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A B S T R A C T

This work presents a novel methodology for fatigue life reliability analysis using a newly developed Dual
Boundary Element Method-based Implicit Differentiation Method (DBEM-IDM) in shallow shell structures. The
proposed DBEM formulations evaluate stress intensity factors and fatigue life sensitivities in shallow shells
considering geometrical variables and curvature. The IDM formulations, obtained through direct differentiation
of the shallow shell DBEM formulations, uses the First-Order Reliability Method (FORM) to assess the reliability
index and probability of failure of shallow shell structures with multiple cracks. Two numerical examples were
simulated to illustrate the effectiveness of the proposed methodology. The first example examines a shallow
shell with a centre hole and cracks subjected to various loads. The critical crack length required to ensure
structural reliability and inspectability is determined. Fatigue reliability assessment is performed for the same
example, employing limit state functions expressed in terms of fatigue life. FORM results are compared with the
results of Monte Carlo Simulations (MCS), and provided a maximum difference of 3.67%. Parametric analyses
are conducted to identify significant variables that affect reliability, and it was found that precise determination
of design parameters is necessary to reduce the probability of failure, particularly for the Paris law constants.
The second example, featuring more complex geometry, involved assessing fatigue reliability in a cylindrical
shallow shell structure with multiple cracks. The results of this example indicate a 3.49% maximum difference
between FORM and MCS. The results exhibit a low error compared to the MCS, and the inherent efficiency of
the IDM-based FORM underscores its suitability for addressing uncertainty in reliability analysis.
1. Introduction

In engineering problems, the existence of uncertainties is an in-
evitable problem. Traditionally, uncertainties have been managed in
a deterministic manner by introducing safety factors to avoid catas-
trophic failure. However, this approach remains limited in its ability
to provide insights into how individual parameters exert influence over
the overarching system performance. In contrast, reliability analysis has
emerged as a method tailored to address the stochastic characteristics of
variables within the design process. This entails defining a performance
criterion for a structure and offering the likelihood of successfully
meeting this criterion [1]. Reliability analysis provides a framework to
comprehend the impact of each parameter on the overall reliability of
the structure, thereby enabling engineers to prioritize the most crucial
factors during the design process.

The application of reliability techniques to structural problems
has been conducted by the research community with a diverse array
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of methods. Notable examples include the application of reliability
analysis to diverse domains such as nano-structures [2], corrosion
in pipelines [3], and bimaterial cracked structures [4]. In the field
of reliability analysis, methodologies can be broadly classified into
two categories: direct and indirect methods. Direct methods, such
as Monte Carlo Simulations (MCS) [5], have been widely utilized.
MCS entails the exploration of possible uncertainties through exten-
sive sampling. Furthermore, the fusion of such sampling techniques
with meta-modelling methods [6] has significantly contributed to en-
hancing computational efficiency. Indirect techniques, such as the
First-Order Reliability Method (FORM) and Second-Order Reliability
Method (SORM) [7], approximate the limit state function, defining
the boundary between success and failure, through first and second
order Taylor expansions respectively. A critical aspect of FORM and
SORM is the evaluation of the sensitivity of the limit state function
to parameter variations. Commonly employed techniques for deriving
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this sensitivity include the Finite Difference Method (FDM) and Implicit
Differentiation Method (IDM). The FDM relies on finite differences to
compute derivatives. Its precision is determined by the chosen step
size, often requiring a convergence test to determine an optimal value
for choosing the step size. Conversely, the IDM directly differentiates
the limit state function, offering an enhancement in computational
efficiency over the FDM [8].

To enhance computational efficiency, this study employs the Dual
Boundary Element Method (DBEM) coupled with the Crack Surface
Displacement Extrapolation (CSDE) technique, to assess the sensitivity
of crack tip stress intensity factors with respect to changes in design
parameters. The DBEM, an effective alternative to the Finite Element
Method (FEM) and Virtual Element Method (VEM) [9,10] for crack
problems, only requires the modelling of the outer boundary of the
structure, with cracks treated as additional boundaries, facilitating
automatic crack advancement without the need for re-meshing. Such
an approach substantially reduces computational overhead, particu-
larly evident in fatigue crack growth analyses. The formulation of the
Boundary Element Method (BEM) can be categorized into two distinct
approaches. The first is the direct BEM formulation, wherein the system
of equations primarily involves unknowns related to displacement and
traction fields. The second approach is the indirect BEM formulation,
which is formulated based on the fictitious fluxes. This latter formula-
tion was initially developed by Crouch [11,12], and its application to
crack problems using the displacement discontinuity method has been
detailed in [13,14]. This study, however, is predominantly focused on
the direct BEM formulation, examining its application and effectiveness
in addressing the crack-related problem in shallow shell structures.
A comprehensive introduction to the DBEM formulation and stress
intensity factor evaluation can be found in [15].

Shallow shell problems are an important subject in engineering
design processes, owing to the widespread use of shallow shells in
aircraft and naval structures due to their favourable attributes of low
weight and high strength. The shallow shell formulations of the DBEM
were first developed based on the 2D BEM formulation proposed by
Portela [16]. Based on this work, an advancement was made by Dirgan-
tara and Aliabadi [17,18] for bending problems in shallow shell struc-
tures, drawing from the classic theory [19] and Reissner’s theory for
thin elastic shells [20], which considered transverse normal stress and
transverse shear deformation. Reissner’s plate theory was pivotal in
deriving the fundamental solutions, with the Dual Reciprocity Method
(DRM) [21] employed to transfer the domain integrals to boundary
integrals. This approach has found applications across various works,
such as the analysis of assembled plate structures [22], addressing
buckling concerns in shallow shells [23], and the study of composite
shallow shell structures [24]. Additionally, fatigue assessments have
been conducted, encompassing problems such as crack propagation in
cortical bone [25], the analysis of pressurized shells [26], and dynamic
fracture assessments in plates [27,28]. In this work, the methodology
proposed in [17] is employed to evaluate stress intensity factors and
their sensitivities with respect to the design parameters of a shallow
shell structure subjected to combining tension, bending and uniform
pressure load.

The majority of indirect approaches to reliability analysis in the
existing literature have predominantly favoured the FEM [29–31].
However, little attention has been paid to the application of the shallow
shell DBEM in reliability analysis. The studies conducted by [8,32]
included employing the Boundary Element Method (BEM) on a 2D
structure, incorporating uncertainties related to geometry and material
properties. Within these contexts, the limit state function, expressed
in terms of maximum stress within the structure was used in both the
FORM and the SORM. Similar work has been conducted in [33], where
BEM was incorporated with FORM, and the results were compared
against MCS. Notably, the implications of the coefficient of variance
(COV) embedded within the design parameters were considered. Fur-
2

ther works with the application of BEM include a modified version
of BEM, the Spline Fictitious Boundary Element Method (SFBEM),
which was employed to conduct reliability analysis on a Reissner plate
bending problem [34] with the definition of the failure state based on
a threshold bending moment within the structure.

Fatigue is of high interest in the field of structural design. The
evaluation of stress intensity factors (SIFs) and the variations in design
parameters stand as an important subject in the domain of failure
analysis. Numerous studies have emerged in the field of reliability
analysis concerning cracked structures. Several notable works can be
found. For instance, in the work presented by [35], a plate subjected
to the combined effects of bending, tension, and domain load, and
featuring a centrally situated slant crack, was meticulously simulated
using the DBEM. Both the IDM and the FDM were employed to examine
the sensitivity of crack front SIFs. Furthermore, the fatigue reliability
assessment was proposed in [36], where the durability of a railway steel
component was assessed to determine its design service life. Addition-
ally, a novel approach for sensitivity evaluation was proposed in [37],
involving derivatives with respect to the local coordinate system to
accurately account for directional changes during crack propagation.
Similar work can be found in [38], where the consideration extends to
structures bearing multiple cracks.

Despite the existing research in this domain, a study on the ap-
plication of the DBEM to fatigue reliability analysis for shallow shell
problems has not yet been conducted. This study aims to extend the
work initiated by Morse [35] and Huang [37] to formulate a DBEM-
based IDM specific to cracked shallow shell problems, thereby enabling
an accurate assessment of SIF sensitivities. Within this framework, a fa-
tigue reliability assessment is conducted with the FORM, accounting for
the uncertainties inherent in fatigue crack growth. The outcomes from
this fatigue reliability assessment hold the potential to contribute to
determining a structure’s service life or identifying a suitable inspection
interval in real-world engineering scenarios.

The paper’s structure unfolds as follows: Section 2 outlines the
methodology encompassing DBEM formulations and their associated
derivatives. In addition, a brief introduction of the FORM is given.
In Section 3.1, a numerical case study is presented, featuring a shell
structure with two cracks and a central hole in the reliability analysis.
The results of the reliability analysis are presented. A second numerical
example in Section 3.2 involving more complex geometry was used for
fatigue life reliability assessment to further illustrate possible practical
applications of the DBEM-IDM formulations. A comparison of results
obtained from FORM and MCS is provided. Further elaboration on
the formulation of stress intensity factor derivatives can be found
in Appendix.

2. Methodology

This section introduces the formulation of the Dual Boundary Ele-
ment Method (DBEM) and the Implicit Differentiation Method (IDM)
for shallow shell structures, encompassing the assessment of Stress
Intensity Factors (SIFs) and their derivatives. Additionally, a brief
overview of reliability analysis using the Most-Probable Point (MPP)
method is provided.

2.1. DBEM for shallow shell structures

This section introduces the DBEM formulations developed for shal-
low shell structures, building upon the work by [17,18]. Derivatives
of boundary integral equations, fundamental solutions, and particular
solutions for the DRM technique were outlined in a previous study
by [39]; hence, this paper focuses solely on the DBEM formulations.
Latin letter indices (e.g., 𝑖, 𝑗, 𝑘) range from 1 to 3, while Greek letter

indices (e.g., 𝛼, 𝛽) span from 1 to 2.
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Fig. 1. A structure containing upper and lower crack surfaces labelled as 𝛤 + and 𝛤 −.
The structure’s overall boundary is composed of 𝛤 = 𝛤 𝑒+𝛤 ++𝛤 −, where 𝛤 𝑒 represents
the outer boundary. The enclosed domain within this boundary is designated as 𝛺. The
source points corresponding to the upper and lower crack surfaces are denoted as 𝑥+
and 𝑥−, respectively.

Consider a structure featuring a crack with upper and lower crack
surfaces as shown in Fig. 1, characterized by principal curvatures
𝜅11 = 1∕𝑅1 and 𝜅22 = 1∕𝑅2, where 𝑅1 and 𝑅2 represent the radius
of curvature of the shell in the 𝑥1 and 𝑥2 directions, respectively. In
DBEM, the crack surfaces are modelled as two coinciding surfaces:
the collocation on the point on the upper surface (𝑥+) is governed by
displacement integral equations, and the lower surface point (𝑥−) is
governed by traction integral equations.

The displacement integral equations for the upper surface are:
1
2
𝑤𝑗

(

𝑥+
)

+ 1
2
𝑤𝑗 (𝑥−) + −

∫𝛤
𝑃 ∗
𝑖𝑗
(

𝑥+, 𝑥
)

𝑤𝑗 (𝑥)𝑑𝛤 (𝑥)

=∫𝛤
𝑊 ∗
𝑖𝑗
(

𝑥+, 𝑥
)

𝑝𝑗 (𝑥)𝑑𝛤 (𝑥)

−∫𝛺
𝑊 ∗
𝑖3
(

𝑥+, 𝑋
)

𝜅𝛼𝛽𝐵
1 − 𝜈
2

[

𝑢𝛼,𝛽 (𝑋) + 𝑢𝛽,𝛼(𝑋)

+ 2𝜈
1 − 𝜈

𝑢𝜙,𝜙(𝑋)𝛿𝛼𝛽
]

𝑑𝛺(𝑋)

−∫𝛺
𝑊 ∗
𝑖3
(

𝑥+, 𝑋
)

𝜅𝛼𝛽𝐵
(

(1 − 𝜈)𝜅𝛼𝛽 + 𝜈𝛿𝛼𝛽𝜅𝜙𝜙
)

𝑤3(𝑋)𝑑𝛺(𝑋)

+∫𝛺
𝑊 ∗
𝑖3
(

𝑥+, 𝑋
)

𝑞3(𝑋)𝑑𝛺(𝑋)

(1)

and
1
2
𝑢𝛼

(

𝑥+
)

+ 1
2
𝑢𝛼 (𝑥−) + −

∫𝛤
𝑇 ∗
𝜃𝛼

(

𝑥+, 𝑥
)

𝑢𝛼(𝑥)𝑑𝛤 (𝑥)

+ ∫𝛤
𝑈∗
𝜃𝛼

(

𝑥+, 𝑥
)

𝐵
[

𝜅𝛼𝛽 (1 − 𝜈) + 𝜈𝛿𝛼𝛽𝜅𝜙𝜙
]

