
AccompliceVR: Lending Assistance to Immersed Users by Adding a
Generic Collaborative Layer

Anthony Steed*

Department of Computer Science, University College London

ABSTRACT

The current model of development for virtual reality applications
is that a single application is responsible for construction of the
main immersive experience. If the application is collaborative, that
application must implement the required network functionality. We
present VRAccomplice an overlay application that adds a collabo-
ration layer to applications running on SteamVR. Using the Ubiq
software, we can add avatars controlled by remote users as an over-
lay into running application. Remote users can see video of the local
user. We demonstrate this with some simple examples of a remote
user helping a local user in two popular SteamVR games.

Index Terms: Human-centered computing—Interaction
Paradigms—Virtual reality; Computer graphics—Graphics systems
and interfaces—Virtual reality

1 INTRODUCTION

Currently, most virtual reality applications are monolithic: a single
application, coded in a development environment such as Unity or
Unreal, is responsible for the behaviour of the virtual environment.
In particular, if an application is collaborative, the application must
itself implement the necessary networking functionality. Given that
users are immersed in the system, it can even be hard for co-located
persons to aid the immersed user. This might be contrasted with
either gaming platforms such as PSNet or XBox Live where party
formation and group chat persists outside any particular application,
or conferencing systems such as Zoom where applications can be
recruited and shared as video.

In this poster we introduce AccompliceVR which is a collabora-
tive layer that integrates with existing VR applications running on
the SteamVR platform. As shown in Fig. 1, a remote user (Co-Pilot
following the naming adopted by XBox for its assistive controls1,
see also [5]), controls an avatar inside an application that is run
by a local user (Pilot). In this case the two applications are Job
Simulator2 and Half Life Alyx3. Neither of these games is multi-
user. The Co-Pilot can see what the immersed user is doing and
can position themselves and gesture around the environment. We
implemented this system using the Ubiq social virtual reality soft-
ware [1]. Any number of immersed users can start AccompliceVR.
Each immersed user creates an independent room on a Ubiq server.
Remote users can then browse through the room list and join one of
the immersed users.

2 BACKGROUND

Collaboration support has been one of the key applications of VR
from its inception (see short history of such systems in [4]). Today,
many dedicated social VR platforms have been built; Schulz lists
over 160 applications at the time of writing [3]. In addition there
are 100s of games that support collaboration. What distinguishes
a platform from a game, is, in general, that the platforms support
extensibility in some form, e.g. by uploading and sharing objects,
creating avatars or creating and animating worlds or rooms.

These platforms and games all implement their networking inde-
pendently use one or more common APIs for networking. Unreal has

*e-mail: A.Steed@ucl.ac.uk

Figure 1: Demonstrations showing AccompliceVR in action. Top: a
remote user (Co-Pilot) represented as a Ubiq avatar (the blue-bodied
avatar) within the game Job Simulator running on the local user’s
(Pilot’s) machine. Bottom: the same Co-Pilot now joining the Pilot
within the game Half Life Alyx.

built-in networking which is optional for developers to use. Unity
has a variety of options, including the external Photon system4 . Dif-
ferent applications take very different strategies for implementing
their own networking (see [4]). While there have been various calls
for standard inter-networking between different applications, there
are no modern standards for this (though see the DIS standard de-
veloped in the 1980s to communicate between simulator systems).
AccompliceVR works at a different level to game networking in that
it works as an overlay application: networking, audio and avatars
are provided by the Ubiq system [1].

Steam is a digital distribution platform developed by Valve Cor-
poration. As a user, one installs Steam on one or more personal
devices. Steam then manages software downloads and installations

1https://support.xbox.com/en-US/help/account-profile/

accessibility/copilot
2Owlchemy Games, https://jobsimulatorgame.com/
3Valve Corporation, https://www.half-life.com/en/alyx/
4Exit Games, https://www.photonengine.com//Realtime

https://support.xbox.com/en-US/help/account-profile/
accessibility/copilot
https://jobsimulatorgame.com/
https://www.half-life.com/en/alyx/
https://www.photonengine.com//Realtime


Figure 2: AccompliceVR system showing interactions between the
processes. SteamVR App corresponds to an application that typically
runs on SteamVR. The AVR Pilot receives video from the SteamVR
runtime and relays it to the AVR Co-Pilot. It also renders dynamic
avatar images that are overlaid on the SteamVR App by the SteamVR
runtime.

on each device. Steam is one way of managing VR applications
on a Windows PC. SteamVR, an extension of Steam, supports the
interfacing of applications to VR devices5 . In particular, one typi-
cally launches SteamVR to manage the device(s) connected to the
device. SteamVR creates a default environment for the user when no
other application is running. When a VR application is launched by
Steam, it then creates an immersive display using SteamVR services.
For the Windows case, an application developer uses a SDK such
as OpenXR to create an executable that can then can use SteamVR
services at run-time.

AccompliceVR works by using SteamVR run-time functional-
ity for overlaying content over running applications. It has some
similarities, to the DreamStream system [7]. The types of modifica-
tion AccompliceVR does are supported by the SteamVR run-time,
whereas DreamStream uses code injection techniques. On the flip-
side, AccompliceVR is unable to access a depth buffer, so cannot
reconstruct a 3D environment. This makes ApplicanceVR in part
similar to spectator systems such as TransceiVR [6], but Accom-
pliceVR allows multiple remote users to interact with the local user.

