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A two-dimensional free boundary problem is formulated in which the normal velocity of the boundary is
proportional to the inverse of the gradient of a harmonic function T . The field T is defined in a simply
connected region which includes the point at infinity where it has a logarithmic singularity. The growth
problem in which the boundary expands outwards is formulated both in terms of the Schwarz function of
the boundary and a Polubarinova–Galin equation for the conformal map of the region from the exterior of
the unit disk. An expanding free boundary is shown to be stable and explicit solutions for growing ellipses
and a class of polynomial lemniscates are derived. Numerical solution of the Polubarinova–Galin equation
is used to compute the evolution of the boundary having other initial shapes.

Keywords: free boundary; Schwarz function; wildfire; lemniscate growth.

1. Introduction

Two-dimensional free boundary problems in which the shape of an interface separating regions with
distinct properties and dynamics must be determined as part of the solution arise in a variety of
applications including freezing, melting and dissolution (e.g. Cummings et al., 1999; Rycroft & Bazant,
2016; Ladd et al., 2020), biology (e.g. Waters et al., 2012; Kim et al., 2016), geophysics (e.g. Dallaston
& Hewitt, 2014; Grodzki & Szymczak, 2019), industrial coating (e.g. Tuck et al., 1983), vortex dynamics
(e.g. Crowdy, 1999; Riccardi, 2020) and, of course, the considerable literature on nonlinear water waves
(e.g. Vanden-Broeck, 2010). Their inherent nonlinearity pose challenges to their understanding, and even
the classic example of the Hele–Shaw (or Laplacian growth) free boundary problem (e.g. Gustafsson &
Vasiliev, 2009), where the normal velocity of the free boundary depends on the gradient of a harmonic
function, continues to receive attention (e.g. Anjos et al., 2018; Morrow et al., 2019; Lustri et al., 2020;
Sakakibara et al., 2022; Cuttle et al., 2023). In this class of problem, the harmonic function typically
has logarithmic singularities which can be thought of as sources and sinks which serve to drive the free
boundary evolution. The free boundary problem formulated and solved in this work is similar, except that
the normal velocity is inversely related to the gradient of the harmonic field, leading to markedly different
properties to Laplacian growth. Lundberg & Totik (2013) considered the same reciprocal growth law and
used arguments based on potential theory and Green’s functions to show that polynomial lemniscates are
exact solutions, leading them to use the description ‘lemniscate growth’ for this free boundary problem.
Generalized growth laws for other types of Laplacian growth problems are discussed in, for example,
the problems in Niemeyer et al. (1984) and Gubiec & Szymczak (2008).

This work further develops lemniscate growth by formulating analytical and numerical approaches
and solutions and discussing applications. In Section 2, the problem is formulated in two different
ways: (i) in terms of the Schwarz function for the curve coinciding with the free boundary, and (ii) a
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FREE BOUNDARY GROWTH PROBLEM 375

FIG. 1. Schematic diagram of the free boundary problem. T is a harmonic function in the exterior (infinite) domain Ω , and a is
the conformal radius of the finite domain C\Ω . The arrows on the boundary ∂Ω give the sense in which the arclength parameter
s used in Section 2.1 increases.

Polubarinova–Galin equation for the conformal map from the exterior of the unit disk to the growing
domain. In contrast to the Hele–Shaw problem, Section 3 shows that this growth problem (i.e. when the
free boundary evolves by expanding towards infinity) is stable. The formulations are used in Section 4
to provide alternative derivations of the polynomial lemniscate solutions of Lundberg & Totik (2013)
and, further, show that growing ellipses are also exact solutions. Section 5 presents a numerical scheme
based on solving the Polubarinova–Galin equation which is used to find solutions for domains with a
variety of different starting shapes. This section ends with some brief speculation on the application of
the model to the spreading of wildfires, where the harmonic field is considered to be temperature and
the free boundary marks the interface between burned and unburned regions of the fire. Section 6 gives
the conclusion.