𝑤3(𝑥)𝑛𝛽 (𝑥)𝑑𝛤 (𝑥)

− ∫𝛺
𝑈∗
𝜃𝛼

(

𝑥+, 𝑋
)

𝐵
[

𝜅𝛼𝛽 (1 − 𝜈) + 𝜈𝛿𝛼𝛽𝜅𝜙𝜙
]

𝑤3,𝛽 (𝑋)𝑑𝛺(𝑋)

= ∫𝛤
𝑈∗
𝜃𝛼

(

𝑥+, 𝑥
)

𝑡𝛼(𝑥)𝑑𝛤 (𝑥) + ∫𝛺
𝑈∗
𝜃𝛼

(

𝑥+, 𝑋
)

𝑞𝛼(𝑋)𝑑𝛺(𝑋)

(2)

where −∫ represents the Cauchy principal value integral. Here, 𝑥 denotes
the field points. The tension stiffness is given by 𝐵 = 𝐸ℎ3∕[12(1 − 𝜈)],
where 𝐸 denotes the Young’s modulus, ℎ is the thickness of the shell,
and 𝜈 is the Poisson’s ratio. 𝜅𝛼𝛽 is the curvature. 𝑥 ∈ 𝛤 and 𝑋 ∈ 𝛺 repre-
sent field points on the boundary and within the domain, respectively.
Within the equations presented above, 𝑤1 and 𝑤2 denote the rotations
in the 𝑥1 and 𝑥2 directions, respectively. 𝑤3 corresponds to the out-of-
plane displacement, while 𝑢1 and 𝑢2 represent in-plane displacements
along the 𝑥1 and 𝑥2 directions. Similarly, 𝑝1 and 𝑝2 denote bending
tractions, while 𝑝3 denotes shear traction. Additionally, 𝑡1 and 𝑡2 denote
membrane tractions in the 𝑥 and 𝑥 directions, respectively. The terms
3

1 2
𝑞𝛼 and 𝑞3 refer to membrane body forces and domain pressure forces,
respectively. The symbols 𝑊 ∗

𝑖𝑗 and 𝑈∗
𝜃𝛼 represent fundamental solutions

for displacements, while 𝑃 ∗
𝑖𝑗 and 𝑇 ∗(𝑖)

𝜃𝛼 represent fundamental solutions
for tractions. The explicit expressions for these fundamental solutions
can be found in [18].

The traction integral equations for the collocation on the lower
crack surface can be written as:

1
2
𝑝𝛼 (𝑥−) −

1
2
𝑝𝛼

(

𝑥+
)

+ 𝑛𝛽 (𝑥−) =∫𝛤
𝑃 ∗
𝛼𝛽𝛾 (𝑥

−, 𝑥)𝑤𝛾 (𝑥)𝑑𝛤 (𝑥)

+ 𝑛𝛽 (𝑥−) −∫𝛤
𝑃 ∗
𝛼𝛽3 (𝑥

−, 𝑥)𝑤3(𝑥)𝑑𝛤 (𝑥)

= 𝑛𝛽 (𝑥−) −∫𝛤
𝑊 ∗
𝛼𝛽𝛾 (𝑥

−, 𝑥) 𝑝𝛾 (𝑥)𝑑𝛤 (𝑥) + 𝑛𝛽 (𝑥−)∫𝛤
𝑊 ∗
𝛼𝛽3 (𝑥

−, 𝑥) 𝑝3(𝑥)𝑑𝛤 (𝑥)

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝑣
2

(

𝑢𝜃,𝜓 (𝑋) + 𝑢𝜓,𝜃(𝑋) + 2𝑣
1 − 𝜈

𝑢𝜙,𝜙(𝑋)𝛿𝜃𝜓
)

× 𝑊 ∗
𝛼𝛽3(𝑥

−, 𝑋)𝑑𝛺(𝑋)

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

(

(1 − 𝑣)𝜅𝜃𝜓 + 𝑣𝛿𝜃𝜓𝜅𝜙𝜙
)

𝑤3(𝑋)𝑊 ∗
𝛼𝛽3 (𝑥

−, 𝑋) 𝑑𝛺(𝑋)

+ 𝑛𝛽 (𝑥−)∫𝛺
𝑊 ∗
𝛼𝛽3 (𝑥

−, 𝑋) 𝑞3𝑑𝛺(𝑋)

(3)

and

1
2
𝑝3 (𝑥−) −

1
2
𝑝3

(

𝑥+
)

+ 𝑛𝛽 (𝑥−) −∫𝛤
𝑃 ∗
3𝛽𝛾 (𝑥

−, 𝑥)𝑤𝛾 (𝑥)𝑑𝛤 (𝑥)

+ 𝑛𝛽 (𝑥−) =∫𝛤
𝑃 ∗
3𝛽3 (𝑥

−, 𝑥)𝑤3(𝑥)𝑑𝛤 (𝑥)

= 𝑛𝛽 (𝑥−)∫𝛤
𝑊 ∗

3𝛽𝛾 (𝑥
−, 𝑥) 𝑝𝛾 (𝑥)𝑑𝛤 (𝑥) + 𝑛𝛽 (𝑥−) −∫𝛤

𝑊 ∗
3𝛽3 (𝑥

−, 𝑥) 𝑝3(𝑥)𝑑𝛤 (𝑥)

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝜈
2

(

𝑢𝜃,𝜓 (𝑋) + 𝑢𝜓,𝜃(𝑋) + 2𝜈
1 − 𝜈

𝑢𝜙,𝜙(𝑋)𝛿𝜃𝜓
)

× 𝑊 ∗
3𝛽3 (𝑥

−, 𝑋) 𝑑𝛺(𝑋)

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

(

(1 − 𝜈)𝜅𝜃𝜓 + 𝜈𝛿𝜃𝜓𝜅𝜙𝜙
)

𝑤3(𝑋)𝑊 ∗
3𝛽3 (𝑥

−, 𝑋) 𝑑𝛺(𝑋)

+ 𝑛𝛽 (𝑥−)∫𝛺
𝑊 ∗

3𝛽3 (𝑥
−, 𝑋) 𝑞3𝑑𝛺(𝑋)

(4)

and
1
2
𝑡𝛼 (𝑥−) −

1
2
𝑡𝛼
(

𝑥+
)

+ 𝑛𝛽 (𝑥−) =∫𝛤
𝑇 ∗
𝛼𝛽𝛾 (𝑥

−, 𝑥) 𝑢𝛾 (𝑥)𝑑𝛤 (𝑥)

+ 𝑛𝛽 (𝑥−) −∫𝛤
𝑈∗
𝛼𝛽𝛾 (𝑥

−, 𝑥)𝐵
[

𝜅𝜃𝜓 (1 − 𝜈) + 𝜈𝛿𝜃𝜓𝜅𝜙𝜙
]

𝑤3(𝑥)𝑛𝜓 (𝑥)𝑑𝛤 (𝑥)

− 𝑛𝛽 (𝑥−)∫𝛺
𝑈∗
𝛼𝛽𝛾 (𝑥

−, 𝑋)𝐵[𝜅𝜃𝜓 (1 − 𝜈) + 𝜈𝛿𝜃𝜓𝜅𝜙𝜙]𝑤3,𝛽 (𝑋)𝑑𝛺(𝑋)

= 𝑛𝛽 (𝑥−) −∫𝛤
𝑈∗
𝛼𝛽𝛾 (𝑥

−, 𝑥) 𝑡𝛾 (𝑥)𝑑𝛤 (𝑥) + 𝑛𝛽 (𝑥−)∫𝛺
𝑈∗
𝛼𝛽𝛾 (𝑥

−, 𝑋)𝑞𝛾𝑑𝛺(𝑋)

+ 1
2
𝑛𝛽 (𝑥−)𝐵

[

(1 − 𝜈)𝜅𝜃𝜓 + 𝜈𝛿𝜃𝜓𝜅𝜙𝜙
]

𝑤3 (𝑥−)

(5)

The detailed expressions for the kernels 𝑃 ∗
𝛼𝛽𝛾 , 𝑊

∗
𝛼𝛽𝛾 , 𝑇

∗
𝛼𝛽𝛾 , and 𝑈∗

𝛼𝛽𝛾 are
outlined in [18]. 𝑛 is the outward unit vector to the shell boundary.
The symbol =∫ represents the Hadamard principal value. Eqs. (1) to (2)
and Eqs. (3) to (5) represent the displacement and traction integral
equations for collocation on the top and bottom boundaries of the
crack, respectively. For the rest of the boundaries 𝛤 𝑒, the collocation
can be conducted using the traditional BEM formulations.

It is important to note that Eqs. (1) to (5) encompass the domain
integral ∫𝛺. This domain integral can be transformed into a boundary
integral via the application of the Dual Reciprocity Method (DRM). This
process involves the utilization of the particular solutions, namely, (�̂�𝛾𝑚𝛼 ,
𝑡𝛾𝑚𝛼), which are derived from solving the Galerkin vector for 2D plane
stress, and (�̂�𝑖𝑚𝛼 , �̂�𝑖𝑚𝛼) for plate bending problem, obtained through the
implementation of radial basis functions.
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In order to address the improper integration that appears in the
boundary integral equations, specialized regularization techniques
were employed. Specifically, the terms such as 𝑊 ∗

𝛼𝛽3, 𝑊
∗
3𝛽𝛾 , and 𝑄∗

3𝛽
exhibit a singularity of order 𝑂(ln(𝑟)), denoting a weak singularity that
can be effectively managed through the Telles transformation.

Moreover, integration of the terms 𝑃 ∗
𝑖𝑗 , 𝑇

∗
𝜃𝛼 , 𝑃

∗
𝛼𝛽3, 𝑃

∗
3𝛽𝛾 , 𝑊

∗
𝛼𝛽𝛾 , 𝑊

∗
3𝛽3,

∗
𝛼𝛽𝛾 arises a strong singularity of order 𝑂(1∕𝑟). This strong singular-
ty can be appropriately addressed using the singularity subtraction
ethod, based on the first term of Taylor expansion around the sin-

ularity point. Subsequently, the singularity term can be integrated
nalytically, with the aid of the Cauchy principal value.

Furthermore, the integration of 𝑇 (𝑖)∗
𝛼𝛽𝛾 introduces a hypersingular

erm of order 𝑂(1∕𝑟2). The singularity subtraction method remains
pplicable in this case, incorporating both the first and second terms
f the Taylor expansion around the singularity. Allowing for analytical
ntegration via the Hadamard principal value.

Lastly, for the remaining terms, namely, 𝑃 ∗
𝛼𝛽𝛾 and 𝑃 ∗

3𝛽3, which
xhibit a singularity of order 𝑂(1∕𝑟2 + ln(𝑟)), the separation approach is
pplied, effectively separating the hypersingular and weakly singular
omponents and the corresponding regularization approach can be
pplied.

The basic DBEM of the shallow shell was proposed by Dirgan-
ara [18] and further improved by Wen [21]. The details and com-
rehensive insights into the DRM formulation and the treatment of
ingularity are provided in the corresponding reference.

The formulations applied in the DBEM employ a system of equa-
ions denoted as 𝐇𝐮 = 𝐆𝐭, in which 𝐇 and 𝐆 represent the coefficient
atrices. The vectors 𝐮 and 𝐭 encompass both known and unknown
isplacements and tractions. By rearranging the system equation, a
ector labelled as 𝐗 is introduced to encompass all the unknowns, while
ector 𝐅 contains all the known boundary displacements and tractions.
s a result, the system of equations can be succinctly reformulated as:

𝐗 = 𝐅 (6)

.2. DBEM-based IDM formulations with respect to geometric variable 𝑍𝑔
or shallow shells

A critical aspect of the FORM is to evaluate the sensitivity of the
imit state function to various design parameters. This section presents
he derivatives of the DBEM boundary integral equations with respect
o geometrical variables.

