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We introduce a loss discounting framework for model and forecast combination, which
generalises and combines Bayesian model synthesis and generalized Bayes methodolo-
gies. We use a loss function to score the performance of different models and introduce
a multilevel discounting scheme that allows for a flexible specification of the dynamics
of the model weights. This novel and simple model combination approach can be
easily applied to large-scale model averaging/selection, handle unusual features such as
sudden regime changes and be tailored to different forecasting problems. We compare
our method to established and state-of-the-art methods for several macroeconomic
forecasting examples. The proposed method offers an attractive, computationally effi-
cient alternative to the benchmark methodologies and often outperforms more complex
techniques.
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1. Introduction

Recent developments in econometric modelling and
achine learning techniques, combined with increasingly
asy access to vast computational resources and data,
ave led to a proliferation of forecasting models yield-
ng either point forecasts or full forecast density func-
ions. This trend has been met with a renewed interest
n tools that can effectively use these different forecasts,
uch as model selection, or forecast combination, pooling,
r synthesis, e.g., Stock and Watson (2004), Hendry and

Clements (2004), Hall and Mitchell (2007), Raftery, Kárnỳ,
and Ettler (2010), Geweke and Amisano (2011) Waggoner
and Zha (2012), Koop and Korobilis (2012), Billio, Casarin,
Ravazzolo, and Van Dijk (2013), Del Negro, Hasegawa, and
Schorfheide (2016), Yao et al. (2018), McAlinn and West
(2019), Diebold, Shin, and Zhang (2022), Li, Kang, and Li
(2023) to mention just a few. Wang, Hyndman, Li, and

✩ The results presented in this paper were reproduced by the
Editor-in-Chief on 20 March 2023.
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Kang (2023) provide an excellent review of work in this
area.

Combining forecasts from different models, rather than
using a forecast from a single model, is intuitively appeal-
ing and justified by improved empirical performance (see
e.g. Bates & Granger, 1969; Stock &Watson, 2004). Hendry
and Clements (2004) suggested that combining point fore-
casts provides insurance against poor performance by in-
dividual models which are misspecified, poorly estimated
or non-stationary.

In density forecasting, the superiority of a combination
over single models is less clear. Bayesian model aver-
aging (BMA) (Leamer, 1978) is a simple and coherent
approach to weight forecasts in a combination, but may
not be optimal under logarithmic scoring when the set of
models to be combined is misspecified (Diebold, 1991).
Since sets of models usually do not include the true data-
generating mechanism, this result has driven substan-
tial literature proposing alternatives to BMA. Hall and
Mitchell (2007) proposed a logarithmic scoring rule for
a time-invariant linear pool with weights on the sim-
plex, which leads to a forecast density combination that
minimises Kullback–Leibler divergence to the true but un-
known density. This idea has been developed for Bayesian
rk formodel averaging and selection in time seriesmodels. International
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stimation (Geweke & Amisano, 2011), Markov switch-
ng weights (Waggoner & Zha, 2012) and dynamic linear
ools (Billio et al., 2013; Del Negro et al., 2016). These ap-
roaches often lead to better forecasting performance but
t the cost of increased computational expense. A compu-
ationally cheaper alternative directly adjusts the model
eights from BMA to allow time-variation (Raftery, Gneit-

ng, Balabdaoui, & Polakowski, 2005) leading to dynamic
odel averaging (DMA) (Raftery et al., 2010), which uses
n exponential discounting of Bayes factors with a dis-
ount/forgetting/decay1 to achieve time-varying model
eights. Performance can be sensitive to the discount

actor, and Koop and Korobilis (2012) suggested using log-
rithmic score maximisation to find an optimal discount
actor for DMA. Beckmann, Koop, Korobilis, and Schüssler
2020) applied this idea to model selection and developed
he dynamic model learning (DML) method with an appli-
ation to foreign exchange forecasting. Outside the formal
ayesian framework, Diebold et al. (2022) suggested a
imple average of the forecasts from a team of N (or less)
forecasters chosen using the average logarithmic scores in
the previous rw-periods. This can be seen as a localised
and simplified version of Hall and Mitchell (2007).

Recently, McAlinn and West (2019) and McAlinn,
Aastveit, Nakajima, and West (2020) proposed a broad
theoretical framework called Bayesian Predictive Syn-
thesis (BPS), which includes the majority of proposed
Bayesian techniques as special cases. They propose a
novel forecast combination method using latent factor
regression, cast as a Bayesian seemingly unrelated re-
gression (SUR) and showed better performance than the
BMA benchmark and an optimal linear pool. However, the
approach can be computationally demanding with a large
pool of models. Tallman and West (2023) use entropic
tilting to expand the BPS framework to more general aims
than forecast accuracy (such as return maximisation in
portfolio allocation).

This paper describes our loss discounting framework
(LDF), which extends DMA and DML to the general loss
function (in a similar spirit to Tallman & West, 2023), and
more general discounting dynamics. Acomputationally ef-
ficient time-varying discounting scheme is constructed
through a sequence of pools of meta-models, which starts
with the initial pool. Meta-models at one layer are con-
structed by combining meta-models at the previous layer
using a DMA/DML type rule with different discount fac-
tors. We show that LDF can outperform other benchmark
methods and is more robust to hyperparameter choice
than DMA/DML in simulated data and foreign exchange
forecasting using econometric fundamentals and a large
pool of models. We also show how tailoring the approach
to constructing long-short foreign exchange portfolios can
lead to economic gains. A second example illustrates the
limitations of our methodology in US inflation forecasting.

The paper is organised as follows. Section 2 presents
some background leading into a description of the pro-
posed methodology in Section 3. In Section 4, the perfor-
mance of the LDF approach is examined in a simulated

1 The terms discount/forgetting/decay factor are used interchange-
ably in this paper.
2

example and applications to foreign exchange and US
inflation forecasting. We discuss our approach and set out
directions for further research in Section 5.

