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Abstract 

 

Background: Mutations in LRRK2 are the most common genetic cause of familial Parkinson’s 

disease (PD). However, the physiological/pathological roles of LRRK2 are still unclear. This 

project aims at collecting the vast data of LRRK2 research and integrating them in a 

homogeneous, computational model to describe LRRK2’s activity in physiological and 

pathological pathways. Method: The protein interactome of LRRK2 was built in consecutive 

steps: 1) peer-reviewed protein-protein interactions (PPIs) were derived to define the general 

LRRK2 interactome (LRRK2int); 2) interactions among LRRK2 interactors were derived to 

construct the LRRK2-centred protein-protein interactions network (LRRK2net); 3) topological 

analysis was performed on the LRRK2net to identify clusters of LRRK2 interactors with high-

density PPIs; 4) each topological cluster was functionally annotated; 5) the LRRK2net were then 

merged with transcriptomic data of healthy human tissues to define the tissue specificity 

LRRK2 interactors; 6) the LRRK2net was merged with transcriptomic and genomic data of 

patients with sporadic PD, LRRK2 genetic PD and healthy controls to investigate the  molecular 

mechanisms of the 2 types of PD. Results: A total of 418 proteins were included in the LRRK2int, 

involving a range of different protein families. PPIs among these interactors formed a scale-

free network, in which 7 topological clusters with biological significance were identified, 

associated with ribosomal biosynthesis, cytoskeleton dynamics, synaptic transport, 

mitophagy and protein metabolism. LRRK2 interactors presented distinct expression 

signatures and functional patterns in the brain and the periphery. Of note, a striatal unit of 

putamen, caudate and nucleus accumbens was identified where LRRK2 interactors presented 

the highest co-expression with LRRK2 and similar expression profiles. At last, PD-associated 

expression analysis identified 100 LRRK2 interactors with significant differential expression in 

PD cases vs. control. Conclusion: This study defined a comprehensive protein interactome of 

LRRK2 with high tissue specificity and substantial association with sporadic PD and LRRK2-

related PD. 
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Impact Statement 

This study offers a comprehensive exploration of the protein interactome associated with 

LRRK2, a protein closely implicated in Parkinson's disease (PD) and other inflammatory 

conditions like Crohn’s disease (CD). The generated LRRK2 interactome was meticulously 

annotated to unveil a "functional core," comprising a conserved list of LRRK2 interactors 

participating across diverse biological processes enriched in the LRRK2 interactome 

(LRRK2int). This functional core represents the foundational elements of the LRRK2 functional 

network and highlights critical players in LRRK2-associated signalling pathways.  

 

Moreover, PPIs among LRRK2 interactors were integrated into a network model, unveiling a 

"topological core" comprised of highly-centred proteins forming the structural backbone of 

the LRRK2 interaction network. The combination of the "functional core" and "topological 

core," offers a concise list of potential hubs in LRRK2 signalling pathways, presenting 

promising avenues for therapeutic intervention in both sporadic PD (sPD) and LRRK2-PD. 

Identifying these hubs can guide targeted drug development strategies, focusing on key 

players in the intricate network of LRRK2-mediated processes.  

 

Furthermore, the study detected 7 topological clusters within the LRRK2 network, each 

enriched for distinct biological functions. These clusters serve as valuable starting points for 

pathway modelling, facilitating a deeper understanding of the player implicated in specific 

LRRK2-mediated signalling cascades associated with functions such as ribosomal biosynthesis, 

cytoskeleton dynamics, synaptic transport, mitophagy, and protein metabolism. Exploring 

these clusters provides insights into the multifaceted roles of LRRK2 in cellular processes and 

helps unravel the intricacies of its functional contributions. 

 

The investigation also emphasizes the tissue-specificity of the LRRK2 interactome, 

highlighting the need to differentiate LRRK2's role in the brain and peripheral tissues. This 

insight is crucial for LRRK2-focused research and targeted drug development, acknowledging 

the distinct functions and implications of LRRK2 in different tissues. The study suggests the 

development of a "trimmed-LRRK2int" by filtering the general LRRK2 interactome based on 

expression and co-expression levels in each tissue. This refined dataset enhances the tissue-
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specificity of functional research, reducing complexity and focusing on key participants in 

LRRK2 signalling pathways within specific tissues. 

 

Additionally, the study provides novel insights into the early-stages of PD pathology by 

identifying alterations in LRRK2 interactors in both the sPD and LRRK2-PD conditions. While 

further research is warranted to validate these changes, they offer a foundation for the 

understanding of the molecular differences of sporadic vs familial PD (which are currently 

considered as one single disease) and aid in the development of potential therapeutic 

strategies tailored to sporadic and LRRK2-associated Parkinson's disease. Overall, this 

research significantly contributes to our understanding of LRRK2's role in health and disease, 

providing a roadmap for future investigations and therapeutic developments in the realm of 

neurodegenerative disorders. 
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Introduction 

1.1 LRRK2 (Leucine-rich Repeat Kinase 2) 

LRRK2 is a is a large, multifunctional protein possessing both kinase and GTPase enzymatic 

domains. In 2004, mutations in the LRRK2 gene were firstly associated with familial 

Parkinson’s disease (PD) (Paisán-Ruíz et al., 2004; Zimprich et al., 2004). Since then, 

considerable efforts have been made to understand the exact functions of LRRK2 in the 

physiological and pathological scenarios. It has been associated with a wide range of cellular 

processes, such as autophagy, cytoskeleton organisation and immune response. However, 

due to both its complex structure and its multifaceted involvement in the regulation of 

cellular homeostasis, the exact role of LRRK2 is still unclear. 

 

1.1.1 Structure of LRRK2 

LRRK2 is a large, complex protein consisting of 2527 amino acids with a molecular weight of 

285 kDa. It belongs to the ROCO protein superfamily. The term "ROCO" is derived from the 

unique combination of two functional domains: ROC (Ras of Complex) and COR (C-terminal 

of ROC), in which the ROC domain exhibits GTPase activity while the COR domain is the hub 

of protein-protein interactions. In addition, LRRK2 contains a serine-threonine kinase domain, 

which is linked to the GTPase domain by the COR domain (Figure 1). With these 2 distinct 

enzymatic domains, LRRK2 is engaged in a variety of complex biological process, either as a 

direct participant or as a regulator. Of note, previous studies have found that the kinase 

domain of LRRK2 is regulated by its GTPase domain (A. P. T. Nguyen & Moore, 2017). Possibly, 

the reverse is also true as LRRK2:LRRK2 self-interaction has been reported in multiple studies 

with assorted detection methods (Manzoni et al., 2015) and the kinase domain of LRRK2 is 

able to phosphorylate the LRRK2 binding partner at different residues (those mainly studied 

are Ser935 and Ser910) (Marchand et al., 2020). Consequently, the interplay between the 2 

enzymatic domains adds another layer of complexity to the study of LRRK2 also considering 

that these self-interactions are affected by LRRK2 pathogenic mutations in the ROC-COR and 

kinase domains, thereby leading to enzymatic dysregulation (Sen et al., 2009). LRRK2 contains 

4 protein-protein interaction domains, namely an Armadillo (ARM) region, an Ankyrin (ANK) 

region, a leucine-rich repeat (LRR) domain, and a WD40 domain. These domains enable 

another crucial role of LRRK2: a scaffold protein, serving as a platform for the assembly of 



 15 

protein complexes in cellular signalling events. For example, previous studies suggest that 

LRRK2 may function as a scaffold in Wnt sigalling pathway, ASK1-mediated neuronal 

apoptosis pathway (Berwick & Harvey, 2012; Yoon et al., 2017). Many single nucleotide 

polymorphisms (SNPs) have been found in the LRRK2 gene, all coding and associated with 

aminoacid changes along the entire LRRK2 molecule. However, the pathogenicity of these 

variants is not fully understood. The recognized Parkinson’s Disease (PD) -related pathogenic 

LRRK2 mutations concentrate in the LRRK2 catalytic core: the ROC domain contains the 

R1441C/G/H and the N1437D/H mutations; the COR domain contains the Y1699C and the 

R1628P mutations; and the kinase domain contains the G2019S and I2020T mutations (Figure 

1) (Cookson, 2010; Mills et al., 2012). Only 1 PD risk variant occurs outside the catalytic core 

(G2385R) (Tezuka et al., 2022). This implies that the enzymatic activities of LRRK2, rather than 

other functions of LRRK2, might be associated with PD development. However, how these 

mutations and the corresponding LRRK2 structural/functional alterations lead to PD is still 

unclear.  

 

Figure 1. LRRK2 domain structure and PD-related pathogenic mutations 

LRRK2 is a multidomain proteins comprised of 1 GTPase domain (ROC domain), 1 kinase domain and 5 

protein-protein interaction domains (ARM, ANK, LRR, COR and WD40 domain). A total of 7 pathogenic 

mutations of LRRK2 have been identified in the previous studies, located in different domains of the 

LRRK2 protein. Abbreviations: ARM: Armadillo; ANK: Ankyrin; LRR: leucine-rich repeat; ROC: Ras of 

Complex; COR: C-terminal of ROC. Originally designed with Power Point.  

 

1.1.2 Localisation of LRRK2 

LRRK2 is prominently expressed in the periphery, especially in lung, liver and kidney (Figure 

2) (Madureira et al., 2020; Paisán-Ruíz et al., 2004). It also presents a high expression level in 

the whole blood, as compared to other biofluids such as urine and cerebrospinal fluid (CSF). 

On the contrary, LRRK2 exhibits relatively lower expression levels in the brain regions. It has 
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been shown that LRRK2 was mainly detected in dopamine-innervated regions such as frontal 

cortex, striatum and cerebellum, while at a lower level in dopaminergic area like substantial 

nigra (Biskup et al., 2006; Gaiter et al., 2006; Higashi et al., 2007). However, reports regarding 

LRRK2’s distribution in the brain seems to vary according to the different detection 

techniques used. Hence, further confirmation is required for the expression profile of LRRK2 

in the Central Nervous System (CNS). From a cell-specific point of view, LRRK2 presents higher 

expression levels in peripheral innate and adaptive immune cells (B cells, monocytes, and 

neutrophils) (Hakimi et al., 2011a; Westerlund et al., 2008). In the brain, higher LRRK2 

expression is observed in glia cells (especially in microglia) in comparison with neurons 

(Moehle et al., 2012). In cells, LRRK2 is mainly found associated with the intracellular 

membranes and vesicular structures throughout the cytoplasm, such as endosomes, 

lysosomes, and synaptic vesicles, Golgi complex and outer mitochondrial membrane (Alegre-

Abarrategui et al., 2009). It has been suggested that alterations of LRRK2 expression level are 

probably associated with PD. For example, significantly increased LRRK2 expression was 

found in immune cells (B cells, and T cells) of PD patients as compared to healthy controls 

(Cook et al., 2017a). Another study observed decreased LRRK2 level in sigmoid colon biopsy 

specimens from PD patients (De Guilhem De Lataillade et al., 2021).  
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Figure 2. LRRK2 expression profiles in different tissues 

(Adapted from The Human Protein Atlas, https://www.proteinatlas.org/) (Sjöstedt et al., 2020) 

 

1.1.3 Functions of LRRK2 

Since 2004, when mutations in LRRK2 were firstly associated with PD, a great amount of 

research has been conducted to understand the role of LRRK2 in health and disease, 

associating LRRK2 with a wide range of cellular functions.  

 

1.1.3.1 Autophagy  
Autophagy is a highly orchestrated lysosomal degradative process designed to degrade and 

recycle obsolete cellular components, such as aged or dysfunctional organelles and proteins. 

Dysregulation of autophagy can lead to the accumulation of misfolded proteins and other 

cellular debris, contributing to the pathogenesis of various neurodegenerative disorders; in 

PD reduced autophagy has been linked with the accumulation of a-synuclein, the main 

constituent of Lewy bodies (LB) (Lu et al., 2020). There are 3 main types of autophagy: 

macroautophagy, microautophagy and chaperone-medicated autophagy (CMA).   Previous 

studies have associated LRRK2 with macroautophagy and CMA, while no sufficient evidence 

support its linkage with microautophagy, which may be due to the fact that microautophagy 

is the least characterised form of autophagy. 

 

1.1.3.1.1 LRRK2 and macroautophagy 
Under normal circumstance, macroautophagy is primarily a cytoprotective mechanism, 

involving the formation and intracellular transport of autophagosomes (a type of intracellular 

double-membrane vesicles to sequester waste molecules), autophagosome-lysosome fusion 

and the degradation and recycling of cell waste in lysosome. However, dysregulated 

macroautophagy in disease scenario can lead to cell death. Previous studies have suggested 

a profound association between LRRK2 and macroautophagy. For example, increased number 

of autophagosomes was identified in rat neurons while overexpressing LRRK2-G2019S, a PD 

pathogenic variant that increases LRRK2’s kinase function, in comparison with neurons 

overexpressing wild-type LRRK2 or kinase-dead LRRK2 mutant (D. MacLeod et al., 2006). 

Similar alterations have been observed in fibroblasts from LRRK2-G2019S PD patients (Bravo-

San Pedro et al., 2013). Furthermore, pharmacological inhibition of LRRK2 function seems to 

https://www.proteinatlas.org/
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decrease macroautophagy in monocyte cell lines (Bravo-San Pedro et al., 2013). However, 

LRRK2 kinase inhibition shows opposite effect in in primary astrocytes, HEK293T cells, H4 

neuroglioma cells and SH-SY5Y neuroblastoma cells, in which it stimulates macroautophagy, 

suggesting that the regulation of LRRK2 on the process of macroautophagy is primarily 

dependent on its kinase function and is potentially cell-type specific (Manzoni et al., 2013, 

2016; Saez-Atienzar et al., 2014).  

 

The mechanism by which LRRK2 modulates macroautophagy is still unclear. Previous studies 

have found that LRRK2 may regulate the early and late stage of macroautophagy by 

modulating autophagy signal induction and lysosomal function via its kinase activities. In the 

normal scenario, macroautophagy is induced by cellular response to stress, involving the 

inhibition of mammalian target of rapamycin (mTOR). However, multiple lines of evidence 

have suggested that LRRK2-mediated autophagy induction is independent from mTOR 

pathway, although the down-stream alterations are similar. For example, it was reported that 

inhibitor of mTOR-activated autophagy has no effect on the macroautophagy induced by 

LRRK2-G2019S overexpression in in HEK293T cells (Gómez-Suaga et al., 2012). Similar results 

were found in H4 neuroglioma cells (Manzoni et al., 2016). Rather, LRRK2-mediated 

autophagy was deactivated by the inhibition of the Ca2+/CaMKK (calcium-dependent protein 

kinase kinase)/AMPK (adenosine monophosphate activated protein kinase) pathway. In 

addition, while under long-term stress, cells with mutant LRRK2 exhibit significantly higher 

death rate, which can be alleviated by enhancing the mTOR-mediated autophagy (Gómez-

Suaga et al., 2012). These results indicate that LRRK2-mediated and mTOR-mediated 

macroautophagy are independent but interplay with each other. Furthermore, LRRK2 

mutants have been found delaying autophagosome-lysosome fusion by interrupting 

autophagosomes transportation and increased lysosomal Ca2+ levels and reduced lysosomal 

Ca2+ release in both mouse and human neurons, which may further perturb the early stage of 

macroautophagy (Boecker et al., 2021; Dou et al., 2022). The last stage of macroautophagy 

involves waste degradation and recycling in lysosome. Previous studies have revealed that 

LRRK2-G2019S and LRRK2-R1441C lead to significant increase in lysosomal pH and thereby 

causing decreased lysosomal protein degradation in mouse and rat neurons (Schapansky et 

al., 2014; R. Wallings et al., 2019). In addition, increased lysosomal count and decreased 

lysosomal size were observed in these neurons. These changes lead to increased intracellular 
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accumulation of α-synuclein, which is the hallmark of PD, and neuronal α-synuclein release 

into the cell culture media, suggesting that LRRK2-related lysosomal function changes and 

sequential autophagy dysregulation are associated with PD progression.  