Changing the geometrical parameters does not affect the values of
he curvature, therefore for simplification, the constant term 𝐶𝜅1 =
(

(1 − 𝜈)𝜅𝛼𝛽 + 𝜈𝛿𝛼𝛽𝜅𝜙𝜙
)

is introduced. The derivatives of the DBEM
isplacement integral equations applied for collocations on the upper
rack surfaces (as given in Eqs. (1) to (2)) are:

1
2
𝑤𝑗,𝑔

(

𝑥+
)

+ 1
2
𝑤𝑗,𝑔 (𝑥−) + −

∫𝛤

[

𝑃 ∗
𝑖𝑗,𝑔𝑤𝑗 + 𝑃

∗
𝑖𝑗𝑤𝑗,𝑔

]

𝑑𝛤

= ∫𝛤

[

𝑊 ∗
𝑖𝑗,𝑔𝑝𝑗 +𝑊

∗
𝑖𝑗 𝑝𝑗,𝑔

]

𝑑𝛤

− ∫𝛺
𝑊 ∗
𝑖3,𝑔𝜅𝛼𝛽𝐵

1 − 𝜈
2

[

𝑢𝛼,𝛽 + 𝑢𝛽,𝛼 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝛿𝛼𝛽

]

𝑑𝛺

− ∫𝛺
𝑊 ∗
𝑖3𝜅𝛼𝛽𝐵

1 − 𝜈
2

[

𝑢𝛼,𝛽𝑔 + 𝑢𝛽,𝛼𝑔 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝑔𝛿𝛼𝛽

]

𝑑𝛺

− ∫𝛺

[

𝑊 ∗
𝑖3,𝑔𝜅𝛼𝛽𝐶𝜅1𝑤3 +𝑊 ∗

𝑖3𝜅𝛼𝛽𝐶𝜅1𝑤3,𝑔

]

𝑑𝛺

+
[

𝑊 ∗ 𝑞3 +𝑊 ∗𝑞3,𝑔
]

𝑑𝛺

(7)
4

∫𝛺 𝑖3,𝑔 𝑖3
and

1
2
𝑢𝛼,𝑔

(

𝑥+
)

+ 1
2
𝑢𝛼,𝑔 (𝑥−) + −

∫𝛤

[

𝑇 ∗
𝜃𝛼,𝑔𝑢𝛼 + 𝑇

∗
𝜃𝛼𝑢𝛼,𝑔

]

𝑑𝛤

+ ∫𝛤

[

𝑈∗
𝜃𝛼,𝑔𝐶𝜅1𝑤3𝑛𝛽 + 𝑈∗

𝜃𝛼𝐶𝜅1𝑤3,𝑔𝑛𝛽 + 𝑈∗
𝜃𝛼𝐶𝜅1𝑤3𝑛𝛽,𝑔

]

𝑑𝛤

− ∫𝛺

[

𝑈∗
𝜃𝛼,𝑔𝐶𝜅1𝑤3,𝛽 + 𝑈∗

𝜃𝛼𝐶𝜅1𝑤3,𝛽𝑔

]

𝑑𝛺

= ∫𝛤

[

𝑈∗
𝜃𝛼,𝑔𝑡𝛼 + 𝑈

∗
𝜃𝛼𝑡𝛼,𝑔

]

𝑑𝛤 + ∫𝛺

[

𝑈∗
𝜃𝛼,𝑔𝑞𝛼 + 𝑈

∗
𝜃𝛼𝑞𝛼,𝑔

]

𝑑𝛺

(8)

imilarly, the constant term 𝐶𝜅2 = 𝐵
(

(1 − 𝜈)𝜅𝜃𝜓 + 𝜈𝛿𝜃𝜓𝜅𝜙𝜙
)

is intro-
uced. The derivatives of the DBEM traction integral equations for
ollocations on the lower crack surfaces (Eqs. (3) to (5)) are:

1
2
𝑝𝛼,𝑔 (𝑥−) −

1
2
𝑝𝛼,𝑔

(

𝑥+
)

+ 𝑛𝛽,𝑔 (𝑥−) =∫𝛤
𝑃 ∗
𝛼𝛽𝛾𝑤𝛾𝑑𝛤

+ 𝑛𝛽 (𝑥−) =∫𝛤

[

𝑃 ∗
𝛼𝛽𝛾,𝑔𝑤𝛾 + 𝑃

∗
𝛼𝛽𝛾𝑤𝛾,𝑔

]

𝑑𝛤

+ 𝑛𝛽,𝑔 (𝑥−) −∫𝛤
𝑃 ∗
𝛼𝛽3𝑤3𝑑𝛤 + 𝑛𝛽 (𝑥−)∫𝛤

[

𝑃 ∗
𝛼𝛽3,𝑔𝑤3 + 𝑃 ∗

𝛼𝛽3𝑤3,𝑔

]

𝑑𝛤

= 𝑛𝛽,𝑔 (𝑥−) −∫𝛤
𝑊 ∗
𝛼𝛽𝛾𝑝𝛾𝑑𝛤 + 𝑛𝛽 (𝑥−)−∫𝛤

[

𝑊 ∗
𝛼𝛽𝛾,𝑔𝑝𝛾 +𝑊

∗
𝛼𝛽𝛾𝑝𝛾,𝑔

]

𝑑𝛤

+ 𝑛𝛽,𝑔 (𝑥−)∫𝛤
𝑊 ∗
𝛼𝛽3𝑝3𝑑𝛤 + 𝑛𝛽 (𝑥−)∫𝛤

[

𝑊 ∗
𝛼𝛽3,𝑔𝑝3 +𝑊

∗
𝛼𝛽3𝑝3,𝑔

]

𝑑𝛤

− 𝑛𝛽,𝑔 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝜈
2

(

𝑢𝜃,𝜓 + 𝑢𝜓,𝜃 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝛿𝜃𝜓

)

𝑊 ∗
𝛼𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝜈
2

(

𝑢𝜃,𝜓𝑔 + 𝑢𝜓,𝜃𝑔 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝑔𝛿𝜃𝜓

)

𝑊 ∗
𝛼𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝜈
2

(

𝑢𝜃,𝜓 + 𝑢𝜓,𝜃 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝛿𝜃𝜓

)

𝑊 ∗
𝛼𝛽3,𝑔𝑑𝛺

− 𝑛𝛽,𝑔 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐶𝜅2𝑤3𝑊

∗
𝛼𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐶𝜅2

[

𝑤3,𝑔𝑊
∗
𝛼𝛽3 +𝑤3𝑊

∗
𝛼𝛽3,𝑔

]

𝑑𝛺

+ 𝑛𝛽,𝑔 (𝑥−)∫𝛺
𝑊 ∗
𝛼𝛽3𝑞3𝑑𝛺 + 𝑛𝛽 (𝑥−)∫𝛺

[

𝑊 ∗
𝛼𝛽3,𝑔𝑞3 +𝑊

∗
𝛼𝛽3𝑞3,𝑔

]

𝑑𝛺

(9)

nd

1
2
𝑝3,𝑔 (𝑥−) −

1
2
𝑝3,𝑔

(

𝑥+
)

+ 𝑛𝛽,𝑔 (𝑥−) −∫𝛤
𝑃 ∗
3𝛽𝛾𝑤𝛾𝑑𝛤

+ 𝑛𝛽 (𝑥−) −∫𝛤

[

𝑃 ∗
3𝛽𝛾,𝑔𝑤𝛾 + 𝑃

∗
3𝛽𝛾𝑤𝛾,𝑔

]

𝑑𝛤

+ 𝑛𝛽,𝑔 (𝑥−) =∫𝛤
𝑃 ∗
3𝛽3𝑤3𝑑𝛤 + 𝑛𝛽 (𝑥−) =∫𝛤

[

𝑃 ∗
3𝛽3,𝑔𝑤3 + 𝑃 ∗

3𝛽3𝑤3,𝑔

]

𝑑𝛤

= 𝑛𝛽,𝑔 (𝑥−)∫𝛤
𝑊 ∗

3𝛽𝛾𝑝𝛾𝑑𝛤 + 𝑛𝛽 (𝑥−)∫𝛤

[

𝑊 ∗
3𝛽𝛾,𝑔𝑝𝛾 +𝑊

∗
3𝛽3𝑝𝛾,𝑔

]

𝑑𝛤

+ 𝑛𝛽,𝑔 (𝑥−) −∫𝛤
𝑊 ∗

3𝛽3𝑝3𝑑𝛤 + 𝑛𝛽 (𝑥−) −∫𝛤

[

𝑊 ∗
3𝛽3,𝑔𝑝3 +𝑊

∗
3𝛽3𝑝3,𝑔

]

𝑑𝛤

− 𝑛𝛽,𝑔 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝜈
2

(

𝑢𝜃,𝜓 + 𝑢𝜓,𝜃 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝛿𝜃𝜓

)

𝑊 ∗
3𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝜈
2

[(

𝑢𝜃,𝜓𝑔 + 𝑢𝜓,𝜃𝑔 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝑔𝛿𝜃𝜓

)

𝑊 ∗
3𝛽3

+
(

𝑢𝜃,𝜓 + 𝑢𝜓,𝜃 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝛿𝜃𝜓

)

𝑊 ∗
3𝛽3,𝑔

]

𝑑𝛺

− 𝑛𝛽,𝑔 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐶𝜅2𝑤3𝑊

∗
3𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐶𝜅2

[

𝑤3,𝑔𝑊
∗
3𝛽3 +𝑤3𝑊

∗
3𝛽3,𝑔

]

𝑑𝛺

+ 𝑛𝛽,𝑔 (𝑥−) 𝑊 ∗ 𝑞3𝑑𝛺 + 𝑛𝛽 (𝑥−)
[

𝑊 ∗ 𝑞3 +𝑊 ∗ 𝑞3,𝑔
]

𝑑𝛺

(10)
∫𝛺 3𝛽3 ∫𝛺 3𝛽3,𝑔 3𝛽3
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c

𝜅
v
𝜅
o
I
f

c
a

=

−

−

+

a

w

a

and

1
2
𝑡𝛼,𝑔 (𝑥−) −

1
2
𝑡𝛼,𝑔

(

𝑥+
)

+ 𝑛𝛽,𝑔 (𝑥−) =∫𝛤
𝑇 ∗
𝛼𝛽𝛾𝑢𝛾𝑑𝛤

+ 𝑛𝛽 (𝑥−) =∫𝛤

[

𝑇 ∗
𝛼𝛽𝛾,𝑔𝑢𝛾 + 𝑇

∗
𝛼𝛽𝛾𝑢𝛾,𝑔

]

𝑑𝛤

+ 𝑛𝛽,𝑔(𝑥−)−∫𝛤
𝑈∗
𝛼𝛽𝛾𝐶𝜅2𝑤3𝑛𝜓 (𝑥)𝑑𝛤 + 𝑛𝛽 (𝑥−)−∫𝛤

𝑈∗
𝛼𝛽𝛾,𝑔𝐶𝜅2𝑤3𝑛𝜓𝑑𝛤

+ 𝑛𝛽 (𝑥−) −∫𝛤
𝑈∗
𝛼𝛽𝛾𝐶𝜅2

[

𝑤3,𝑔𝑛𝜓 (𝑥) +𝑤3𝑛𝜓,𝑔
]

𝑑𝛤

− 𝑛𝛽,𝑔 (𝑥−)∫𝛺
𝑈∗
𝛼𝛽𝛾𝐶𝜅2𝑤3,𝛽𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺

[

𝑈∗
𝛼𝛽𝛾,𝑔𝐶𝜅2𝑤3,𝛽 + 𝑈∗

𝛼𝛽𝛾𝐶𝜅2𝑤3,𝛽𝑔

]

𝑑𝛺

= 𝑛𝛽,𝑔 (𝑥−) −∫𝛤
𝑈∗
𝛼𝛽𝛾 𝑡𝛾𝑑𝛤 + 𝑛𝛽 (𝑥−) −∫𝛤

[

𝑈∗
𝛼𝛽𝛾,𝑔𝑡𝛾 + 𝑈

∗
𝛼𝛽𝛾 𝑡𝛾,𝑔

]

𝑑𝛤

+ 𝑛𝛽,𝑔 (𝑥−)∫𝛺
𝑈∗
𝛼𝛽𝛾𝑞𝛾𝑑𝛺 + 𝑛𝛽 (𝑥−)∫𝛺

[

𝑈∗
𝛼𝛽𝛾,𝑔𝑞𝛾 + 𝑈

∗
𝛼𝛽𝛾𝑞𝛾,𝑔

]

𝑑𝛺

+ 1
2
𝑛𝛽,𝑔 (𝑥−)𝐶𝜅2𝑤3 (𝑥−) +

1
2
𝑛𝛽 (𝑥−)𝐶𝜅2𝑤3,𝑔 (𝑥−)

(11)

The notation (),𝑔 represents the derivatives with respect to 𝑍𝑔 . The
expressions for the derivatives of the fundamental solutions and kernels
can be found in the work by Morse [35], which addresses plate bending
problems. Additionally, the derivatives of the particular solutions for
the DRM can be found in previous work [39].

The system of equations for the IDM-based DBEM formulation is
represented as 𝐇,𝐠𝐮 + 𝐇𝐮,𝐠 = 𝐆,𝐠𝐭 + 𝐆𝐭 ,𝐠. Here, the definitions of the
terms 𝐇, 𝐆, 𝐭, and 𝐮 remain consistent with those presented in Sec-
tion 2.1. The terms 𝐇,𝐠, 𝐆,𝐠, 𝐭,𝐠, and 𝐮,𝐠 correspond to the derivatives of
the above-mentioned terms. This system of equations can be rearranged
as:

𝐀𝐗,𝐠 = 𝐅,𝐠 − 𝐀,𝐠𝐗 (12)

where the system matrices 𝐀 and 𝐗 can be obtained from Eq. (6).
The displacement and traction integral equations are formulated with
respect to the nodal coordinates of both the collocation and field
points. The derivatives of these integral equations are influenced by the
changes in these nodal coordinates. Thus, if a change in the geometrical
variable 𝑍𝑔 does not change the nodal coordinates of both the colloca-
tion point and the field point on a given boundary (such as curvature
and thickness), the associated elements within 𝐗,𝐠 will become null.
As a result, calculations for entries corresponding to such nodal points
do not need to be conducted, leading to a reduction in computational
expenses.