2. Background

It is common in Bayesian analysis (Bernardo & Smith,
2009; Yao et al., 2018, and references therein) to distin-
guish three types of model pools M = {M1,M2, . . . ,MK }:
M-closed – the true data generating process is described
by one of the models in M but is unknown to researchers;
M-complete – the model for the true data generating
process exists but is not in M, which is viewed as a set
of useful approximating models; M-open – the model
for the true data generating process is not in M and the
true model cannot be constructed either in principle or
due to a lack of resources, expertise etc.2 Model selection
based on BMA only converges to the true model in the
M-closed case (see e.g. Diebold, 1991) and can perform
poorly otherwise.

There are several reasons to believe that economet-
ric problems are outside the M-closed setting. Firstly,
real-world forecasting applications often involve complex
systems, and the model pool will only include approxima-
tions at best. One might argue that econometric modellers
have an inherent belief that the models they propose pro-
vide a reasonable approximation to the data-generating
process even if certain process features escape the capa-
bilities of the supplied methodologies. Secondly, in many
applications, the data-generating process is not constant
in time (Del Negro et al., 2016) and may involve regime
changes and considerable model uncertainty. For exam-
ple, in the foreign exchange context, Bacchetta and Van
Wincoop (2004) proposed the scapegoat theory, suggest-
ing that investors display a rational confusion about the
true source of exchange rate fluctuations. If an unobserv-
able or unknown factor affects an exchange rate move-
ment, investors may attribute this movement to some
other observable macroeconomic fundamental variable.
This induces regimes where different market observables
might be more or less important.

These concerns motivate a model averaging frame-
work that is suitable for M-complete (or even M-open)
situations and incorporates time-varying model weights.
We use πt|s,k to represent the weight of model k at time
t using information to time s and use the forecast combi-
nation density

p(yt |ys) =

K∑
k=1

πt|s,k pk(yt |ys) (2.1)

where pk(yt |ys) represents the forecast density of model k
at time t using information y1, . . . , ys, which we call the
redictive likelihood. DMA (Raftery et al., 2010), assumes
hat s = t − 1 and updates πt+1|t,k using the observation

2 Clarke et al. (2013) give, a slightly unusual, example of works of
William Shakespeare as an M-open problem. The works (data) have a
true data-generating process (William Shakespeare), but one can argue
that it makes no sense to model the mechanism by which the data
was generated.
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t time t , yt , and a forgetting factor, denoted by α, by the
ecursion

πt|t,k =
πt|t−1,k pj(yt |yt−1)∑K
l=1 πt|t−1,l pl(yt |yt−1)

, (2.2)

πt+1|t,k =
πα
t|t,k + c∑K

l=1 πα
t|t,l + c

, (2.3)

here c is a small positive number introduced to avoid
odel probability being brought to machine zero by aber-

ant observations.3 The log-sum-exp trick is an alternative
ay of handling this numerical instability, which would,
t least in part, eliminate the need for the constant c. We
eave the role of this parameter to further research.

The recursions in (2.2) and (2.3) amount to a closed
orm algorithm to update the probability that model k is
he best predictive model given information up to time
, for forecasting at time t . A model receives a higher
eight if it performed well in the recent past, and the
iscount factor α controls the importance one attaches
o the recent past. For example, if α = 0.7, the fore-
ast performance 12 periods before the last one receives
pproximately 2% of the importance of the most recent
bservation. However, if α = 0.9, this importance is as
igh as 31%. Therefore, lower values of α lead to large
hanges in the model weights. In particular, α → 0 would
ead to equal model weights, and α = 1 recovers the
tandard BMA.
DMA has been shown to perform well in economet-

ic applications whilst avoiding the computational bur-
en of calculating large-scale Markov Chain Monte Carlo
MCMC) or sequential Monte Carlo associated with meth-
ds such as Waggoner and Zha (2012). Del Negro et al.
2016) showed that DMA performed comparably to their
ovel dynamic prediction pooling method in forecast-
ng inflation and output growth. It was subsequently ex-
anded and successfully used in econometric applications
y Koop and Korobilis (2012, 2013) and Beckmann et al.
2020). In the first two papers, the authors compare DMA
or a few possible values of discount factors α, whereas, in
he latest paper, the authors follow the recommendation
f Raftery et al. (2010) to estimate the forgetting factor
nline in the context of Bayesian model selection. We
ind that estimating the forgetting factor is key to the
erformance of DMA, as we will show in our simulation
tudy and empirical examples. Our LDF provides a gen-
ral approach by combining multiple layers of discount-
ng with time-varying discount factors to provide bet-
er performance and robustness for the hyperparameter
hoice.

3 Yusupova, Pavlidis, and Pavlidis (2019) note that this constant is
only present in the original work by Raftery et al. (2010) and then
in the implementation by Koop and Korobilis (2012) but then sub-
sequently dropped in further works, software packages and citations.
They also notice that this constant has a non-trivial and often critical
effect on the dynamics of weight changes. We comment on this aspect
in Appendix C.
 D

3

3. Methodology

Our proposed loss discounting framework (LDF) pro-
vides a method of updating time-varying model weights
using flexible discounting of a general measure of model
performance. The flexible discounting is achieved by
defining layers of meta-models using the simple discount
scheme in (2.2) and (2.3). The approach can be used for
dynamic model averaging and dynamic model selection.
For example, we can define a pool of forecast combina-
tion densities by applying (2.1) with different discount
factor values. We refer to the elements of this pool as
meta-models. We can subsequently find the best meta-
model average (or best meta-model) by again applying
exponential discounting to the past performance of the
meta-models. This leads to an approach with two layers,
but clearly, we could continue the process by defining a
pool of meta-models at one layer by applying the forecast
combination in (2.1) to a pool of meta-models at the
previous layer.

The method has two key features. The first key fea-
ture of the model averaging (selection) we develop is the
ability to shrink the pool of the relevant models (show
greater certainty across time in a single model) in times
of low volatility and to encompass more models (display
greater variation in model selection) when the volatility
of the system is high. The second key feature is using
a generalised measure of model performance, which en-
ables users to define the scores/losses directly connected
with their final goal. As we show in the empirical study,
aligning model scores to the final purpose leads to better
performance.