2. Formulation of the free boundary problem

Let Ω be the simply connected, infinite domain exterior to a smooth, non-intersecting, time-dependent
closed curve ∂Ω(t) in the complex z-plane, where z = x + iy. Suppose T(x, y) is a harmonic function in
Ω , such that T → − log |z| as |z| → ∞ and T = 0 on ∂Ω . The free boundary ∂Ω(t) evolves according
to

vn = −
[

a

(
∂T

∂n

)]−1

, (2.1)

where vn is the normal velocity of the curve and a(t) > 0 is the conformal radius of the finite domain
C\Ω . The problem is displayed diagrammatically in Fig. 1. The conformal radius is related to the
logarithmic capacity (e.g. Baddoo & Trefethen, 2021) of the domain Ω and is the leading order term
in the conformal map from the exterior of the unit ζ -disk to Ω i.e. z ∼ aζ as z, ζ → ∞. The
direction of the normal is taken to be pointing into the domain Ω e.g. towards infinity when ∂Ω is a
circle.

The posing of the normal velocity of the boundary proportional to the inverse of the normal gradient
of T is the unusual feature here; Hele–Shaw free boundary problems, for example, would have vn = ∂nT
on ∂Ω , and T would be identified as the real velocity potential. In this work, the boundary conditions
on T imply the gradient of T in the normal direction is negative so that the rule (2.1) leads to growth
in the sense that the areas of the finite domain C\Ω increases in time. As will be shown in Section 3,
such growth is stable. The dependency of (2.1) on the time-varying conformal radius a(t), which gives a
measure of the size of the finite domain C\Ω , slows the rate of growth of ∂Ω(t) as a(t) increases. Note

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/89/2/374/7687482 by U

niversity C
ollege London user on 02 Septem

ber 2024



376 N. R. MCDONALD AND S. J. HARRIS

that a(t) is a parameter determined by the dynamics, and its presence effectively amounts to a rescaling
of time. Its inclusion is not necessary in deriving exact and numerical solutions. It does, for example,
prevent exponential growth in time of the radius of circular free boundaries which makes for a more
realistic growth law when applied to problems such as wildfire spread (Section 5.2). Thus, this rescaling
in a(t) is included here.

2.1 Formulation in terms of the Schwarz function

The Schwarz function S(z) of the curve ∂Ω in the z-plane is the unique function analytic in the
neighbourhood of ∂Ω and such that S(z) = z̄ on ∂Ω (Davis, 1974). Representing curves in the z-plane
using S(z) has proved successful in obtaining exact solutions for a range of free boundary problems
including those of the Hele–Shaw class (e.g. Howison, 1992; Mineev-Weinstein et al., 2000; Gustafsson
& Vasiliev, 2009), 2D vortex dynamics, (e.g. Saffman, 1993; Crowdy, 1999; Riccardi, 2020), industrial
coating flows (e.g. Johnson & McDonald, 2009; Marshall, 2011), water waves with vorticity (Crowdy,
2023) and curve-shortening (McDonald, 2022).

Letting s be the arclength parameter of ∂Ω , it can be shown (e.g. Davis, 1974) that a geometric
property of the Schwarz function is dz/ds = 1/

√
Sz, where the subscript z denotes differentiation with

respect to z. Here and below, the branch of the square root is chosen to have negative imaginary part
in order to be consistent with the parameter s increasing when going anti-clockwise around ∂Ω . For an
evolving curve S = S(z, t), the normal velocity vn at point z on ∂Ω is (e.g. Mineev-Weinstein et al.,
2000)

vn = − i

2

Ṡ√
Sz

, (2.2)

where Ṡ is the partial derivative of S with respect to time t. Let W be a function analytic in Ω such that
W = T + iR. Since T = 0 on ∂Ω