2.3. DBEM-based IDM formulations with respect to curvature 𝑍𝜌 for shal-
low shells

The derivatives of the DBEM formulation with respect to changes
in curvature, denoted as 𝑍𝜌, were derived in a similar approach as for
hanges in the geometrical variable 𝑍𝑔 . The curvatures considered in

this study are limited to the 𝑥 and 𝑦 directions, such that 𝜅11 ≠ 0 and
22 ≠ 0, while 𝜅12 = 𝜅21 = 0. As a result, the variable 𝜌 can only take
alues of 𝜅11 and 𝜅22. The derivatives of curvature can be simplified as
𝛼𝛽,𝜌 = 𝛿𝛼𝜌𝛿𝛽𝜌. A similar approach was applied to derive the derivatives
f the boundary integral equation as presented in the previous section.
t is worth noting that the fundamental solutions, kernels and the DRM
ormulations are not affected by changes in the value of the curvature.
5

The derivatives of the DBEM displacement integral equation for
ollocations on the upper crack surface with respect to curvature are
s follows:

1
2
𝑤𝑗,𝜌

(

𝑥+
)

+ 1
2
𝑤𝑗,𝜌 (𝑥−) + −

∫𝛤
𝑃 ∗
𝑖𝑗𝑤𝑗,𝜌𝑑𝛤

∫𝛤
𝑊 ∗
𝑖𝑗 𝑝𝑗,𝜌𝑑𝛤

∫𝛺
𝑊 ∗
𝑖3𝜅𝛼𝛽,𝜌𝐵

1 − 𝜈
2

[

𝑢𝛼,𝛽 + 𝑢𝛽,𝛼 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝛿𝛼𝛽

]

𝑑𝛺

−∫𝛺
𝑊 ∗
𝑖3𝜅𝛼𝛽𝐵

1 − 𝜈
2

[

𝑢𝛼,𝛽𝜌 + 𝑢𝛽,𝛼𝜌 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝜌𝛿𝛼𝛽

]

𝑑𝛺

∫𝛺
𝑊 ∗
𝑖3
[

𝜅𝛼𝛽,𝜌𝐶𝜅1𝑤3 + 𝜅𝛼𝛽𝐶𝜅1,𝜌𝑤3 + 𝜅𝛼𝛽𝐶𝜅1𝑤3,𝜌
]

𝑑𝛺

∫𝛺
𝑊 ∗
𝑖3𝑞3,𝜌𝑑𝛺

(13)

nd

1
2
𝑢𝛼,𝜌

(

𝑥+
)

+ 1
2
𝑢𝛼,𝜌 (𝑥−) + −

∫𝛤
𝑇 ∗
𝜃𝛼𝑢𝛼,𝜌𝑑𝛤

+ ∫𝛤
𝑈∗
𝜃𝛼

[

𝐶𝜅1,𝜌𝑤3 + 𝐶𝜅1𝑤3,𝜌
]

𝑛𝛽𝑑𝛤

− ∫𝛺
𝑈∗
𝜃𝛼

[

𝐶𝜅1,𝜌𝑤3,𝛽 + 𝐶𝜅1𝑤3,𝛽𝜌
]

𝑑𝛺

= ∫𝛤
𝑈∗
𝜃𝛼𝑡𝛼,𝜌𝑑𝛤 + ∫𝛺

𝑈∗
𝜃𝛼𝑞𝛼,𝜌𝑑𝛺

(14)

here 𝐶𝜅1,𝜌 = 𝐵
[

𝜅𝛼𝛽,𝜌(1 − 𝜈) + 𝜈𝛿𝛼𝛽𝜅𝜙𝜙,𝜌
]

. The notation (),𝜌 represents
the derivatives with respect to curvature 𝑍𝜌.

The derivatives of the DBEM traction integral equation for collo-
cations on the lower crack surface with respect to the curvature is:

1
2
𝑝𝛼,𝜌 (𝑥−) −

1
2
𝑝𝛼,𝜌

(

𝑥+
)

+ 𝑛𝛽 (𝑥−) =∫𝛤
𝑃 ∗
𝛼𝛽𝛾𝑤𝛾,𝜌𝑑𝛤

+ 𝑛𝛽 (𝑥−) −∫𝛤
𝑃 ∗
𝛼𝛽3𝑤3,𝜌𝑑𝛤

= 𝑛𝛽 (𝑥−) −∫𝛤
𝑊 ∗
𝛼𝛽𝛾𝑝𝛾,𝜌𝑑𝛤 + 𝑛𝛽 (𝑥−)∫𝛤

𝑊 ∗
𝛼𝛽3𝑝3,𝜌𝑑𝛤

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓,𝜌𝐵

1 − 𝑣
2

(

𝑢𝜃,𝜓 + 𝑢𝜓,𝜃 +
2𝑣

1 − 𝜈
𝑢𝜙,𝜙𝛿𝜃𝜓

)

𝑊 ∗
𝛼𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝑣
2

(

𝑢𝜃,𝜓𝜌 + 𝑢𝜓,𝜃𝜌 +
2𝑣

1 − 𝜈
𝑢𝜙,𝜙𝜌𝛿𝜃𝜓

)

𝑊 ∗
𝛼𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺

[

𝜅𝜃𝜓,𝜌𝐶𝜅2𝑤3 + 𝜅𝜃𝜓𝐶𝜅2,𝜌𝑤3 + 𝜅𝜃𝜓𝐶𝜅2𝑤3,𝜌
]

𝑊 ∗
𝛼𝛽3𝑑𝛺

+ 𝑛𝛽 (𝑥−)∫𝛺
𝑊 ∗
𝛼𝛽3𝑞3,𝜌𝑑𝛺

(15)

nd

1
2
𝑝3,𝜌 (𝑥−) −

1
2
𝑝3,𝜌

(

𝑥+
)

+ 𝑛𝛽 (𝑥−) −∫𝛤
𝑃 ∗
3𝛽𝛾𝑤𝛾,𝜌𝑑𝛤

+ 𝑛𝛽 (𝑥−) =∫𝛤
𝑃 ∗
3𝛽3𝑤3,𝜌𝑑𝛤

= 𝑛𝛽 (𝑥−)∫𝛤
𝑊 ∗

3𝛽𝛾𝑝𝛾,𝜌𝑑𝛤 + 𝑛𝛽 (𝑥−) −∫𝛤
𝑊 ∗

3𝛽3𝑝3,𝜌𝑑𝛤

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓,𝜌𝐵

1 − 𝜈
2

(

𝑢𝜃,𝜓 + 𝑢𝜓,𝜃 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝛿𝜃𝜓

)

𝑊 ∗
3𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺
𝜅𝜃𝜓𝐵

1 − 𝜈
2

(

𝑢𝜃,𝜓𝜌 + 𝑢𝜓,𝜃𝜌 +
2𝜈

1 − 𝜈
𝑢𝜙,𝜙𝜌(𝑋)𝛿𝜃𝜓

)

𝑊 ∗
3𝛽3𝑑𝛺

− 𝑛𝛽 (𝑥−)∫𝛺

[

𝜅𝜃𝜓,𝜌𝐶𝜅2𝑤3 + 𝜅𝜃𝜓𝐶𝜅2,𝜌𝑤3 + 𝜅𝜃𝜓𝐶𝜅2𝑤3,𝜌
]

𝑊 ∗
3𝛽3𝑑𝛺

+ 𝑛𝛽 (𝑥−)∫𝛺
𝑊 ∗

3𝛽3𝑞3,𝜌𝑑𝛺

(16)
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and
1
2
𝑡𝛼,𝜌 (𝑥−) −

1
2
𝑡𝛼,𝜌

(

𝑥+
)

+ 𝑛𝛽 (𝑥−) =∫𝛤
𝑇 ∗
𝛼𝛽𝛾𝑢𝛾,𝜌𝑑𝛤

+ 𝑛𝛽 (𝑥−) −∫𝛤
𝑈∗
𝛼𝛽𝛾

[

𝐶𝜅2,𝜌𝑤3 + 𝐶𝜅2𝑤3,𝜌
]

𝑛𝜓𝑑𝛤

− 𝑛𝛽 (𝑥−)∫𝛺
𝑈∗
𝛼𝛽𝛾

[

𝐶𝜅2,𝜌𝑤3,𝛽 + 𝐶𝜅2𝑤3,𝛽𝜌
]

𝑑𝛺

= 𝑛𝛽 (𝑥−) −∫𝛤
𝑈∗
𝛼𝛽𝛾 𝑡𝛾,𝜌𝑑𝛤 + 𝑛𝛽 (𝑥−)∫𝛺

𝑈∗
𝛼𝛽𝛾𝑞𝛾,𝜌𝑑𝛺

+ 1
2
𝑛𝛽 (𝑥−)

[

𝐶𝜅2,𝜌𝑤3 (𝑥−) + 𝐶𝜅2𝑤3,𝜌 (𝑥−)
]

(17)

where 𝐶𝜅2,𝜌 = 𝐵
(

(1 − 𝜈)𝜅𝜃𝜓,𝜌 + 𝜈𝛿𝜃𝜓,𝜌𝜅𝜙𝜙,𝜌
)

. In terms of the formation
of the system matrix, the sensitivity of the SIFs is the same as for the
derivative with respect to a geometrical variable.

2.4. Stress intensity factor sensitivities

The Crack Surface Displacement Extrapolation technique (CSDE)
method, as being applied in [40], has been assessed for its accuracy
in comparison to both experimental data and results derived from the
J-integral method. This evaluation focused on a plate under multi-axial
loading conditions. The findings revealed that the CSDE technique is
capable of achieving a level of accuracy comparable to that of the
J-integral method, with the observed error being less than 1%. Fur-
thermore, it was noted that the accuracy of the CSDE method improved
with the use of a finer mesh in the structure, indicating its efficiency
and effectiveness in structural analysis. The CSDE has been employed
in this study to assess the stress intensity factor at the crack tip.

The stress intensity factor 𝐾 can be expressed in relation to the
displacements present on the crack surfaces adjacent to the crack tip,
as follows:

{𝐾} = 1
√

𝑟
[𝐶] {𝛥𝑤} (18)

{𝐾} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐾1𝑏
𝐾2𝑏
𝐾3𝑏
𝐾1𝑚
𝐾2𝑚

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, {𝛥𝑤} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝜙2
𝛥𝜙1
𝛥𝑤3
𝛥𝑢2
𝛥𝑢1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(19)

where
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝜙2
𝛥𝜙1
𝛥𝑤3
𝛥𝑢2
𝛥𝑢1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙2
𝜙1
𝑤3
𝑢2
𝑢1

⎫

⎪

⎪

⎬

⎪

⎪

⎭𝜃=180◦

−

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙2
𝜙1
𝑤3
𝑢2
𝑢1

⎫

⎪

⎪

⎬

⎪

⎪

⎭𝜃=−180◦

(20)

𝜙1 and 𝜙2 are the rotations in 𝑥 and 𝑦 directions respectively. 𝑤3 is the
out-of-plane displacement. 𝑢1 and 𝑢2 are the in-plane displacements in
the 𝑥 and 𝑦 direction respectively.

[𝐂] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸ℎ3

48

√

𝜋
2 0 0 0 0

0 𝐸ℎ3

48

√

𝜋
2 0 0 0

0 0 5𝐸ℎ
24(1+𝜈)

√

𝜋
2 0 0

0 0 0 𝐸ℎ
8

√

2𝜋 0
0 0 0 0 𝐸ℎ

8

√

2𝜋

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

An illustration of the crack tip element is presented in Fig. 2. The
crack tip stress intensity factors can be extrapolated from {𝐾}𝐴𝐴′ and
{𝐾}𝐵𝐵′ by substituting the boundary displacements and rotation using
Eq. (18), where:

{𝐾}𝐴𝐴
′
=
√

6
5𝑙
[𝐂]

(

{𝑤}𝐴 − {𝑤}𝐴
′
)

{𝐾}𝐵𝐵
′
=
√

2 [𝐂]
(

{𝑤}𝐵 − {𝑤}𝐵
′
)

(22)
6

𝑙

Fig. 2. Example of crack tip nodal element.

where 𝑙 is the crack tip element length. The value of the stress intensity
factor at the crack tip can be extrapolated as:

{𝐾}𝑡𝑖𝑝 =
𝑟𝐴𝐴′

𝑟𝐴𝐴′ − 𝑟𝐵𝐵′

(

{𝐾}𝐵𝐵
′
−
𝑟𝐵𝐵′

𝑟𝐴𝐴′
{𝐾}𝐴𝐴

′
)

(23)

where 𝑟𝐴𝐴′ = 5𝑙∕6 and 𝑟𝐵𝐵′ = 𝑙∕2. It is worth noting that the selection
of points 𝐴𝐴′ 𝐵𝐵′ does not necessarily need to take the same values
as provided above. and The stress intensity factors at the crack tip
can be extrapolated from any point within the crack tip element by
substituting the corresponding distance from the crack tip.