3.1. Loss discounting framework

We first describe how a score can generalize DMA and
then describe our discounting scheme using meta-models.
The score or loss (we will use these terms interchange-
ably) is defined for the prediction of an observation with
predictive distribution p and observed value y and de-
noted S(p, y). This measures the quality of the predictive
distribution if the corresponding observed value is y. For
a set of K models, we assume that the (one-step ahead)
redictive distribution for model k at time t is pk,t =

k(yt |yt−1) we define the log-discounted predictive like-
ihood for the kth model at time t using discount factor α
o be

DPLt,k(α) =

t−1∑
i=1

αi−1S
(
pk,ti , yt−i

)
.

e define a model-averaged predictive density
K

k=1

wt|t−1,k(α) pk(yt |yt−1)

here(
wt|t−1,1(α), . . . , wt|t−1,K (α)

)
= softmax

(
LDPLt,1(α), . . . , LDPLt,K (α)

)
.

his generalizes the use of the logarithmic scoring in

MA. The use of scoring rules for Bayesian updating for
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arameters was pioneered by Bissiri, Holmes, and Walker
2016) (rather than inference about models in forecast
ombination) and is justified in a M-open or misspecified
etting. Loaiza-Maya, Martin, and Frazier (2021) extend
his approach to econometric forecasting. They consider
qually weighted sums (i.e. α = 1 for layer 2). Miller
nd Dunson (2019) justify using a powered version of the
ikelihood of misspecified models.

Each meta-model is defined using a recipe for model
r meta-model averaging/selection. We consider a specific
ype of such recipe, which is based on exponential dis-
ounting of the scores with different discount factors from
set of possible values Sα = {α1, . . . , αM}. To lighten the
otation, we write w(m) and LDPL(m) to denote weights
nd log-discounted predictive likelihoods evaluated at αm.
In the first layer, each model in the model pool is

cored and the ith meta-model is defined by applying
ither DMA or DML with discounting αi and the weights
efined above.
Then, to construct the second layer, the meta-models

n the first layer are scored, and the ith meta-model is
gain defined by applying either DMA or DML with dis-
ounting αi to these scores. This iterative process can be
asily extended to an arbitrary number of layers. We high-
ight two parallels between the methods used in LDF for
ime series models and concepts in Bayesian modelling.
he first parallel is between the layers of meta-models
n LDF and using hyperpriors in the Bayesian hierarchical
odels; similarly to deciding on the setup of hyperpriors

n the hierarchical models, LDF allows for varying depth
nd type of meta-model layers appropriate for the use
ase in question. We also draw an analogy between the
odel selection versus the maximum a posteriori proba-
ility (MAP) estimate of the quantity and model weights
n model averaging versus full posterior distribution.

To provide a full description of the approach, we will
rite the forecast densities of the K models as
(0)
1 (yt |yt−1), . . . , p

(0)
K (yt |yt−1) to make notation consistent.

t every other layer, we define predictive meta-models,
n average of (meta-)models in the previous layers. At
he first layer, we directly use the forecast combination
n (2.1)

(1)
m (yt |yt−1) =

K∑
k=1

w
(1)
t|t−1,k(m) p(0)k (yt |yt−1)

nd, for n ⩾ 2, we apply (2.1) to the M meta-models
pecified at the previous layer,

(n)
m (yt |yt−1) =

M∑
k=1

w
(n)
t|t−1,k(m) p(n−1)

k (yt |yt−1).

To define the weights w
(n)
t|t−1,k, we extend the log-discoun-

ted predictive likelihood for the kth (meta-)model at the
nth layer at time t using discount factor αm to be

LDPL(n)t,k(m) =

t−1∑
i=1

αi−1
m S

(
p(n)k , yt−i

)
. (3.1)

The weights in layer n are constructed using either
softmax4 (to give a form of (meta-)model averaging) or

4 softmax(a1, . . . , aJ ) =

(
exp{a1}∑J , . . . ,

exp{aJ }∑J

)

j=1 exp{aj} j=1 exp{aj}

4

argmax (to give a form of (meta-)model selection). We use
the notation Ln to represent this operation in the nth layer,
hich can take the value of s (softmax) or a (argmax). If

n = s,(
w

(n)
t|t−1,1(m), . . . , w(n)

t|t−1,K (m)
)

= softmax
(
LDPL(n−1)

t,1 (m), . . . , LDPL(n−1)
t,K (m)

)
f n = 1, or(
w

(n)
t|t−1,1(m), . . . , w(n)

t|t−1,M (m)
)

= softmax
(
LDPL(n−1)

t,1 (m), . . . , LDPL(n−1)
t,M (m)

)
f n ⩾ 2.

If Ln = a,

(n)
t|t−1,k(m) =

{
1 k = k⋆(m)
0 k ̸= k⋆(m)

here
⋆(m) = argmax

(
LDPL(r−1)

t,1 (m), . . . , LDPL(r−1)
t,K (m)

)
f n = 1 or, if n ⩾ 2,
⋆(m) = argmax

(
LDPL(r−1)

t,1 (m), . . . , LDPL(r−1)
t,M (m)

)
.

he N-layer LDF with score S and with choice Ln (equal to
or a) at layer n will be written LDFNL1L2...LN (S).
The scheme only needs a single discount factor to be

hosen in the final meta-model layer. An expert might set
his parameter or calculate it on a calibration sample if
he data sample is sufficiently large to permit a robust
stimation. LDF refers to the discount factor in the final
eta-model layer as α.
As well as defining a model combination at each layer,

DFNL1L2...LN (S) also leads to a discount model averaging of
he initial model set for any N since

(N)
m (yt |yt−1) =

M∑
kN=1

w
(N)
t|t−1,kN

(m) p(N−1)
kN

(yt |yt−1) (3.2)

=

K∑
k1=1

⎡⎣ M∑
k2=1

· · ·

M∑
kN=1

w
(N)
t|t−1,kN

(m)

×

N−1∏
p=1

w
(p)
t|t−1,kp (kp+1)

⎤⎦ p(0)k1
(yt |yt−1). (3.3)

Given this setup, the models and meta-models are
ither averaged by using the softmax function or se-
ected by using the argmax function applied to the log-
iscounted predictive likelihood.