 

1.1.3.1.2 LRRK2 and CMA 
Compared to macroautophagy, CMA is a highly selective form of autophagy that targets 

individual proteins for degradation. These targeted proteins typically contain a specific amino 

acid motif, called the KFERQ-like motif, which can be recognised by the chaperone protein 

HSC70. Subsequently, the protein:chaperon complex is translocated to the lysosomal surface, 

where HSC70 binds to the lysosomal protein LAMP2A and facilitating the transport of the 

target protein into the lysosome for degradation by proteases. Aberrant CMA is highly linked 

to PD pathology since it is responsible for accumulation of α-synuclein, which is the hallmark 

of the disease pathology (Cuervo et al., 2004). Additionally, LRRK2 is also a substrate of CMA 

and a protein interactor of LAMP2A. Previous studies suggest that LRRK2-G2019S mutant 

presents more stable binding with LAMP2A and seem to prevent its multimerization and 

formation of the lysosomal membrane translocation complex, leading to aberrant 

degradation of other CMA substrates including α-synuclein. This hypothesis has been 

supported by observations in both human and mouse neurons. For example, impaired CMA 

has been observed in dopaminergic neurons from PD patients with LRRK2-G2019S variant 

(Sánchez-Danés et al., 2012). Similar alterations have been found in PD mouse model with 

LRRK2-R1441C (P. W. L. Ho et al., 2020). In addition, accumulation of α-synuclein was 

observed in these mouse neurons.  

 

1.1.3.2 LRRK2 and synaptic function 

Synaptic functionality is crucial for efficient communication between neurons. Synaptic 

communication encompasses the synthesis and release of neurotransmitter-loaded synaptic 

vesicles from the presynaptic terminal to the postsynaptic terminal, where vesicles are 

merged with cell membrane and the neurotransmitters are released to bind with receptors. 

At the end, the vesicles are either re-uptaken for recycling or enzymatically degraded. It is 

vulnerable to multifactorial neuronal stress, such as abnormal protein aggregation, 

mitochondrial dysfunction, oxidative stress and inflammation, etc. Collective loss or 

impairment of synaptic health leads to neurodegenerative diseases. For example, loss of 
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dopaminergic synapses in the substantia nigra contributes to typical motor symptoms in PD.  

Previous studies have associated LRRK2 with both presynaptic and post synaptic functions. 

 

1.1.3.2.1 The role of LRRK2 in the presynaptic site 

Multiple lines of evidence have linked LRRK2 pathogenic mutation with aberrant presynaptic 

function. For example, decreased dopamine release in the striatum has been observed in a 

LRRK2-G2019S mouse model. Intraneuronal metabolism analysis showed that extracellular 

metabolites:dopamine ratios in the striatum were significantly higher in LRRK2-G2019S 

mutant mice, suggesting that in the presence of the LRRK2 variant, newly synthesised 

dopamine is trapped in presynaptic terminal (Hammes et al., 2019a). This can either due to 

the impaired vesicle packing and/or disrupted exocytotic release process in the presynaptic 

site. Furthermore, another study found that overexpression of wild-type LRRK2 and LRRK2-

G2019S increased Ca2+ current density in the presynaptic membrane, which dramatically 

influenced neurotransmitter vesicle release (Bedford et al., 2016). Collective upregulated Ca2+ 

signalling may affect other organelle that crucial for maintaining presynaptic homeostasis, 

such as mitochondria. Presynaptic mitochondria are important for providing ATP to 

continuously support synaptic activity and buffering Ca2+ signals. Therefore, LRRK2 mutant 

induced Ca2+ increase may overwhelm mitochondria’s buffering capability and thereby 

further perturb vesicle release in the presynaptic terminal.  

 

The molecular mechanism behind these alterations is not fully understood yet, though LRRK2 

has been shown to interact and phosphorylate a panel of presynaptic proteins, among which 

Rab proteins are unambiguous substrates of LRRK2’s kinase domain. Rabs are a group of small 

GTPase functioning as key regulators of membrane trafficking and selective vesicle targeting 

(Jeong et al., 2018).  These proteins participate in each single step of synaptic vesicle transport, 

from the formation of endosome in endoplasmic reticulum (ER) and the Golgi (RAB1 and 

RAB43), intracellular vesicle transport (RAB3 and RAB8), vesicle-membrane fusion (RAB8 and 

RAB35) to endosome recycling and exocytosis (RAB10) (Steger et al., 2016a). LRRK2 

phosphorylation blocks the effector binding sites in Rab proteins so that they get trapped on 

intracellular membranes and unable to bind with upstream and downstream protein 

interactors, thereby perturbing vesicle endocytosis. In addition, LRRK2 phosphorylates 

presynaptic N-ethylmaleimide sensitive fusion (NSF) protein and enhances its ATPase activity 
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(Belluzzi et al., 2016). NSF is a housekeeping protein which is broadly required for intercellular 

membrane fusion. It also plays an important role in sustaining the pool of synaptic vesicles 

that are readily available for release. Furthermore, LRRK2 has been found to directly interact 

with synaptic vesicle via the synapsin I protein via its kinase domain and WD40 protein-

protein interaction domain (Marte et al., 2019). These findings suggest that the 

understanding of the protein-protein interaction network around LRRK2 is the key to 

understand its role in regulating presynaptic functions. 

 

1.1.3.2.2 The role of LRRK2 in the postsynaptic site 

When the synaptic vesicles diffuses across the cleft and bind with receptors at the 

postsynaptic site, the vesicles fuse with the postsynaptic neuron membrane and release the 

neurotransmitter, leading to the sequential neuron activation. Within this process, LRRK2 has 

been shown to affect the expression and activity of postsynaptic receptor, the endocytosis of 

synaptic vesicles and the postsynaptic morphology. Studies have suggested that the 

postsynaptic expression of glutamatergic AMPAR and dopamine D1 receptor (D1R) could be 

affected by overexpression of wild-type LRRK2 and its pathogenic variants. Of note, LRRK2 is 

primarily expressed in glutamatergic and dopaminergic projection regions such as striatum, 

where the postsynaptic terminals are located, while hardly expressed in substantia nigra 

where presynaptic dopamine neurons are located. Therefore, these findings suggest that 

LRRK2-mediated dopamine synaptic transmission impairment may mainly occur at the 

postsynaptic sites and then reflect at presynaptic sites. In fact, it has been suggested that 

postsynaptic overexpression of LRRK2 leads to retrograde upregulation of presynaptic 

neurotransmitter release (Foffani & Obeso, 2018; Kuhlmann & Milnerwood, 2020; Lamonaca 

& Volta, 2020). Further research is required to understand this regulation mechanism of 

LRRK2. In addition, aberrant synaptic vesicle endocytosis has been observed in ventral 

midbrain neurons in the presence of LRRK2-G2019S variant. This alteration can be rescued by 

LRRK2 kinase inhibition (Pan et al., 2017). However, no such change was observed in other 

brain regions, suggesting that the regulatory role of LRRK2 is probably brain-region specific. 

Furthermore, a critical role of LRRK2 in modulating dendritic spine morphology has been 

reported. Increased LRRK2 kinase activity induced by extracellular stimuli or pathogenic 

mutations (LRRK2-G2019S) engages LRRK2 with a macromolecular complex required to 

regulate actin dynamics during postsynaptic plasticity. Additionally, enhanced kinase function 
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significantly affects its protein-protein interactions with cytoskeleton proteins such as drebrin, 

ACTR2, ACTR3 and ARPC2, etc., which are important for spine maturation (Tombesi et al., 

2022).  

 

Taken together, by interacting with a panel of essential proteins at both presynaptic and 

postsynaptic terminals, LRRK2 plays a crucial and complicated role in synaptic signal 

transduction. Therefore, protein interaction analysis might bring valuable insight into the 

molecular mechanism of LRRK2-mediated synaptic regulation. 

 

1.1.3.3 LRRK2 and immune system 

The immune system is a sophisticated network crucial for maintaining homeostasis. It can be 

broadly categorized into 2 major components: the central nervous system (CNS) and the 

peripheral immune system. The CNS, composed of the brain and spinal cord, traditionally 

operates within an immune-privileged environment owing to the blood-brain barrier, which 

restricts the access of immune cells (Proulx & Engelhardt, 2022). Nevertheless, recent studies 

have revealed that the CNS is not entirely immune-isolated; instead, it maintains a delicate 

balance to ensure protection against pathogens while preventing excessive immune 

activation that may lead to neuroinflammation (Ampie & McGavern, 2022; Matejuk et al., 

2021; Waltl & Kalinke, 2022). On the other hand, the peripheral immune system operates 

outside the CNS, encompassing various tissues and organs. Its primary function is to defend 

against invading pathogens and maintain overall systemic health. Recent studies have 

reported an intricate role of LRRK2 as the interplay between CNS and peripheral immune 

system and thereby further highlight its essential role in physiology and pathology.  

 

1.1.3.3.1 The role of LRRK2 in CNS immunity 

The immune system in the CNS is distinct from its peripheral counterpart in terms of the 

composition of immune cells. In the CNS, glia, especially microglia and astrocytes, play the 

main roles in innate and adaptive immune responses (Ousman & Kubes, 2012).Microglia are 

the tissue-resident macrophages in the brain, mainly skilled in removing dysfunctional or 

damaged protein aggregates and neurons; while astrocytes predominately function as 

maintaining a normal biochemical environment for neuronal signalling. These glial cells 
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constitute the first barrier of CNS immunity, and are associated with pathological 

neuroinflammation in numerous diseases (Stevenson et al., 2020). In 2012, a high level of 

LRRK2 expression was firstly observed in activated murine microglia, though no accompanied 

high level of mRNA was detected(Moehle et al., 2012). Since then, numerous studies have 

been conducted to understand the role of LRRK2 in microglia. Multiple studies suggest that 

the LRRK2 protein, especially its kinase function, is a key regulator of microglia-mediated 

neuroinflammation (reviewed in (Filippini et al., 2021)). For example, increased LRRK2 kinase 

function in microglia is paired with increased production of pro-inflammatory cytokines, 

reduced microglial migration and increased microglial phagocytosis compared with 

respective control cells (Marek et al., 2018; Panagiotakopoulou et al., 2020). In parallel, such 

elevated microglial activation can be attenuated by downregulating LRRK2 expression. On the 

other hand, it has been reported that LRRK2-KO mice exhibit reduced microglial activation, 

dopaminergic neuron degeneration and movement deficit after LPS exposure, suggesting 

normal-functioning LRRK2 protein is essential for maintaining neuronal functions under 

inflammation (Dwyer et al., 2020).So far, the mechanisms underlying these observations are 

still unclear. Some studies suggest LRRK2 might impact microglial functions through PKA-

NFB pathway, which is supported by the evidence that reduced NFB transcription has been 

observed in microglia with LRRK2 KO(C. Kim et al., 2020; Russo et al., 2015). However, more 

work is required to understand the details of these signalling pathways. The role of LRRK2 in 

astrocytes has been prevalently linked with endosomal-lysosomal functions and regulation of 

-synuclein degradation (Bonet-Ponce et al., 2020; Booth et al., 2019; di Domenico et al., 

2019). For example, astrocytes derived from transgenic mice carrying the LRRK2-G2019S 

mutation, which increases LRRK2’s kinase activity, exhibited enlarged lysosomes and deficits 

in protein aggregates degradation. These dysfunctions were attenuated by chemical LRRK2 

kinase inhibition (Henry et al., 2015). Similarly, patient-derived induced pluripotent stem cells 

(iPSC) carrying the same LRRK2 mutation exhibited increased cytokine release, reduced ability 

to degrade -synuclein compared to the control cells during the exposure of inflammatory 

stimuli (Sonninen et al., 2020). Inhibiting LRRK2 kinase activity downregulated immune 

response in these astrocytes.   
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1.1.3.3.2 The role of LRRK2 in peripheral immunity 

The role of LRRK2 at the periphery has been underestimated and poorly investigated for a 

long time. However, a high expression of LRRK2 has been observed in immune-related organs 

(lung, kidney, spleen), myeloid cells and peripheral immune cells and the expression level 

increases under inflammatory conditions (Biskup et al., 2007; Melrose et al., 2007; Thévenet 

et al., 2011a). Furthermore, LRRK2 is upregulated in B cells, T cells, macrophages and non-

classical monocytes of sporadic PD patients, accompanied by enhanced pro-inflammatory 

cytokines secretion (Cook et al., 2017b; Hakimi et al., 2011b; Miklossy et al., 2006; Thévenet 

et al., 2011a). Taken together, these findings suggest a crucial role of LRRK2 at the interface 

of periphery immune response and PD. In fact, the correlation between PD and peripheral 

inflammation has been observed in the past 2 decades. For example, increased levels of 

peripheral inflammatory cytokines, such as TNF, IL-1β and IL-6 have been found in the serum 

of patients with sporadic PD, LRRK2-related PD as well as asymptomatic LRRK2-G2019S 

carriers as compared to healthy controls (Bu et al., 2015; Dursun et al., 2015; Dzamko et al., 

2016; Williams-Gray et al., 2016). In the meantime, PD patients who experience viral or 

bacterial infections often display a decline in both motor and cognitive functions, suggesting 

that peripheral inflammation may contribute to the PD progression (Brugger et al., 2015). 

Therefore, LRRK2 has been suggested as a target for modulating peripheral inflammation 

induced by PD progression.  

 

How LRRK2 regulates immune response is still unclear. However, previous findings have 

associated this function with its kinase activity. For example, it has been reported that LRRK2 

autophosphorylation increases in human peripheral blood mononuclear cells (PBMCs) and 

mouse in bone-marrow derived macrophages (BMDMs) under immune stimulation of 

cytokine, while the altered pattern was not observed in Lrrk2 knock-out mouse macrophages 

(Cook et al., 2017b; Dzamko et al., 2012). In contrast, it was observed that the 

phosphorylation of LRRK2 decreased in the peripheral blood mononuclear cells (PBMCs) of 

individuals carrying the LRRK2-G2019S mutation. This suggests that the increased kinase 

activity resulting from the pathogenic mutation might trigger a compensatory mechanism 

aimed at reducing LRRK2 autophosphorylation, thereby helping to maintain immune balance 

in the periphery (R. L. Wallings et al., 2020). In addition, previous studies have suggested that 

LRRK2:RAB10 interaction may play an essential role in mediating cellular response to 
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inflammation. RAB10 is a robust substrate of LRRK2 kinase. It is expressed in peripheral 

immune cells including B cells, monocytes and neutrophils. It has been shown that in the 

healthy status, phosphorylated-RAB10 (pRAB10) decreased in the above-mentioned cells by 

pharmacological LRRK2 inhibition, suggesting that reduced LRRK2 kinase activity may affect 

immune response conducted via these blood cells (Fan et al., 2018; Thirstrup et al., 2017a). 

In addition, the level of LRRK2 and pRAB10 in mouse and human primary macrophages were 

found associated with PD-implicated plasma cytokine levels TNF-α and IL-6 (Atashrazm et al., 

2019; Z. Liu et al., 2020). Considering that the main function of RAB10 is to modulate 

membrane trafficking and its phosphorylation is pro-inflammatory stimulation, these findings 

suggest a potential mechanism by which LRRK2 regulates peripheral immunity via adjusting 

the phosphorylation of RAB10 and thereby affecting the release of PD-related cytokine (Z. Liu 

et al., 2020; Nazish et al., 2021; D. Wang et al., 2010). However, further research is required 

to fully understand this complicated pathway. 

 

1.1.4 LRRK2’s relevance to Disease 

Considering the complicated functionality of the LRRK2 protein, its relevance to disease 

becomes increasingly apparent. Up to now, LRRK2 has been primarily associated with 

Parkinson’s disease (PD) and Crohn’s disease (CD).  

 

1.1.4.1 PD 

1.1.4.1.1 Prevalence, symptoms, pathology and genetics of PD 

According to the PD technical brief launched in 2022 by the World Health Organisation (WHO) , 

the global prevalence of PD has doubled in the past 25 years, with an estimate of 8.5 million 

people living with PD in 2019 (https://www.who.int/news/item/14-06-2022-launch-of-who-

s-parkinson-disease-technical-brief). Furthermore, disability and mortality attributed to PD 

are rising at a more rapid pace compared to any other neurological condition, as indicated by 

the 2019 estimates, which show PD causing 5.8 million disability-adjusted life years, marking 

a growth of over 100% since 2000. As the world's population continues to age, the prevalence 

of Parkinson's disease is expected to rise, making PD an increasingly significant global health 

concern.  
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PD was first identified by British physician James Parkinson in 1817, the disease was initially 

known as "shaking palsy", which refer to a set of progressive motor deficits including resting 

tremors, bradykinesia, muscle rigidity, and postural instability, which remain the defining 

features of the disease to this day (Parkinson, 1817). Over the years, apart from its 

characteristic motor symptoms, a wide array of non-motor symptoms such as cognitive 

impairment, depression, sleep disorder and hallucinations were described with PD (Poewe, 

2008). In 1960s, researchers found that damage to dopaminergic neurons in the substantia 

nigra and deletion of dopamine in the brain is responsible for the movement symptoms of PD 

(Fénelon & Walusinski, 2021). 