The sensitivity of the stress intensity factors with respect to certain
geometrical variables or curvature can be derived from the above
equation. The derivatives of {𝐾} can be expressed as:

𝐾1𝑏,𝑔 =
𝐸ℎ3

48
√

𝑟

√

𝜋
2

{

𝛥𝜙2,𝑔 −
𝑟,𝑔
2𝑟
𝛥𝜙2

}

𝐾2𝑏,𝑔 =
𝐸ℎ3

48
√

𝑟

√

𝜋
2

{

𝛥𝜙1,𝑔 −
𝑟,𝑔
2𝑟
𝛥𝜙1

}

𝐾3𝑏,𝑔 =
5𝐸ℎ

24(1 + 𝜈)
√

𝑟

√

𝜋
2

{

𝛥𝑤3,𝑔 −
𝑟,𝑔
2𝑟
𝛥𝑤3

}

𝐾1𝑚,𝑔 =
𝐸ℎ

√

2𝜋
8
√

𝑟

{

𝛥𝑢2,𝑔 −
𝑟,𝑔
2𝑟
𝛥𝑢2

}

𝐾2𝑚,𝑔 =
𝐸ℎ

√

2𝜋
8
√

𝑟

{

𝛥𝑢1,𝑔 −
𝑟,𝑔
2𝑟
𝛥𝑢1

}

(24)

By applying the extrapolation in Eq. (23), the sensitivities of the stress
intensity factors are:

{𝐾}𝑡𝑖𝑝,𝑔 = 𝑅𝑅𝐵,𝑔{𝐾}𝐵𝐵
′
+𝑅𝑅𝐵{𝐾}𝐵𝐵

′
,𝑔 −𝑅𝑅𝐴,𝑔{𝐾}𝐴𝐴

′
−𝑅𝑅𝐴{𝐾}𝐴𝐴

′
,𝑔 (25)

where

𝑅𝑅𝐴 =
𝑟𝐵𝐵′

𝑟𝐴𝐴′ − 𝑟𝐵𝐵′
𝑅𝑅𝐵 =

𝑟𝐴𝐴′

𝑟𝐴𝐴′ − 𝑟𝐵𝐵′

𝑅𝑅𝐴,𝑔 =
𝑟𝐵𝐵′ ,𝑔

𝑟𝐴𝐴′ − 𝑟𝐵𝐵′
−
𝑟𝐵𝐵′ (𝑟𝐴𝐴′ ,𝑔 − 𝑟𝐵𝐵′ ,𝑔)

(𝑟𝐴𝐴′ − 𝑟𝐵𝐵′ )2

𝑅𝑅𝐵,𝑔 =
𝑟𝐴𝐴′ ,𝑔

𝑟𝐴𝐴′ − 𝑟𝐵𝐵′
−
𝑟𝐴𝐴′ (𝑟𝐴𝐴′ ,𝑔 − 𝑟𝐵𝐵′ ,𝑔)

(𝑟𝐴𝐴′ − 𝑟𝐵𝐵′ )2

(26)

The sensitivities of the maximum stress intensity factors were taken into
consideration. The maximum SIFs were found at both the upper and
lower surfaces of the shell. For this study, the SIF at the upper surface
was considered, and the maximum SIF across the thickness of the shell
is given by:

[1 + ℎ
4
( 1
𝑅1

+ 1
𝑅2

)]𝐾𝑚𝑎𝑥
𝐼 = 1

ℎ
𝐾1𝑚 + 6

ℎ2
𝐾1𝑏

[1 + ℎ
4
( 1
𝑅1

+ 1
𝑅2

)]𝐾𝑚𝑎𝑥
𝐼𝐼 = 1

ℎ
𝐾2𝑚 + 6

ℎ2
𝐾2𝑏

[1 + ℎ ( 1 + 1 )]𝐾𝑚𝑎𝑥 = 3 𝐾3𝑏

(27)
4 𝑅1 𝑅2
𝐼𝐼𝐼 2ℎ
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𝐺

𝛼

𝐺

𝐺
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𝐺
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𝑃
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𝜎

𝑃
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𝑔
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t
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M

Note that the curvature-related term is introduced there 𝑇𝑅 = [1 +
ℎ
4 (

1
𝑅1

+ 1
𝑅2

)]−1. The maximum SIF of 𝐾 for different fracture modes can

e found by dividing the term 𝑇𝑅. The derivatives of the maximum SIF
an be found by:

𝐾𝑚𝑎𝑥
𝐼,𝑔 =

𝑇𝑅
ℎ
𝐾1𝑚,𝑔 +

6𝑇𝑅
ℎ2

𝐾1𝑏,𝑔

𝐾𝑚𝑎𝑥
𝐼𝐼,𝑔 =

𝑇𝑅
ℎ
𝐾2𝑚,𝑔 +

6𝑇𝑅
ℎ2

𝐾2𝑏,𝑔

𝐾𝑚𝑎𝑥
𝐼𝐼𝐼,𝑔 =

3𝑇𝑅
2ℎ

𝐾3𝑏,𝑔

(28)

imilarly, 𝐾𝑚𝑎𝑥
,𝑔 for different fracture modes can be found by separating

he terms for each mode of SIF on the right-hand side of Eq. (28). The
orresponding individual maximum SIF for different fracture modes
re denoted as 𝐾𝐼𝑚, 𝐾𝐼𝐼𝑚, 𝐾𝐼𝑏, 𝐾𝐼𝐼𝑏, and 𝐾𝐼𝐼𝐼𝑏. The derivatives of
he maximum SIF with respect to curvature and thickness are given
n Appendix. The effective SIF can be calculated by considering the
ontribution from both the bending and tension stresses.

𝑒𝑓𝑓 =
√

𝐸𝐺𝑒𝑓𝑓 (29)

here 𝐺𝑒𝑓𝑓 is the effective energy release rate:

𝑒𝑓𝑓 = 𝐺1 + 𝛼(𝐺2 + 𝐺3 + 𝐺4 + 𝐺5) (30)

=

√

|𝛥𝐾𝐼𝑏|
|𝛥𝐾𝐼𝑏| + |𝛥𝐾𝐼𝑚|

(31)

The energy release rate components were defined as:

𝐺1 =
𝐾2
𝐼𝑚
𝐸

, 𝐺2 =
𝐾2
𝐼𝐼𝑚
𝐸

, 𝐺3 =
𝜋𝐾2

𝐼𝑏
3𝐸

,

𝐺4 =
𝜋𝐾2

𝐼𝐼𝑏
𝐸

, 𝐺5 =
8𝜋(1 + 𝜈)𝐾2

𝐼𝐼𝐼𝑏
5𝐸

(32)

The derivatives of the effective SIF with respect to the change in some
geometrical variable can be calculated as:

𝐾𝑒𝑓𝑓 ,𝑔 =
𝐸

2𝐾𝑒𝑓𝑓
𝐺𝑒𝑓𝑓 ,𝑔 (33)

The derivatives of the energy release rate components are:

𝐺1,𝑔 =
2
𝐸
𝐾𝐼𝑚𝐾𝐼𝑚,𝑔

2,𝑔 =
2
𝐸
𝐾𝐼𝐼𝑚𝐾𝐼𝐼𝑚,𝑔

3,𝑔 =
2𝜋
3𝐸

𝐾𝐼𝑏𝐾𝐼𝑏,𝑔

4,𝑔 =
2𝜋
𝐸
𝐾𝐼𝐼𝑏𝐾𝐼𝐼𝑏,𝑔

5,𝑔 =
16(1 + 𝜈)𝜋

5𝐸
𝐾𝐼𝐼𝐼𝑏𝐾𝐼𝐼𝐼𝑏,𝑔

(34)

where

𝛼,𝑔 =
1
2𝛼

|𝛥𝐾𝐼𝑏,𝑔|(|𝛥𝐾𝐼𝑏| + |𝛥𝐾𝐼𝑚|) − |𝛥𝐾𝐼𝑏|(|𝛥𝐾𝐼𝑏,𝑔| + |𝛥𝐾𝐼𝑚,𝑔|)

(|𝛥𝐾𝐼𝑏| + |𝛥𝐾𝐼𝑚|)2
(35)

The derivatives of the stress intensity factors with respect to the curva-
ture and thickness were derived using the same method.

2.5. DBEM-based FDM formulations for shallow shells

The estimation of the first-order derivatives of the SIFs, denoted
as 𝐾, concerning changes in non-geometrical and non-curvature vari-
ables, was performed using the first-order finite difference method. The
derivatives for FDM can be expressed as:
𝜕𝐾(𝑍𝑔)
𝜕𝑍𝑔

= 𝐾,𝑔 =
𝐾(𝑍𝑔 + 𝛥𝑍𝑔) −𝐾(𝑍𝑔 − 𝛥𝑍𝑔)

2𝛥𝑍𝑔
(36)

where 𝛥𝑍𝑔 represents the step size. The selection of this step size has a
significant impact on the accuracy of the derivatives. The step size was
7

a

adaptively chosen based on the magnitude of the variable 𝑍𝑔 , resulting
in 𝛥𝑍𝑔 = 𝑍𝑔𝛥𝑍′

𝑔 , where 𝛥𝑍′
𝑔 denotes the normalized step size. To

dentify the most suitable normalized step size, a series of convergence
ests were conducted prior to the application into the FORM.

.6. First-Order Reliability Analysis (FORM)

The primary objective of the FORM is to assess the reliability index,
parameter which represents the ability of a structure to maintain

ts safety throughout the operational lifespan. This index is directly
ssociated with the probability of failure, providing a quantification of
he potential risk of structural collapse.

Within the field of reliability analysis, the probabilistic space de-
ined by the random variables 𝐙 can be partitioned into two regions:

failure region where 𝑔(𝐙) ≤ 0, and a safe region where 𝑔(𝐙) >
. The function 𝑔(𝐙) = 0 serves as the performance boundary that
eparates these two regions. The performance function is typically
ormulated in terms of the structural resistance 𝑅(𝐙) and the structural
emand 𝐺(𝐙). Common examples of structural resistance involve yield
trength, maximum allowable stress, or deflection. Mathematically, the
erformance function or limit state function (LSF) can be expressed as:

(𝐙) = 𝑅(𝐙) − 𝐺(𝐙) (37)

he probability of failure is defined as the probability that the perfor-
ance function 𝑔(𝐙) ≤ 0 such that:

𝐹 = 𝑃 {𝑔(𝐙) ≤ 0} = ∫𝑔(𝐙)≤0
𝑓𝑍 (𝐙)𝑑𝑍 (38)

ere, 𝑓𝑍 (𝐙) is the joint probability density function formed by all
arameters in 𝐙. 𝑃𝐹 represents the failure probability and its comple-
ent 𝑃𝑅 represents the reliability, given by 1 − 𝑃𝐹 . The expression

nvolves an integration over the domain where 𝑔(𝐙) > 0. The evaluation
f this integral can be challenging, especially considering that the
esign variable vector could be multidimensional. To mitigate this
hallenge, the FORM employs a transformation of the random variables
nto a standardized coordinate system known as the U-space, using
he Rosenblatt transformation [41]. This transformation assumes that
he Cumulative Distribution Functions (CDFs) of the random variables
emain unchanged. For example, in the scenario where a variable
ollows a normal distribution, 𝑍𝑖 ∼ 𝑁(𝜇𝑖, 𝜎𝑖), the U-space is connected
o the Z-space through the equation 𝑍𝑖 = 𝜇𝑖 + 𝜎𝑖𝑈𝑖. In the case of a
ognormal distribution, the transformation is given by 𝑍𝑖 = 𝑒𝑥𝑝(𝜇𝑖 +
𝑖𝑈𝑖). Consequently, Eq. (38) is transformed into the 𝐔-space as:

𝐹 = 𝑃 {𝑔(𝐔) ≤ 0} = ∫𝑔(𝐔)≤0
𝑓𝑈 (𝐔)𝑑𝑈 (39)

he performance function can be approximated by the first-order Tay-
or expansion such that:

(𝐔) ≈ 𝑔(𝐮∗) + ∇𝑔(𝐮∗)(𝐔 − 𝐮∗) (40)

here 𝑢∗ is the expansion point and the gradient of 𝑔(𝐔) is defined as:

∇𝑔(𝐮∗) =
(

𝜕𝑔(𝐔)
𝜕𝑈1

,
𝜕𝑔(𝐔)
𝜕𝑈2

,… ,
𝜕𝑔(𝐔)
𝜕𝑈𝑛

)

|

|

|

|

|𝐮∗
(41)

he determination of the reliability index involves identifying the
hortest distance between the performance function and the origin of
he U-space. This minimum distance point is referred to as the Most-
robable Point (MPP), and the distance is denoted as 𝛽. It is optimal to
erform an expansion of the integration function on the MPP as it holds
he highest probability density and contributes most significantly to
he integration. Detailed insights into the derivation of the MPP search
lgorithm are comprehensively presented in [42]. The flow chart of
PP searching scheme is presented in Fig. 3.