.2. Special cases

.2.1. Dynamic model averaging
The updates of the dynamic model averaging weights

n (2.3) correspond to passing LDPL(0)t,1, . . . , LDPL
(0)
t,K with

he logarithmic scoring function through the softmax
unction. In DMA, we only have one level of discounting
here p (y |y ) are the different forecaster densities.
k t t−1
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herefore, we could denote DMA as LDF1s where the
uperscript indicates a single level of loss discounting and
he s subscript indicates the use of the softmax function.

.2.2. Dynamic model learning
Dynamic model learning (DML) (Beckmann et al., 2020)

rovides a way to choose a single discount factor for
odel selection optimally. In DML, the logarithmic scor-

ng functions S
(
p(0)k , yt−i

)
are passed through an argmax

unction to select the best model. We could refer to DML
s LDF2a,a with the second layer of meta-models prior
estricted to a single point on the grid, namely Sα = {1}
or n = 2.

A similar idea for model averaging, using the softmax
unction for selecting an ensemble of parameters α, was
developed in Zhao, Xie, and West (2016).

3.2.3. Two-layer model averaging/selection within loss dis-
counting framework

The loss discounting framework allows us to describe
more general setups for discounting in forecast combina-
tions, such as these models with two or more meta-model
levels. In this paper, we focus on LDF with two layers of
meta-models such as LDF2s,a, LDF

2
a,s, LDF

2
a,a and LDF2s,s,

s well as, the limiting cases such as LDF∞

s···s. In contrast
to DMA and DML, having two (with α ̸= 1) or more
layers of meta-models makes the discount factors in the
other layers time-dependent, which, as we show in the
following sections, leads to an improved performance of
model averaging and selection.

In terms of computation time, our proposed algorithm
is very fast as it relies on simple addition and multiplica-
tion. This is an advantage over more sophisticated forecast
combination methods when the time series is long and/or
we would like to incorporate a large (usually greater than
10) number of forecasters.

As mentioned before, LDF2a,a is a generalised version
of DML presented in Beckmann et al. (2020) where im-
plicitly the authors suggest α = 1, i.e., all past perfor-
mances of the forgetting factors are equally weighted.
In the limit α → 0, we would choose the discount
factor α, which performed best in the latest run, dis-
regarding any other history. The LDF2a,s specification is
a hybrid between model selection and model averaging.
The first layer performs the model selection for each
discount factor, and the second layer performs the model
averaging for the discount factors. Therefore, we select a
single model for each discount factor, but then we take a
mixture of discount factors, which results in a mixture of
models.

3.3. Properties of LDF as N → ∞

Considering the impact of additional layers in an LDF
model is natural. If we use either the softmax or the
argmax at all layers, the weights for each model converge
as N → ∞, so adding more layers has a diminishing effect
on the sequence of predictive distributions. Intuitively,
we have a diminishing impact on the final result for the
softmax functions as we take weighted averages of the

weighted averages of the models. For the argmax/model

5

selection, the LDF approach settles on a single model for
any discount factor in the final layer. The detailed and rig-
orous proofs are provided in the technical Appendix A. We
demonstrate in the empirical sections that the sequence
converges to a predictive distribution, often the best or
nearly best-performing setup of the LDF framework.

3.4. Comments

Low variation in LDPL across time leads to model
weight concentration on fewer models, and higher vari-
ation in LDPL leads to the opposite; the model weights
are more evenly spread. This is because in the presence
of high variation in LDPL, the lower discount factors
will be preferred, and hence, the faster forgetting will
accommodate the regime switching.

If one believes that the data generating process (DGP)
is present in the pool, LDF will not perform as well as
BMA, which will asymptotically converge to the suitable
model quicker than LDF. Conversely, if the DGP is not
among the models in the pool, LDF adapts by adjusting
the models’ weights over time to approximate the DGP.

Following the argument in Del Negro et al. (2016) to
interpret DMA in terms of a Markov switching model,
our extension allows a time-varying transition matrix,
i.e., Qt = (q(t)kl). The gradual forgetting of the perfor-
mance of the discount factor α allows for a change of
optimal discount factor when the underlying changes in
the transition matrix are required. However, we also show
that our two-layer model specification outperforms the
standard DMA model even when the transition matrix is
non-time-varying. This point will be further illustrated in
Appendix B.

4. Examples

Our methodology best suits data with multiple regime
switches with a potentially time-varying transition ma-
trix. As such, it is beneficial for modelling data such as
inflation levels, interest or foreign exchange rates. We
illustrate our model using a simulated example and two
real data examples. The supplementary materials for our
examples are given in Appendix B, Appendix C, Appendix
D and Appendix E.

We compare examples of our LDF to several popular
model-averaging methodologies. The approaches used are

• Multi-layer LDF - 2 hyperparameters, i.e., α, c;
• BMA - 0 hyperparameters;
• DMA - 2 hyperparameters, i.e., α, c
• BPS (McAlinn & West, 2019) - 5 hyperparameters,

i.e., β discount factor for state evolution matrices, δ
discount factor for residual volatility, n0 prior num-
ber of degrees of freedom, s0 prior on BPS obser-
vation variance, R0 prior covariance matrix of BPS
coefficients;

• best N-average (Diebold et al., 2022) - 2 hyperpa-
rameters, i.e., N number of models, rolling window
length rw.

• DeCo (Billio et al., 2013) - 5 hyperparameters (de-

faults and online estimation options are available).
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Fig. 1. Simulation – True data generating process mean and mean predicted level according to LDF2s,s.
We evaluate the performance of the models by calcu-
ating the out-of-sample mean log predictive score (MLS)

LS =
1

T − s

T∑
t=s+1

log p(yt |y1, . . . , yt−1),

and log predictive density ratios (LPDR) for a chosen
reference model m∗

LPDR(τ ) =

τ∑
t=s+1

log{pm∗ (yt |y1, . . . , yt−1)/pLDF (yt |y1, . . . , yt−1)},

where y1, . . . , ys are the observations for a calibration
period and T is the total number of observations and pLDF
correspond to the selected LDF model.

