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Predicting future disorders via temporal knowledge
graphs and medical ontologies

Marco Postiglione , Daniel Bean , Zeljko Kraljevic , Richard JB Dobson , Vincenzo Moscato

Abstract—Despite the vast potential for insights and value
present in Electronic Health Records (EHRs), it is challenging
to fully leverage all the available information, particularly that
contained in the free-text data written by clinicians describing
the health status of patients. The utilization of Named Entity
Recognition and Linking tools allows not only for the structuring
of information contained within free-text data, but also for the
integration with medical ontologies, which may prove highly
beneficial for the analysis of patient medical histories with the aim
of forecasting future medical outcomes, such as the diagnosis of
a new disorder. In this paper, we propose MedTKG, a Temporal
Knowledge Graph (TKG) framework that incorporates both the
dynamic information of patient clinical histories and the static
information of medical ontologies. The TKG is used to model a
medical history as a series of snapshots at different points in time,
effectively capturing the dynamic nature of the patient’s health
status, while a static graph is used to model the hierarchies
of concepts extracted from domain ontologies. The proposed
method aims to predict future disorders by identifying missing
objects in the quadruple ⟨s, r, ?, t⟩, where s and r denote the
patient and the disorder relation type, respectively, and t is the
timestamp of the query. The method is evaluated on clinical notes
extracted from MIMIC-III and demonstrates the effectiveness
of the TKG framework in predicting future disorders and of
medical ontologies in improving its performance.

Index Terms—Temporal knowledge graph, evolutional repre-
sentation learning, graph convolution network, electronic health
records

I. INTRODUCTION

ELECTRONIC Health Records (EHRs) are a vital tool
for healthcare providers in today’s digital age, as they

provide a comprehensive record of a patient’s health history,
including demographics, medications, lab results, and treat-
ment plans. Not only does this allow for improved continuity
of care and better coordination among healthcare providers,
but it also enables healthcare providers to identify trends and
make data-driven decisions to improve patient care.

Many works have been proposed to analyze the structured
information in EHRs to predict the risk for medical problems
[1]–[3]. However, the vast majority of the data stored in EHRs
is unstructured, posing a significant challenge for extracting
relevant information and utilizing it effectively. To overcome
this challenge, Natural Language Processing (NLP) techniques
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have been shown to be capable of extracting relevant informa-
tion from unstructured data and linking it to medical ontologies
[4], [5].

Knowledge Graphs (KGs) — which have recently revealed
promising results in the fields of recommendation systems
[6], information retrieval [7] and natural language processing
[8] — offer the possibility to integrate a diverse array of
patient data, spanning various types and originating from
disparate sources. A traditional static KG is a structured
representation of knowledge that utilizes a graph-based data
topology to integrate factual information in the form of triples,
⟨s, r, o⟩, where s and o represent the subject and object
entities, respectively, and r denotes the relation between them.
Medical ontologies, such as SNOMED CT1 and UMLS [9],
are commonly structured as hierarchies of concepts, which
allows for their representation in the form of KGs.

However, traditional KGs, while effective in representing
structured relationships through triples of entities and relations,
are inherently static. They can depict factual connections
between entities, but they do not allow for the representation
of temporal dependencies. This static nature becomes a signif-
icant limitation in healthcare contexts, where a patient’s health
status is not a fixed entity but a dynamic continuum, subject
to change due to various factors such as treatment responses,
disease progression, and lifestyle adjustments.

This highlights the need for alternative representations,
such as Temporal Knowledge Graphs (TKGs) [10], which
address this limitation by introducing a time dimension to the
traditional KG framework. Specifically, TKGs can effectively
capture the dynamic nature of the patient’s health status by
extending facts from a triple ⟨s, r, o⟩ to a quadruple ⟨s, r, o, t⟩,
where a timestamp t is appended [11] [12]. Consequently, a
medical history can be modeled as a TKG which consists in
multiple snapshots that capture the health status of the patient
at different points in time.

However, the integration of the dynamic information from
medical histories and the static information from biomedical
ontologies has not been explored yet. In our work, we propose
a learning framework, named MedTKG, that aims to predict
future disorders associated with a patient, i.e. the missing
objects in the quadruple ⟨s, r, ?, t⟩, where s and r denote
the patient and the disorder relation type, while t is the
timestamp of the query. Figure 1 shows an example of a
medical history and the related disorder diagnosis task. Each
timestamp, denoted by ti, represents a snapshot of the patient’s
health status at a particular point in time. These timestamps
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Fig. 1: Predicting future disorders with Temporal Knowledge Graphs. Letting ti and ti−n indicate the current and initial
timestamps, respectively, with n being the length of the medical history seen so far, MedTKG aims to predict links to future
disorders at a future timestamp ti+1. Data in each timestamp is represented in the form of a knowledge graph, in which the
patient is depicted as a central node connected to various medical concepts, such as disorders, substances, procedures, and
findings.

capture all the events that took place during a single day of
the patient’s hospital stay. The patient is connected to all the
concepts extracted from clinical notes that were recorded at
that timestamp. To ensure that the model does not predict
repetitive or periodic events that have already occurred in the
patient’s timeline, we only store new facts that have not been
previously recorded.

Differently from the current literature on TKGs, our ap-
proach involves analyzing multiple TKGs, one for each indi-
vidual patient within the dataset, and a query ⟨s, r, ?, t⟩ does
not have a unique object as the correct answer, but rather a list
of all possible disorders that may occur in the patient’s future.
This necessitates modifications to the training methodology, as
well as a revision of the evaluation metrics. Specifically, we
decided to leverage metrics commonly employed in the field
of recommender systems.