The algorithm requires an initial guess of the MPP location denoted
s 𝑈 = (𝑈0, 𝑈0,… , 𝑈0 ), where 𝑚 represents the number of variables in
0 1 2 𝑚
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Fig. 3. MPP search algorithm.

he limit state function. Typically, the mean values of the variables are
hosen as the initial guess, resulting in 𝑈0 = (0, 0,… , 0) in the U-space.

In step (5) of the MPP search procedure, the convergence of the
eliability index, 𝛽, is verified, with an error tolerance of 𝜖 = 1 × 10−2

being used.
In step (3), it is essential to obtain the response of the Limit State

Function (LSF), denoted as 𝑔(𝐔𝐤). As previously discussed, the DBEM
serves as an effective tool for structural analysis and is thus employed
to evaluate 𝑔(𝐔𝐤).

In step (2) involves the evaluation of the first-order derivative of
the LSF. The gradient vector given in Eq. (41) can be evaluated by the
DBEM-IDM formulation or DBEM-FDM formulation.

Once the MPP is identified, the probability of failure and reliability
can be computed as follows:

𝑃𝑅 = 1 − 𝑃𝐹 = 1 −𝛷(−𝛽) = 𝛷(𝛽) (42)

where 𝛷 is the CDF of the standard normal distribution.

3. Numerical examples

In this section, two numerical examples examining the reliability
of shallow shell structures were studied. The first example involves
a shallow shell featuring a central hole and two cracks. The second
example involves a more complicated geometry, incorporating multi-
site damage. The results obtained from the reliability analysis were
compared with those obtained from Monte Carlo Simulations (MCS) to
verify the accuracy of the proposed approach.

3.1. Example 1: Reliability analysis of a shallow shell with centre hole and
two cracks

A numerical example featuring a shallow shell with a central hole
and two cracks subjected to a combination of membrane, bending,
and uniform pressure loads was investigated. The material of the shell
8

is Aluminium 2024-T4. The geometry of the shallow shell is shown
in Fig. 4(a). The shallow shell configuration includes a central hole
characterized by a radius of 𝑟1 and two cracks, each with a length of
𝑎. A deterministic initial crack length 𝑎0 = 5.08 mm was considered.
The curvature in the 𝑥-direction is denoted as 𝜅11 and 𝜅22 for 𝑦-
direction. The shell thickness is defined as ℎ, and the centre hole’s
position along the 𝑥-axis is denoted as 𝑏1. The outer dimensions of
the shell remain constant, with a width and length of 101.6 mm. The
structural model was discretized using 32 quadratic elements on the
outer boundaries, and 32 quadratic elements on the cracks and the
central hole (with 8 elements allocated for each crack). Overall 64 DRM
points were used and evenly distributed in the domain. The mesh of
the boundary nodal points and DRM points is shown in Fig. 4(b). The
shell, with a thickness of 2.54 mm, was subjected to tension, bending,
and uniform domain pressure loads applied to the top and bottom
boundaries. Simply supported boundary condition is applied long the
sides of the shell such that 𝜙𝑡 = 0 and 𝑤3 = 0. The sensitivity of stress
intensity factors was evaluated via both the DBEM-based IDM and the
DBEM-based FDM.

The example is split into two parts. In the first part, a fracture
reliability analysis was performed, with the fracture toughness taken
as the failure criterion. The aim is to obtain a critical crack length.
The second part involved a fatigue reliability assessment, utilizing the
determined critical crack length to deduce the structure’s service life.

3.1.1. Sensitivity of stress intensity factors
The parameters employed to assess the Sensitivity of the SIFs are

detailed in Table 1. The evaluation of the sensitivity of the SIF with
respect to each parameter were conducted using both the DBEM-
FDM and DBEM-IDM and the crack surface displacements extrapolation
technique (CSDE) at different crack length.

For the DBEM-FDM, the derivative can be evaluated using Eq. (36)
with an optimal step size denoted as 𝛥𝑍′

𝑔 was determined through a
onvergence test. A range spanning from 0.5 to 10−6 was investigated.
arger step sizes influence the precision of the derivatives, while very
mall step sizes may introduce substantial rounding errors. The optimal
tep size was selected within the range of 𝛥𝑍′

𝑔 that yielded stable and
ccurate derivative solutions. The results of the convergence test for
electing an optimal step size are illustrated in Fig. 5. The data indicates
hat excessively large or small step sizes lead to significant errors in the
esults. An optimal balance between precision and stability was found
ithin the range of 𝛥𝑍′

𝑔 = 10−2 − 10−4. Consequently, a step size of
𝑍′
𝑔 = 5 × 10−2 was chosen for subsequent examples.
The growth of cracks was considered along the horizontal direction

nly. Geometric variables included the radius and the x-coordinate of
he centre hole, with the aim to account for the potential impact of
anufacturing uncertainties on SIFs. The variation in the x-coordinate

f the centre hole introduces an antisymmetric in terms of the SIF
n each crack tip. Therefore, the crack with a higher SIF was chosen
nd the corresponding derivatives were evaluated in each reliability
nalysis. The curvature varied more significantly in the 𝑦-direction,
ith a coefficient of variation COV set at 0.1. This choice is supported
y previous literature [44], underlining its validity for the present
tudy. Additionally, the uncertainties in the fracture toughness was
ntroduced with a lognormal distribution characterized by a COV of
.075, following established work [45]. The uncertainties in the geo-
etrical parameters, loading and Pairs Law parameters were assigned

ccording to the previous literature [46–50].

.1.2. Reliability analysis
In the reliability analysis, it is essential to formulate the limit

tate function based on the structural resistance to a given loading
ondition, as introduced in Section 2.6. Subsequently, the reliability
an be assessed using the FORM based on the limit state function. In
his section, two reliability analyses were performed. The first analysis
ntails a limit state function formulated in terms of crack tip stress
ntensity factors and fracture toughness. This formulation ensures that
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Fig. 4. (a): The geometry of the shallow shell structure used in the first numerical example. (b): The boundary element mesh of the shallow shell structure.
Fig. 5. A convergence test of derivatives using the Finite Difference Method (FDM) was conducted with respect to: (a) thickness, (b) membrane load, (c) bending load, and (d)
domain pressure. The test investigated various ranges in the step size 𝛥𝑍′

𝑔 , spanning from 0.5 to 10−6. The objective of this test was to identify the step size that provides the
best balance of numerical precision and stability for parameters.
Table 1
The design variables used in the reliability analyses.
𝑍𝑖 𝑈𝑖 Parameter Description Distribution Mean COV

𝑍1 𝑈1 𝑟1 Radius of the centre hole Lognormal 5 mm 0.02
𝑍2 𝑈2 𝑏1 x-coordinate of the centre hole Lognormal 50.8 mm 0.02
𝑍3 𝑈3 𝜅11 Curvature in x direction Lognormal 0.03 m−1 0.1
𝑍4 𝑈4 𝜅22 Curvature in y direction Lognormal 0.3 m−1 0.1
𝑍5 𝑈5 ℎ Thickness Lognormal 2.54 mm 0.02
𝑍6 𝑈6 𝑡2 Membrane traction Lognormal 400 Nmm−1 0.05
𝑍7 𝑈7 𝑝2 Bending load Lognormal 800 N 0.05
𝑍8 𝑈8 𝑞3 Uniform domain load Lognormal 0.15 MPa 0.05
𝑍9 𝑈9 𝐾𝐼𝐶 Fracture toughness Lognormal 36.12 MPa [43] 0.075
𝑍10 𝑈10 𝐶0 Paris law Constant Lognormal 1.42 × 10−11 m/cycle

(MPa
√

𝑚)𝑚𝑝
0.02

𝑍11 𝑈11 𝑚𝑝 Paris law exponent Lognormal 3.59 0.02
the crack tip SIF remains below the fracture toughness threshold. It
is anticipated that the reliability decreases with an increase in the
crack size. This reliability analysis is coupled with the probability of
detection to establish a permissible crack size, denoted as 𝑎𝑡, while
satisfying the given safety criteria. The second reliability analysis was
performed with a limit state function defined by the service life of
the structure and the cumulative loading cycles required to reach the
determined permissible crack size 𝑎𝑡 from the first reliability analysis.
This analysis accommodates uncertainties inherent in crack growth
parameters, which play a vital role in determining an appropriate
inspection service interval.

3.1.3. Fracture reliability analysis
The first analysis entails a limit state function formulated in terms

of crack tip stress intensity factors and fracture toughness. A suitable
LSF in terms of the failure criteria used in this work is [51]:

𝑔(𝐙) = 𝐾 −𝐾 (𝐗) (43)
9

𝐼𝐶 𝑒𝑓𝑓
where 𝐾𝐼𝐶 denotes the fracture toughness and 𝐾𝑒𝑓𝑓 denotes the ef-
fective stress intensity factor. The vector 𝐙 comprises the design vari-
ables that exert influence on the value of 𝑔(𝐙), represented as 𝐙 =
(

𝑟1, 𝑏1, 𝜅11, 𝜅22, ℎ, 𝑡2 , 𝑝2, 𝑞3, 𝐾𝐼𝐶
)

, while 𝐗 includes the design variables
within 𝐙 excluding the fracture toughness, expressed as 𝐗 =
(𝑟1, 𝑏1, 𝜅11, 𝜅22, ℎ, 𝑡2, 𝑝2, 𝑞3). The distributions of these design variables
are detailed in Table 1. The derivatives of 𝐾𝑒𝑓𝑓 with respect to the
design variables were evaluated using the formulation introduced in
Section 2.4.

The derivatives of the nodal coordinates with respect to 𝑍𝑖 can be
computed analytically using the DBEM-IDM. Among these variables,
𝑍1 to 𝑍4 are geometrical variables and curvatures, and their sensitivi-
ties were analytically evaluated using the DBEM-IDM. Conversely, the
sensitivities with respect to non-geometrical variables 𝑍5 to 𝑍11 were
evaluated using the DBEM-FDM with a step size of 𝛥𝑍′

𝑔 = 5×10−2. The
reliability analysis was carried out over a range of crack lengths. It is
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Fig. 6. The graph shows the reliability index with variations in crack length (shown on the right y-axis). Additionally, an illustration of the probability of detection obtained from
handheld eddy-current inspection is presented against the crack size (displayed on the left y-axis) [53]. The tolerable crack size was determined at a reliability index of 𝛽 = 3,
which corresponds to a crack length of 17.6 mm, as indicated by the cross on the graph. Notably, the corresponding probability of detection is measured at 86.3%.
anticipated that as the crack propagates, the structure’s reliability will
decrease.

In the context of tolerance design and considering routine inspec-
tion, the tolerable crack size should be chosen to be both below
the critical crack size according to a safety criterion while remaining
sufficiently large to be detectable by inspection techniques [52]. In
the reliability analysis, the tolerable crack size can be determined
by a required reliability index 𝛽, which varies based on the specific
application of the structure. Prescribed reliability indices can often be
found in standard data sheets, such as the Eurocode - Basis of Structural
Design. In this example, targeting reliability of 𝛽 = 3 was selected,
which is within the range of minimum reliability indices recommended
for structures under fatigue limit state conditions.

The results of the reliability index with varying crack lengths are
displayed in Fig. 6, alongside by the probability of detection data of a
handheld Eddy-Current inspection [53]. As anticipated, the reliability
index displayed a decreasing trend as the crack size increased. The
tolerable crack size 𝑎𝑡 = 17.6 mm was determined to correspond to a
reliability index of 𝛽 = 3. At this chosen crack size, the Probability of
Detection (POD) is of 86.3%, which is considered within an acceptable
range. It is worth noting that in practical applications, the selection
of targeting reliability and desired POD should encompass additional
considerations, including factors such as inspection conditions and risk
acceptance levels. For instance, components associated with poten-
tial catastrophic failure consequences should have a stricter tolerance
design.

3.1.4. Fatigue reliability assessment
The second reliability analysis was performed with a limit state

function defined by the service life of the structure and the cumulative
loading cycles required to reach the determined permissible crack
size 𝑎𝑡 from the first reliability analysis. For the fatigue crack growth
reliability analysis, the limit state function is defined as:

𝑔(𝐙) = 𝑁(𝐙) −𝑁𝑠 (44)

where 𝑁(𝐙) represents the number of cycles required to reach the
tolerable crack length 𝑎𝑡, while 𝑁𝑠 denotes the service life in terms
of the loading cycles experienced by the structure during its service
duration. The set of uncertainties influencing fatigue crack growth is
denoted by 𝐙, including variables 𝐙 = (𝑟 , 𝑏 , 𝜅 , 𝜅 , ℎ, 𝑡 , 𝑝 , 𝑞 , 𝐶, 𝑚).
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The precise distribution of these uncertainties can be found in Table 1.
It is important to note that the Paris law constants 𝐶 and 𝑚 are typically
established through experimental assessment under specific loading
conditions. Consequently, a dependency between the parameters linked
to the loading situation and the Paris law constants was considered.