4.1. Simulation study

The data generating process (DGP) of Diebold et al.
(2022) is

yt = µt + xt + σyϵt , ϵt ∼ N(0, 1), (4.1)

xt = φxxt−1 + σxvt , vt ∼ N(0, 1), (4.2)

where yt is the variable to be forecast, xt is the long-run
component of yt , µt is the time-varying level (in Diebold
et al. (2022) set to 0). We can interpret µt as a piecewise-
constant deterministic signal with a finite state space that
accounts for regime switches. The error terms are all i.i.d
and uncorrelated. It is assumed that the data generating
process is known to each forecaster apart from the level
component µt . Each individual forecaster k models xt
with noise and applies different level ηk to yt :

zkt = xt + σtkνkt , νkt ∼ N(0, 1), (4.3)

ỹkt = ηk + zkt + σyϵt , ϵt ∼ N(0, 1). (4.4)

Notice that the individual forecasters’ levels do not vary
over time. This emulates a situation where forecasters can
access different sets of information and/or models that
might guide a different level of choice. It emulates an M-
complete or even M-open setting where no forecaster is
correct at all times.

In contrast to Diebold et al. (2022), we allow the vari-
able yt to have multiple regime switches. The settings are
as follows: φx = 0.9, σx = 0.3, σy = 0.3, σtk = 0.1∀k,
K = 20, T = 2001, η = −2+0.2105(k−1), k = 1, . . . , K
k

6

and finally:

µt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, for t ∈ [0, 49]
⋃

[200, 399]
⋃

[800, 849]
⋃

[970, 979]⋃
[1000, 1049]

⋃
[1600, 1650]

⋃
[1700, 2001]

1, for t ∈ [100, 150]
⋃

[900, 949]
⋃

[960, 969]
⋃

[990, 999]⋃
[1050, 1099]

⋃
[1200, 1599]

⋃
[1700, 1749]

−1, otherwise.

More examples are discussed in Appendix B, where we
draw the levels from a Markov switching model ten times.
For LDF we set Sα = {1.0, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6,
0.5, 0.4, 0.3, 0.2, 0.001} and c = 10−20 similarly to Koop
and Korobilis (2012).

In Fig. 1, we present how the synthesised agent fore-
cast level of LDF2s,s adjusts to the mean levels implied by
the DGP. We can see that the model is very reactive to
the mean predicted level, following the true DGP mean
closely with only a small time lag.

All results5 are based on ten runs, where the levels
were fixed, but the random numbers regenerated. The
standard Bayesian model averaging (MLS = −4.34) fared
poorly since it quickly converged to the wrong model.
DeCo (MLS = −0.57) was adapted to output 39 quantiles
from which we calculated the log scores6 and it did not
cope well with abrupt level changes in our numerical ex-
ample, overestimating the variance and leading to poorer
scores. BPS (MLS = −0.73) with normal agent predictive
densities7 performed better than BMA but struggled to
adjust quickly to the regime changes, resulting in low
log scores at the change points. The N-average method
performed better (we chose the rolling window of five
observations that performed best), with an MLS of −0.52

5 Except BPS for which we performed only one run due to
computational cost.
6 39 quantiles in increments of 0.025. We used the default setting

in the DeCo package with Σ = 0.09 (matching our DGP) and with
learning and parameter estimation. The quantiles indicated that the
normal distribution could well approximate the output.
7 We used the original set of parameters (adjusted β = 0.95 and

δ = 0.95 to get better results as proposed by the authors of the
paper but adjusted the prior variance to match the σy parameter. The
model was run for 5000 MCMC paths with 3000 paths burnin period.
All other runs of BPS (which achieved worse results) are detailed in
Appendix B).
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Fig. 2. Simulation – (a) The MLS versus values of α for LDF and α for DMA in the x-axis. The error bars correspond to the standard deviation of

MLS over ten runs. (b) LPDR of the competing models with a calibration period of 250.
Fig. 3. Simulation – Comparison of the average α parameters in the first meta-model layer for LDF2s,a model with α = 0.95 versus α = 1 as well
2
as LDFs,s with α = 0.8. We observe more dynamic adaptation of the discount parameter in the first meta-model layer when the final α < 1.
for N = 3 and N = 4, than BMA and BPS and similarly to
the standard DMA method of Raftery et al. (2010).

Crucially, we note that DMA’s performance varies sig-
nificantly depending on the hyperparameter choice,
whereas the performance of multilayered LDF methods
does not. This is clearly illustrated in Fig. 2(a). One could
adopt various strategies to try to find the hyperparam-
eters. The most basic one would be based on tuning the
hyperparameter on the calibration period and keeping the
parameter constant after that. In this case, for example, if
we set the calibration period to 250, the methods choose
discounts as: DMA 0.5 (MLS = −0.50); LDF2s,s 0.6 (MLS
= −0.42); LDF2s,a 0.7 (MLS = −0.49). For comparison the
stable state LDF∞

s,...,s achieves MLS = −0.41. The non-LDF
model averaging models, namely BPS, DeCO and best N-
average, were tuned to achieve the best performance to
the entire sample a posteriori in contrast to LDF models
where we select a single configuration based on the initial
sample of 250 observations. Another strategy could be
based on selecting the best discount factor at each time
step (online) based on the expanding window, potentially
exponentially weighted - this boils down to an LDF ap-
proach with an additional argmax layer. In this case, DMA
simply becomes LDF2s,a and, as shown, can lead to better
results. Even better results and more robustness can be
achieved using LDF2s,s where a mix of discount factors is
being used.