The results of this study reveal that effectively managing
the dynamic aspects of patients’ health status enhances per-
formance. Furthermore, integrating medical ontologies into
the prediction model consistently yields better results. These
findings provide valuable insights for future research in the
field of healthcare and have the potential to enhance the
decision-making process for clinicians, ultimately leading to
improved patient outcomes.

II. RELATED WORK

A. Deep learning for forecasting disorders

The majority of previous work for prediction or forecasting
uses structured datasets or structured data in EHRs for the
prediction of a limited number of possible future events.
For example, Miotto et al. [13] employ a limited vocabulary
comprising only 72 diseases. Similarly, Choi et al. [14] and

Ma et al. [15] focus specifically on disorder categories, thereby
constraining their predictions to a narrower range of about 200
ICD-9 codes.

A significant body of research in the field utilizes
transformer-based models to analyze electronic health records
(EHRs). BEHRT [2] utilizes a subset of 301 disorders present
in structured EHR data. However, this approach is limited to
predicting disorders that occur during a specific, predefined
time frame, as the information must be grouped by patient
visits, and its multi-label approach can present challenges
as the number of concepts to be predicted increases. G-
BERT [3] utilizes single-visit samples from EHRs, limiting
its ability to capture long-term contextual information. Similar
to BEHRT, G-BERT only utilizes structured data. Med-BERT
[1], is trained on structured diagnosis data coded using the
International Classification of Diseases. However, the model
is evaluated on a small subset of disorders, making it diffi-
cult to estimate overall performance. MedGPT [16] leverages
unstructured data in clinical narratives by first performing a
Named Entity Recognition and Linking (NER+L) task.

While transformer-based models have demonstrated capa-
bility in recognizing temporal patterns in data, they lack the
capability to enhance their performance through integration
with medical ontologies. These ontologies, which are rooted
in scientific literature, have been demonstrated to be useful
to aid the model in making more accurate predictions [17].
Graph data structures, when utilized for link-prediction tasks,
are proven to be effective in predicting disorders [18]. Fur-
thermore, they offer the advantage of integrating diverse data
sources, including medical ontologies. In light of this, GRAM
[14] exploits medical ontologies and the attention mechanism
to learn robust medical code representations, KAME [15] pre-
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dicts future visit information with medical ontologies, Comp-
Net [19] learns correlative and adverse interactions between
medicines by taking into consideration additional medical
knowledge (e.g. drug-drug interactions).

B. Temporal Knowledge Graphs

Current research in the field of knowledge graphs predom-
inantly addresses static knowledge graphs, wherein the repre-
sented facts are immutable over time. This approach overlooks
the critical dimension of temporal dynamics in knowledge
graphs, an aspect that is relatively underexplored [20]. The
incorporation of temporal information is vital, especially in
contexts such as patient medical histories. In such scenarios,
the applicability and accuracy of structured knowledge are
temporally constrained, necessitating an understanding that
the evolution of medical facts (e.g., disorders, laboratory test
results, and medical procedures) adheres to a chronological
sequence.

Link prediction TKG-based techniques that have been pro-
posed in current literature can be mainly divided in two
categories [21]: (1) frameworks that adapt well-performing
static KG-based methods and (2) applications of time series
methods from other domains. Current approaches include
TTransE [22], which augments the translation-based score
function used in tradizional KG embedding methods [23] with
an additional time embedding, HyTE [24], which projects
entities and predicates into a specific time hyperplane, ToKEi
[25], which deals with knowledge having varying time granu-
larities, and supports multiple time points and non-contiguous
validity intervals, DE-SimplE [26], which employs diachronic
entity embeddings to represent entities at different timestamps,
ATiSE [27] which learns time-aware embeddings of entities
and predicates as a Gaussian distribution to represent time
uncertainty, TeRo [28] which extends HyTE by learning
time-sensitive entity and predicate embeddings via rotation
operations specific to various timestamps, and TComplEx [29]
which upgrades ComplEx by scoring each event via a fourth-
order tensor decomposition that incorporates time information.
Several models have been proposed that incorporate Graph
Neural Networks (GNNs) or Recurrent Neural Networks
(RNNs) to identify spatial-temporal patterns. Examples of
these models include RE-NET [30], RE-GCN [31], HIP [32],
and EvoKG [33].

III. PROBLEM FORMULATION

Definition 1 (Medical History). A medical history MT is
represented with a TKG, which can be formalized as a
sequence of KGs, i.e. MT = {G1,G2, . . . ,GT }, where T is
the length of the sequence and each KG Gt = ⟨V,R, Et⟩ at
timestamp t is a directed heterogeneous graph, V , R and Et
being the sets of entities, relations and facts at timestamp
t, respectively. While entities V and relations R are shared
across timestamps and TKGs (i.e. the same medical concept
can be present in different medical histories), facts Et depend
on the patient and the current timestamp. A fact e ∈ Et can
be formalized as a quadruple e = ⟨s, r, o, t⟩, where s ∈ V ,
o ∈ V , r ∈ R and t is the current timestamp. In this work, a

fact e = ⟨s, r, o, t⟩ indicates that a patient s is related to the
medical concept o of type r (e.g. disorder, medical procedure,
medical substance) at timestamp t.