∂W

∂s
= i

∂R

∂s
= i

∂T

∂n
= − i

avn
, (2.3)

where a Cauchy–Riemann equation and (2.1) have been used. Also, because W is an analytic function,

∂W

∂s
= ∂W

∂z

∂z

∂s
= 1√

Sz

∂W

∂z
, (2.4)

where the geometric property of the Schwarz function noted above has been used. Combining (2.2), (2.3)
and (2.4) gives ∂Ω

2
∂S

∂z
= a Ṡ

∂W

∂z
. (2.5)

It is interesting to compare (2.5) with the equivalent equation arising in Hele–Shaw free boundary flow
(e.g. Howison, 1992; Gustafsson & Vasiliev, 2009), namely Ṡ = −2∂zF, where F(z) is the complex
hydrodynamic potential incorporating driving sources or sinks. As in the Hele–Shaw case it is important
to note that while (2.5) holds on ∂Ω , by analytic continuation it holds in Ω and, in particular, the singular
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FREE BOUNDARY GROWTH PROBLEM 377

behaviour of both sides of (2.5) must match as z → ∞. This property is used in Section 4 to derive explicit
solutions for the growth problem.

2.2 Formulation as a Polubarinova–Galin-type equation

In this subsection a Polubarinova–Galin-type equation (e.g. Howison, 1992; Gustafsson & Vasiliev,
2009) for the conformal map z = f (ζ , t) from the exterior of the unit disk in the ζ -plane to Ω is
found. In addition to Hele–Shaw free boundary problems, such equations have proved effective in finding
exact solutions for other two-dimensional free boundary problems including freezing and melting (e.g.
Cummings et al., 1999; Rycroft & Bazant, 2016), and as a basis for the numerical treatment of Hele–
Shaw flow with and without surface tension (Dallaston & McCue, 2013).

In the z-plane the unit normal to ∂Ω has complex form n = ζ f ′/|f ′|, where the dash indicates partial
differentiation with respect to ζ . Thus the normal velocity on ∂Ω is

vn = Re

[
ḟ
ζ f ′
|f ′|

]
, (2.6)

where the overbar represents taking the complex conjugate. Evaluating the normal velocity from (2.1)
gives

vn = −
[

a

2

(
∂(W + W)

∂n

)]−1

= −
[a

2
Re

(
n∇(W + W

)]−1

= −
[

a Re

(
n

∂

∂z
(W + W)

)]−1

,

= −
[

a Re

(
n
∂W

∂z

)]−1

. (2.7)

In the above equation, the equivalence ∇ ≡ ∂x − i∂y = 2∂z has been used, as has the fact that W(z) is an

analytic function. In the ζ -plane, W = − log ζ and hence Wz = −(ζ f ′)−1 and upon equating (2.6) and
(2.7) gives |ζ | = 1

a Re
[
ḟ ζ f ′

]
= |f ′|2. (2.8)

For comparison, in the Hele–Shaw case with a source of strength Q at the origin within a finite blob of

fluid, the Polubarinova–Galin equation is Re
[
ḟ ζ f ′

]
= Q with the sign of Q determining whether the

free boundary of the fluid blob expands or contracts.

3. Stability

To begin, it is shown that ∂Ω(t) in the form of a circle with radius growing linearly in t is an exact
solution. A circle of radius a(t) centred at the origin has Schwarz function S(z) = a2/z. Note that a(t)
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378 N. R. MCDONALD AND S. J. HARRIS

is also the conformal radius appearing in (2.5). Substituting S(z) into (2.5), using Ṡ = 2aȧ/z and taking
the limit z → ∞ where it is known W → − log z, gives ȧ = 1. Hence a = a0 + t where a0 is the initial
radius of ∂Ω .

Alternatively, the Polubarinova–Galin-type equation (2.8) can be used to derive the same solution:
note the map from the ζ - to the z-plane is z = f (ζ , t) = a(t)ζ and substituting this directly into (2.8) and
using ζ = 1/ζ on |ζ | = 1 also gives ȧ = 1.