 

Treatment for Parkinson's disease aims to manage and alleviate the various motor and non-

motor symptoms associated with the condition, as there is currently no cure for the 

neurodegeneration. In terms of medications, levodopa is one of the most effective and 

commonly used drugs, helping to replenish dopamine levels (Lewitt & Library, 2015). Other 

medications like dopamine agonists, MAO-B inhibitors, and anticholinergic drugs can be 

prescribed to address specific symptoms or enhance the effectiveness of levodopa. In some 

cases, surgical interventions, such as deep brain stimulation, may be considered to alleviate 

motor symptoms when medications become less effective. A holistic approach to treatment 

often includes addressing non-motor symptoms, such as depression, anxiety, and sleep 

disturbances, through counselling and appropriate medications. Ongoing research and 

clinical trials continue to explore new treatments and potential disease-modifying therapies, 

providing hope for improved management and outcomes for those living with Parkinson's 

disease. 

 

The cause of movement disorders during PD progression results from the impairment of the 

dopaminergic nigrostriatal system. However, the pathology underlying the dopaminergic 

neurons remains unclear, but it is believed to involve a complex interplay of assorted cellular 

and molecular mechanisms in both CNS and periphery, among which the pathological 

hallmark is the aggregations of α-synuclein in the form of Lewy bodies (LB). LB pathology is 

found in multiple brain regions of PD patients: it starts from early affected areas such as 

amygdala and anterior cingulate cortex and the reaches late affected areas such as insula 

cortex, middle temporal cortex and anterior middle frontal gyrus (de Boni et al., 2022). LB is 
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also found in peripheral tissues such as heart, gastrointestinal tract, saliva gland, skin and lung 

(Devic et al., 2011; Ennemoser et al., 2022a, 2022b; Y. yan Li et al., 2022; Niemann et al., 2021). 

These findings suggest that PD is a multi-system disorder rather than a localised brain 

condition. Dysregulation of different cellular pathways has been found associated with PD, 

such as autophagy, synaptic vesicle transport, mitochondrial function, ribosomal function etc, 

indicating a complicated cellular and molecular mechanism for PD (Gonçalves et al., 2021; Lu 

et al., 2020; M. Nguyen et al., 2019; Picca et al., 2021). 

 

Additionally, many lines of evidence suggest that PD involves a complex interplay of 

environmental and genetic factors. Environmental risk factors associated with PD include the 

exposure to toxins, heavy metals, pesticides, traumatic brain lesions, and bacterial or viral 

infections (Wirdefeldt et al., 2011). Long-term expose to these factors elicits intense 

neuroinflammation especially in the substantia nigra. In addition, some viral proteins (such as 

HSV-1 and EBV) exhibit molecular similarity with α-synuclein, leading to α-synuclein 

accumulation and the formation of LB (Maries et al., 2003). Moreover, previous studies have 

shown that viral infection in the enteric nervous system (ENS) induce accumulation of α-

synuclein in the neurites of the upper gastrointestinal tract (Stolzenberg et al., 2017). 

Considering the fact that α-synuclein produced in the ENS can be trafficked from the gut to 

the brain; therefore the viral infection may eventually cause LB pathology in the CNS (Del 

Tredici & Braak, 2016). In terms of genetic factors, until now, rare variants in more than 20 

genes have been reported to cause PD, in which SNCA, PRKN, PARK7, LRRK2, PINK1, ATP13A2, 

GBA1, PLA2G6 and VPS35 are found with the highest correlation (Wirdefeldt et al., 2011). It 

is important to note that these mutations are responsible for a minority of PD cases (familial 

cases) as the vast majority of PD patients have a sporadic origin with absence of any classical 

mutation. Familial mutations in these genes show different frequencies across populations 

and may have varying effects on the set of disease symptoms manifested by the patients, age 

of onset, and the rate of disease progression. For example, mutations in LRRK2 are rare in 

general populations but are considerably higher in Ashkenazi Jews (about 15%) and North 

African Imazighen (about 40%), though patients with LRRK2 mutations present similar 

symptoms as sporadic PD patients (Bar-Shira et al., 2009; El Haj et al., 2017). In comparison, 

PD patients with mutations in SNCA gene are more likely to develop dementia as compared 

to sporadic PD patients while PRKN, PRAK7, PINK1 and PLA2G6 mutations usually cause early-
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onset parkinsonism (Wirdefeldt et al., 2011). The complexity of PD genetics implies a 

complicated etiopathogenesis of the disease.  

 

1.1.4.1.2 LRRK2 and Familial PD (fPD) 

• Pathogenic LRRK2 mutations 

Among the above-mentioned PD-related genes, mutations in LRRK2 are the most common 

genetic causes of PD, accounting for 2-40% of familial PD cases depending on the population 

under analysis (Bras et al., 2005; Drolet et al., 2011; Lesage et al., 2006). The first PD-related 

LRRK2 mutation was discovered in 2004 within a large Japanese family exhibiting autosomal 

dominant parkinsonism (Funayama et al., 2002, 2005). To the date, there are > 100 coding 

and non-coding mutations identified within the LRRK2 gene that have been confirmed to be 

associated with fPD, within which 7 coding mutations have been confirmed as disease-causing, 

namely G2019S, R1441C/G/H, Y1699C, N1437D/H and I2020T, among which the G2019S 

mutation is by far the most prevalent. Despite its worldwide distribution, the G2019S 

mutation exhibits a higher frequency in North African Imazighen (42%), Ashkenazi Jewish 

(28%) and Portuguese (16%) populations, while barely present in Asia (<0.1%) (Gaig et al., 

2009; Lesage et al., 2006; Ozelius et al., 2006). With respect to the R1441C/G/H mutations, 

although these 3 variants occur at the same position on the LRRK2 protein, they are actually 

observed in different populations. After LRRK2-G2019S, LRRK2-R1441C represents the second 

most common LRRK2 mutation identified in Europe, especially in the Belgian population, 

where R1441C accounts for 10.7% of fPD cases (Nuytemans et al., 2008). In comparison, 

LRRK2-R1441G is present with a frequency of 46% in fPD within the Basque population, but it 

is barely presents in other European populations (Gorostidi et al., 2009). A wider distribution 

has been found for the R1441H mutation, including Asia (Taiwanese population), Europe 

(Portuguese and Greek populations) and North America (US) (Ferreira et al., 2007; Mata et 

al., 2005; Spanaki et al., 2006; Zabetian et al., 2005). In comparison, the I2020T has only been 

reported in 9 cases from one family in Japan (the Sagamihara kindred), and it was the first PD-

related LRRK2 mutation was observed (Funayama et al., 2005). Similarly, the Y1699C mutation 

has only been reported in 3 families, 1 German-Canadian family and 2 British families (Nicholl 

et al., 2002; Wszolek et al., 1997), while the other mutation N1437H present primarily in 

European populations, especially in Norwegian and Polish (Aasly et al., 2010; Turski et al., 
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2022). It is worth to highlight that the association between LRRK2 mutations and PD is 

affected by age-dependent penetrance. For example, penetrance of the G2019S mutation 

increases from 17% at 50 years old to 85% at 70 years old (Kachergus et al., 2005; Lee et al., 

2017; Luciano et al., 2010). 

 

• Clinical symptoms and pathology of LRRK2-related fPD (LRRK2-PD) 

In general, patients with LRRK2-PD present typical clinical symptoms similar to those with 

sporadic PD (sPD), though subtle variance has been observed among patients with different 

LRRK2 variants. For example, patients with the G2019 mutation were reported with longer 

disease duration, slower progression and various age of onset (from 41 to 79 years). PD 

pathology (neuronal loss in the substantia nigra and LB pathology) is different when 

comparing LRRK2-PD vs sPD. Neuron loss is observed in the substantia nigra of patients with 

all types of LRRK2 variants while LB pathology was only reported to consistently occur in 90% 

of LRRK2-PD cases. However, though less α-synuclein aggregation was observed in the other 

10% LRRK2-PD cases, tau inclusions and TDP-43 accumulation seem to increase, especially 

with the LRRK2-G2019S cases (Kalia et al., 2015). These findings might suggest that the same 

clinical motor symptoms consequent to the PD neurodegeneration may result from different 

pathologies when comparing sPD and LRRK2-PD. 

 

• Effects of the pathogenic variants on LRRK2’s enzymatic functions 

All pathogenic mutations have been found to increase the kinase activity of LRRK2, although 

to different extents (Ito & Utsunomiya-Tate, 2023). In vitro kinase assays (performed using 

the isolated LRRK2 kinase in an artificial reaction setting, checking the LRRK2 rate of auto-

phosphorylation) consistently showed that the G2019S mutation significantly increases 

LRRK2’s kinase activity, while the impacts of other mutations vary among studies, which is 

likely due to differences in the assay systems (Marchand et al., 2020). On the contrary, in cell 

culture experiments, the non-G2019S mutations seem to increase the LRRK2 kinase activity 

to a larger extent as compared to the G2019S mutation. For example, overexpression of 

LRRK2-R1441G and Rab proteins led to a significant increase of RAB10 phosphorylation (~3-4 

folds), which is larger than the impact of the LRRK2-G2019S mutation (~2 folds)(Ito et al., 

2016a). Also in vivo, Rab10 phosphorylation was increased in peripheral blood neutrophils 
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obtained from R1441G carriers but not from G2019S carriers (Fan et al., 2021). These findings 

may suggest that the mechanism by which non-G2019S mutations upregulate LRRK2 

substrate phosphorylation might be different from the G2019S mutation and that the LRRK2 

substrate of phosphorylation (either LRRK2 itself or downstream substrates) could be 

differently affected by the type of mutation.  

 

Multiple lines of evidence have shown that some mutations also alter (decrease) LRRK2’s 

GTPase activity, though this effect it is not as well-studied as the impact of mutations on the 

kinase function and the results vary among studies. For example, the R1441C/G/H and 

N1437H mutations have been reported to decrease in vitro LRRK2 GTPase activity to different 

extents, while there was not enough evidence for the impact of the G2019S mutation (Guo 

et al., 2007; C. X. Wu et al., 2019; Xiong et al., 2010). However, these findings have not been 

confirmed in vivo yet. Considering the structural proximity between the kinase and the 

GTPase domains, and the fact that LRRK2 can phosphorylate itself probably as a self-

regulatory process, it is possible that alterations in the kinase domain might affect the GTPase 

activity of LRRK2 and vice-versa. Therefore, further investigations are needed on the co-

regulation of the 2 enzymatic domains by LRRK2 mutations to gain a more comprehensive 

view of the LRRK2-fPD pathogenesis. Finally, the R1441C/G/H, Y1699C, and I2020T mutations 

have been shown to downregulate autophosphorylation of LRRK2 at Ser910/935, while the 

G2019S mutation does not (Doggett et al., 2012; X. Li et al., 2011; Nichols et al., 2010a). Since 

the Ser910/935 phosphorylation is crucial for LRRK2's interaction with 14-3-3 proteins by 

impacting its subcellular localization, it is likely that this localization mechanism does 

contribute to the fPD pathology (Nichols et al., 2010a). 

 

1.1.4.1.2 Involvement of LRRK2 in Sporadic PD (sPD) 

The association between LRRK2 mutations/variants and sPD is complex. On the one hand, 

mutations that cause fPD, such as G2019S and R1441C, are present in sPD cases and not only 

in fPD cases (Bardien et al., 2011; Correia Guedes et al., 2010). However, it is worth to 

highlight that the presence of LRRK2 mutations does not always lead to sPD as there are 

asymptomatic LRRK2 mutations carriers in the general population (Trinh et al., 2014). 

Additionally, some other variants, even though have not been confirmed as causing 

mutations, have been found to increase the risk for sPD, such as the G2385R mutation in the 
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WD40 domain and the R1628P mutation in the ROC domain. These 2 variants are more 

common in PD patients with Asian ancestry as compared to the ethnicity-matching healthy 

individuals (Di Fonzo et al., 2005; O. A. Ross et al., 2008). Further studies have linked these 2 

mutations with alteration of the LRRK2 structure and increased kinase activity, which may 

cause perturbed vesicle transport and excessive cell death (Carrion et al., 2017; Shu et al., 

2016). On the other hand, some LRRK2 mutations (such as the R1398H mutation in the ROC 

domain) have been shown to have protective effect against PD by reducing the kinase activity 

and the strength of GTP binding to the LRRK2 protein (Nixon-Abell et al., 2016; Tan et al., 

2010). Furthermore, non-coding LRRK2 variants have also been suggested as risk factors for 

sPD by altering the expression level of the LRRK2 protein (Ryan et al., 2017). Previous studies 

have shown that increased LRRK2 expression may impair inflammatory response and 

apoptotic signalling, thereby contribute to the PD pathology (Härtlova, Herbst, Peltier, 

Rodgers, Bilkei-Gorzo, et al., 2018; K. S. Kim et al., 2018). Taken together, the linkage between 

LRRK2 and sPD is far more complicated than just a simple cause-and-effect relationship, 

involving intricate genetic, environmental, and molecular factors that interact in multiple 

ways to modulate the development and progression of sPD. 

 

1.1.4.1.3 LRRK2-targeted PD therapy: oppurtunities and challenges 

• Current development of LRRK2-targeted drug development for PD  

Despite our incomplete understanding of the exact functions of LRRK2 in health and PD 

conditions, there has been successful development of small-molecule LRRK2 kinase inhibitors 

as potential PD therapy. These inhibitors seem to be appropriate for clinical use considering 

their pharmacological and pharmacokinetics properties confirmed in preclinical assessment, 

such as kinase targeting selectivity, bioavailability and blood-brain barrier (BBB) permeability. 

Two LRRK2 kinase inhibitors, DNL201 and DNL151/BIIB122 were evaluated in Phase 1 clinical 

trials, in which no adverse events were observed after short-term administration, though 

DNL151/BIIB122 presented better pharmacokinetics features and thereby was selected for 

further clinical trials (Jennings et al., 2022). Multi-centre Phase 2 (NCT05348785) and Phase 3 

(NCT05418673) clinical trials are on-going to evaluate the efficacy and safety of 

DNL151/BIIB122 in participants with early clinical stage PD (30–80 years old) and LRRK2-PD 
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patients with the G2019S mutation. Other LRRK2 kinase inhibitors under Phase 1 or preclinical 

development include S221237, NEU-723, PFE-360, MLi-2 and PF-06685360 (Kingwell, 2023).  

However, it is worth to mention that even if these trials are successful, further assessment 

would be required to validate the efficacy and safety of LRRK2 inhibitors as a viable option for 

patients with sPD, which is much more common than LRRK2-PD in the worldwide. Apart from 

kinase inhibitors, other approached have been considered to modify other domains of the 

LRRK2 protein, such as the GTPase domain or the PPI domains. However, little evidence 

suggests the efficacy of alterations of non-kinase domains in PD models, which may result 

from the difficulty of selective targeting. Moreover, 1 clinical trial (NCT03976349) at Phase II 

has been conducted to assess the use of antisense oligonucleotides (ASOs) to decrease the 

entire LRRK2 protein expression levels, thereby blocking both kinase and GTPase activities as 

well as removing the interaction domains functions. 

 

• Challenges in LRRK2-target drug development 

o Selectivity  

The above-mentioned LRRK2 kinase inhibitors under pre-clinical or clinical trials are non-

selective LRRK2 kinase inhibitors, i.e., they inhibit both mutant and wild-type LRRK2. 