Definition 2 (Medical Ontology Graph). The ontology graph
Gs is a static knowledge graph modelling the knowledge
embedded in a medical ontology. It can be formalized as a
graph Gs = ⟨Vs,Rs, Es⟩ where Vs ⊂ V is the set of concepts
included in the ontology, Rs is the set of possible relations
between concepts and Es are the edges.

Definition 3 (Future disorder prediction). Given the patient
s ∈ V and its medical history Mt, the input to our model
is a query ⟨s, r, ?, t + 1⟩, i.e. we want to predict the next
concept associated to s. Despite our framework being easily
generalisable to several medical concepts, we focus only on
disorders, i.e. r = disorder. MedTKG models the conditional
probability vector of all concept entities with patient s, relation
r and history Mt, p(o|s, r,Mt).

IV. METHODOLOGY

In this section, we present our methodology for address-
ing the problem of future disorder prediction. Our approach
builds upon the work of Li et al. [31], in which a TKG-
based model is trained by considering the relationships among
concurrent facts, the patterns of events over time and the
inherent characteristics of entities. We adapt the approach to
our clinical scenario (i.e. clinical notes as the input to model
medical histories and medical ontologies as the source of
static information for medical concepts) and extend it to deal
with several independent TKGs, each of them representing the
medical history of a patient.

The architecture of the proposed MedTKG model is illus-
trated in Figure 2. A detailed description of each individual
component will be provided in the following sections. To
facilitate the reader in the understanding of our methodology,
we summarize the adopted notation in Table I.

A. Inputs

1) Medical History: Starting from the free text contained
in clinical notes, the first step in our architecture is Named
Entity Recognition and Linking (NER+L), which consists in
extracting mentions of the clinical concepts we are interested
to and linking them to a medical ontology. In our experiments,
we extracted mentions of disorders, procedures, substances
and findings, and linked them to the SNOMED-CT ontology
by using the Medical Concept Annotation Toolkit (MedCAT)
[34], a set of decoupled technologies exposing state-of-the-
art models trained by self-supervised learning. Note that this
module is easy to be replaced according to individual needs.

After extracting all the medical concepts pertaining to a
patient’s medical history, we represent this knowledge in the
form of a TKG (see Section 1).

2) Medical ontology graph: To include the knowledge of
the medical ontology in the learning framework, we need to
represent it as an Ontology graph (see Section 2). In this study,
we utilize the SNOMED-CT medical ontology and leverage
the links between medical concepts. Specifically, we consider
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Fig. 2: A methodological flowchart illustrating the steps involved in processing a single patient’s medical history.

TABLE I: Notations

Symbol Description

MT = {G1,G2, . . . ,GT } Medical history, represented as a TKG with size T .
Gt = ⟨V,R, Et⟩ Directed heterogeneous graph, where V , R and Et are the sets

of entities, relations and facts at timestamp t, respectively.
e = ⟨s, r, o, t⟩, e ∈ Et Fact in a TKG. It indicates that a patient s is related to the

medical concept o of type r (e.g. disorder, medical procedure,
medical substance) at timestamp t.

Gs = ⟨Vs,Rs, Es⟩ Medical Ontology (static) graph.

Ht Entity embedding matrix for the graph Gt, output of the
evolution unit.

Hω
t Entity embedding matrix for the graph Gt, output of the final

layer ω of the GCN.
hl
n,t Embedding of the object (subject) n at timestamp t and GCN

layer l.
Rt Relation embedding matrix.
rt Embedding of the relation r at timestamp t.
Ut Time gate component.

Nr,t Entities related by r at timestamp t.
Le
m Entity prediction loss on medical history m.

Ls
m Medical ontology constraint.

θt = min(γt, 90°) Threshold for the angle between static and evolutionary embed-
dings.

γ Parameter that controls the ”speed” of the θt threshold, i.e. how
rapidly it increases over time.

two types of relations: (1) a direct relation, which is defined
as an ”is a” relationship between two concepts as represented
in the ontology, and (2) an indirect relation, which is defined
as a relationship between two concepts that are not directly
linked in the ontology, but share a common parent, i.e. they
are both related to the same medical concept, also with an ”is
a” relationship.

B. Evolution unit

The evolution unit, based on the work from Li et al.
[31], comprises several elements that are utilized to model
the temporal dynamics of the patient’s health status and the
static information from a medical ontology. A Relation-aware
Graph Convolutional Network (GCN) is utilized to capture the
structural dependencies within the knowledge graph (KG) at
each timestamp. The temporal evolution of the KG is modeled
through the integration of two gated recurrent components,
namely, a time gated recurrent component and a Gated Re-
current Unit (GRU) component. These components enable

the recurrent computation of the evolutional representations
of entities and relations at each timestamp. Furthermore, to
ensure the preservation of ontology-based properties within the
KG, a static graph constraint component introduces constraints
between the static embeddings and the evolutional embeddings
of entities to integrate the static properties of the medical
ontology. The aim of the evolution unit is to output an entity-
embedding matrix Hi for each graph Gi in the medical history.

In the following, we will describe each module of the
evolution unit in detail.

1) Structural dependencies: The structural dependencies
among concurrent facts in a knowledge graph are captured in
order to model the associations among the entities through the
facts they participate in. Given their well-demonstrated ability
to learn from multi-relational graph-structured data [35]–[37],
we use a ω-layer relation-aware Graph Convolutional Network
(GCN) to model structural dependencies. This approach allows
for a comprehensive understanding of the relationships and
dependencies within the knowledge graph, which can be used
to improve performance on various knowledge-intensive tasks.