To investigate the stability of the circular free boundary consider a perturbed interface and harmonic
field T of the form

R = a + δn cos nθ , T = − log
(

R

a

)
+ βn

( a

R

)n
cos nθ , n = 1, 2, · · · , (3.1)

where δn(t) 	 a and βn(t) 	 1 are small time-varying amplitudes of the perturbation.
Since T = 0 on R = a + δn cos nθ it follows from (3.1) that to leading order δn = aβn. Also to

leading order (2.1) gives

ȧ + δ̇n cos nθ =
(

a

R
+ nβn

an+1

Rn+1 cos nθ

)−1

. (3.2)

Putting R = a + δn cos nθ in (3.2) and simplifying gives, as expected, to leading order ȧ = 1 and to next
order

δ̇n = δn

a
(1 − n). (3.3)

Stability demands that δn/a decreases with time or, equivalently, δ̇n/δ − ȧ/a is negative (e.g. Dallaston
& Hewitt, 2014). Using (3.3), it follows that δ̇n/δ − ȧ/a = −n/a implying that the growth is stable. The
above stability analysis of interface growth appears to be new, though the general stability of Laplacian
growth problems where vn ∼ |∇T|η at the interface with η < 0 (note, η = −1 in this work) is noted in
Gubiec & Szymczak (2008). The problem is time reversible (as noted in Lundberg & Totik, 2013), but
is unstable since the sign of the RHS of (3.3) changes.

4. Exact solutions for the growth problem

In addition to the trivial solution of Section 2 when ∂Ω is a growing circle, two classes of exact solutions
are derived in this section: ellipses and a class of polynomial lemniscates. Three examples of exact
solutions are given in Fig. 2.

4.1 Ellipse

Let z = f (ζ , t) = cζ +d/ζ , where c(t) and d(t) are real, time-varying parameters, be the conformal map
from the exterior of the unit ζ -disk to the exterior of an ellipse with axes of length |c + d| and |c − d|.
Substituting f (ζ , t) into (2.8) and letting ζ = exp(iθ) gives terms which are either θ -independent or
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FREE BOUNDARY GROWTH PROBLEM 379

FIG. 2. (a) Growth of an elliptical boundary according to (4.5) with c0 = 1 and d0 = 0.7, with plots of ∂Ω shown at equal time
intervals between t = 0 and t = 2. (b) Growth of a Cassini oval |z2 − 1| = e2 with e = t + 1.001 between t = 0 and t = 1. (c)
Growth of the lemniscate |z4 − 1| = e4 with e(0) = 1.0001 between t = 0 and t = 0.25.

linear in cos 2θ . Equating like terms gives two ODEs for the unknown coefficients c and d:

a
(
cċ − ḋd

) = c2 + d2,

a
(
cḋ − dċ

) = −2cd. (4.1)

An alternative derivation of (4.1) uses the Schwarz function. First, note that by taking the conjugate
of z = cζ + d/ζ and using ζ = ζ−1 on ∂Ω , it follows in the limit z → ∞

S = d

c
z + c2 − d2

z
+ · · · , z → ∞. (4.2)

Next, since W = − log ζ ,

W = − log
( z

c

)
+ cd

z2 + · · · , z → ∞. (4.3)

Substituting (4.2) and (4.3) into (2.5) gives to O(1) and O(z−2)

a
d

dt

(
d

c

)
= −2

d

c
,

a

[
d

dt
(c2 − d2) + 2cd

d

dt

(
d

c

)]
= 2(c2 − d2), (4.4)

which can be shown to be equivalent to (4.1).
Since the conformal radius of the map f is c, then a ≡ c and the system (4.1) has solution

c = t + c0, d = c0d0

t + c0
, (4.5)

where c(0) = c0 and d(0) = d0. Thus the ellipse grows becoming more circular as the ratio |d/c|
decreases with increasing time t. An example with c0 = 1 and d0 = 0.7 is shown in Fig. 2a.
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380 N. R. MCDONALD AND S. J. HARRIS