An important assumption when performing the FORM is that the
random variables are assumed to be mutually independent. This anal-
ysis incorporates two limit state functions to isolate and examine the
impact of loading conditions and Paris law constants. The first limit
state function introduces uncertainties solely in loading conditions
while treating the Paris law constants as deterministic. Conversely, the
second limit state function introduces uncertainties in the Paris law
constants while maintaining the loadings at their mean values in a
deterministic fashion. For both scenarios, it is reasonable to anticipate
that shorter service life durations would correspond to higher structural
reliability. Two limit state functions were formulated as follows:

• Limit state function I:

𝑔(𝐙𝟏) = 𝑁(𝐙𝟏) −𝑁𝑠, where 𝐙𝟏 = (𝑟1, 𝑏1, 𝜅11, 𝜅22, ℎ, 𝑡2, 𝑝2, 𝑞3)

(45)

• Limit state function II:

𝑔(𝐙𝟐) = 𝑁(𝐙𝟐) −𝑁𝑠, where 𝐙𝟐 = (𝑟1, 𝑏1, 𝜅11, 𝜅22, ℎ, 𝐶0, 𝑚) (46)

The fatigue life 𝑁 of the structure was approximated by the Paris Law
such that:

𝑁 = ∫

𝑎𝑡

𝑎0

1
𝐶(𝛥𝐾𝑒𝑓𝑓 )𝑚

𝑑𝑎 (47)

where 𝐶 = 𝐶0
(1−𝑅)𝑚(1−𝛾) and 𝛥𝐾𝑒𝑓𝑓 = (1 − 𝑅)𝐾𝑒𝑓𝑓 . The stress ratio is set

at 𝑅 = 0.1 and 𝛾 = 0.68 in this example. The derivatives of the fatigue
life 𝑁 can be derived in terms of the 𝐾𝑒𝑓𝑓 . This results in the following
expressions for the derivatives of𝑁 with respect to the design variables:

𝑁,𝑔 = ∫

𝑎𝑡

𝑎0

−𝑚
𝐶

(𝛥𝐾𝑒𝑓𝑓 )−𝑚−1𝛥𝐾𝑒𝑓𝑓 ,𝑔𝑑𝑎 (48)

The derivatives of the effective SIF can be computed using 𝛥𝐾𝑒𝑓𝑓 ,𝑔 =
(1 − 𝑅)𝐾 with a constant stress ratio 𝑅. The integration involved
𝑒𝑓𝑓 ,𝑔
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Fig. 7. The reliability index against the number of loading cycles to which the structure has been exposed (service life) is shown for LSF I (a) and LSF II (b). The results of the
Monte Carlo Simulation are illustrated for both LSFs. The highest difference observed in LSF I is at the value of 3.76% at 23 000 cycles, while in LSF II it is found at 2.40% at
16 000 cycles.
in Eqs. (47), (48) was approximated using trapezoidal numerical inte-
gration with evenly spaced point from 𝑎0 − 𝑎𝑡. This same approach was
employed to evaluate the sensitivity of 𝑁 with respect to the curvature.
The results of the two limit state functions are presented in Fig. 7 Both
sets of results were compared against MCS consisting of 𝑁𝑚𝑐𝑠 = 40, 000
simulations to validate the accuracy of the proposed IDM formulations
and their integration with FORM. The probability of failure from the
MCS was determined by

𝑃𝐹 ,𝑀𝐶𝑆 =
𝑛𝑁<𝑁𝑠
𝑛𝑀𝐶𝑆

(49)

It is worth noting that the number of MCS simulations was determined
such that the mean and standard deviation of the distribution of 𝑁𝑠
obtained from MCS are converged with a difference of 0.1%.

The accuracy achieved an acceptable level, with a maximum differ-
ence of 3.67% for LSF I at 23 000 cycles and 2.40% for LSF II at 16 000
cycles. Notably, FORM demonstrated a high level of accuracy, par-
ticularly for high-reliability indexes that engineers commonly employ.

It is evident that when identical uncertainties in geometrical param-
eters are considered, the uncertainties in Paris law constants exert a
more significant impact on the service life and reliability analysis as
shorter service life are observed for LSF II given the same 𝛽 compare
to LSF I. This observation underscores the need for more frequent
inspections due to the variations in Paris law constants. The outcomes
presented above illustrate the combined influence of parameters. To
separate the effects of individual parameters, a parametric analysis
was conducted, where a single parameter was treated as uncertain in
the reliability analysis while the remaining parameters as determinis-
tic. The parametric test was separated into three groups: geometrical
parameters, loading conditions, and Paris law constants.

Fig. 8 demonstrate the impact of uncertainties in geometrical pa-
rameters, it is evident that for a given reliability index, the curvature in
the 𝑥-direction 𝜅1 leads to the longest service life and has a minor effect
on reliability. This aligns with expectations as 𝑥-direction curvature
is smaller and thus less influential compared to 𝑦-direction curvature.
Conversely, uncertainties in the thickness exhibited a more pronounced
impact on reliability. This is evident from the fact that the same
reliability index corresponds to a shorter service life along the thickness
line compared to other geometrical parameters.

The results for the influence of the loading conditions are shown
in Fig. 9. The result shows that the membrane traction force 𝑡 has a
11
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higher influence in determining a suitable service life while the domain
pressure load has a minor effect on the service life.

In terms of Paris Law constants, Fig. 10 shows that the Paris Law
exponential term 𝑚 as the only random variable results in the shortest
service life among all parameters. This is within the expectation that
the Paris Law exponent poses the largest impact on the reliability and
hence service life as the number of cycles is highly dependent on the
magnitude of the exponent.

The remaining parameters yield a relatively consistent range of
service life when modelled as the only uncertainty. This highlights that
service life is significantly impacted by thickness, membrane traction,
and the Paris Law exponential term. Hence, design efforts should focus
on accurately determining the variation of these parameters to achieve
a longer service life.

A sensitivity test of the reliability index concerning the coefficient
of variation (COV) was conducted. The uncertainties associated with
geometrical parameters are conventionally standardized by the manu-
facturer with the same level of uncertainty (COV) for all parameters.
The same principle applies to the loading parameters and Paris law
constants, resulting in equal levels of uncertainty for all. This approach
aims to investigate uncertainties across three distinct parameter cate-
gories: geometrical, loading, and Paris law constants. By increasing the
COV within these three parameter groups, ranging from 0.01 to 0.05,
the probability of failure increases. The results of the sensitivity test
are shown in Fig. 11. The findings underscore that a higher level of
uncertainty in parameters corresponds to a higher failure probability, as
expected. The impact of COV variations in geometrical and loading pa-
rameters has relatively minor effects on reliability, resulting in a 0.25%
increase in the probability of failure for the loading parameter and a
1% increase for the geometrical parameters. In contrast, variation in
the uncertainty levels of the Paris law constants significantly increases
the probability of failure. It is necessary to determine the variation in
the Paris law constants in a more accurate way to maintain low COV
in the uncertainty, hence decreasing the probability of failure.

3.2. Example 2: Fatigue reliability analysis of multi-site damage in a shal-
low shell

A second numerical example was investigated, involving the as-
sessment of fatigue reliability concerning a cylindrical shallow shell
structure with multiple site damage. The geometry of the structure is
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Fig. 8. The parametric analysis investigated the influence of uncertainties in the geometrical parameters on the structure’s reliability.
Fig. 9. The Parametric analysis of the uncertainties in the loading parameters to the reliability of the structure.
presented in Fig. 12. The geometry comprises three holes featuring two
cracks each extending from opposing sides of each hole. The cracked
section of the shell is denoted as region A, and specific structural
dimensions are outlined in Table 2. The initial crack lengths 𝑎𝑖0 in C1–
C6 were treated as an uncertainty, where 𝑖 ∈ [1, 6]. The shell is made
of Aluminium 2024-T3, with Young’s modulus of 𝐸 = 73.78 GPa and
a Poisson’s ratio of 𝜈 = 0.33. The structure was discretized using 30
quadratic elements on the shell’s outer boundaries. The same boundary
conditions were applied as in the previous example. Additionally, 8
quadratic elements were allocated to each hole, with 4 quadratic
elements each on the upper and lower surfaces of the cracks. Overall,
102 quadratic elements were used. 70 DRM points were used and were
uniformly distributed throughout the domain (see Fig. 13).

In this example, the geometrical parameters remained constant
except for the initial crack lengths at cracks 𝐶1 to 𝐶6, where each of the
crack lengths are treated as an uncertainty. The reliability analysis was
conducted with varying curvature in the 𝑦 direction (𝜅11 = 0, 𝜅22 = 𝜅).
The initial length of each crack is allowed to have different lengths.
12
All cracks were grown to a final length of 𝑎𝑓 = 8 mm, and the fatigue
life of the structure is defined as the number of cycles required for the
crack to reach this length. The reliability was evaluated on the crack
with minimum fatigue life among all crack tips.

Four reliability analyses were conducted with curvature in
𝑦-direction taking the value of 𝜅 = (1.0𝐸−14, 0.01, 0.05, 0.1) m−1 to
investigate the effect of curvature on the overall reliability, where the
case of 𝜅 = 1.0𝐸−14 m−1, the shell can be considered as a plate. The
limit state function can be written as:

𝑔(𝑎𝑖0, 𝑝, 𝐶, 𝑚,𝑁𝑠) = 𝑁(𝑎𝑖0, 𝑝, 𝐶, 𝑚) −𝑁𝑠 (50)

where 𝑖 ∈ [1, 6] for uncertainty in the initial crack length of crack
𝐶1 − 𝐶6. The derivatives of the fatigue life 𝑁 can be found by differ-
entiating the integral equation using trapezoidal numerical integration.
The integration in Eq. (47) can be approximated by a trapezoidal rule
with evenly spaced points such that:

𝑁 =
𝑎𝑓
𝑓 (𝑎)𝑑𝑎 ≈

𝑎𝑓 − 𝑎0 [

𝑓 (𝑎0) + 2𝑓 (𝑎1) +⋯ + 2𝑓 (𝑎𝑁 ) + 𝑓 (𝑎𝑓 )
]

(51)
∫𝑎0 2𝑁
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Fig. 10. The Parametric analysis of the uncertainties in the Paris law constants to the reliability of the structure.
Fig. 11. The parametric analysis of the combined effect of geometrical variables, loading parameters and Paris Law constants respectively with the same level of COV in the
parameter.
Table 2
Geometrical factors and uncertainties present in example 2. The uncertainty considered in this example
includes the initial crack length in each of the six different crack positions, loading conditions and Pari’s
law constants.
Parameter Description Distribution Mean COV

𝑊 Width of the shell Deterministic 160 mm
𝐿 Length of the shell Deterministic 300 mm
𝜅 Curvature in y direction Deterministic Variable
ℎ Thickness Deterministic 2 mm
𝐷 Diameter of the holes Deterministic 3 mm
𝛥𝐿 Distance between the holes Deterministic 30 mm
𝑎10 Initial crack length in 𝐶1 Lognormal 3.5 mm 0.05
𝑎20 Initial crack length in 𝐶2 Lognormal 3.5 mm 0.05
𝑎30 Initial crack length in 𝐶3 Lognormal 3.5 mm 0.05
𝑎40 Initial crack length in 𝐶4 Lognormal 3.5 mm 0.05
𝑎50 Initial crack length in 𝐶5 Lognormal 3.5 mm 0.05
𝑎60 Initial crack length in 𝐶6 Lognormal 3.5 mm 0.05
𝑝 Pressure loading Lognormal 0.05 MPa 0.05
𝐶 Paris Law constant Lognormal 2.839 × 10−12 m/cycle

(MPa
√

𝑚)𝑚𝑝
0.05

𝑚𝑝 Paris Law exponent Lognormal 4.6 0.02
13
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Fig. 12. The geometry of the shallow shell used in the second reliability analysis. The geometry comprises three holes featuring two cracks extending from opposing sides of each
hole. The cracked section is denoted as region A.
Fig. 13. (a): The boundary element mesh of the shallow shell used in the second reliability analysis. (b): The mesh on the centre hole and crack. Only the mesh of the middle
hole is shown here, the rest of the holes were meshed in the same way.
where 𝑓 (𝑎) = 1
𝐶(𝛥𝐾𝑒𝑓𝑓 (𝑎))𝑚

. The derivatives with respect to the initial

crack length can be found:

𝑁,𝑎0 ≈
𝑎𝑓 − 𝑎0
2𝑁

[

𝑓 ′(𝑎0) + 2𝑓 ′(𝑎1) +⋯ + 2𝑓 ′(𝑎𝑁 ) + 𝑓 ′(𝑎𝑓 )
]

− 1
2𝑁

[

𝑓 (𝑎0) + 2𝑓 (𝑎1) +⋯ + 2𝑓 (𝑎𝑁 ) + 𝑓 (𝑎𝑓 )
]

(52)

The derivatives of the fatigue life 𝑁 at crack tip 𝑗 with respect to
change in initial crack size 𝑎𝑖0 were calculated at each MPP iteration,
using Eq. (52) for 𝑗 = 𝑖 and Eq. (48) for 𝑗 ≠ 𝑖. It is expected that with
increasing curvature, the structure exhibits higher resistance to crack
14
propagation, consequently leading to longer fatigue life. The IDM-based
FORM was used and the results of which were then compared with
those of MCS.