In Fig. 2(b) we present the LPDR for the tested mod-
els against LDF∞

s,...,s. The LDF models (including DMA)
generally performed better; however, the results suggest
that the 2-layer LDF, which can weight multiple discount
factors model, is more robust to abrupt level changes than
the other methods.
7

Fig. 3 show how the average parameter α in the first
meta-model layer dynamically changes using LDF2s,a with
α = 0.95 and LDF2s,s with α = 0.8. It is close to 1 in
periods of stability and closer to 0 during abrupt changes.
In comparison, for α = 1, the average parameter α in the
first meta-model layer is stable, oscillating around 0.6. As
mentioned before, this variation in parameter α might be
beneficial since the lower the α parameter, the more mod-
els that will be considered, and the final outcome might
show more uncertainty. Additionally, a lower parameter
α facilitates the ability to quickly re-weight the models
to adapt to the new regime. In times of stability, it might
be better to narrow down the meaningful forecasts to a
smaller group by increasing the parameter α. This illus-
trates how the two-layer model provides useful flexibility
in the discount factors in the first meta-model layer. An-
other observation from Fig. 3 concerns the average values
of discount parameters α in the first layer across time. For
LDF2s,a the average α in the first payer for α = 0.95 in the
second layer is 0.75 and for LDF2s,s with α = 0.8 in the
last layer it is 0.71. The average α for both LDF models
with α = 0.1 in the last layer is 0.61.

4.2. Foreign exchange forecasts

We consider exchange rate forecasting (see Rossi, 2013,
for a comprehensive review). The random walk is a typ-
ical benchmark as it corresponds to the claim that the
exchange rates are unpredictable, but Rossi (2013) argues
that economic variables can have time-varying predictive
power. Beckmann et al. (2020) consider exploiting this
predictive ability using DML with a pool of Time-Varying

Parameter Bayesian Vector Autoregressive (TVP-BVAR)
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odels with different subsets of economic fundamentals.
e closely follow their setup. Appendix D.1 and Appendix
.2 describe the model.8
We use a set of G10 currencies: Australian dollar

AUD), Canadian dollar (CAD), euro (EUR), Japanese yen
JPY), New Zealand dollar (NZD), Norwegian krone (NOK),
wedish krona (SEK), Swiss franc (CHF), pound (GBP) and
S dollar (USD). All currencies are expressed in terms
f the amount of dollars per unit of a foreign currency,
.e. the domestic price of a foreign currency. The data is
onthly9 and runs from November 1989 to July 2020.
his is a more up-to-date data set than the one used
n other studies, but similar in length.10 We use the
acroeconomic fundamentals:

• Uncovered Interest Rate Parity (UIP) which postu-
lates that, given the spot rate St , the expected rate
of appreciation (or depreciation) is approximately:
E(St+h − St )

St
= it − i∗t , (4.5)

where it is the domestic and i∗t is the foreign interest
rate corresponding to the time horizon h of the
return.11

• Long-short interest rate difference - the difference
between the ten-year benchmark government yield
and one month deposit rate.

• Stock growth - monthly return on the main stock
index of each of the G10 currencies/countries.

• Gold price - monthly change in the gold price.

The data is standardised based on the mean and stan-
dard deviation calibrated to an initial training period of
10 years.

We consider using all possible models as our pool
(which consists of 2048 models, including all possible
subsets of the fundamentals). Comparison of the N-average
method (Diebold et al., 2022), DeCo (Billio et al., 2013) and
BPS (McAlinn & West, 2019) with the competing methods
is not available for this pool due to computational cost,
and so we consider a small pool (which consists of the 32
models based on UIP only and time-constant parameters).

8 Following Koop and Korobilis (2013), we adopt an Exponentially
Weighted Moving Average (EWMA) estimator for the measurement
covariance matrix to avoid the need for the posterior simulation
for multivariate stochastic volatility. This is different than Beckmann
et al. (2020) who use the approximation derived by Triantafyllopoulos
(2011).
9 If month-end data was not available, it was substituted with the

beginning of the month data or monthly average. These substitutions
were unavoidable for some of the data in the 1980s. See Appendix
Appendix D.7 for more details.
10 Kouwenberg, Markiewicz, Verhoeks, and Zwinkels (2017), consider
he data beginning from 1973. However, data samples from the 1970s
nd 1980s can vary between data providers, and the available quotes
re of lower quality than the newer data. For example, due to the
lliquidity of financial instruments. The details concerning the data
ources and any proxies used are presented in the data Appendix
ppendix D.7.
11 In this context, we use the one month deposit rates. Theoretically,
ne should use the one month rates from the appropriate cross-
urrency curves. However, we assume that the difference between
he deposit rates in the two countries provides a good proxy for the
nterest rate differential.
8

An exhaustive list of model parameter settings is outlined
in Appendix Appendix D.2.

We compare the performance of the competing model
averaging techniques using the logarithmic score and
economic evaluation using Sharpe ratios of a long-short
currency portfolio. We find that LDF provides superior
performance according to the logarithmic score and dem-
onstrate how these differences in scores manifest them-
selves in an economic evaluation.

4.2.1. Small model pool - analysis of scores
Fig. 4 compares the logarithmic score for DMA and

some specifications of LDF. LDF provides better perfor-
mance for an optimal choice of the hyperparameter and
is more robust to the choice of the hyperparameters
than DMA.12 Interestingly, for model selection, we note
that the proposed two-layer LDF specification LDF2a,a (as
well as LDF∞

a,...,a) methodology improved upon the DML
ethod (Beckmann et al., 2020), which as we recall is
DF2a,a with α = 1. The best scores in model averag-
ing/selection were achieved for LDF2s,s/LDF

2
a,s specifica-

tion with α = 0.9.
The average value of discount parameters α in the first

meta-model layer across time, for LDF2s,s with α = 0.9
is 0.77 which was very similar for α = 1. However, the
variability of α in the first meta-model layer for α < 1
was much larger, i.e. α being closer to 0 during times of
increased volatility and closer to 1 during calmer times
(same observation of either pool of models).

Fig. 5 shows the LDPR for the competing methods
on an expanding window with the hyperparameters of
LDF calibrated using the first ten years of data and the
competing models calibrated in the sample. The LDPRs
show considerable time variation with the sudden drops
in performance of LDF2s,a and Best-4 average models cor-
respond to the period of big FX volatility increases as
measured by Barclays G10 FX index.