4.2 Cassini oval and polynomial lemniscates

Let ∂Ω be a Cassini oval, an example of a polynomial lemniscate, given by |z2 − 1| = e2, where e > 1.
The conformal map from the exterior of the unit ζ -disk to the exterior of the Cassini oval is (Symm,
1967)

z =
√

e2ζ 2 + 1. (4.6)

The leading order term in the expansion of (4.6) as ζ → ∞ is eζ showing that the conformal radius
a ≡ e. Direct substitution of (4.6) into (2.8) putting ζ = exp(iθ) shows that it is an exact solution
provided ė = 1 and so e(t) = t + e0, where e0 = e(0) > 1.

Alternatively, the same result for e(t) can be obtained using the Schwarz function equation (2.5):
begin by noting

|z2 − 1| = e2 
⇒ |z2 − 1|2 = e4 or S2 = 1 + e4

z2 − 1
. (4.7)

From (4.7), to leading order as z → ∞, S2 → 1 + e4/z2, and hence Ṡ → 2e3ė/z2 and Sz → −e4/z3.
But it is known that as z → ∞, W → − log z and so (2.5) with a ≡ e gives, after simplification, ė = 1,
as found via the Polubarinova–Galin equation (2.8) approach. Figure 2b shows a growing Cassini oval.

That the Cassini oval is an exact solution is expected since it is a type of polynomial lemniscate:
Lundberg & Totik (2013) show that the reciprocal growth law of the type (2.1) (in the absence of the
conformal radius a which only affects the timescale of the evolution) preserves polynomial lemniscates.
In fact, for polynomial lemniscates of the form |zM − 1| = eM , M = 2, 3, · · · , the above steps can be
followed to show ė = e/a. With the realisation that the conformal map from the exterior of the unit ζ -
disk to Ω is z = M

√
eMζM + 1, it follows that the conformal radius a ≡ e and so ė = 1 for M = 2, 3, · · · .

Figure 2c shows an example of the growth of the lemniscate |z4 − 1| = e4 with e(0) = 1.0001.

5. Numerical procedure, examples and application to wildfire spread

5.1 Numerical method and results

The shape of a more general ∂Ω(t) is found by solving (2.8) numerically to find the map from the exterior
of the unit ζ -disk to Ω . The numerical procedure is based on the method in Dallaston & McCue (2013,
2016) and begins by writing the general form of the conformal map as a Laurent series

z = f (ζ , t) = a(t)ζ +
∞∑

k=0

ck(t)ζ
−k, (5.1)

where, with no loss of generality, the conformal radius a(t) > 0 is real, and ck(t) = ak(t) + ibk(t) are
complex functions in time. The numerical task is to determine the unknown coefficients in (5.1) and is
done approximately by truncating the series at N terms, giving n = 2(N +1)+1 = 2N +3 unknown real
functions in time: a(t), ak(t), bk(t), k = 0, 1, · · · , N. Selecting n equally spaced points around the unit
ζ -disk, the Polubarinova–Galin (PG) equation (2.8) becomes a system of n coupled ODEs determining
the time evolution of the n Laurent coefficients. The ODE system is solved using the MATLAB routine
ode15i.
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FREE BOUNDARY GROWTH PROBLEM 381

FIG. 3. Growth of various shapes from t = 0 to t = 1 with Laurent series truncation N = 128, (a) irregular pentagon, (b) irregular
object, (c) hourglass. (d) A lemniscate with e(0) = 1.01, M = 3 and N = 256.