Considering the crucial role of LRRK2’s kinase function in maintaining normal cellular 

processes, non-selective suppression of wide-type kinase activity may lead to undesired 

pathological alterations. For example, most preclinical studies suggested that pharmacologic 

inhibition of LRRK2 kinase induce morphological changes to the lung cell in rodents and non-

human primates, though no further changes in respiratory function were observed (Lesniak 

et al., 2022). Furthermore, these alterations were found to be washed out after drug 

withdrawal. No adverse events were observed in pulmonary function during the monitoring 

time frame in clinical trials of DNLI-201 and DNL-151/BIIB122. It remains to be determined if 

long-term exposure of LRRK2 kinase inhibitors lead to pathological changes in lung in human.  

o Lack of biomarker 

Another major challenge in PD clinical trials is the absence of dependable biomarkers and 

scalable assays for assessing LRRK2 activity in patients. Theoretically, some LRRK2 substrates 

can be potential biomarkers for the assessment of LRRK2 kinase inhibition, such as specific 

Rab GTPases. Pathogenic LRRK2 mutations have been shown to enhance Rab phosphorylation, 
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implying that measuring phosphorylated Rab levels may serve as a reflection of LRRK2 activity 

(Steger et al., 2016b, 2017a). Additionally, these mutations also modulate phosphorylation of 

the LRRK2 protein at Ser910 and Ser935 (Dhekne et al., 2018). Developing these biomarkers 

for clinical use is crucial for drug development and clinical trials, enabling patient stratification 

based on the efficacy of kinase inhibition, and supporting personalized dosing and adaptive 

trial designs. 

o Timing of trials 

Most reviews of PD have suggested that the diagnosable motor symptoms of PD first appear 

at relatively late stage in the disease progression, when approximately 50-70% of 

dopaminergic neurons have been lost in the substantia nigra (Noyce et al., 2016; G. W. Ross 

et al., 2004). By then, PD pathology may be too advanced to be affected by pharmacological 

treatments. Therefore, identifying individuals at the earliest stages of disease would facilitate 

clinical trials. Since identifying prodromal sPD patients is nearly an unreachable goal due to 

the mildness and diversity of pre-motor symptoms, the population of prodromal LRRK2 

mutation carriers is the probably most appealing group for clinical trials. However, screening 

of the general population to identify this subgroup of people is still a challenge. Tracing and 

including relatives of LRRK2-PD patients will help alleviate this problem, but it requires well-

organised collaboration of multiple clinical centres. There are a few international PD-focused 

research project that recruit pre-symptomatic cohort with PD-related gene mutation for 

pathological study and drug development, such as the PPMI (Parkinson’s Progression Markers 

Initiative) study sponsored by the Michael J. Fox Foundation (https://www.ppmi-info.org/). 

These studies may provide promising subject cohort for further clinical trials. 

 

1.1.4.2 CD 

Crohn’s disease (CD) is an inflammatory bowel disease (IBD) that causes chronic inflammation 

of the gastrointestinal tract. Common symptoms of Crohn's disease include abdominal pain, 

diarrheal, weight loss, fatigue, and sometimes rectal bleeding. The exact cause of Crohn's 

disease is still not fully understood, but it is believed to result from a combination of genetic, 

environmental, and immunological factors. For example, active and passive smoking, high-

saturated-fat diet and bacterial or viral infection (Ananthakrishnan et al., 2014; Chapman-

Kiddell et al., 2010; Gradel et al., 2009; Higuchi et al., 2012; Hou et al., 2011; Mahid et al., 
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2006). In terms of genetic factors, multiple GWAS have identified LRRK2 as a major 

susceptibility gene for CD (Anderson et al., 2011; Barrett et al., 2008a; Franke et al., 2010). 

GWAS has linked the LRRK2 M2397T coding variant in the WD40 domain to sporadic CD cases 

in European population (Barrett et al., 2008b; Fava et al., 2016a; Ikezu et al., 2020; Z. Liu et 

al., 2011). In addition, a newly identified CD mutation, LRRK2-N2081D in the kinase domain, 

has been associated with a similar kinase function increase as the PD LRRK2-G2019S mutation 

which is highly linked to PD. Moreover, 2 other variants (LRRK2-N551K and R1398H in the ROC 

domain) seemed to increase the GTPase activity and reduce risk for both diseases (Gopalai et 

al., 2019; Hui et al., 2018). This suggests that the pathogeneses of PD and CD may overlap in 

altering specific LRRK2 enzymatic functions. On this note, several epidemiological studies 

have identified the connection between PD and CD. For example, increased risk of PD was 

found in CD patients in multiple populations in US, Taiwan, South Korea and Sweden (Lai et 

al., 2014; Lin et al., 2016; Peter et al., 2018; Weimers et al., 2019). Anti-TNF-α treatment of 

CD patients eliminated the increased risk for PD (Peter et al., 2018). On the other hand, 

gastrointestinal dysfunction is known as a non-motor symptom among PD patients that often 

appears prior to the typical motor symptoms (Suzuki et al., 2019). In addition, α-synuclein 

aggregates have been detected in the gastrointestinal tract years before the motor-symptom 

onset, which may gradually precede into the CNS and lead to sequential neuronal damage (J. 

S. Kim et al., 2017; Rota et al., 2019; Stokholm et al., 2016). These findings suggest a potential 

pathological association between the 2 diseases. Multiple studies have tried to determine the 

role of LRRK2 at the interface between PD and CD. For example, upregulated expression level 

of LRRK2 and increased LRRK2 kinase function have been observed in gastrointestinal tract 

cells as well as peripheral immune cells such as the CD14+ monocytes in both LRRK2-CD and 

LRRK2-PD patients (Cook et al., 2017c; Gardet et al., 2010a). Also, an enhanced pro-

inflammatory response to multiple types of cytokines was observed in these cases as well as 

LRRK2 mutation carriers (Gardet et al., 2010a; Ikezu et al., 2020). These finding suggest that 

LRRK2 functions either as an upstream regulator or a downstream responder of increased 

immune response in the disease scenario. In addition, since the 2 diseases seem to share a 

LRRK2-mediated inflammatory pathway, it is worth to keep caution in drug development 

since it is still unknown whether these alterations are beneficial or harmful for the affected 

area. Further research is required to understand the function of LRRK2 at the interplay of 

these 2 diseases. 
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Apart from Parkinson's disease (PD) and Crohn's disease (CD), LRRK2 variants have been 

implicated in the susceptibility to other immune-related diseases. For example, the LRRK2-

M2397T variant was reported to aggravate the type-1 reaction (T1R) in leprosy, accompanied 

with excessive inflammatory response (Fava et al., 2016b, 2019).  In addition, LRRK2 has been 

linked to the regulation of the innate immune response against Mycobacterium tuberculosis 

(Mtb) (CG et al., 2020; Weindel et al., 2019). This alteration has been associated with the 

protein’s kinase function, which inhibits the formation and maturation of Mtb phagosome 

(Härtlova et al., 2018). The intricate association between LRRK2 and various disease indicates 

its crucial role in maintaining homeostasis and regulating CNS and peripheral pathology. 

 

▪ Protein interactions 

Protein-protein interactions (PPIs) are the elementary molecular interactions responsible for 

sustaining cellular functions. In homeostasis, PPIs coordinate biological processes such as 

subcellular molecular biosynthesis and trafficking, signal transduction and the regulation of 

organelle dynamics. Alterations of PPIs can lead to functional impairment and thereby cause 

disease. Therefore, PPI analysis is essential for understanding the physiological and 

pathological role of less-recognised proteins like LRRK2. Up to now, a large number of studies 

have been focused on identifying LRRK2 protein interactors.  

 

1.1.5.1  LRRK2:Rab interaction 

Out of the many LRRk2 protein interactors reported in literature, only 3 are widely accepted 

by the scientific community: LRRK2 itself and Rab proteins (as both binding partner and kinase 

substrate); 14-3-3 proteins (just as binding partners).   

Rab proteins constitute the largest family of small GTPases. They regulate almost every stage 

of intracellular membrane traffic, including the formation, motility and fusion of vesicles with 

target membranes (Mizuno-Yamasaki et al., 2012; Pfeffer, 2017; Zerial & McBride, 2001). 

Phosphoproteomics study showed that a subset of Rab proteins are endogenous substrates 

of LRRK2, including a total of 10 Rab GTPases: RAB3A/B/C/D, RAB 8A/B, RAB 10, RAB 12, RAB 

35, and RAB43 (Ito et al., 2016b; Steger et al., 2016b, 2017b; Thirstrup et al., 2017b). These 

proteins are key regulators of neurotransmitter release (RAB3 isoforms), ciliogenesis (RAB8 

and RAB10), endocytosis (RAB10, 12 and 35) and ER-Golgi trafficking (RAB43) (Blacque et al., 
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2018; C. Li et al., 2017; Schlüter et al., 2004; Thirstrup et al., 2017b). Previous studies 

suggested that LRRK2 phosphorylation may block effector binding sites of some Rab proteins 

(e.g. RAB8A) and perturb intracellular localisation of other Rab proteins (e.g. RAB10). 

However, how LRRK2 phosphorylation affect structures and functions of Rab proteins have 

not been fully understood yet. Activities of Rab proteins are usually downregulated after 

LRRK2 phosphorylation, which have been observed especially in the presence of pathogenic 

LRRK2 variants which increase its kinase function. For example, the LRRK2-G2019S and LRRK2-

R1441C variants have been associated with primary cilia formation inhibition as well as 

perturbated endosomal trafficking due to dysregulated LRRK2:Rab interaction (Dhekne et al., 

2018; Madero-Pérez et al., 2018a; Rivero-Ríos et al., 2019; Steger et al., 2017a). Further 

research is required to understand the mechanisms of these alterations. Apart from 

phosphorylation, LRRK2 interacts with other Rab proteins through other functional domains. 

For example, LRRK2 interacts with RAB29 via its ANK domain (Beilina et al., 2014; D. A. 

MacLeod et al., 2013). Unlike the above-mentioned Rab proteins, RAB29 functions upstream 

of LRRK2. It recruits LRRK2 to specific cellular compartments, such as the trans-Golgi network, 

where RAB29 is normally located, and activate its kinase activity(Beilina et al., 2014; Helip-

Wooley & Thoene, 2004; D. A. MacLeod et al., 2013; Madero-Pérez et al., 2018b; Purlyte et 

al., 2018a). Increased LRRK2 kinase function further affects the downstream recruitment and 

phosphorylation of other Rab proteins (such as RAB8 and RAB10), thereby regulating their 

cellular functions. These processes together form the “RAB29-LRRK2-RAB8/10 cascade” 

(Kuwahara & Iwatsubo, 2020). This signalling pathway exhibits heightened activation in the 

presence of pathogenic LRRK2 mutations, as it appears that the mutated LRRK2 is significantly 

more activated by RAB29 compared to the wild-type LRRK2 (Purlyte et al., 2018b). 

Nonetheless, the precise mechanism underlying this cascade remains to be fully investigated. 

 

1.1.5.2  LRRK2:14-3-3 interaction 

The 14-3-3 protein family constitute a group universally conserved and highly abundant 

regulatory molecules. The family contains a total of 7 known mammalian isoforms, namely 

14-3-3 β (YWHAB), 14-3-3 γ (YWHAG), 14-3-3 δ (YWHAQ), 14-3-3 η (YWHAH), 14-3-3 ζ 

(YWHAZ), 14-3-3 ε (YWHAE), and 14-3-3 θ (SFN). These interact with a wide range of 

intracellular proteins and regulate various cellular processes such as apoptosis, transcription, 

protein transport and cytoskeleton organisation. Furthermore, 14-3-3 proteins have been 
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associated with preventing the formation of neurotoxic aggregates by directly interact with 

related proteins, such as -synuclein, tau and neurofilament (NFL). These findings have 

identified 14-3-3 proteins as potential drug targets for a variety of neurodegenerative 

diseases such as PD, Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). 

Structurally, 14-3-3 proteins share a comparable domain organisation and sequence, resulting 

in an overlap in their sets of protein interactors, which includes LRRK2. The interactions 

between LRRK2 and 14-3-3 proteins involve multiple binding sites spreading across the entire 

LRRK2 structure, including the ANK domain at the N-terminal, ROC domain in the middle and 

the WD40 domain at the C-terminal (Manschwetus et al., 2020a; Nichols et al., 2010b). These 

binding sites are highly influenced by the kinase activity of the LRRK2 protein. Therefore, 

LRRK2:14-3-3 interaction can be perturbed by LRRK2 kinase inhibitors or pathogenic 

mutations that alters its kinase function (Lavalley et al., 2016; Manschwetus et al., 2020b; 

Nichols et al., 2010c; Stevers et al., 2017). Also, impaired or weakened LRRK2:14-3-3 

interaction has been related with dysregulated exosome secretion of LRRK2 and sequential 

cytoplasmic accumulation of LRRK2, which was observed in CSF and urine samples of PD cases 

(Fraser et al., 2013; Giusto et al., 2021; Gu et al., 2020; Kilisch et al., 2016). These findings 

suggest an important role of LRRK2:14-3-3 protein in PD pathology. 

 

1.1.5.3 Previous in-silico protein interactome analysis of LRRK2 

In-silico Protein interactome analysis refers to the systematic study of the complete set of 

PPIs within a biological system based on the vast biodata resources. This approach offers a 

comprehensive exploration of potential interaction partners of an unknown protein, enabling 

researchers to infer its functional associations, predict its involvement in specific cellular 

pathways and thereby generate hypotheses for experimental validation. Up to now, 2 protein 

interactome studies have been performed on the LRRK2 protein, which were independently 

published in 2015.  

 

In the first study (Porras et al., 2015a), both human and mouse LRRK2 (Q5S007 and Q5S006, 

respectively) were queried in primary PPI database IntAct (Orchard et al., 2014) returning 

1075 binary interactions for 612 interacting pairs and 598 interactors of LRRK2. These 

interactions were reported from literature as detected with various of methods, which 
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reduces the impact of false positives and negatives resulting from single detection method. 

However, due to the variety in the accuracy and precision among these detection methods, 

the author suggested that a quality control process is needed to keep only high-quality 

interactions in the network. In the study, the authors defined three selection criteria: 1) 

detection of the protein interaction in native tissue, 2) the use of the MI score scoring system, 

3) evidence of the protein to be phosphorylated by LRRK2 in vitro. Native detecting conditions 

were defined as the interactions that were obtained using untagged, full-length LRRK2 in vivo 

methods. However, due to the complex structure and the large size of the LRRK2 protein, 

most of interactions were unable to fit this criterion. In fact, out of 598 human or mouse 

LRRK2 interactions, only 25, including LRRK2 and Lrrk2, were detected in native condition. 

The MI score scoring system was defined based on the number of literature reports of a given 

interaction. Theoretically, higher MI score associates to interactions that were repeated in a 

consistent number of studies and thereby may be more reliable. However, the author pointed 

that some nonspecific kinase substrates get comparatively higher MI score because their wide 

usage in protein assays. In parallel, an interaction with low MI score may result from limited 

scientific interest in repeating the analysis. Due to the important role of LRRK2’s kinase 

activity in biological processes, which is supported by multiple lines of evidence from 

functional studies of LRRK2, the author added more confidence on those interactors of LRRK2 

that were detected with kinase assays. By combining these three criteria, the author 

generated a high-confidence LRRK2 interactome comprising 25 proteins including LRRK2 itself 

and performed pathway annotation on it. The result showed that the LRRK2 interactome is 

enriched in functions related to axon development, cell cycle, intrinsic apoptosis, membrane 

trafficking, EGFR signalling and response to stress. 

 

In the second study (Manzoni et al., 2015), only human LRRK2 (Q5S007) was queried in 2 

primary PPI databases, IntAct and BioGrid, returning 542 and 260 interactions. The author 

defined two filters to keep human-human LRRK2 interactions only and to remove replicated 

entries. After filtering and merging, the two databases gave a total of 422 LRRK2 protein 

interactors. Similar to the first study, a scoring process was also included to control the quality 

of interactions, though the process here was simpler considering for each interactor only the 

number of publications and interaction detection methods. Following this strategy, 62 

interactors, which were reported in more than one publication or with multiple detection 
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methods, were selected for the final LRRK2 interactome. Functional analysis and family 

domain check were then performed on the interactome. The result indicates that LRRK2 

interactors are more likely associated with intracellular vesicle transport and cell projections. 

Additionally, the author compared the complete LRRK2 interactome (comprising 269 

interactors after removing the scoring filter) and the result of PD genome-wide association 

study (GWAS), identifying four genes coding for proteins in the LRRK2 interactome (SNCA, 

RAB29, GAK and MAPT) as present within a short physical distance from PD GWAS risk signals.  

In conclusion, these two independent comprehensive LRRK2 PPI study returned two vast 

interactomes consisting of more than 200 proteins found in literature as able to interact with 

LRRK2. In parallel, these studies also revealed the importance of quality control during the 

construction of interactomes, considering the massive data sources and the great variety of 

detection methods with different accuracy and specificity. Functional enrichment analysis in 

both studies presented similar results to the observations from wet-lab research, suggesting 

LRRK2 interactors are enriched in intracellular transport, apoptosis and cell development. 