Specifically, given a KG Gt ∈ M at timestamp t and the
object entity o ∈ V at layer l, its embedding at the next
layer l + 1 is computed under a message-passing framework
as shown as follows:

hl+1
o,t = RReLu

( 1

c0

∑
(s,r):∃(s,r,o)∈Et

Wl
1(h

l
s,t+ rt)+Wl

2h
l
o,t

)
,

(1)
where hl

o,t, h
l
s,t and rt are the embeddings of the object o,

subject s and relation r at layer l and timestamp t, respectively;
Wl

1 and Wl
2 are the parameters for aggregating features and

self-loop in the l-th layer; hl
s,t + rt implies the translational

property between s to o via the relation r; co denotes a
normalization constant (in-degree of o).

2) Historical dynamics: Sequential patterns in the medical
history are captured by stacking the ω-layer relation-aware
GCN. However, to alleviate the over-smoothing problem, i.e.
embeddings of different entities converging to the same values,
and the vanishing gradient problem that may be caused by long
medical histories — which translate in many stacked GCN
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layers — a time gated recurrent component is applied as in
[38]:

Ht = Ut ⊗Hω
t + (1−Ut)⊗Ht−1, (2)

where ⊗ indicates the dot-product operation, Hω
t is the

output of the final layer of the relation-aware GCN and the
time gate Ut performs the non-linear transformation Ut =
σ(W4Ht−1 + b), σ and W4denoting the sigmoid function
and the weight matrix of the time gate, respectively. By using
the time gate component, the entity embedding matrix Ht is
obtained by taking into consideration both the output of the
final layer of the relation-aware GCN Hω

t and the embedding
Ht−1 from the previous timestamp.

To capture the sequential patterns of relations, a GRU com-
ponent is adopted. In particular, given a relation r at timestamp
t and its related entities Nr,t = {i|(i, r, o, t) or (s, r, i, t) ∈
Et}, we compute the input for the GRU at timestamp t
as the concatenation of (1) the result of a mean pooling
operation over the embedding matrix of entities in Nr,t, i.e.
pooling(Ht−1,Nr,t

) and (2) the embedding r ∈ R of the
relation r:

r′t = [pooling(Ht−1,Nr,t); r] (3)

Then, the relation embedding matrix is updated via the
GRU:

Rt = GRU(Rt−1,R
′
t), (4)

where R′
t contains the r′t values for all the relations.

3) Medical ontology static dependencies: The static em-
beddings (i.e. they do not change over time) of entities in the
medical ontology are obtained through a 1-layer R-GCN [39]
without self loops. The update rule is defined as follows:

hs
i = ReLU

( 1

ci

∑
(rs,j):∃(i,rs,j)∈Es

Wrsh
′s
j

)
, (5)

where hs
i and h′s

j denote the i-th and j-th lines of the output
matrices Hs and H′s, respectively; Wrs is the relation matrix
of rs and ci is a normalization constant equal to the number
of entities linked to i.

C. Scoring function
The scoring function aims to compute the conditional prob-

ability introduced in Section 3. In particular, given the medical
history MT , we want the probability score of candidate
triples (s, r, o), p(o|s, r,Mt) = p(o|s, r,Ht,Rt) since we
are representing the medical histories with entity and relation
embeddings. ConvTransE [36] is used as a decoder since
it contains a one-dimensional convolution layer and a fully
connected layer, which have been demonstrated to be well
performing when combined with GCNs [40]. The scoring
function is thus computed as follows:

p(o|s, r,Ht,Rt) = σ
(
HtConvTransE(st, rt)

)
, (6)

where σ(·) is the sigmoid function while st ∈ Ht and rt ∈ Rt

are the embeddings of the subject s and relation r, respectively.

D. Formulation of the loss function

The loss being optimized by our model combines two
terms deriving from entity prediction task (i.e. Le) and the
medical ontology constraint (i.e. Ls). Medical histories related
to several patients are independently processed by the model.
Then, given M medical histories, the loss function is computed
as follows:

L =

M−1∑
m=0

λ1Le
m + λ2Ls

m, (7)

where λ1 and λ2 are parameters controlling the loss terms.
We will describe the two loss terms in the following and omit
the medical history identifier m for the sake of simplicity.

1) Entity prediction loss: The entity prediction task is
treated as a multi-label learning problem. Let yt+1 ∈ R|V|

denote the ground-truth label vector whose elements are 1
when the corresponding object occurs at timestamp t + 1, 0
otherwise. The loss function is computed as follows:

Le =

T−1∑
t=0

∑
(s,r,o,t+1)∈Et+1

|V|−1∑
i=0

yt+1,ilog pi(o|s, r,Ht,Rt),

(8)
where T is the length of the medical history, yt+1,i is the i-th
element of yt+1 and pi is the probability score of entity i.