The numerical method is tested by comparing results with the exact solutions of (2.1). The ellipse
has a conformal map immediately in the form of (5.1): z = a(t)ζ + c1(t)ζ

−1. The map of the general
polynomial lemniscate of degree M can also be written as a Laurent series

z = (eMζM + 1)1/M = eζ +
∞∑

k=1

(
1/M

k

)
(eζ )1−kM , (5.2)

where the identification a(t) = e(t) is made. The same set of points around the ζ -disk is mapped using
both the numerical and exact solutions for z, allowing for direct comparison. It is found that the distance
between corresponding exact and numerical points has a relative error of O(10−7) at any time during
the simulation.

Figure 3 gives examples of the evolution of the free boundary under (2.1) for a variety of shapes: an
irregular pentagon, an irregular object, an hourglass—all with Laurent series truncation N = 128—and
the lemniscate |z3 −1| = e3 with e(0) = 1.01, M = 3 and N = 256. The Laurent coefficients at t = 0 of
these shapes (excluding the lemniscate) are taken from Rycroft & Bazant (2016)—see their figures 5a, 2f
and 7a. In all plots, concave and convex regions are ‘smoothed out’ as each shape approaches a growing
circle. The timescale to which it reaches a circular shape (within some level of approximation) depends
on the initial shape; while the irregular pentagon has almost reached a circle in Fig. 3a, the hourglass
remains notably non-circular at t = 1 in Fig. 3c.

Many shapes, at least initially, are not well approximated by a truncated version of the Laurent
series (5.1). In such cases, the numerical approach is modified as follows: the conformal map of the
initial, arbitrary shape can be found numerically using the Schwarz–Christoffel (SC) Toolbox (Driscoll,
1996). The Toolbox function extermap is used, which finds the map g(ζ ) from the interior of the unit
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382 N. R. MCDONALD AND S. J. HARRIS

FIG. 4. Growth of various shapes from t = 0 to t = 1 with series truncation N = 128, (a) a square, (b) a blade.

ζ -disk to the exterior Ω of the free boundary. Then, a power series in ζ is added to the initial map g as
follows:

z = f (ζ , t) = a∗(t)g(ζ ) +
∞∑

k=0

ck(t)ζ
k, (5.3)

where a∗(0) = 1 and ck(0) = 0, ∀k. Note that (i) the series powers are opposite in sign from (5.1), to
accommodate the map g(ζ ) being from the interior of the ζ -disk, and (ii) the conformal radius is now
a(t) = a∗(t)A, where A is the conformal radius of the map g(ζ ).

As before, the series (5.3) is truncated at N terms and solved using ode15i. Note the SC Toolbox need
only be used once at the start of the numerical simulation. Figure 4 shows the evolution of two shapes
found using this method: a square and a blade (e.g. Gopal & Trefethen, 2019), which both expand and
smooth towards a circular shape, as expected.

The numerical method can also be used to find solutions to a more general growth law

vn = −
[

a

(
∂T

∂n

)]−α

, (5.4)

where the constant α > 0 is chosen to be positive for stability. In this case, the PG equation becomes

aα Re
[
ḟ ζ f ′

]
= |f ′|1+α . (5.5)

It is straightforward to show that a circle with ȧ = 1 is an exact solution of (5.5) ∀α. However, additional
exact solutions (e.g. ellipses, lemniscates) have not been found for α = 1. Figure 5 shows the evolution
of an hourglass with Laurent series truncation N = 128 from t = 0 to t = 1 under different values of
α: 0.1, 0.5, 1 and 2. It is observed that, for larger values of α, the hourglass evolves into a circular shape
more quickly than for smaller values. Comparing Fig. 5a and 5d shows this most clearly: the final free
boundary shape in Figure 5a still resembles the initial hourglass shape, whereas the final shape of Fig. 5d
is almost a circle.