However, it is worth noticing that the information regarding LRRK2 PPIs within these studies 

is non-tissue specific. Multiple lines of evidence have shown that the expression levels of 

LRRK2 differs in different tissues and cell types. Therefore, it is possible to hypothesise that 

the LRRK2 functions can also change based on tissue and cell specificity. So far, nobody has 

attempted an investigation of the LRRK2 interactome with a focus on its variability across 

different tissues and cell types. This approach will be part of the project within this thesis and 

the obtained information would be instrumental in furthering understanding the role of 

LRRK2 in health and disease, as well as in drug development for targeting the LRRK2 protein. 

 

 

1.2. Systems biology 

1.2.1 Development of systems biology 

Systems biology is a dynamic and interdisciplinary field that has revolutionized our 

understanding of complex biological systems. It emerged as a response to the limitations of 

traditional reductionist approaches, which involve dissecting complex systems into their 

constituent parts, such as individual genes, proteins, or specific cellular pathways. Instead, 
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systems biology aims to elucidate the intricate interplay of biological components in a 

complex system and the emergent properties that arise from these interactions. 

 

While systems biology started to gain its prominence in the late 20th century, its origins can 

be traced back to the mid-20th century. General systems theory, introduced by Ludwig von 

Bertalanffy in the 1930s, laid the conceptual groundwork for systems thinking (Fries, 1936). 

Bertalanffy's theory focused on the relationships and interactions between biological 

components rather than their isolated properties, emphasizing the importance of a holistic 

approach. In 1968, Mihajlo Mesarovic introduced the term "systems biology" as he applied 

general systems theory to study the relationships between biological entities (Mesarović, 

1968; Mesarovic et al., 2004). This marked an essential step in the convergence of biology 

and systems thinking, though the term "systems biology" would not become widely adopted 

for several decades. In the late 20th century, as molecular biology advanced and high-

throughput techniques were developed, the vast volume of molecular data was generated, 

highlighting the complexity of biological systems. This made it challenging to study molecular 

processes in a reductional manner. Since then, it became evident that understanding 

molecular networks was essential. This realization led to the convergence of systems 

molecular biology and systems mathematical biology, with mathematic and computational 

theories applied to analyse gene regulatory networks, protein interactions, metabolic 

pathways, and other biological systems, which formed the basis of contemporary systems 

biology. 

 

Nowadays, systems biology stands as a crucial field, seeking to enhance the understanding of 

complex biological systems by integrating data produced from a wide range of disciplines, 

including molecular biology, multi-omics study, structural biology and so on, via 

computational and mathematical approaches. At its core, systems biology relies on the 

generation and analysis of big datasets generated by recent high-throughput techniques such 

as next-generation sequencing and microarray,  and encompass diverse molecular 

information about a biological system.  
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1.2.2 Network analysis  

1.2.2.1 Types of networks 

Network analysis is a fundamental tool in systems biology. It involves the construction and 

examination of biological networks, where individual entities, such as genes, proteins, 

metabolites or other biological elements, are represented as nodes while the connections or 

relationships between these entities are represented as edges (i.e. connections among 

nodes). According to the categories of included entitles and types of their interactions, 

molecular networks can be classified into protein-protein interaction networks (PPIN) that 

describe physical interactions between proteins, Gene Regulatory Networks (GRNs) that 

illustrate the regulatory relationships between genes, Metabolic Networks, which present 

metabolic reactions in organisms, and Gene Co-expression Networks (GCN) which help 

identify functionally related genes based on their expression patterns, etc (Lü & Wang, 2020). 

These networks represent a combination of topological features and biological features and 

provide a more comprehensive view of a biological system. 

 

 Moreover, based on how connections are established between nodes, biological networks 

can be allocated into “direct network”, in which the linkage between nodes have a specific 

direction or orientation, indicating that signal flows from one node to anther but not in the 

reverse direction (Xiao et al., 2022). A typical example of direct network is metabolic networks, 

where metabolic reactions involve direct chemical transformation of metabolites and thereby 

make the edges in these networks direct (Junker & Schreiber, 2007). On the contrary, in an 

“indirect network”, connections between nodes do not have a specified direction. For 

example, in a gene co-expression network, edges represent co-expression behaviour between 

genes which are based on the similarity in their expression profiles and are thereby indirect. 

Additionally, nodes and edges can be weighted based on assorted features such as expression 

levels, confident scores, reaction rates, etc., thereby generating “weighted networks” (Gillis 

& Pavlidis, 2011). 

 

 Taken together, various networks provide a holistic representation of how biological 

molecules collaborate and influence one another. Network analysis enables the identification 

of crucial nodes (hubs) and their connectivity, unveiling the most influential elements within 

a system. It also offers insights into the flow of information, energy, or materials through the 
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network, helping researchers understand the underlying principles governing a biological 

process. By applying topological analysis, statistical analysis, and machine learning algorithms, 

network analysis aids in understanding the dynamics, robustness, and vulnerabilities of 

complex biological systems.  

 

1.2.2.2 Graph theory 

Graph theory is a branch of mathematics dating back to the 18th century. It provides a 

framework for understanding and analysing relationships and connections between 

individual nodes or node groups in a network. In systems biology, graph theory plays a pivotal 

role in the representation, analysis, evaluation and exploration of various types of biological 

networks, enabling the identification of critical nodes, pathways, and patterns in biological 

processes. Key concepts in graph theory includes degree of nodes, shortest path, closeness 

centrality and betweenness (Ma’ayan, 2011). 

 

1.2.2.2.1 Degree of nodes 

The degree of a node in a graph is the number of edges connected to it. In a directed graph, 

nodes have both in-degree (incoming edges) and out-degree (outgoing edges). Nodes with 

high degrees are often considered hubs and are crucial for maintaining network connectivity 

and information flow. 

 

1.2.2.2.2 Shortest path 

Shortest path represents the minimum number of edges or the lowest total edge weight (in 

weighted graphs) required to traverse from one node to another. It provides a way to 

determine the most efficient route between 2 nodes within a network. 

 

1.2.2.2.3 Closeness centrality (CC) 

Closeness centrality is used to quantify the centrality or importance of a node within a 

network based on its ability to quickly reach other nodes (Bavelas, 1948). It measures how 

efficiently a node can access all other nodes in the network, considering the shortest path 

lengths between them. Nodes with high closeness centrality are those that can be reached 

more rapidly from the rest of the network, making them central in terms of communication 
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efficiency. Mathematically, CC is calculated as 𝐶𝐶(𝑖) =
𝑁−1

∑ 𝑑(𝑖,𝑗)𝑗
, where i  j, dij is the length of 

the shortest path between nodes i and j in the network, N is the number of nodes. 

 

1.2.2.2.4 Edge betweenness (EB) 

Edge betweenness is defined by the number of shortest paths going through an edge 

(Freeman, 1977). It quantifies the importance of an edge within a network by measuring its 

role in maintaining efficient communication between nodes and helps reveal potential 

bottlenecks or weak points in a network, as the removal of edges with high betweenness can 

disrupt communication and influence the network's overall robustness.  

 

1.2.2.3 Topological analysis 

In the context of network analysis and graph theory, topological analysis involves the 

examination of the structural properties and connectivity patterns of a network graph and 

provide insights into the behaviour, functionality, and properties of the represented biological 

system.  

1.2.2.3.1 Degree distribution analysis 

Degree distribution in a network refers to the statistical pattern of node degrees. It evaluates 

whether a network follows a specific structural pattern, such as a scale-free network where a 

few nodes have a significantly higher degree (hubs), or a random network where node 

degrees are more evenly distributed. Of note, most of known molecular networks are scale-

free (Arita, 2005). Therefore, topological features such as degree of nodes are usually with 

biological significance. For example, in a cellular signalling network, key proteins like kinases 

may possess higher degrees, serving as essential hubs that relay information to various 

downstream targets (Buljan et al., 2020). Hence, degree distribution analysis aids in 

identifying hub nodes, assessing network robustness, and gaining information regarding the 

network's functional properties and organizational structure. 

 

1.2.2.3.2 Module detection and Fast Greedy Clustering 

Module detection in network analysis involves the identification of densely connected 

subgroups or communities (often referred as “modules” or “clusters”) within a network. 

These modules usually reveal functional or interactional units that connect more frequently 
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with each other than with the rest of the network (i.e. higher local density). For example, in a 

protein-protein interaction network, module detection helps uncover protein complexes or 

pathways with related functions, whereas in a gene regulation network, a detected module 

may represent a unit of co-regulated or co-expressed genes that contribute to a specific 

biological process. Various clustering algorithms have been developed to identify modules 

(clusters), such as the Markov Cluster Algorithm (MCL) (Van Dongen, 2008) which is based on 

random walk, the Lancichinetti-Fortunato-Radicchi (LFR) benchmark (Lancichinetti & 

Fortunato, 2009) which is based on modularity (a measure that quantifies the strength of 

division of a network into distinct communities or groups of nodes), the K-Means Clustering 

(Krishna & Murty, 1999) which is based on unsupervised machine learning algorithms, etc .  

 

The Fast Greedy Clustering is particularly known for its speed and efficiency in module 

detection for large networks, which has wildly used in molecular network analysis (Clauset et 

al., 2004; He et al., 2012; Rahiminejad et al., 2019; R. Wang et al., 2020). The algorithm's key 

idea is to iteratively merge or split communities to maximize modularity, identifying cohesive 

groups of nodes within the network. It begins by considering each node as a separate 

community and then combines them to form larger communities, pursuing an increase in 

modularity at each step. This process continues until no further modularity improvement can 

be achieved, resulting in the identification of communities with high internal connectivity and 

relatively fewer connections between them. Such an algorithm excels in optimizing 

modularity and helps identify communities that maximize the network's division strength. It 

also supports hierarchical clustering based on different topological parameters such as edge 

betweenness and degree of node. However, this is also its limitations encompassing the need 

to carefully select suitable parameters and accounting for potential sensitivity to initialization 

conditions during the community detection process. In addition, Fast Greedy Clustering may 

have limited power in identifying overlapping modules (Mahé et al., 2014). 

 

1.2.2.4 Examples of network analysis 

1.2.2.4.1 Protein-protein interaction network (PPIN) analysis 

Protein-protein interactions (PPIs) are fundamentals of all cellular pathways, such as DNA 

replication and repair, signal transduction, molecular trafficking, regulation of apoptosis, 
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response to stimuli, etc. PPIN analysis collects the enormous amount of experimental data 

produced by a variety of PPI detection methods, as well as predictive data generated by 

machine learning algorithms, providing a systematic framework to explore the organisation 

and dynamics within a list of proteins (Koh et al., 2012). The process of PPIN analysis typically 

includes PPI detection, data collection, network construction, analysis and interpretation. 

 

• PPI detection 

PPI detection methods can be classified into 3 categories: in vitro, in vivo and in silico 

approaches. In vitro detection techniques are performed outside a living cell in a controlled 

environment, such as under a particular pH or temperature. Examples of in vitro methods 

include Tandem Affinity Purification-Mass Spectroscopy (TAP-MS), Affinity Chromatography, 

Coimmunoprecipitation, Protein microarrays, and X-ray crystallography. These methods 

normally have high specificity since they directly assess interactions between purified 

proteins. Also, methods like X-ray crystallography provides structural insights about protein 

complexes. However, these methods are not able to fully present the interactions occurring 

within living cells, which are normally more complex due to cellular dynamics. This may result 

in false negatives since certain PPIs may only occur under specific cellular conditions. In 

comparison, in vivo techniques involve detecting PPIs within the living organism, such as the 

Yeast 2-Hybrid (Y2H) system. These methods provide a detection environment with higher 

cellular relevance but are normally lower throughput than in vitro approaches. Distinct from 

the other 2 types, in silico methods predict PPIs based on a range of properties of queried 

proteins such as amino acid sequence, 3D structure, chromosome proximity, expression 

profiles, etc. Taking advantage of machine learning algorithms, these methods are always 

high-throughput and time-efficient. Also, after years of development, modern computational 

tools such as SPPS (X. Liu et al., 2012) and ProteinPrompt (Canzler et al., 2022) can predict 

PPIs with high accuracy. However, the main limitation of in silico methods is their high 

dependence on the quality and completeness of input data for the training of machine 

learning algorithms. Therefore, they may have limited power in predicting PPIs for unknown 

or less-studied proteins. 
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• PPI data collection 

Data for constructing a PPIN can be gathered from above-mentioned detection techniques or 

derived from curated PPI databases, which are produced on the needs of storing, organising 

and interpreting the vast amount of PPI data generated by high-throughput detection 

techniques. Based on the data source and processing procedure, PPI databases can be 

categorised into 2 types: the primary and secondary repositories.     

o Primary PPI databases 

Primary databases are the foundational repositories that directly compile experimental data 

on protein-protein interactions from peer-reviewed literature. Information such as the 

identifies of protein interactors, detection methods, publications where the PPIs were 

reported, and other experimental details are curated manually and uploaded into repositories. 

Depending on different purposes, these databases can be general and comprehensive (i.e., 

IntAct, MINT and BioGrid), organism-specific (i.e., FlyBase and WormBase) or subject-specific 

(i.e., immunology, InnateDB). Apart from experimental data, some primary PPI databases are 

based on predictive PPIs via in silico method, such as (PESCADOR and iHOP). However, it is 

worth to note that none of the primary database is complete as they cover a limited potation 

of the literature. Therefore, in PPIN, in order to construct a comprehensive network as 

possible, it is always important to merge information derived from multiple primary 

databases to obtain the maximum literature coverage. 

o Secondary PPI databases 

By contrast, secondary databases aggregate and integrate interaction data from multiple 

primary sources, often providing additional features, such as network analysis, functional 

annotation, and integration with other types of biological data, such as gene expression or 

pathway information to facilitate PPI data analysis. Of note, many secondary PPI databases 

also collect interaction data from literature, thereby forming some commonly used hybrid 

tools/repositories such as STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins)(von Mering et al., 2005), HIPPIE (Human Integrated Protein-Protein 

Interaction Reference) (Alanis-Lobato et al., 2017) and APID (Agile Protein Interactomes Data 

Server) (Alonso-López et al., 2019). 
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• PPIN construction and network analysis 

After deriving PPIs from multiple types of resources, the next steps are to construct a PPIN, 

investigate the features of its structure and organisation and probably integrate annotation 

data from other datasets such as functional/pathway enrichment knowledgebases, gene-

disease association catalogues, etc. Manually connecting and annotating each PPI in the 

network is impractical, especially for large scale PPIN analysis. Therefore, some user-friendly 

tools have been developed to visualise and analyse PPINs.  

o Cytoscape 

Cytoscape is one of the most commonly used open-source tools for biological network 

analysis. It is a multi-platform desktop application for network visualisation, integration, 

annotation and analysis (Shannon et al., 2003). The most pronounced feature of Cytoscape is 

the extensive selection of add-in apps that provide offering specialized features to 

complement its core functionality. These apps cover the diverse analytical needs across 

various knowledge domains, such as topological analysis (e.g., NetworkAnalyzer), cluster 

detection (e.g., MCODE, clusterMaker2) and Gene set enrichment analysis (e.g., BiNGO, 

ClueGO, EnrichmentMap). In addition, some Cytoscape apps are connected to annotation 

databases (e.g., ReactomeFIPlugin and KEGGscape) and empower the users to interpret the 

network from multiple aspects. The major limitation of Cytoscape is the high demand of 

computing resources, especially when it comes to large-scake networks.  

o Scripting packages 

In terms of large-scale network analysis, some scripting packages have been developed via 

different programming languages, such as igraph for R, Python and C/C++ (https://igraph.org/) 

and NetworkC (https://networkx.org/) for python. These programmatic packages are less 

computing-resource-demanding and can be implemented as part of bioinformatics analysing 

pipelines. 

 

• Applications of PPIN analysis 

o Predicting biological functions of uncharacterised proteins 

PPIN analysis aids in understanding and predicting biological functions of unknown proteins 

by examining the interactions they have with well-studies proteins. Grounded in the principle 

that interacting proteins often participate in similar pathways or processes, these proteins 
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may share the established roles in specific functions as their protein interactors, which is 

known as “guilt by association principle”. Moreover, pathway enrichment analysis on the 

neighbourhood of the unknown protein helps identify overrepresented cellular pathways or 

functional categories, which refines the predictions by highlighting the most relevant 

biological contexts. However, it is important to note that the accuracy of functional 

predictions depends on the quality and comprehensiveness of the interaction data and 

thereby should be interpreted with caution and validated through experimentation to 

confirm the true function of the unknown protein. 

o Mapping a complicated cellular cascade 

PPINs can be used to map pathways characterised by only several confirmed hub proteins. 