2) Medical ontology constraint: The medical ontology con-
straint is designed to manage and guide the relationship be-
tween the evolutional embedding hi,t and the static embedding
hs
i of the entity i at timestamp t . Specifically, the constraint

controls the angle between these two embeddings, which is a
measure of their similarity. The idea is that as time progresses
and more facts are added, the model allows for greater
divergence between the evolutional and static representations
of the entity. In practical terms, this is achieved by making
the angle not to exceed a threshold which increases over time
as the permissible range of evolutionary embeddings values
continually expands with the occurrence of additional facts,
θt = min(γt, 90°), where γ defines the speed at which the
threshold increases over time. As γ increases, the threshold
angle θt also increases more rapidly over time, allowing for a
faster adaptation of the evolutional embeddings in response to
new information. The maximum angle between the static and
evolutional embeddings is set to 90°. The loss of the medical
ontology constraint component at timestamp t is thus defined
as follows:

Ls
t =

|Vs|−1∑
i=0

max
(

cosθt − cos(hs
i ,ht,i), 0

)
(9)

It is important to note that the use of the max function in this
formulation introduces a point of non-differentiability when
cosθt = cos(hs

i ,ht,i). To effectively train our model using
gradient-based optimization methods, we address this issue by
employing subgradients [41] at these non-differentiable points.

Given a medical history of length T , the medical ontology
constraint loss is Ls =

∑T
t=0 Ls

t .
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V. EXPERIMENTS

A. EHRs dataset

The MIMIC-III dataset [42], developed by the MIT Lab
for Computational Physiology, was utilized as the source of
data for training and evaluating our framework. This dataset
contains information pertaining to patients who were admitted
to the critical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012, and is publicly accessible. The
corpus for our analysis was derived from the complete set of
unstructured clinical notes, consisting of 2083179 documents
from 46520 patients.

After extracting the concepts with MedCAT, we imple-
mented a preprocessing step that involved removing infrequent
concepts, defined as those that occurred less than 100 times
in the entire dataset, in order to eliminate rare diseases and
that could potentially both be detrimental for the training and
identify patients. Subsequently, the remaining concepts were
grouped by individual patients and organized chronologically.
To enhance the quality and completeness of the medical
histories, several additional steps were taken: 1) A biomedical
concept was retained in the patient’s medical history if it
appeared at least twice, which improves the precision of our
Named Entity Recognition (NER) and Linking NER+L tool,
but may result in a reduction in recall; 2) Concepts that were
parent concepts of concepts already present in the timeline,
based on the SNOMED ontology, were removed in order
to reduce noise and eliminate redundant information; 3) The
medical history was divided into segments with a duration of 1
day, and duplicate concepts within a segment were removed;
4) Medical histories containing less than 10 concepts were
excluded from further analysis.

Finally, medical histories have been mapped to the TKG
structure defined in Section 1. Research works are typically
based on a single TKG, which is usually split based on the
chronological order of events: for example, events related to
the first 70% of the available timestamps are used to train the
model, while the remaining 30% is used for testing. In our
case, however, we have access to different medical histories,
which translate into different TKGs. A portion of the TKGs
is used to train the model, while the other is used for testing.
Specifically, we divided patients in our dataset into a training,
a validation and a test set, comprising 90%, 5% and 5% of
the data, respectively. Note that each patient in the test set is
then split into several test samples reflecting all the possible
medical history lengths available. In each sample, the ground
truth is given by all the concepts appearing in future time
steps.

The details of the graph data generated in our study are
presented in Table II, which provides statistical information
on the dataset. Additionally, Figure 3 illustrates the trend of
decreasing support in the test set as the length of the medical
history, measured in terms of days, increases.

B. Medical Ontology

We utilized the SNOMED CT ontology to establish a
mapping between all medical concepts and their corresponding
codes. Through this approach, we were able to identify and

TABLE II: Statistics of the dataset.

Nodes train dev test

|Vpatient| 36,803 1,947 2,027
|Vdisorder| 1,376 1,330 1,322
|Vprocedure| 34 32 34
|Vfinding| 755 689 696
|Vsubstance| 472 458 449

Facts train dev test

|Edisorder| 911,418 47,647 49,259
|Eprocedure| 72,511 3,747 3,896
|Efinding| 596,900 31,844 32,470
|Esubstance| 421,551 22,151 22,738
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Fig. 3: Trend of test set support as the length of medical
histories increases.

analyze the various relationships that exist among the available
concepts. Both direct relationships, represented by the is a
relationship between the source and destination concepts,
and indirect relationships, represented by the shared is a
relationship between two concepts and a common ancestor,
were considered. Heatmaps in Figure 4 illustrate the number
of direct and indirect relationships retrieved from SNOMED
CT.

C. Metrics

While the literature in the field aims to test a model’s ability
to predict the occurrence of an event at a future timestamp,
of which the actual occurrence is known, our ground truth is
composed of a multiplicity of events, meaning that there is not
a single disease that will be associated with the patient in the
future, but a list of diseases that could potentially be associated
with the patient. This required us to use a different evaluation
protocol and set of metrics to test our models. To assess the
effectiveness of our model, a set of metrics has been employed,
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Fig. 4: Relationships found in the medical ontology from
source (rows) to destination (columns) concepts.
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including Mean Reciprocal Rank (MRR), True Positive rate
at k (TP rate@k), Hits at k (Hits@k), Mean Recall at k
(MR@k), Mean Averaged Precision at k (MAP@k), where
k denotes the top-k ranked predictions made by the model.
Metrics are detailed in the following.

Mean Reciprocal Rank: MRR measures the average of the
reciprocal ranks of the correct results in a set of queries or
predictions. The formula for MRR is:

MRR =
1

N

N∑
i=1

1

ranki
, (10)

where N is the number of correct concepts and ranki denotes
the ranked position of the i-th concept.