5.2 Relation to the spread of wildfires

The increasing prevalence and danger of wildfires globally has led to a renewed effort in understanding
their complex behaviour and interactions with the atmosphere and the environment—see the recent
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FREE BOUNDARY GROWTH PROBLEM 383

FIG. 5. Growth of an hourglass from t = 0 to t = 1, series truncation N = 128, under the general growth law (5.5) where (a)
α = 0.1, (b) α = 0.5, (c) α = 1, (d) α = 2.

review article (Silva et al., 2022). A fundamental task is determining the evolution of the fire perimeter, or
fire line: the interface between burned and unburned regions. Convection and radiation are the principal
candidates for driving this evolution, with their combined effects often modelled by a constant normal
velocity, or rate of spread (ROS), of the fire line (e.g. Hilton et al., 2016, 2018; Harris & McDonald,
2022). Mathematically, this can be considered a free boundary problem with the fire line evolution
determined as part of the solution of the PDE system governing the wildfire dynamics. It is worth
speculating on the relevance in applying the free boundary problem of this work to wildfires in this
way. There are two appealing features in doing so.

First, the model does not impose an ad-hoc constant ROS; rather the ROS is deterministic, depending
on the gradient of the harmonic function T in Ω (the unburned region) via the growth law (2.1). The
quantity T can be thought of as temperature which is hottest T = 0 at the fire line ∂Ω: the ignition
temperature of the fuel. Away from the fire line, the temperature decreases such that T → −∞ as
r → ∞. Although this unbounded limit in T is physically unrealistic, the slow logarithmic decay in T
close to the fire line is the important property in this model. Since T is harmonic, its behaviour can be
interpreted physically as the diffusion of heat. While it should be cautioned that there is no observational
evidence that wildfires are driven diffusively, some wildfire models do explicitly include diffusive terms
for heat in the vicinity of the fire line, see e.g. Weber (1991).

Second, the model reproduces an enhanced ROS near concave regions of the fire line in comparison
with convex regions, a property commonly observed in wildfire evolution but often attributed to ad-hoc
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effects such as fire line curvature or fire-induced winds (e.g. Hilton et al., 2016, 2018). This property
is evident in Figs 2c and 3 with the fire line becoming more circular as time increases. Physically, the
fire grows by intense (diffusive) heating of surrounding unburned fuel which warm until they reach the
ignition temperature T = 0. Temperature contours in the unburned region are closer in convex regions,
resulting in a larger heat gradient there. Since the fire line progresses to the contour T = 0 at the same
instant, it does so at a greater normal velocity in the regions where the temperature gradient is less, as
modelled by the reciprocal growth law. Other choices of α > 0 (see (5.4)) also qualitatively reproduce
this behaviour, thus further investigation is required to determine which choice of α best models the fire
spread. Note the inclusion of the conformal radius factor in (2.1) does not affect the geometric evolution
of the free boundary. This implies that in the absence of other effects such as wind, the rate of change of
the conformal radius with time is constant. Thus, for a circular wildfire, the ROS is constant as supposed
in e.g. Anderson et al. (1982); Hilton et al. (2016, 2018).

6. Conclusion

Explicit solutions are found for a free boundary growth problem in which the normal velocity of elliptical
or lemniscatic boundaries is the reciprocal of the gradient of a harmonic function with a logarithmic
singularity at infinity. The methods are based on either the Schwarz function formulation of the free
boundary problem, or the Polubarinova–Galin equation for the conformal map from the growth domain
to the exterior of the unit disk. The latter method additionally provides the basis for a numerical approach,
enabling the evolution of more general initial shapes, and more general growth laws, to be computed.

It is speculated that the free boundary problem bears some resemblance to the growth of wildfires in
that it reproduces the behaviour of convex and concave portions of the fire boundary. It also provides a
dynamic model for the ROS of the fire line. Further research is required to assess its relevance, including
comparison with wildfire experiments and observations.

Further work focusing on multiply connected domains is of interest. In this respect, note that
lemniscates of Section 4.2 with 0 < e < 1 have disconnected boundaries and that increasing e represents
the growth and eventual merger of initially near-circular blobs. In wildfire modelling, the merger of fires,
including spot fires, is of particular interest (e.g. Storey et al., 2021).
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