In comparison to other methods, the LDF2s,s method
with α = 0.9 performs best (MLS = 22.16), followed
by other two layer LDF specifications and the 4-model
average (MLS = 22.10). The BPS method (MLS = 21.60) did
not perform well here. Similarly, the DeCo (MLS = 18.31)
method using multivariate normal approximation13 In
terms of model performance out of sample, LDF2s,s cali-
brated only on the initial ten years of data (to select α) -
α = 0.8 (MLS = 22.15) - still outperforms the other non-
LDF models that were calibrated in-sample. The detailed
results are presented in Table D.3 in Appendix D. The
stable state LDF models performed similarly to the two
layer specification, LDF∞

s,...,s achieves MLS = 22.13 and
LDF∞

a,...,a scores MLS = 22.07.

12 In Appendix D.3 we show that with a dense grid of allowable
values for α the points in Fig. 4 become smooth curves.
13 For DeCo, we checked that the marginal distributions are well
described by the normal distribution. We then output the covariance
matrix from the DeCo source code to complete the multivariate normal
approximation.
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Fig. 4. FX – MLS versus values of α for LDF and α for DMA in the x-axis for the small and large model pool. The upper plots show the cases of
model averaging, whereas the lower plots show model selection.
Fig. 5. FX – LPDR for model averaging in the small model pool. LDF2s,s provides the best performance robust to increases in the FX volatility.
.2.2. Large model pool - analysis of scores
We can only consider the LDF methods for the large

ool of models due to the run times of the other meth-
ds. Additional meta-model layers have a similar impact
s in the small model pool but with a less pronounced
ffect on model selection and a greater effect on model
veraging Fig. 4. Again, the best model averaging scores
ere achieved for LDF2s,s specification with α = 0.8
MLS = 22.37), and the stable state LDF models performed
9

similarly to the two-layer specification, MLS = 22.35 for
LDF∞

s,...,s. For model selection, the multi-layer specifica-
tion of LDF introduces the robustness to hyperparameters
but does not necessarily outperform the single-layer LDF
in terms of log scores. Interestingly, in the larger pool, the
EWMA random walk14 (RW) (decay factor 0.97) model

14 I.e. we estimate the volatility of the random walk based on the
exponentially weighted moving average.
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Fig. 6. FX – mean score values versus achieved Sharpe ratios. The log scores were used in the left-hand side plot; the focused scores were used in
the right-hand side plot.
was not the best model of all models considered (MLS
= 21.77), but it performed almost on par with the a
posteriori best model (MLS = 21.78). This indicates that
finding a single model that outperforms the random walk,
even from a big pool of models, is hard.

4.2.3. Economic evaluation of model selection
We consider economic evaluation by constructing a

portfolio of long and short currency positions targeting
10% annual volatility with 8bps transaction costs. We
measure the performance by looking at the cumulative
wealth over time, as well as the Sharpe ratio, which
captures the risk-adjusted performance, applied to the
smaller model pool of 32 models. To target the Sharpe
ratio, we define the score as the portfolio returns divided
by the portfolio standard deviation based on a rolling
twelve-month window.

We concentrate on LDF configurations that select a
single model at a time, that is LDF2a,a and LDF1a. Portfolios
re constructed by maximizing the returns subject to a
ixed risk per model, as in Beckmann et al. (2020). Model
veraging cannot be used as the correlation between the
nvestment strategies would inevitably change the target
isk level of the portfolio. An alternative approach to
ortfolio construction was presented in Tallman and West
2023), who use the multivariate focused prediction score
n the context of model averaging where each model aims
o minimise the risk subject to a fixed return target.

LDF2a,a only narrowly outperforms LDF1a on the log
core (Fig. 4) but has a higher Sharpe ratio (Fig. 6). This
ligns with the observations in Beckmann et al. (2020),
oting that small differences in the log scores can trans-
ate to noteworthy economic differences. The right panel
f Fig. 6 shows the mean focused scores (MFS) where
here are apparent differences (unlike the log scores) with
he double discounting version of LDF achieving better
cores leading to higher Sharpe ratios and higher final
ealth as seen in Fig. 7. The double discounting of LDF2a,a
llows the discount factor to drop in times of higher
olatility, such as during the great financial crisis, the
hinese crash or the Brexit referendum. For α = 0.7 in the
econd layer, the time average value of α in the first layer

s 0.71 and with α = 1 in the first layer it is 0.80. This is

10
in contrast to DML (LDF2a,a α = 1) and LDF1a specifications
where in the former the discount factor settles at 0.9
and does not move and in the latter it is just fixed to a
predetermined constant value.

Fig. 8 shows the portfolio composition through time.
We note that the weights display stability when the port-
folio value experiences periods of growth, and the sudden
weight changes correspond to periods of growth plateau-
ing. The weights generally follow the carry trade strategy,
which is well documented in the literature, see Della
Corte and Tsiakas (2012) and references therein.

4.3. US inflation forecasts

The final study considers an example of McAlinn and
West (2019), which involves forecasting the quarterly
US inflation rate between 1961/Q1 and 2014/Q4. Here,
the inflation rate corresponds to the annual percentage
change in a chain-weighted GDP price index. There are
four competing models: M1 includes one period lagged
inflation rate, M2 includes period one, two and three
lagged inflation interest and unemployment rates, M3 in-
cludes period one, two and three lagged inflation rate
only, and M4 includes period one lagged inflation inter-
est and unemployment rates. All four models provide
Student-t distributed forecasts with around 20 degrees of
freedom.

The distinguishing features of this example are the
small number of models and the existence of time pe-
riods when none of the models or model combinations
lying on simplex provide an accurate mean forecast. In
this example, we will see the limitation of the LDF and
other simplex-based methodologies, which are unable to
correct for forecasting biases if bias-corrected models are
not explicitly available in the pool.

