor islands, excluding necrotic areas and 
normal tissue.

DFS was defined based on the annotations of new tumor events 
after initial treatment and vital status in the clinical data downloaded 
from the TCGA portal (portal.gdc.cancer.gov). The new tumor events 
annotated as new primary tumors were not considered as DFS events. 
Patients diagnosed with stage IV tumors or treated for prior malig-
nancy were excluded. The hazard ratio was evaluated for a range of 
intervals of the two variables: the proportion of granulocytes over all 
predicted cells in the tumor nest (tumor nest interval) and the stroma 
(stroma interval). Tumors with high scores were defined as those, for 
which the proportion of granulocytes in the tumor nest was higher 
than the tumor nest interval or the proportion of granulocytes in the 
stroma was higher than the stroma interval.

The multivariable model was adjusted for age, sex, pathologic 
stage (1, 2, 3), smoking pack years, receipt of adjuvant therapy, and 
histology subtype. Hazard ratios of age and pack-years were reported 
per 10 years (Supplementary Fig. S11B).

Statistical Analysis
All statistical tests were performed in R. No statistical methods 

were used to predetermine sample size. NSCLC-other was excluded 
from histology-specific analyses due to a low sample size. Tests 
involving comparisons of distributions were done using a two-tailed 
nonparametric Wilcoxon rank-sum test, unless specified one-tailed, 
using paired or unpaired options where appropriate. Tests involving 
the comparison of groups were done using a two-tailed Chi-squared 
test. For all statistical tests, the numbers of data points included are 
plotted or annotated in the corresponding figure legend. Correlation 
coefficients and corresponding P values were calculated with the 
Spearman correlation method.

Continuous dependent variable: Where multiple tumor regions/
cores per patient were considered, LME models were applied using 
patient ID as a random effect. The C6:macrophages and T cells com-
munity was associated with smoking status among the clinical fea-
tures; therefore, the LME models with this community corrected for 
smoking status as a fixed effect. ANOVA P values were calculated by 
comparing the effects model to the null model.

Categorical dependent variable: In the case where multiple tumor 
regions/cores per tumor were considered, statistical analyses of distri-
butions of categorical data (e.g., TME class) with relation to an inde-
pendent categorical variable (e.g., smoking status) were performed 
using the lme4 R package glmer function (“binomial” distribution). 
Patient ID was included as a random effect, and ANOVA P values 
were calculated by comparing the effects model with the null model.

Code and Data Availability
RNA-seq and WES data (in each case from the TRACERx study) 

used during this study have been deposited at the European 
Genome–phenome Archive (EGA), which is hosted by The European 
Bioinformatics Institute and the Centre for Genomic Regulation 
(CRG) under the accession codes EGAS00001006517 (RNA-seq) and 
EGAS00001006494 (WES); access is controlled by the TRACERx data 
access committee. Details on how to apply for access are available 
on the linked page. IMC data used or analyzed during this study 
are available through the CRUK and UCL Cancer Trials Centre (ctc.
tracerx@ucl.ac.uk) for academic noncommercial research purposes. 
Access will be granted upon review of a project proposal, which will 
be evaluated by a TRACERx data access committee, and entering 
into an appropriate data access agreement, subject to any applicable 
ethical approvals.

The code used for IMC analysis in this study was implemented as a Next
flow pipeline and is available on github along with instructions on how 
to run it on a test data set: https://github.com/FrancisCrickInstitute/ 
TRACERx-PHLEX.

The TRACERx Nuclear IMC segmentation data set, trained neural 
network model weights, and the test data set can be downloaded 
from Zenodo: https://zenodo.org/record/7973724.

The core nuclear prediction model, implemented in Python 3, is 
available here: https://github.com/FrancisCrickInstitute/py-imcyto.

Scripts used for adaptive spillover compensation of IMC isotope 
channels are available here: https://github.com/FrancisCrickInstitute/ 
TRACERxIMCSpillover.
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