Starting from these hubs, a PPIN can be constructed by investigating the direct interactors of 

these key proteins, which are often referred as “neighbour proteins”. By examining the 

network, neighbour proteins with higher topological centrality are prioritised as potential 

novel hub proteins of the pathway. Though further validation is required, these proteins may 

unveil the missing links in the pathway. In addition, topological clustering on the neighbour 

proteins may reveal functional units, in which the proteins closely interact with each other 

and participate in the pathway as form of protein complexes. 

o Investigating disease mechanisms and guiding drug development 

A disease-specific PPI network can be constructed based on proteins of disease-causing genes 

and potential or established therapeutic targets. By expanding and analysing the networks 

through investigating interactors of these proteins, a more comprehensive view of the 

molecular mechanism is obtained for the disease of study. Additionally, pathway enriched 

within these proteins can reveal critical pathways and processes that are probably altered in 

the disease state. Furthermore, such disease-specific PPINs are instrumental in drug discovery. 

For example, novel hub proteins identified in the expanded PPIN probably play a central role 

in the disease-associated signalling pathways and thereby are potential drug targets for 

therapeutic intervention. After further computational analysis and experimental validation, 

researchers can design drugs that modulate the interactions or activity of disease-related 

proteins, ultimately working to protect or restore normal cellular function. Moreover, the 

analysis of disease-specific PPIN aids in the repurposing of existing drugs. By identifying 

connections between known drugs and disease-associated proteins within the network, 
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researchers can explore the potential of these drugs for new therapeutic applications, which 

accelerates the drug development process to a large extent. 

 

• Limitations of PPIN analysis 

Despite the advantages and wide application of PPIN analysis, it is important to recognise the 

limitations the come with it. First of all, the accuracy of PPIN analysis largely replies on 

comprehensive and reliable data resources. However, while most of PPI databases are well-

organised and precisely-annotated, some problems cannot be avoided. For example, a large 

proportion of PPIs provided by current online resources were produced by high-throughput 

techniques, which comes with risk of false positives or false negatives (Tarassov et al., 2008; 

von Mering et al., 2002). These inaccuracies can impact the quality of interaction data. Also, 

it is challenging to keep PPI data up-to-date if a database relies on manual annotation. 

Outdated data within these databases can introduce inaccuracies into PPIN analyses and 

leading to potentially misleading conclusions. In addition, literature-based PPI databases are 

generally incomplete (Manconi et al., 2012). Proteins that lack of study possess insufficient 

PPIs and thereby lack of centrality in typical topological analysis of PPIN. However, these 

proteins may actually have more extensive set of interactors and play an essential role in the 

PPIN in the real case (Tomkins & Manzoni, 2021). A combinative use of multiple PPI data 

resources can help alleviate this bias. Additionally, combining PPI data with other types of 

information such as expression levels or binding sites may help fill the gaps in the incomplete 

PPINs. Moreover, for predicted PPIN network, although the predictions are made on the base 

of experimental data, the PPIN may not represent the true dynamic and multifaceted nature 

of cellular PPI systems. For example, some PPIs may only occur in a particular cell 

compartment or only happen in a certain stimuli circumstance. Therefore, the need for 

experimental validation should never be ignored despite the development of advanced 

network analysis algorithms. Finally, PPIs lack in tissue specificity as they are generally defined 

in few cancer cell line experiments or in completely ex-vivo systems, while in reality they have 

biological meaning within specific tissues and cell types. 
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1.2.2.4.2 Weighted gene co-expression network (WGCN) analysis 

Gene co-expression refers to the tendency of certain genes to exhibit similar expression 

patterns across diverse experimental conditions or biological samples. In the molecular 

biology context, co-expressed genes often participate in common biological processes. 

WGCNs are built upon this principle by creating a weighted network on co-expressed genes, 

where genes are represented as nodes while the connections between the co-expressed 

genes are represented as edges. Different weights are assigned to their connections based on 

the strength of their co-expression. The main aim of WGCN analysis is to identify co-

expression modules based on weighted network analysis, define hub genes within each 

module and study the relationships between co-expression modules. These modules usually 

reveal the coordinated functioning of genes and the underlying regulatory mechanisms 

governing various physiological and pathological processes. Based on the consideration of the 

directionality of gene correlations, WGCN analysis can be divided into 3 types: signed, 

unsigned and signed hybrid forms. In the signed approach, the analysis incorporates both 

positive and negative correlations between genes, while the unsigned approach focuses 

solely on the strength of correlations, regardless of their direction. In the signed hybrid 

approach, positive correlations are kept while negative correlations are defined as 0.  

 

• Data source for gene co-expression analysis 

In co-expression analysis, mRNA level is often used as a reflection of gene. Microarray and 

RNA-Sequencing (RNA-Seq) are 2 primarily used high-throughput techniques for measuring 

mRNA levels, in which RNA-Seq has higher sensitivity and throughput than microarray but it 

is more expensive to run, especially for large-scale studies. In recent years, several data 

repositories have been established to store well-formatted and curated RNA-Seq data. These 

resources can be a catalogue of a range of individual studies such as the Expression Atlas 

(https://www.ebi.ac.uk/gxa/home) and GEO (Gene Expression Omniubs, 

https://www.ncbi.nlm.nih.gov/geo/), or based on a large-scale study based on a single cohort, 

such as GTEx (Genotype-Tissue Expression project, https://www.gtexportal.org/home/).  

 

https://www.ebi.ac.uk/gxa/home
https://www.ncbi.nlm.nih.gov/geo/
https://www.gtexportal.org/home/
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• Network construction and module detection 

After getting the expression data, the first step of WGCN construction is the calculation of 

pairwise gene correlations. Common correlation measures include Pearson correlation, 

Spearman rank correlation, or biweight midvariance. Pairwise co-expression coefficients form 

the “correlation matrix”. Afterwards, a soft thresholding power () is applied to the 

correlation matrix to generate the “adjacency matrix”, in which strong correlations are 

emphasize out of weaker ones. The way β is implemented on the correlation matrix varies 

across different types of WGCN analyses. For signed networks, 𝑎𝑖𝑗 = (
1+𝑐𝑜𝑟(𝑖,𝑗)

2
)𝛽 in which 𝑎𝑖𝑗 

refers to the adjacency between gene I and j; while for unsigned networks, 𝑎𝑖𝑗 = |𝑐𝑜𝑟(𝑖, 𝑗)|𝛽; 

and in terms of signed hybrid networks, for positive correlations,  𝑎𝑖𝑗 = |𝑐𝑜𝑟(𝑖, 𝑗)|𝛽 , while for 

negative correlations, 𝑎𝑖𝑗 = 0. Next, the adjacency matrix is converted into a Topological 

Overlap Matrix (TOM), where the correlation information between genes is transformed into 

topological similarities among nodes in the network. Afterwards, hierarchical clustering is 

performed on the TOM to group genes with similar co-expression patterns. This results in a 

dendrogram, to which a dynamic tree cutting algorithms is applied to identify gene modules. 

Furthermore, an eigengene is calculated for each module, representing the first principal 

component of the module’s overall expression profiles. Similarities between these module 

eigengenes can be further examined and modules with highly correlated eigengenes can be 

merged. In addition, the eigengenes can be correlated with clinical traits or phenotypes to 

identify disease or function-related gene modules.  

 

• Limitations of WGCN analysis 

Although WGCN analysis is a powerful tool in systems biology that provides insight into the 

complicated gene regulation and connection network, it has some limitations. First of all, this 

analysis is highly sensitive to the choice of , the soft thresholding parameter. A high β leads 

to a more stringent threshold, resulting in a sparser network with stronger connections, while 

a low β yields a denser network with weaker connections. There are multiple algorithms that 

help in  selection. For example, the R package “WGCNA” contains a function named as 

“pickSoftThreshold”, which optimise the value of  to ensure scale-free topology for the 

WGCN network (Langfelder & Horvath, 2008). An appropriate  is crucial for maintaining 

reliability and biological interpretability of the co-expression modules identified through 
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WGCNA. In the meantime, as for other in silico network models in systems biology, WGCNs 

are not able to fully represent the detailed signalling flow of in a biological process. For 

example, since they only model the co-expression patterns between genes, there is lack of 

directionality, they are unable to distinguish between upstream and downstream regulatory 

interactions. Therefore, it is always important to interpret these computational models with 

experimental validation. 

 

1.2.2.4.3 Differential expression analysis (DEA) 

• Data preprocessing 

DEA identifies genes exhibiting significant changes in their expression level under different 

experimental conditions. Data source for DEA include proteomics and transcriptomics data 

produced by high-throughput techniques such as Mass Spectrometry and RNA-Seq. As 

compared to co-expression analysis, DEA is more sensitive to data quality since it focuses on 

the absolute value of expression. Therefore, the data preparation process is more complex 

for DEA. For example, for RNA-Seq data, quality control (QC) should be performed at sample 

and gene-level (Anders & Huber, 2010; Qi et al., 2017). Sample-level QC is aimed to i) observe 

whether the experimental condition explains the major source of variation among samples 

and ii) remove any possible outliers caused by batch effect or technical errors. In comparison, 

Gene-level QC involves omitting genes with missing, zero or extremely low counts in most of 

samples or the genes with count outlier, to increase the statistical power of further analysis. 

Principal component analysis (PCA) and hierarchical clustering are commonly-used QC 

method to visualise clustering pattern and detect outliers in large datasets (Tang et al., 2015). 

Moreover, read count normalisation is another crucial step in data preprocessing for DEA 

performed with RNA-Seq data. By far, plenty of normalisation methods have been suggested 

for RNA-Seq data, such as RPKM (Reads Per Kilobase Million) or FPKM (Fragments Per Kilobase 

Million). These methods normalise the raw read counts for gene length and sequencing depth 

(i.e., to the total number of reads or fragments obtained from an RNA-seq experiment) (Zhao 

et al., 2021). However, these methods do not take consideration of RNA library composition 

(i.e., the relative abundance and diversity of different RNA molecules present in a sample), 

though it is an important concept since a few highly differentially expressed genes or the 

presence of contamination can perturb mRNA expression profile in the examined samples 



 53 

and thereby cause bias (Maza et al., 2013). Therefore, some new normalisation methods have 

been implemented and are applied like DESeq and TMM (Trimmed Mean of M-values) which 

are robust against high-count genes and differences in RNA composition(Love et al., 2014; 

Robinson et al., 2010). 

 

• Statistical testing 

Multiple types of statistical tests can be applied for DEA, such as t-tests, ANOVA, or specialized 

statistical methods within algorithms like DESeq2 and edgeR for RNA-seq data (Love et al., 

2014; Robinson et al., 2010). Of note, multiple test correction, such as Bonferroni correction 

or false discovery correction, is necessary for controlling the Type II error rate especially in 

large-scale DEA pipeline. 

 

• Data visualisation 

Comparison results of DEA are normally presented via a volcano plot, in which the x-axis 

pepresents the fold change in gene expression between two conditions: a positive value 

indicates upregulation, and a negative value indicates downregulation, while the y-axis 

prepresents the statistical significance of the observed changes (W. Li, 2012). Typically, the 

negative logarithm (base 10) of the adjusted p-value is used. The higher the point on the Y-

axis, the more statistically significant the change in expression.   

 

1.2.2.4.4 Functional enrichment analysis 

Functional enrichment analysis is used to identify functional categories or biological pathways 

that are overrepresented in a set of genes or proteins. It provides functional annotation for 

queried proteins or genes that are shortlisted from experimental evidence or by other 

systems biology approaches such as network analysis. Functional enrichment analysis plays a 

crucial role in associating in silico models with their potential biological significance.  

 

• Algorithm 

There are a wide range of analysing tools and platforms for functional enrichment analysis, 

which follow similar algorithms. The analysis begins with a list of genes or proteins of interest 

(test set), a larger set of genes or proteins to which the test set is compared (reference set or 
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“universe”, this is often the entire genome or proteome of reference for the species under 

analysis) and by selecting a relevant functional annotation database, which contains 

information that link genes or gene products to functional terms such as cellular pathways, 

molecular functions and biological processes, in a standardised way. Annotations are curated 

through a combination of automated methods (such as text mining) and manual curation of 

peer-reviewed publications by domain curators. Within a functional annotation database, 

each functional term possesses a “complete” list of entities that were annotated as its 

contributors. Statistical methods, such as hypergeometric or Fisher's exact tests, are then 

applied to assess overrepresentation, i.e., to evaluate whether the observed number of genes 

in a particular functional category in the input set is significantly higher than in the universe. 

At last, significant enrichments are further adjusted via multiple testing correction.  

 

• Functional annotation databases 

o Gene Ontology (GO) 

Gene Ontology (GO) is one of the most widely utilised functional annotation databases 

(Consortium et al., 2023). Developed by the Gene Ontology Consortium, GO serves as a 

standardized vocabulary that classifies genes into three major categories: biological processes, 

molecular functions, and cellular components. This ontology provides a structured and 

hierarchical representation of the relationships between these terms, offering a 

comprehensive and organized view of the functional landscape of biological systems. The 

Biological Process (GO-BP) category encompasses broad biological activities, Molecular 

Function (GO-MF) involves specific biochemical activities, and Cellular Component (GO-CC) 

describes the locations within the cell where gene products are active. The ontology forms a 

directed acyclic graph (DAG), where terms are represented as nodes while the relations 

between the terms as edges. Some of the commonly used relations in GO include is a (is a 

subtype of); part of; has part; regulates, negatively regulates and positively regulates. The 

nodes and edges are organized in a hierarchical manner, reflecting the complicated “ontology 

tree”. There are plenty of tools are available for GO enrichment analysis, such as DAVID 

(Database for Annotation, Visualization, and Integrated Discovery) (Sherman et al., 2022), 

Enrichr (Kuleshov et al., 2016) and g:GOSt from the g:Profiler tool set (Kolberg et al., 2023). 
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o Reactome  

Reactome offers a freely available, open-source relational database of human-centric cellular 

pathways. The core unit of the Reactome data model is the reaction, forming a network of 

biological pathways with high density of interaction (Gillespie et al., 2022). The reactions, 

pathways and the interactions in-between in Reactome are manually curated from peer-

reviewed literatures. In addition, the tool provides comparative analysis among different 

organisms, using human pathways to compute equivalent pathways in 20 other species. 

Moreover, Reactome provides users with graphical maps of cellular pathways through its 

website, offering an interface to access detailed information. Apart from its website, 

Reactome database can be accessed from many other analysing platforms which allows 

enrichment analysis on multiple annotation data recourses. It can also be accessed via API 

through scripting R package ReactomePA or Python package reactome2py, functioning as part 

of bioinformatics analysing pipeline. 

 

• Limitations 

The main drawback of functional enrichment analysis comes from the variability in the quality 

and depth of annotations across different biological domains. Certain areas of biology are 

more extensively and precisely annotated, resulting in a potential bias in the statistical 

analysis. For example, well-characterised proteins receive more thorough annotations as 

compared to less popular or newly identified proteins. Similarly, some pathways/functions 

receive more attention than others with the consequence that their ontology is a larger tree 

(i.e. containing a large array of terms) in comparison with less popular pathways/functions. 

Additionally, the criteria may vary when a gene or gene product is annotated either by 

curators or computational algorithms, which can be another source of bias. Another 

limitation of functional enrichment analysis is the complexity of results especially for large 

input sets. This is due to the generation of overwhelmingly detailed ontologies with 

complicated structure and a large proportion of similar terms. To alleviate this problem, many 

tools (such as GOslims) offer simplified version of enrichment analysis which combines 

semantically similar terms and assign fine detailed terms to more general parent terms, 

making the enrichment results more interpretable. However, due to the variety of simplifying 

pipelines, outputs produced by different tools for the same query set may differ. 
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1.3. Machine Learning (ML) in bioinformatics 

Machine learning (ML) is a subfield of artificial intelligence (AI) that focuses on the 

development of algorithms and statistical models that enable computers to perform tasks 

without explicit programming (Jordan & Mitchell, 2015). The central idea behind machine 

learning is to allow machines to learn from data, recognize patterns, and make decisions or 

predictions based on that learning. The sheer volume and complexity of biomedical data, 

from the intricate details encoded in DNA sequences to the dynamic interactions within 

protein structures, from the comprehensive records encapsulated in electronic health records 

and the visual narratives provided by medical imaging, demands sophisticated computational 

approaches for analysis and interpretation. This is where ML steps in, offering algorithms and 

tools to process, analyse, and derive meaningful patterns from these datasets.  