The utilization of MRR as an evaluation metric presents
several advantages. Firstly, it is scale-independent, making
it an appropriate metric for comparing the performance of
different models or tasks, regardless of the number of items in
the list, which can decrease as the medical history progresses.
Additionally, MRR places a strong emphasis on the first
correct result, which is particularly relevant in tasks such
as information retrieval, where users are less likely to scroll
through long lists of results. Furthermore, it takes into account
the entire ranked list, as opposed to only the top k results, as
seen in metrics such as precision and recall. Due to these
advantages, we employ MRR as a method of selecting the
optimal model among the results obtained at each epoch of
training.

True Positive rate: To evaluate the usability of our model in
real-world scenarios, where it would serve as an assistant for
risk prediction or diagnosis suggestion, we investigate how
likely one of the top-k predictions is correct, i.e. it appears
in future steps of the medical history. Thus, we consider a
prediction as a true positive if at least one of the top-k scored
disorders is correct. The TP rate is then defined as the ratio
between the sum of true positives and the total number of test
samples:

TP rate@k =
1

N

N∑
i=1

1(yi, ŷ
k
i ), (11)

where N denotes the number of test samples, yi is the list
of correct future disorders, ŷk

i denotes the first k disorders
scored by the model and 1(yi, ŷ

k
i ) equals to 1 if at least one

element of ŷk
i is also in yi, 0 otherwise.

Note that the number of correct concepts decreases as
we move forward with the medical history, thus implying a
possible decline of performance computed with this metric.

Hits: Despite physicians having the knowledge and exper-
tise to distinguish useful predictions among all the others, we
would like every disorder predicted by the model to be correct.
Hence, we compute Hits@k as the percentage of correct top-k
predictions, i.e. its averaged precision:

Hits@k =
1

N

N∑
i=1

TPk
i

k
, (12)

where TPk
i denotes the number of true positives for the i-th

test sample obtained by considering the top-k predictions.

As with TP rate@k, performance could decrease as we
proceed forward with the patient’s timeline.

Mean Recall: While TP rate@k and Hits@k give us an idea
of the precision of the model, i.e. of its ability to correctly
identify future disorders, we are interested also in its recall,
i.e. its ability to find all the future disorders. Mean Recall
is defined as the fraction of correct items found in the top-k
predictions:

MR@k =
1

N

N∑
i=1

TPk
i

TPk
i + FNk

i

, (13)

where FNk
i denotes the number of false negatives for the i-th

test sample obtained by considering the top-k predictions.
Mean Averaged Precision: Ideally, we would like our

model to score relevant future disorders at the top positions.
MAP takes into account both the precision and recall of the
recommendations made by the model and rewards first-loaded
relevant recommendations, making it more informative than
all the other metrics which does not consider the order in the
rankings of predictions. It is computed as follows:

MAP@k =
1

N

N∑
i=1

AP@k, (14)

where AP@k is the average of the precision at each recall
level for a particular test sample:

AP@k =

k∑
i=1

Hits@k · rel(i), (15)

where rel(i) is an indicator function which is 1 if the i-th item
is relevant, 0 otherwise.

D. Training parameters

In accordance with previous research studies [31] and
empirical results, the training parameters for the evolution
unit were selected as follows: the embedding dimension, d,
was set to 200, the number of layers, ω, in the relation-aware
GCN was set to 2, and a dropout rate of 0.2 was applied to
each layer of the relation-aware GCN. The time window is
set to a sufficiently large value, ensuring that it includes all
relevant details from each medical history. Adam optimization
[43] was utilized for parameter learning with a learning rate
of 0.0001. Additionally, for the RGCN used in the medical
ontology constraint component, the block dimension was set
to 2× 2 and a dropout rate of 0.2 was applied to each layer.
Furthermore, for the ConvTransE model, the number of kernels
was set to 50, the kernel size was set to 2×3 and the dropout
rate was set to 0.2. All the models have been trained for a total
of 10 epochs on a NVIDIA A100 gpu and the model with the
best MRR score on validation data has been used for testing.

E. Results

1) Comparison with baselines: MedTKG is compared
with 10 future-disorder prediction models, including tra-
ditional approaches and healthcare-specific methods. Tradi-
tional approaches include Convolutional Neural Networks
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TABLE III: Comparison with baselines. The weight of the medical ontology graph is set to w = 0.6. Best results are reported
in bold

TP rate Hits MR MAP
Method MRR @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10

CNN 10.29 31.87 51.33 59.73 69.65 31.87 27.08 24.19 20.01 4.32 10.32 14.58 22.51 4.32 7.99 9.92 12.60
RNN 8.98 26.86 46.70 55.91 67.26 26.86 23.91 22.22 19.17 3.21 8.14 12.31 20.40 3.21 6.11 7.90 10.48
RETAIN 10.20 31.73 51.08 59.89 69.89 31.73 27.14 24.24 20.08 4.10 7.76 9.70 21.38 4.10 7.76 8.62 11.26
Transformer 8.93 26.96 46.81 56.40 67.09 26.95 23.84 21.91 18.77 3.23 8.37 13.50 20.15 3.23 6.15 7.88 10.36
TCN 9.41 28.37 48.13 57.11 68.41 28.37 24.91 22.75 19.36 3.68 8.89 13.20 21.38 3.68 6.79 8.62 11.26
AdaCare 7.23 24.15 41.58 49.80 60.14 24.15 20.21 18.93 16.67 2.60 5.94 9.08 15.12 2.60 4.48 5.79 7.74
ConCare 8.87 27.15 46.10 55.71 66.84 27.15 23.66 21.86 18.95 3.3 7.91 12.05 19.93 3.3 6.04 7.73 10.26
StageNet 8.46 26.58 45.84 55.41 65.84 26.58 23.06 21.32 17.99 3.12 7.64 11.7 18.95 3.12 5.70 7.33 9.59
Dr. Agent 8.68 26.87 45.28 54.61 65.90 26.87 23.16 21.47 18.63 3.22 7.70 11.78 19.47 3.22 5.88 7.54 10.00
GRASP 9.17 27.7 48.17 57.24 67.80 27.7 25.00 23.13 19.54 3.42 8.57 12.83 20.76 3.42 6.45 8.29 10.91