The BPS method (MLS = 0.06) dominates all other
methodologies since it allows model combinations that
do not adhere to simplex. There were six dates in the
evaluation period where the mean of the BPS synthesised
model was greater than the maximum of the underlying
models. The ability to go beyond simplex proved to be one

of the key factors in the superior performance.
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Fig. 7. FX – Money through time and discount factor α through time for LDF2a,a with α = 0.7 and α = 1, and LDF1a with α = 0.5.
Fig. 8. FX – Portfolio composition through time for LDF2a,a with α = 0.7. We can see that long stretches of stable composition correspond to the
rowth periods, and the periods of sudden portfolio changes correspond to the periods of money growth plateauing.
The next most effective method was the N-model av-
rage of Diebold et al. (2022), which for N = 2 and
= 3 models had an MLS equal to −0.01 and provided

etter performance than the best single model (M2, MLS
−0.02). For N = 2, out of the 100 evaluation points,

he algorithm selected the pair (M0,M1) 35 times, the
air (M2,M3) 49 times and the pair (M1,M3) 16 times.
n the other hand, both 2-level LDF model averaging and
MA methods did not work well in this example, but
hey improved upon picking just a single model. The poor
erformance of 2-level LDF and DMA could mostly be
ttributed to the highly dynamic nature of these methods
hich sometimes attached too much weight to a single
odel that would score poorly (see Fig. 9).

. Discussion

This paper contributes to the model averaging and se-
ection literature by introducing a loss discounting frame-
ork that encompasses dynamic model averaging, first
resented by Raftery et al. (2010), generalises dynamic
odel learning (Beckmann et al., 2020) and introduces
dditional model averaging or selection specifications.
he framework allows for general dynamics for model
eights and works well with focused scores for goal-
riented decision-making. The methodology offers extra

lexibility, which can lead to better forecast scores and

11
Fig. 9. US inflation – The MLS versus values of α for LDF and α for
DML in the x-axis.

yield results that are less sensitive to the choice of hyper-
parameters. This is particularly important in a more real-
istic online forecasting setting where the selection of the
globally optimal hyperparameters is often unattainable. It
also empowers users to choose the model specification
in terms of the number of levels of discounting layers
suitable for the problem at hand.
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We show that our proposed methodology performs
well in both the simulation study and the empirical ex-
amples based on the exchange rate forecasts, where we
show the superiority of our approach both for model
averaging as well as model selection, where for the latter,
we also demonstrate how the differences in the scores
translate to noteworthy economic gains. We find that the
LDF can be a good choice when: the number of fore-
casters is fairly large, and sophisticated methods become
burdensome; if we want to have only a small number of
hyperparameters to calibrate; we suspect that we are in
theM-complete/open setting, and different models might
be optimal at different times, but there is no consistent
bias to be eliminated across all models; if we believe that
scoring forecasters on the joint predictive density or joint
utility basis is reasonable.

The LDF is not the panacea for model synthesis, and
the performance of different model synthesis methods
depends on the problem (as seen in the empirical studies).
However, LDF can often achieve competitive performance
with low computational overhead using flexible dynamics
and general model scores in an easy-to-implement and
compute framework.

There are multiple open avenues to explore. Many
current forecast combination methods described in the
literature assume that the pool of forecasters does not
change over time (see e.g. Diebold et al., 2022; McAlinn
& West, 2019; Raftery et al., 2010). This is a substantial
limitation in some situations, for example, if a pool of
experts provides the forecasts.

Let us first consider the situation of a new agent be-
ing added to the existing pool of forecasters. The exist-
ing forecasters already have a track record of forecasts
and corresponding scores. A new forecaster could be in-
cluded with an initial weight. This could be fairly easily
achieved in the LDF by considering a few initial scores. It
is unclear what this weight should be, especially in more
formal methodologies that relax the simplex restriction
like McAlinn and West (2019). Similarly, forecasters may
drop out completely, or for some quarters, before provid-
ing new forecasts. Again, it is generally hard to know how
to weight these forecasters. The LDF provides a rationale,
and we should be using an estimate of that forecaster’s
score when a forecast is made. This time series prediction
problem can be approached using standard methods.

We noted in the empirical sections that the best-
performing discount factor in the second layer is larger
than the average across-time discount factor in the first
layer. We showed that as one keeps adding more and
more layers of meta-models, the weights converge to an
equilibrium, i.e., adding more layers does not change the
scores any more. Any choice of the discount factor in the
final layer leads to the same score and discount factors in
all other layers.

It would also be of interest to consider the case when
the models to be combined themselves allow for sharp
breaks (Gerlach, Carter, & Kohn, 2000; Huber, Kastner, &
Feldkircher, 2019). Intuitively, more flexible models will
lead to weights with fewer fluctuations if the models
can represent the true DGP (for example, if one model is
correctly specified, then LDF should be able to replicate
12
BMA roughly). We believe that using out-of-sample log
predictive scores to calculate weights in LDF will avoid the
problems of overfitting found using in-sample estimation
methods. Therefore, we believe that LDF can take advan-
tage of more flexible models and robustifies against the
use of overly simple models.

As mentioned, we use joint predictive log-likelihood
as a statistical measure of out-of-sample forecasting per-
formance in most examples. It indicates how likely the
realisation of the modelled variable was conditional on
the model parameters. The logarithmic scoring rule is
strictly proper, but it severely penalises low probability
events, and hence it is sensitive to tail or extreme cases,
see Gneiting and Raftery (2007). A different proper scor-
ing rule could be used when needed, or if a decision
is to be made based on the outcomes of model averag-
ing/selection, then a focused score (or utility) aligned with
the final goal can be used, as demonstrated in one of our
examples.

Furthermore, since the scoring function is often based
on the joint forecast probability density function, our
methodology is not best suited to take strength from
forecasters who might be good at forecasting one or
more variables but not the others. This is partially be-
cause our methodology does not consider any depen-
dency structure between expert models, and the weight-
ing is solely performance-based. An extension introducing
a way to take the agent inter-dependencies into consid-
eration would be of considerable interest.

More broadly, the exponential discounting recipe could
be generalised and expanded by any forecast of the scores
which could involve more parameters.

6. Data and code availability

The data and the code in Python, R and MATLAB re-
producing the results in this paper are freely availabe on
https://github.com/dbernaciak/ldf.
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