 

The ML process is a structured sequence involving distinct stages (Alpaydin, 2021). It begins 

with data collection, where relevant information is gathered, encompassing examples, 

experiences, or observations that serve as the foundation for the machine's learning. 

Following this, data preprocessing takes centre stage, involving the meticulous cleaning and 

organization of data to render it suitable for training machine learning models. This step 

encompasses handling missing values, normalizing data, and converting it into a format 

conducive to analysis. Feature extraction then comes into play, focusing on the selection or 

transformation of key features (attributes) crucial for the learning task at hand. The heart of 

the machine learning process lies in model training, wherein an algorithm is employed to 

enable the machine to "learn" from the provided data. During this phase, the model adjusts 

its parameters to minimize errors or precisely predict outcomes. Subsequently, the trained 

model undergoes evaluation to gauge its performance on new, unseen data, ensuring its 

ability to generalize effectively and make accurate predictions. Finally, in model deployment, 

the trained model is applied to make predictions on real-world data, completing the iterative 

cycle of the machine learning process. In general, ML models can be divided into 2 types: 

supervised and unsupervised ML. Both of them are widely used in bioinformatics studies (El 

Naqa & Murphy, 2015). 
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1.3.1 Supervised ML algorithms 

Supervised ML involves training algorithms on labelled datasets, where the input data is 

paired with corresponding output or target labels (Ghosh & Dasgupta, 2022b). With clear 

labels for training data, supervised learning is well-suited for tasks like classification and 

regression, making it applicable in various scenarios, especially in disease diagnosis and 

prediction. For example, in the context of Parkinson's disease, a prediction model can be 

trained on a dataset incorporating PD patients and healthy controls with their demographic 

features like age and gender, genetic features like with/without LRRK2 variants and motor & 

non-motor clinical features such as tremor severity, motor scores and cognitive scores. 

Following meticulous data preprocessing steps, supervised ML algorithms, such as logistic 

regression, is employed to train a model capable of discerning the intricate relationship 

between these features and the likelihood of an individual having Parkinson's disease and 

optimising the set of predictors with the best predicting performance. Rigorous evaluation, 

including metrics like accuracy and precision, ensures the model's reliability using a distinct 

testing set (Ghosh & Dasgupta, 2022c). Once validated, the logistic regression model is 

deployed for predicting the likelihood of PD in new individuals.  

 

1.3.2 Unsupervised ML algorithms 

Unsupervised ML algorithms explore and uncover inherent relationships within complex 

biological datasets (Jordan & Mitchell, 2015). It is commonly used for clustering analysis in 

complex biological networks, where similar entities are grouped together based on shared 

characteristics. For example, the above-mentioned module detection algorithms in PPIN and 

WGCN are all based on unsupervised ML approaches. In addition, unsupervised ML 

algorithms are also widely used for dimensionality reduction, which aids in simplifying while 

retaining essential features in high-dimensional data. The commonly used unsupervised ML 

algorithms include Principal Component Analysis (PCA), k-means and hierarchical clustering. 

 

1.3.2.1 PCA 

PCA is a dimensionality reduction approach widely used in nearly all sorts of high-dimensional 

data. For example, in Genome-Wide Association Studies (GWAS), PCA helps in condensing a 

range of potential cofounders such as ethnicity, gender, age, etc. into a set of linearly 
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uncorrelated variables known as principal components. By including the top principal 

components as covariates in the statistical models of association testing, researchers can 

effectively control for population stratification and minimise the risk of false-positive 

associations due to differences in genetic ancestry (Kurita, 2020). Moreover, in the context of 

gene expression studies, variations in sample quality, batch effects, or other sources of 

unwanted variability can impact the accuracy of results. In this scenario, PCA can be used as 

a valuable tool for sample quality control by capturing the dominant patterns of sample 

variability(Maćkiewicz & Ratajczak, 1993) . By visually inspecting the PCA plots or examining 

the proportion of variance explained by each principal component, researchers can identify 

outliers or clusters of samples with distinct expression patterns. Samples deviating from the 

main cluster in the PCA plot may indicate issues with sample quality or batch effects and 

thereby need to be re-examined or excluded from subsequent analysis. 

 

1.3.2.2 K-means 

K-means clustering is a partitioning algorithm widely used in bioinformatics (Lloyd, 1982). The 

algorithm operates by iteratively assigning data points to clusters based on their similarity to 

the mean of each cluster. The goal is to minimize the sum of squared distances between data 

points and their respective cluster centroids. One crucial aspect in implementing k-means is 

defining the optimal number of clusters, often denoted as 'k.' This can be achieved through 

techniques like the elbow method or silhouette analysis. The elbow method involves plotting 

the cost function (sum of squared distances) against different values of k and choosing the 

point where the rate of decrease sharply changes, resembling an elbow (Thorndike, 1953). 

Silhouette analysis quantifies how well-separated clusters are, with higher silhouette scores 

indicating better-defined clusters (Rousseeuw, 1987). In bioinformatics, k-means clustering is 

employed for various tasks, such as classifying gene expression patterns, grouping similar 

biological samples, or identifying distinct subtypes within a population. It aids in uncovering 

hidden structures within large biological datasets, providing valuable insights into the 

underlying biological processes and facilitating further analysis and interpretation. 
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1.3.2.3 Hierarchical clustering 

Unlike k-means clustering, hierarchical clustering does not require specifying the number of 

clusters beforehand (Ghosh & Dasgupta, 2022a). The algorithm works by successively 

merging or dividing clusters based on the similarity of data points. The result is a hierarchical 

tree-like structure, or dendrogram, illustrating the relationships between data points and 

their groupings. There are 2 main types of hierarchical clustering: agglomerative, where each 

data point starts as its own cluster and is merged iteratively, and divisive, which begins with 

all data points in a single cluster and splits them (Nielsen, 2016). In both of the 2 types, 

deciding where to cut the dendrogram to form distinct clusters is a critical step. Similar 

approaches used in k-means can be applied in hierarchical models to define the optimal 

number of clusters and the “cutting height” for the dendrogram. 

In terms of its application, hierarchical clustering finds extensive use in tasks such as 

classifying gene expression patterns, categorizing biological samples, and identifying 

relationships between different species or genomic features. The dendrogram generated by 

hierarchical clustering helps visualize the inherent structure in complex biological datasets, 

enabling researchers to explore and interpret the underlying patterns and relationships 

within biological systems. 

 

1.3.3 Common issues in ML models 

1.3.3.1 Overfitting 

One of the main challenges in ML model construction is the risk of overfitting, which occurs 

when the model fits too closely to the training dataset but cannot generalize well to testing 

datasets (Altman & Krzywinski, 2018). It happens due to several reasons, such as small and 

noisy training set or a too complex model that involve an overwhelming number of 

parameters. Therefore, to reduce overfitting, one common approach is to use a more 

straightforward model with fewer parameters and train the model on a clean dataset with 

larger size (Ghosh & Dasgupta, 2022a). In the meantime, some algorithms have been 

developed to further decrease the risk of model overfitting, such as k-fold cross-validation, in 

which the training set is partitioned into k subsets or folds (R Kohavi 1995). The model is 

trained k times, each time using k-1 folds for training and the remaining fold for validation. 

This process is repeated k times, with each fold used exactly once as the validation data. The 

performance metrics obtained from each run are then averaged to provide a comprehensive 
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evaluation of the model's performance. K-fold cross-validation is particularly valuable when 

dealing with data of limited sample size, as it maximizes the use of available information for 

both training and validation. This approach helps mitigate overfitting and provides a more 

reliable estimate of how well a model is likely to perform on testing data. 

 

1.3.3.2 Multicollinearity 

Multicollinearity, arises when two or more predictor variables in a regression model are highly 

correlated (Dormann et al., 2013). This correlation makes it challenging for the ML model 

(especially supervised ML models) to distinguish the individual effects of each variable on the 

response variable, leading to instability in estimating regression coefficients. LASSO (Least 

Absolute Shrinkage and Selection Operator) is a regularisation technique introduced by 

Robert Tibshirani in 1996 aimed to mitigate multicollinearity (Tibshirani, 1996). The key 

characteristic of LASSO is its ability to shrink the coefficients of less influential variables all the 

way to zero which helps in feature selection by identifying and keeping only the most relevant 

predictors, reduce multicollinearity when predictor variables are highly correlated. The 

regularization parameter, often denoted as λ (lambda), controls the strength of the penalty. 

Larger values of λ result in more aggressive shrinkage and greater sparsity in the model. 

Therefore, the optimisation of λ is a crucial step in LASSO algorithm, involving a k-fold cross-

validation process to assess the model performance for different λ values. The λ value 

minimises the Mean Squared Error (MSE) is selected as the optimal regularisation parameter, 

and the predictors with shrinked coefficients are excluded from the mode. These predictors 

are either highly correlated with each other or lack of predictive capability on the outcome. 

 

1.4 Hypothesis testing 

 
The work in this thesis will try and answer the following questions: 

1. Is it possible to categorize the LRRK2 interactome into functional and topological units to 

better understand the various functions associated with LRRK2? 

2. Do the function and expression of the LRRK2 interactome remain consistent across all 

tissues, or is there a tissue-specificity that influences both interacting proteins and 

interactions? 
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3. Do interactions within the LRRK2 interactome exhibit similar patterns in sporadic and 

familial Parkinson's disease, or are there distinct alterations that are indicative of one 

disease form over the other?  
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Databases, analysing tools and software used in this study 

2.1 Online resources 

2.1.1. PPI data 

2.1.1.1 HIPPIE (v2.3) 

HIPPIE (the Human Integrated Protein-Protein Interaction Reference) is a web resource that 

provides QC-ed PPIs with context-specific annotation (Alanis-Lobato et al., 2017). The PPI 

repository of HIPPIE is extracted and merged from IntAct, MINT, BioGRID, HRPD, DIP, BIND 

and MIPS, which is annually updated via the PSICQUIC interface. Afterwards, a confidence 

score is computed for each PPI in a semi-computational manner, examining the amount and 

the quality of the experimental evidence behind it, as well as the number of non-human 

organisms in which a PPI was reproduced, aiming to reduce the number of false positives. 

However, since this process involves manual evaluation on the reliability and accuracy of PPI 

detection methods, it may induce potential bias since it is difficult to quantify the quality of 

different techniques. For example, “gst pull down (MI:0059)” and “peptide array (MI:0081)” 

obtain same score in HIPPIE Experiment Based Quality Scoring system. However, in a real 

experimental case, the performance of these 2 techniques can be affected to a different 

extent by the properties of protein interactors or detecting environment. Therefore, a hard 

threshold may not be appropriate while performing QC with HIPPIE PPI scores. Different from 

PINOT, HIPPIE provides PPI annotation from multiple aspects using i) tissue-specific mRNA-

level expression data derived from GTEx, ii) gene functions retrieved from Gene Ontology 

terms (biological process and cellular compartment) and iii) relatedness to disease extracted 

from MeSH ontologies. In addition, HIPPIE also provides predicted and KEGG-curated PPI 

directionality, i.e., whether a PPIs is activating or prohibiting the function of protein 

interactors. Moreover, HIPPIE integrates third-party-driven disease and functional gene set 

enrichment analysis, supported by GS2D(Gene Set to Diseases) (Andrade-Navarro et al., 

2016)and PANTHER. These annotations help in interpreting the output PPI network.  

 

2.1.1.2 MIST (v5.0) 

MIST (Molecular Interaction Search Tool) is an online tool that integrate PPI data from curated 

public data resources, including BioGrid, IntAct, MINT, DIP, DroID, mentha, HPRD, 
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HumanMAPPK, PomBase and FlyBase, covering 9 prominent model organisms including Mus 

musculus and Homo sapiens (Hu et al., 2018). In terms of QC pipeline, MIST uses a similar 

algorithm as HIPPIE, which ranks PPIs based on the number of detections approaches and 

publications, as well as the comparison to other organisms, though without manually scoring 

PPI detection methods. In addition, unlike the quantitative approaches used by HIPPIE, in 

MIST, interactions obtain a high ranking when they were reported in multiple references 

and/or with diverse approaches. In contrast, interactions falling short of these criteria but 

backed by support from various species receive a moderate ranking, while all other PPIs are 

ranked as low. This categorical classification alleviate bias from PPI scoring system but may 

cause false positive in uni-organism PPI research. Moreover, MIST provide searching filters on 

evidence type, which helps distinguish direct interactions from indirect or uncertain 

interactions based on the detection approaches. The unique feature of MIST is that it supports 

cross-species interaction analysis by mapping PPIs of one species to another via the DRSC 

Integrative Ortholog Prediction Tool (DIOPT), which largely increase the number of candidate 

interactors. However, further experimental validation is especially important for such analysis 

due to an expected high false positive rate. 

 

2.1.1.3 PINOT (v1.0) 

PINOT (the Protein-Protein Interaction Query Tool) is an online server designed to efficiently 

search curated literature and extract the most recent PPI data associated with specific 

proteins or genes of interest (Tomkins et al., 2020). The unique feature of PINOT is that human 

PPIs are directly downloaded from the PSICQUIC (Proteomics Standard Initiative Common 

Query Interface) platform at every query. PSICQUIC is founded by the HUPO Proteomics 

Standard Initiative (HUPO-PSI) to standardise the access to multiple molecular interaction 

databases programmatically, facilitating the integration of PPI data across various sources 

(Aranda et al., 2011). So far PSICQUIC includes a total of 34 members, including the prominent 

PPI databases such as IntAct. As compared to the built-in repositories, which most of other 

PPI searching tools rely on, retrieving PPIs from PSICQUIC ensures the most up-to-date PPI 

output of larger coverage. In addition, PINOT incorporates multiple QC steps, which is mainly 

based on counting the number of different methods by which a PPI was detected (the 

“method score”) and the number of literatures where a PPI was reported (the “publication 

score”). Of note, due to the variety of curation protocols utilised by different databases, 
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simply adding up the number of records of detection methods which merged from primary 

data sources can be biased. To dilute the bias, PINOT includes a unique and crucial QC step 

involving grouping technically similar PPI detection methods based on an in-house dictionary. 

For example, “Two Hybrid - MI:0018”, “Two Hybrid Array - MI:0397” and “Two Hybrid Pooling 

Approach - MI:0398” are grouped together into the “Two Hybrid (2Hyb)”. In this way, the 

“method score” based on clustered and reassigned method groups is more accurate. 

Moreover, users are allowed to choose from 2 different method grouping algorithms 

(“Lenient” or “Stringent”) based on the query preference, which slightly change the way how 

PINOT group general detection methods such as “biophycial (MI:0013)” and “docking 

(MI:0035)”. However, it is worth to mention that PINOT’s method dictionary is not yet 

complete, which thereby limits its capability in reducing method redundance bias. 

 

2.1.2 Protein list annotation: g:Profiler 

g:Profiler contains a collection of tools covering functional enrichment analysis (g:GOSt), 

protein/gene identifier conversion (g:convert and g:Orth) and human SNP-gene mapping 

(g:SNPense). In this project, all enrichment analyses were performed via g:GOSt which 

performs functional enrichment analysis calculating overrepresentation via a standard  

Fisher's one-tailed test (cumulative hypergeometric probability) using the most commonly 

annotation tools such as Gene Ontology (molecular function, biological process and cellular 

component), KEGG, Reactome and WikiPathways. In terms of multiple testing correction, 

g:GOSt provides options for Bonferroni’s correction, Benjamini–Hochberg False Discovery 

Rate and g:SCS, which is a specific p-value correction approach developed for functional 

enrichment analysis, taking into consideration that functional terms are not completely 

independent from each other due to the way functional ontologies are organized with terms 

linked in parent/child relationships. By default, the analysing background is set as all 

annotated protein-coding genes. The background can be customised by the user, for example, 

a set of disease-related genes can be used as background while performing disease 

association enrichment analysis. In addition, g:GOSt support multiquery to compare 

enrichment results among different protein lists. 
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2.1.3 RNA-Seq data 

2.1.3.1 GTEx 

The Genotype-Tissue Expression (GTEx, https://www.gtexportal.org/) project is aimed at 

establishing a comprehensive public resource for molecular assays such as WGS, WES and 

RNA-Seq, which gathers samples from 54 tissue sites across nearly 1000 healthy individuals 

(Aguet et al., 2020). In addition, GTEx also uses the internal dataset to provide information 

regarding expression quantitative trait loci (eQTL) or splicing quantitative trait loci (sQTL) that 

were identified from genetic variation that are highly correlated with the expression levels or 

alternative splicing. This project utilised RNA-Seq expression data (in read counts) obtained 

from GTEx for different brain regions and peripheral tissues.  