Overall, 1 × 105 MCS iterations were conducted for each curvature
value, and the results derived from both FORM and MCS are shown
in Fig. 14. The number of required MCS was determined in the same
way as mentioned in the previous section. The outcomes generated
through the FORM approach exhibit high consistency with the MCS
results, with the maximum deviation of 3.49% recorded at 𝛽 = 2.23
when 𝜅 = 0.05. The results show a larger error at a smaller reliability
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Fig. 14. The reliability index concerning the structure’s service life, influenced by different curvatures of the shell structure is shown in the figure. To validate the accuracy of
the findings, the results of the Monte Carlo Simulation are included for comparison.
index. The reliability index illustrates substantial sensitivity to changes
in shell curvature. Specifically, as curvature increases, longer service
life can be achieved while maintaining the same reliability index,
thereby reducing the probability of failure. The results agreed with the
expectation. In average, four iterations in average for obtaining the con-
verged reliability index. The computational time required to evaluate
the FORM results for one curvature is 7.58 × 104 s. The computational
time required for one DBEM simulation is 626.4 s. The total amount
of computational time required by the MCS is, therefore, 6.26 × 107

s. The FORM requires significantly less computational effort while
maintaining high accuracy. This shows the robustness and efficiency
of the proposed formulation.

The Omission sensitivity factor has been used in FORM to provide
information about the sensitivity of parameters and the impact of
uncertainties on failure probability [54]. The Omission factor 𝛾 can be
evaluated as:

𝛾𝑗 =
𝛽 − 𝛼𝑗𝑢𝑗

𝛽
√

1 − 𝛼2𝑗
(53)

where 𝑗 denotes the index representing the number of design param-
eters considered in the reliability analysis. The term 𝛼 refers to the
gradient vector determined in step 2 of Fig. 3, while 𝑢 represents the
design point vector in the standard normal space. To illustrate, the
Omission Sensitivity Factors were assessed at the design point where
𝜅 = 0.1, with the outcomes presented in Fig. 15 considering different
service life.

A parameter whose corresponding Omission factor approaches unity
suggests that it may be considered deterministic. The pressure load
and Paris law constants exert a more significant influence on the
failure probability, whereas the effect of varying initial crack sizes is
minimal. Notably, with the initial crack size at 𝐶2, a comparatively
larger Omission factor is observed. This implies that the initial crack
sizes could be treated as a deterministic variable, while quantifying the
uncertainties in pressure load and Paris law constants can substantially
enhance structural reliability.

It is worth noting that in both numerical examples in this section,
the difference between the FORM and MCS can be reduced by using
the SORM, which approximates the LSF with a second-order Taylor
expansion. This can significantly improve the accuracy of the esti-
mated reliability index, especially for problems with highly nonlinear
LSFs. When dealing with higher-dimensional problems that incorporate
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multiple uncertainties, there is a marked increase in the number of
derivatives that need to be computed. This increase can lead to sub-
stantial computational challenges. In such situations, the application of
MCS with surrogate modelling is preferential to mitigate these com-
putational demands. This combination effectively reduces the overall
computational burden while maintaining accuracy in the analysis of
more complex, multi-variable systems.

4. Conclusion

This paper introduces a novel methodology for performing reliabil-
ity analyses of fatigue life through the newly developed Dual Bound-
ary Element Method-based Implicit Differentiation Method (DBEM-
IDM) for shallow shell structures. The study has introduced DBEM-
based formulations that enable the evaluation of stress intensity fac-
tor and fatigue lifetime sensitivities within shallow shell structures,
concerning variations in geometrical variables and curvature. The pro-
posed methodology holds the potential to significantly advance current
capabilities in predicting the reliability of such structures under fa-
tigue conditions, thereby enhancing their overall design and assessment
processes.

The IDM formulations were derived by directly differentiating the
BEM equations and were integrated with First Order Reliability Anal-
ysis (FORM) to assess the reliability index of shallow shell structures
featuring multiple cracks, thus estimating the probability of failure.
FORM offers a distinct advantage by significantly reducing computa-
tional demands while maintaining accuracy compared to the Monte
Carlo Simulation (MCS). In order to demonstrate the effectiveness
of the proposed approach, two numerical examples were presented.
In the first example, a shallow shell featuring a central hole and
crack, subjected to membrane, bending, and uniform pressure loads,
was investigated. The fracture reliability analysis was conducted and
considered a limit state function formulated in terms of effective stress
intensity factor 𝐾𝑒𝑓𝑓 and fracture toughness. The obtained reliability
index results were coupled with the probability of detection from eddy
current inspections, aiding in determining a critical crack length that
would satisfy reliability requirements while allowing for inspectability.

Additionally, fatigue reliability assessments were carried out
through limit state functions expressed in terms of fatigue life cycles.
Two limit state functions were analysed to separate the impacts of
loading conditions and Paris law constants. The results obtained from



Theoretical and Applied Fracture Mechanics 131 (2024) 104403M. Zhuang et al.
Fig. 15. Omission sensitivity factors for the case when 𝜅 = 0.1 with various service life.
FORM were benchmarked against the results obtained from 40,000
MCS iterations, showing a maximum difference of only 3.67%. Fur-
thermore, a parametric analysis was conducted on each design variable
to identify the most influential factors on overall structural reliability.
It was determined that thickness, membrane traction, and the Paris
Law exponential term have a significant influence on service life,
underscoring the need for precise determination of these parameters to
achieve extended service life. The investigation further encompassed
the influence of the coefficient of variation (COV). It was discovered
that uncertainties associated with Paris law constants exerted a more
substantial influence, prompting the need for enhanced precision in
determining these constants to improve structural reliability and reduce
the probability of failure.

A second numerical example investigated the fatigue reliability
assessment of a cylindrical shallow shell structure with multiple-site
damage, featuring six cracks with the initial crack length as variables.
Varied curvature of the shell structure was used to investigate the effect
of curvature on the reliability of the structure. Comparison of FORM
results with those obtained from 1 × 105 MCS iterations revealed a
maximum difference of only 3.49%. The computational time required
for evaluating the reliability index for one curvature via FORM was
around 7.58 × 104 s while achieving a converged distribution for the
limit state function through MCS required a substantial 6.26 × 107 s.
This comparison demonstrates the substantial efficiency of the IDM-
based FORM in estimating the structural reliability index, particularly
for higher-dimensional problems involving multiple random design
variables, a scenario that typically requires a large amount of MCS.
The proposed method shows good agreement with the MCS, demon-
strating that the numerical FORM used in this study is valid. It is
worth noting that the numerical examples presented in this study were
assigned with a postulated initial crack size in either a deterministic
way or with uncertainties. In many real-world scenarios, determining
the actual initial flaw size with high precision can be both challenging
and economically expensive. This underscores the application of the
concept of the Equivalent Initial Flaw Size (EIFS) such that it provides
a starting point for the crack propagation model.

The FORM is accurate and efficient for low-dimensional problems.
While requiring evaluation of derivatives, this efficiency can be reduced
when comes across to higher-dimensional problems. The accuracy of re-
sults achieved through FORM depends on the linearity or near-linearity
16
of the limit state function within the variable space. To improve the
precision of derived reliability indices, the application of the Second-
Order Reliability Method (SORM) is usually employed. This method
involves approximating the limit state function using a second-order
Taylor expansion, with an associated increase in computational com-
plexity due to the inclusion of second-order derivatives. However, it is
worth noting that FORM has demonstrated both efficiency and accuracy
across a broad spectrum of structural problems. Furthermore, FORM
has exhibited significant accuracy in the context of static structures,
underlining its robustness for these scenarios.

The proposed IDM formulation has limited application on reliability
analysis of straight propagating crack, where in the consideration of
changing direction of crack propagation, the derivatives with respect
to local elemental coordinate should be derived. Future work will
focus on deriving and applying IDM to the reliability analysis of crack
propagation with different orientation and assembled structures, such
as aircraft fuselages. Additionally, investigations into the impact of
fatigue crack growth on the reliability of assembled plate-shallow shell
structures will be conducted, contributing to a more comprehensive
understanding of fracture problems in engineering design.
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Appendix

The derivatives of the Stress Intensity Factors (SIFs) with respect to
geometry variables 𝑍𝑔 are given in Section 2.4. A similar approach was
used for deriving the derivatives of SIFs with respect to curvature 𝑍𝜌
and thickness 𝑍ℎ. The formulations are given in this section.

For simplification, denote:

𝑇𝜅 = [1 + ℎ
4
( 1
𝑅1

+ 1
𝑅2

)]−1 = [1 + ℎ
4
(𝜅11 + 𝜅22)]−1 (54)

and its derivative:

𝑇𝜅,𝜌 = −
[

1 + ℎ
4
(

𝜅11 + 𝜅22
)

]−2 ℎ
4
(

𝜅11,𝜌 + 𝜅22,𝜌
)

= −
𝑇 2
𝜅 ℎ
4

(

𝜅11,𝜌 + 𝜅22,𝜌
)

(55)

he derivatives of the maximum SIF can be found by:

𝑚𝑎𝑥
𝐼,𝜌 =

(

1
ℎ
𝐾1 𝑚,𝜌 +

6
ℎ2
𝐾1𝑏,𝜌

)

𝑇𝜅 +
(

1
ℎ
𝐾1𝑚 + 6

ℎ2
𝐾1𝑏

)

𝑇𝜅,𝜌

𝑚𝑎𝑥
𝐼𝐼,𝜌 =

(

1
ℎ
𝐾2 𝑚,𝜌 +

6
ℎ2
𝐾2𝑏,𝜌

)

𝑇𝜅 +
(

1
ℎ
𝐾2𝑚 + 6

ℎ2
𝐾2𝑏

)

𝑇𝜅,𝜌

𝐾𝑚𝑎𝑥
𝐼𝐼𝐼,𝜌 =

( 3
2ℎ
𝐾3𝑏,𝜌

)

𝑇𝜅 +
( 3
2ℎ
𝐾3𝑏

)

𝑇𝜅,𝜌

(56)

Similarly, the derivative of 𝑇𝜅 is:

𝑇𝜅,ℎ =
𝜕𝑇𝜅
𝜕ℎ

= −
[

1 + ℎ
4
(

𝜅11 + 𝜅22
)

]−2 1
4
(

𝜅11 + 𝜅22
)

= −
𝑇 2
𝜅
4

(

𝜅11 + 𝜅22
)

(57)

Hence the sensitivity of the maximum SIF with respect to the thickness
is:

𝐾𝑚𝑎𝑥
𝐼,ℎ =

(

1
ℎ
𝐾1 𝑚,ℎ +

6
ℎ2
𝐾1𝑏,ℎ −

1
ℎ2
𝐾1𝑚 − 12

ℎ3
𝐾1𝑏

)

𝑇𝜅

+
(

1
ℎ
𝐾1𝑚 + 6

ℎ2
𝐾1𝑏

)

𝑇𝜅,ℎ

𝑚𝑎𝑥
𝐼𝐼,ℎ =

(

1
ℎ
𝐾2 𝑚,ℎ +

6
ℎ2
𝐾2𝑏,ℎ −

1
ℎ2
𝐾2𝑚 − 12

ℎ3
𝐾2𝑏

)

𝑇𝜅

+
(

1
ℎ
𝐾2𝑚 + 6

ℎ2
𝐾2𝑏

)

𝑇𝜅,ℎ

𝑚𝑎𝑥
𝐼𝐼𝐼,ℎ =

(

3
2ℎ
𝐾3𝑏,ℎ −

3
2ℎ2

𝐾3𝑏

)

𝑇𝜅 +
( 3
2ℎ
𝐾3𝑏

)

𝑇𝜅,ℎ

(58)

here (),ℎ represents the derivatives with respect to the thickness ℎ.
nce the sensitivities of the individual SIFs are obtained, the evaluation
f the 𝐾𝑒𝑓𝑓 can be performed using the same equations given in
qs. (28) and (35).
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