MedTKG 7.15 43.4 66.61 75.05 82.44 43.4 37.85 34.23 28.52 3.7 9.09 13.3 20.13 3.7 7.09 9.08 11.85

(CNNs) [44], Recurrent Neural Networks (RNNs) [45], Trans-
former architectures [46] and Temporal Convolution Networks
(TCNs) [47]. Healthcare-specific models include RETAIN
[48], AdaCare [49], ConCare [50], StageNet [51], Dr. Agent
[52], GRASP [53]. We refer to PyHealth [54] for the imple-
mentations of baseline methods.

Table III presents the results of future disorders prediction
of the different baselines. It can be observed that while the
CNN approach achieves the best results in terms of MRR,
MR and MAP scores, MedTKG demonstrates a substantial
enhancement in the TP rate and Hits performance. This
superior performance in precision metrics is particularly sig-
nificant in the context of clinical applications, as it indicates
that MedTKG can reliably identify relevant disorders among
the top predictions. As a consequence, the reliability of top
recommendations is higher, thus reducing the time and effort
required to sift through potential predictions, which is essential
in fast-paced medical environments.

It is important to note that the performance of of next-
disorder prediction systems generally exhibits superior results
for the TP rate and Hits@k metrics. The TP rate, a metric
specifically designed to evaluate the presence of at least one
accurate prediction among the top-k ones, understandably
shows higher performance. However, the disparities between
the Hits and other metrics such as MR and MAP are worthy
of a further discussion. While MR theoretically lies in the
[0, 1] range (refer to Section V.C for the definition), values
are usually small in practice because the ground-truth list of
correct concepts is usually longer than k, making it impossible
to reach high scores. On a different note, MAP does not
only evaluate the ability of the model to make accurate
predictions, but also its ability to provide predictions in the
correct order. While our system proves high quality in making
good predictions, and overcomes the selected baselines, it is
not able to reach this level of precision.

2) Medical Ontology impact: Table IV compares the
performance obtained with different medical ontology weights
on the next-disorder prediction task. It can be observed that
the utilization of the medical ontology yields consistent im-
provements across the various metrics that were investigated.

Interestingly, the results also suggest that a weight of 0.6
generally produces the most favorable outcomes compared
to all other weight values: this is attributed to the fact that
increasing the weight can lead to the medical ontology con-
straint impeding the network’s learning capability of evolving
information. Furthermore, the high true positive rate and
hits values suggest a high level of precision in the model,
while the low recall is likely due to the extensive number of
concepts considered. A potential solution to this issue involves
predicting concepts located at higher levels in the SNOMED-
CT hierarchy, although this would result in lower specificity
in the model’s responses.

In addition to the weight of the medical ontology constraint
on the training loss, the model’s ability to learn from static
and dynamic information is controlled by the rate at which
we allow the threshold angle between static and dynamic
embeddings to increase with increasing timesteps. Results
in Table V show that high pace threshold values (≥ 15)
are associated with superior performance in the model’s top
predictions due to its increased ability to learn from training
data rather than being constrained by the medical ontology.
Conversely, lower threshold values (≤ 10) lead to better results
across a wider range of top predictions by enabling the model
to retrieve a larger number of correct concepts.

3) Impact on concepts predicted: Table VI shows the num-
ber of concepts ever predicted by models with varying weights
assigned to the medical ontology graph. Results demonstrate
that utilizing the medical ontology with the appropriate weight
during training improves the model’s ability to identify a
broader range of concepts. Furthermore, the validation curves
depicted in Figure 5 indicate that unlike the model that does
not employ the medical ontology, which initially identifies
a large number of concepts but later begins to overfit on a
smaller set, the medical ontology facilitates gradual incorpo-
ration of additional concepts into the model’s understanding.

In addition to assessing the number of concepts predicted by
the model, we also evaluated its precision in predicting these
concepts, taking into account the frequency of their occurrence
among patients. The results, presented in Figure 6, demonstrate
that the model’s performance is strongly influenced by the
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TABLE IV: Impact of the medical ontology weight. Best and second-best results are reported in bold and underlined,
respectively. The last row (+%) reports the relative improvements obtained when using the medical ontology graph.