3 SYSTEM

The architecture of the system is shown in Fig. 2. The networking
of player positions, audio and video is done with Ubiq [1]. We run
a Ubiq server (a Node process) that acts as a point of rendezvous.
Each Pilot creates their own Room on the server. New Co-Pilots
can connect to the Ubiq server and will see a list of Rooms to
which they can connect. Multiple Co-Pilots can connect to the
same Room. Once a Co-Pilot joins, Ubiq sets up the voice and
video communication between them as peers. The server only relays
positions of Co-Pilot(s) and Pilot to each other.

For the Pilot we used built-in functionality of SteamVR via the
OpenVR XR plugin (v1.1.4) to Unity (v2021.3.16f). SteamVR
allows client applications to overlay textures into the running appli-
cation. This is typically used to create user-interfaces, but it was
used by the Vermillion software to create a painting application
within other applications6 . The Pilot software is thus a standalone
application that runs at the same time as the main VR application.
Note that SteamVR allows multiple overlay applications to run at
the same time as a normal application, whereas only one normal
application can run at once and thus controls the main view on the
screen(s). The Pilot creates, using the OpenVR.Overlay class, one
overlay texture per Co-Pilot. The avatar for that Co-Pilot is rendered

5Valve Corporation, https://store.steampowered.com/steamvr
6Mountainborn Studios OÜ, https://vermillion-vr.com/

into the overlay texture. The texture is positioned on a billboard that
is moved to the position where it intersects the correct view volume
for where that avatar would be relative to the user. Conversely, the
Pilot process uses the OpenVR.Compositor class to extract images
of the screen (via GetMirrorTextureD3D11 function) and streams
these to the Co-Pilot. For the audio on the Pilot, audio mixing hap-
pens naturally at the operating system level, and we use the built-in
Ubiq 3D audio positioning.

The Co-Pilot is very simple. We show the streamed video relative
to an avatar of the Pilot. The Co-Pilot can be an immersed user or
they can use a desktop or other style of client supported by Ubiq.

4 DISCUSSION & CONCLUSIONS

We described AccompliceVR, a generic collaboration layer that al-
lows a remote user to interact with an immersed user of applications
running on SteamVR. We demonstrated this running in two com-
mon VR games, but it works in all of the games that we have tried
so far. Multiple Co-Pilots can connect. The main disadvantages
compared to a system such as DreamStream [7] is that the remote
view is simple video and the immersed user only sees an overlay of
an avatar, not a depth-mixed avatar. However, the main advantages
of our system are that it is relatively lightweight and works with
most SteamVR applications as it uses built-in functionality of the
SteamVR run-time.

Our tool’s first substantive use will be as an accessibility tool
to help on-board naı̈ve users to VR experiences. We can have the
demonstrator of the system help the user outside the system, and
once the user has donned the equipment, the demonstrator can assist
them inside the VR system by pointing out how different parts of
the user interface work. To further assist the Co-Pilot, we will also
investigate reconstruction of scenes from video [2]. We expect that
many other uses will be found as a generic assistance and observation
tool.

ACKNOWLEDGMENTS

The author wishes to thank Sebastian Friston and Ben Congdon,
the main developers of Ubiq. This work was partly funded by the
UK’s EPSRC project Graphics Pipelines for Next Generation Mixed
Reality Systems (EP/T01346X/1)

REFERENCES

[1] S. J. Friston, B. J. Congdon, D. Swapp, L. Izzouzi, K. Brandstätter,
D. Archer, O. Olkkonen, F. J. Thiel, and A. Steed. Ubiq: A system to
build flexible social virtual reality experiences. In Proceedings of the
27th ACM Symposium on Virtual Reality Software and Technology, pp.
1–11, 2021.

[2] G. Pintore, C. Mura, F. Ganovelli, L. Fuentes-Perez, R. Pajarola, and
E. Gobbetti. State-of-the-art in automatic 3d reconstruction of structured
indoor environments. In Computer Graphics Forum, vol. 39, pp. 667–
699. Wiley Online Library, 2020.

[3] R. Schulz. Comprehensive List of Social VR Platforms
and Virtual Worlds, 2023. https://ryanschultz.com/

list-of-social-vr-virtual-worlds.
[4] A. Steed and M. F. D. d. Oliveira. Networked Graphics - Building

Networked Games and Virtual Environments. Academic Press, 2009.
[5] F. J. Thiel and A. Steed. ” lend me a hand”–extending the reach of seated

vr players in unmodified games through remote co-piloting. In 2021
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts
and Workshops (VRW), pp. 214–219. IEEE, 2021.

[6] B. Thoravi Kumaravel, C. Nguyen, S. DiVerdi, and B. Hartmann.
TransceiVR: Bridging Asymmetrical Communication Between VR
Users and External Collaborators. In Proceedings of the 33rd An-
nual ACM Symposium on User Interface Software and Technology, pp.
182–195. ACM, Virtual Event USA, Oct. 2020. doi: 10.1145/3379337.
3415827

[7] B. Thoravi Kumaravel and A. D. Wilson. Dreamstream: Immersive and
interactive spectating in vr. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, pp. 1–17, 2022.

https://store.steampowered.com/steamvr
https://vermillion-vr.com/
https://ryanschultz.com/list-of-social-vr-virtual-worlds
https://ryanschultz.com/list-of-social-vr-virtual-worlds

	Introduction
	Background
	System
	Discussion & Conclusions