TP rate Hits MR MAP
Weight MRR @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10

1.0 7.25 43.27 65.48 74.07 82.36 43.27 37.38 34.27 28.97 3.51 8.83 12.94 20.08 3.51 6.82 8.8 11.65
0.8 7.07 41.73 64.73 74.43 82.39 41.73 36.33 33.69 28.62 3.46 8.66 12.97 20.05 3.46 6.69 8.7 11.55
0.6 7.15 43.4 66.61 75.05 82.44 43.4 37.85 34.23 28.52 3.7 9.09 13.3 20.13 3.7 7.09 9.08 11.85
0.4 7.13 43.54 65.34 73.86 81.79 43.54 37.13 33.65 28.43 3.44 8.75 12.84 19.99 3.44 6.75 8.7 11.54
0.2 7.02 42.14 64.52 73.71 82.39 42.14 36.26 33.06 28.38 3.46 8.69 12.75 20.17 3.46 6.74 8.64 11.55
0.0 7.21 43.01 65.26 74.35 82.07 43.01 36.92 34.15 28.98 3.53 8.75 13.04 20.23 3.53 6.82 8.85 11.81

+% ↑ 0.5 ↑ 1.2 ↑ 2.1 ↑ 0.9 ↑ 0.4 ↑ 1.2 ↑ 2.5 ↑ 0.3 ↓ 0.03 ↑ 4.8 ↑ 3.9 ↑ 2.0 ↓ 0.3 ↑ 4.8 ↑ 4.0 ↑ 2.6 ↑ 0.3

TABLE V: Impact of the pace of the angle threshold between dynamic and static embeddings. The weight of the medical
ontology graph is set to 1.0. Best and second-best results are reported in bold and underlined, respectively.

TP rate Hits MR MAP
Angle MRR @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10 @1 @3 @5 @10

1 7.09 42.88 63.74 73.18 81.57 42.88 36.13 32.9 28.03 3.31 8.33 12.3 19.43 3.31 6.44 8.27 11.05
5 7.2 43.15 65.57 74.98 82.94 43.15 37.36 34.26 29.16 3.62 8.8 13.13 20.6 3.62 6.88 8.9 11.92
10 7.25 43.27 65.48 74.07 82.36 43.27 37.38 34.27 28.97 3.51 8.83 12.94 20.08 3.51 6.82 8.8 11.65
15 7.18 43.06 66.66 74.86 82.52 43.06 37.1 33.77 28.72 3.64 8.98 13.01 20.25 3.64 6.93 8.85 11.72
20 7.19 43.49 65.8 73.56 81.71 43.49 38.14 33.86 28.12 3.5 8.75 12.53 19.51 3.5 6.85 8.68 11.44

TABLE VI: Impact of the medical ontology weight on the
number of concepts ever predicted (CEP@k, k being the
number of top-ranked predictions considered).

Weight CEP@1 CEP@3 CEP@5 CEP@10

1.0 75 152 208 366
0.8 81 146 222 383
0.6 103 202 280 460
0.4 70 146 217 396
0.2 74 144 223 393
0.0 79 165 251 439
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Fig. 5: Trends of concepts ever predicted (CEP) with different
Medical Ontology weights on validation data over training
epochs.
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Fig. 6: Prevalence of concepts in test data (support) vs pre-
cision (P@k) of the model in identifying them. We plot only
concepts appearing in more than the 20% of patients.

frequency of the predicted concepts in the patient population.
As expected, the model performs better on concepts that are
encountered frequently during its training, due to their higher
support. However, we found that the utilization of biomedical
ontologies provides superior results, particularly for concepts
with lower support (see results between 0.6 and 0.8), where
the use of medical ontologies proves to be more beneficial.

4) Performance vs medical history length: Figure 7 shows
how model performance changes with the length of medical
histories. Rather than a steady increase, there is an initial drop
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Fig. 7: Performance trends of models with different weights attributed to the medical ontology constraint as the length of
medical histories increases.

in performance followed by an increase. This happens because
initial disorders are easier to predict, due to the large dataset
being used, the small number of concepts, and the high number
of patients with just one or two events in their medical history,
as depicted in Figure 3. In the middle part with the drop of
performance, there is not enough data and a wide variety of
concepts, while in the last part there is enough information
in the timeline to infer the diagnosis. Comparing the different
curves, we can observe that the use of the medical ontology
can lead to improved results, especially for patients with
shorter medical histories. This can be attributed to the model’s
inability to rely on sufficient temporal information, leading it
to effectively leverage the medical ontology’s knowledge.

VI. CONCLUSION & FUTURE WORK

In this study, we proposed a Temporal Knowledge Graph
(TKG) framework, called MedTKG, for predicting future
disorders by integrating both dynamic and static information
from Electronic Health Records (EHRs) and medical on-
tologies, respectively. Our findings suggest that incorporating
medical ontologies shows promise in improving the model’s
performance in predicting future disorders. Furthermore, we
investigated the impact of different parameters controlling the
weight assigned to the medical ontology during the training
process. The inherent structure of knowledge graphs, like
MedTKG, facilitates a transparent and interpretable modeling
of patient medical histories, thereby addressing the growing
need for explainability in biomedical applications. A key area
of our future investigations will be to further enhance the ex-
plainability aspect of our model. We plan to delve deeper into
how MedTKG can provide clear and understandable rationales
for its predictions, making it a valuable tool for clinicians
and healthcare providers. In our future work, we also aim to
broaden the scope of our study by incorporating new datasets,
including those in different languages, and expanding our
predictions to cover additional medical events, such as medica-
tions and procedures. Furthermore, while we have shown that
the utilization of static relationships between medical concepts

produces an enhancement of model performance in predicting
future disorders, the influence of such static information has
the potential to be even greater. Notably, association networks
between genes, disorders, symptoms, treatments, and other
related factors are being developed by many researchers [55],
[56]. Integrating these networks into the system could further
amplify its performance. Additionally, we plan to evaluate
the clinical utility of our framework by conducting a clinical
trial with healthcare providers to assess its effectiveness in
improving patient outcomes.
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