 

2.1.3.2 PPMI 

The Parkinson's Progression Markers Initiative (PPMI, https://www.ppmi-info.org/) is a multi-

central study that aims at identifying biological markers of Parkinson’s risk, onset and 

progression. It provides a comprehensive, standardised, longitudinal dataset that contains 

clinical features, bioimaging and genetics data of 3 major cohorts, including “Parkinson’s 

disease confirmed cases”, “Prodromal cases”, “Healthy controls”, in which the “Parkinson’s 

disease” cohort contains sporadic untreated PD participants and genetic PD  participants with 

pathogenic mutations in LRRK2, GBA, SNCA, PRKN and PINK1, while the prodromal cohort are 

individuals that are at risk of PD based on clinical features (such as imaging), presence of 

genetic variants or first-degree family history. This project used whole blood RNA-Seq data 

from the PPMI initiative. Of note, access to this initiative is restricted to researchers who have 

received permission upon signing a user agreement. 

 

 

2.2 R packages 

2.2.1 UniprotR 

UniprotR is an R package that accesses protein-related details by connecting to Uniprot 

(https://www.uniprot.org/) and retrieve information like the name or taxonomy details of a 

protein (Soudy et al., 2020). In this study, it was used to extract protein family information 

for LRRK2 interactors 



 66 

 

2.2.2 GO.db 

GO.db is an R package that encompasses a collection of annotation maps providing a 

comprehensive description of the entire Gene Ontology. These maps are constructed using 

data sourced from the Gene Ontology database. DOI: 10.18129/B9.bioc.GO.db. In this study, 

it was used to extract hierarchical relation between Gene Ontology terms enriched for LRRK2 

interactors. 

 

2.2.3 Wordcloud 

Wordcloud is an R package that helps create word clouds, visualize differences and similarity 

between documents, and avoid over-plotting in scatter plots with text. URL: 

http://www.fellstat.com/. In this study, it was used to extract and present the key words of 

enriched Gene Ontology terms for LRRK2 interactors. 

 

2.2.4 WGCNA 

WGCNA is an R package that performs Weighted Correlation Network Analysis (WGCNA) on 

high-dimensional data (Langfelder & Horvath, 2008). Includes functions for data cleaning, 

construction of correlation networks, module detection, summarisation, and relating 

modules to sample traits. In this study, it was used to perform WGCNA on expression data of 

LRRK2 interactors in healthy tissues and the whole blood mRNA level of healthy controls vs. 

patients with sPD and LRRK2-PD. 

 

2.2.5 DESeq2 

DESeq2 is an R package that estimates variance-mean dependence in read count data from 

high-throughput sequencing assays and test for differential expression based on a model 

using the negative binomial distribution. It also provides functions for data normalisation and 

visualisation. URL: https://github.com/thelovelab/DESeq2. In this study, it was used to 

perform differential expression analysis on expression data of LRRK2 interactors in healthy 

tissues and the whole blood mRNA level of healthy controls vs. patients with sPD and LRRK2-

PD. 

 

http://www.fellstat.com/
https://github.com/thelovelab/DESeq2
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2.2.6 SKAT 

SKAT is an R package that performs kernel-regression-based association tests including 

Burden test, SKAT and SKAT-O. These methods aggregate individual SNP score statistics in a 

SNP set and efficiently compute SNP-set level p-values. URL: https://cran.r-

project.org/web/packages/SKAT/index.html. In this study, it was used to perform genetic 

burden analysis of LRRK2 interactors against sPD and LRRK2-PD 

 

2.3 Software  

2.3.1 Cytoscape 3.13.2 

Cytoscape is an open-source software platform for visualizing molecular interaction networks 

and biological pathways and integrating these networks with annotations, gene expression 

profiles and other state data (Shannon et al., 2003). Cytoscape by default provides a basic set 

of features for data integration, topological analysis, and network visualization. Additional 

features are available as Apps, which aid in a wide range of bioinformatics analysis such as 

network and molecular profiling analyses, provide new layouts and support scripting, and 

connection with databases. Most of the Apps are freely available from Cytoscape App Store 

(https://apps.cytoscape.org/). In this study, it was used to perform topological and clustering 

analysis on the PPI network of LRRK2, as well as generate network graphs. 

 

2.3.2 GraphPad Prism 10.1.1 

GraphPad Prism combines functions of scientific graphing, comprehensive curve fitting 

(nonlinear regression), statistics, and data organization. It was used to perform One-way 

ANOVA with post hoc Tukey’s test and data visualisation.  

 

2.3.3 StataSE 15.0 

Stata, a versatile statistical software package designed for tasks such as data manipulation, 

visualization, statistical analysis, and automated reporting. Researchers across various 

disciplines, including biomedicine, economics, epidemiology, and sociology, utilize Stata for 

their analytical needs. In this study, it was used to perform data manipulation, t-tests and chi-

square tests. 

 

https://cran.r-project.org/web/packages/SKAT/index.html
https://cran.r-project.org/web/packages/SKAT/index.html
https://apps.cytoscape.org/
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2.3.4 R 4.1.2 & RStudio 

RStudio is an integrated development environment tailored for the R programming language, 

specializing in statistical computing and graphics. In this study, all systems biology analyses 

were based on R and performed via RStudio.  
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Chapter 1. Construction and analysis of the LRRK2 protein 

interactome 

Objectives 

• To construct a protein interactome of LRRK2 (LRRK2int) with peer-reviewed PPI data 

• To functionally annotate the LRRK2int via functional enrichment analysis 

• To investigate the association between the LRRK2int and neurodegenerative disease 

(Alzheimer’s disease, AD) and PD via Gene Set enrichment analysis 

 

Analysis pipeline 

 

Note: Figures and text in Chapter 1 are adapted from the following publication: Zhao et al.; “Tissue 

specific LRRK2 interactomes reveal a distinct striatal functional unit”; PLoS Comput Biol. 2023 Jan 

30;19(1):e1010847. doi: 10.1371/journal.pcbi.1010847. 
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Methods 

• Construction of LRRK2 protein interactome (LRRK2int) 

PINOT (v1.1), HIPPIE (v2.3) and MIST (v5.0) were queried to download “homo sapiens” PPIs 

for LRRK2 (UniProt ID: Q5S007, 21 October 2020). To access the broadest possible set of PPI 

data, “Lenient” filter level was applied in PINOT; for MIST, “Networks to Search” was set as 

“protein-protein interactions” only with “no filer by rank”. 

PPIs derived from the 3 web resources were quality-controlled via an in-house pipeline:  

1) The identifiers (IDs) of LRRK2 protein interactors derived from the 3 repositories were 

converted to HUGO Gene Nomenclature Committee (HGNC) gene symbols. Interactors 

marked as “Unreviewed” in UniProtKB were removed;  

2) Converted protein lists and the corresponding records of detection methods and 

publications were merged after removing duplicates; 

3) Interaction detection method IDs were reassigned referring to the PINOT Method 

Classification Dictionary (https://www.reading.ac.uk/bioinf/PINOT/FILE2.xlsx), which 

clusters similar detection methods annotated in PSI-MI ontology (e.g. “Enzymatic Study 

MI:0415” and “Polymerisation MI:0953” are allocated in the same category: “Enzyme”) 

and merged after removing duplications; 

4) LRRK2 interactors were then scored (Final Score, FS) by adding the number of reassigned 

detection methods (Method Score, MS) and the number of reporting publications 

(Publication Score, PS); 

5) LRRK2 interactors with FS ≤ 2 were removed from further analysis due to their low 

reliability (either were not replicated in multiple experiments or with missing publication 

identifier or with missing record of detection method).  

 

• Functional annotation 

Protein family classification 

Family domains for LRRK2 interactors were extracted from UniProtKB via the R package 

“UniprotR”. Retrieved family domains were further classified based on semantic similarity and 

biological functions.  
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Gene Ontology (GO) Enrichment Analysis 

GO Biological Processes (GO-BP) enrichment analysis were performed on the LRRK2int via 

g:GOSt (https://biit.cs.ut.ee/gprofiler/gost) on 18th March 2023. Query parameters were set 

as following: Organism: Homo sapiens (Human); Statistical domain scope: Only annotated 

genes (only genes with at least one annotation); Significance threshold: Bonferroni correction. 

Of note, for the interactors with multiple Ensembl IDs, only the ID with the most GO 

annotations was kept. Of note, GO-BPs with term size (the total number of genes associated 

with a given functional term) ≥ 2500 were considered as “general terms” and thereby 

removed from further analysis. Enriched GO-BP terms were then grouped based on their 

hierarchical relation in the GO ontology tree. Relations among terms (considered only “part 

of” and “is a”) were retrieved via R package “GO.db”.  Text mining was performed on each 

GO-BP group to highlight the most re-occurring key words among the functional terms via the 

R package “wordcloud”. Text cleansing was conducted manually to remove general words 

from the key word list ("regulation", "positive", "of",  "activity", "pathway", "negative", "to", 

"process", "cell", "cellular", "in", "factor", "function", "involved", "biological", "molecular", 

"cascade", "from", "by", "or", "into", "via", "class", "compound", "changes", "mechanism", 

"component", "complex", "part"). Additionally, semantically similar key words were manually 

combined, e.g., “apoptosis”, “apoptotic” and “programmed cell death” were considered as 

the same functional key word “cell death” and the frequencies were thereby combined. 

LRRK2 interactors contributing to the same GO-BP functional group were allocated into one 

functional unit (FU), and those contribute to all GO-BP groups were defined as the “functional 

core” of the LRRK2int. Moreover, GO Cellular Component (GO-CC) enrichment analysis was 

performed on each FU to investigate the intracellular locations of included LRRK2 interactors. 

 

Gene set enrichment analysis (GSEA) 

GSEA was performed to examine the association between the functional core of the LRRK2int 

and the 2 most common neurodegenerative diseases, namely Alzheimer’s disease (AD) and 

Parkinson’s disease (PD). The pipeline of GSEA was designed as following: 

1) AD and PD-related gene lists were downloaded from the Open Target Platform (Ochoa et 

al., 2023); 

2) The number of overlapping genes between LRRK2int’s functional core and the 2 disease-

related gene lists was counted respectively (the “test_intersection”); 

https://biit.cs.ut.ee/gprofiler/gost
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3) 10000 randomly sampled gene lists at same size of the functional core of the LRRK2int was 

generated from the Ensembl gene annotation (N = 19831 coding genes). The overlap sizes 

between each random gene list and the 2 disease-related gene lists were counted (the 

“ref_intersection); 

4) A significant association with AD or PD was defined as when the “test_intersection” > 95% 

of the “ref_intersection”. 

 

Results 

• The LRRK2int 

A total of 1448, 1539 and 1850 human LRRK2 interactors were retrieved from PINOT, HIPPIE 

and MIST respectively. The 3 sets of proteins were then merged into a unique list of 1921 

interactors using HGNC gene symbols (hereby referred as “the Merged List”, Table S1). 

Among the 1921 interactors, 1414 (73.5%) were found in all the 3 databases, 86 (4.4%) were 

found in 2 of 3 databases while 421 (21.9%) were found in only 1 database (Figure 3A). The 

Merged List was then passed to the QC pipeline, 3 proteins (RPL17-C18orf32, TPTEP2-CSNK1E 

and BUB1B-PAK6) were removed due to their “unreviewed” profile in the UniProtKB, and 

1500 (78.0%) proteins were removed due to their low reliability (FS < 2), hence generating 

the final list of LRRK2 interactors (N = 418, the LRRK2int, Figure 3C). Among the 418 interactors, 

375 (89.7%) were scored FS ≤ 5; 28 (6.7%) were scored between 6 and 8; 15 (3.6%) were 

scored FS ≥ 9. Of note, LRRK2 itself exhibited the highest FS = 52, suggesting that the self-

interactions of LRRK2 have been well-studied. Other robust LRRK2 interactors were 

HSP90AA1 (FS = 18); MSN, YWHAQ/14-3-3T, YWHAZ/14-3-3Z (FS = 13); HSPA8 (FS = 12); 

CDC37, DNM1L, STUB1, TUBB (FS = 10); followed by GAK, MAP1B, RAB5B, YWHAG and 

TUBA1A (FS = 9) (Figure 3B).  
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Figure 3. Construction of the LRRK2int 

A) The Venn graph shows the overlap among the 3 lists of LRRK2 protein interactors downloaded from 

PINOT, MIST and HIPPIE; B) The pie graph shows the distribution of final score (FS) of QC-ed LRRK2 

interactors (N = 418); C) The network graph shows the LRRK2int. Both node fill colour and node size 

represent the FS: the darker the node colour, the larger the node size, the higher the FS. Of note, LRRK2 

itself exhibited the highest FS = 52, which is beyond the colour code range. 

 

• Protein family classification for LRRK2 interactors 

Protein family classification showed that a large proportion of LRRK2 interactors are protein 

kinases (N = 39, 9.3%), ribosomal proteins (N = 38, 9.0%) and cytoskeleton-related protein 

families (N = 36, 8.6%) such as proteins from the actin family (N = 5) and the tubulin family (N 

= 10). In addition, 12 (2.8%) LRRK2 interactors are from membrane trafficking related ATPase 

families. Furthermore, the LRRK2int contains seven 14-3-3 proteins (YWHAB/14-3-3β, 

YWHAG/14-3-3γ, YWHAZ/14-3-3ζ, YWHAE/14-3-3ɛ, YWHAH/14-3-3η, SFN/14-3-3ϭ, 

YWHAQ/ɵ) and 13 Rab GTPases (RAB5B, RAB29, RAB32, RAB8A, RAB10, RAB1A, RAB1B, 

RAB7A, RAB11A, RAB11B, RAB11FIP2, RAB38, RAB5A).  

 

• Biological processes enriched for LRRK2 interactors 

G:GOst returned a total of 504 GO-BP terms that were significantly enriched for the LRRK2int, 

of which 83 “general terms” with term size ≥ 2500 were excluded from further analysis. 
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Hierarchical relations (“part of” or “is a”) were retrieved for the 415 remaining terms (98.6%), 

among which 7 major GO-BP groups (contained ≥ 10 terms) were identified, involving a total 

of 341 GO-BPs. Among the 7 GO-BP groups, the largest group contained 87 terms (GO-BP 

group 1, G1), involving 233/418 (55.7%) LRRK2 interactors (Functional Unit 1, FU1, Table 1). 

Text mining identified keywords of G1 as: “response”, “apoptotic”, “mitochondrial”, 

“catabolic”, “stimulus”, “protein”, “stress”, “autophagy”, “signalling”, and “depolarisation”, 

suggesting that FU1 is involved in response to stimulus and stress, apoptosis, protein catabolic, 

autophagy and mitochondrial functions (Figure 4, Table B1). GO-CC analysis on FU1 showed 

that these interactors were mainly enriched in intracellular and extracellular vesicle, synapse, 

microtubule cytoskeleton and mitochondrion (Table B2).  

 

Table 1. Functional Unit 1 of the LRRK2int 

ACTB PSMD11 AFG3L2 MBP DVL1 

ACTR2 PSMD2 AP3B1 SYNJ1 GNA12 

AIFM1 PSMD6 CALM1 PPP2R2A GSK3B 

AKT1 RACK1 CNP RGS2 DDX5 

APEX2 RPL11 HSPA4 ARPC1B DIS3 

ATRX RPL23 HSPA9 EMD HDAC6 

AURKB RPS7 MFN2 IQGAP1 LATS1 

BAX SQSTM1 OPA1 SH3GL2 LRRK2 

BRCA2 TRAF2 SLC25A4 RPS15 PSMC6 

CCT3 UBXN10 SLC25A5 RPS20 STN1 

CCT5 UFD1 SLC25A6 SCEL STUB1 

CDC42 VIM CDC37 SCFD1 TAOK3 

CDK2 VPS4A DNM1L ANKS4B TK1 

CHD1L BAG3 VDAC1 HACD3 TP53 

CYREN CASP8 DDIT4 NFATC2 ADRM1 

DBF4B DNAJA1 DYRK2 SEC16A AGO1 

DDB1 DNAJB6 SFN STK3 AGO2 

DFFA HSPB1 TXNDC12 CLTC BAG5 

FANCM MAPT PYGB GOLGA2 C18ORF25 

HELLS PRKACA ACTG1 LGALS8 DAPK1 

HERC2 STAC ACTR3 RAB1A PRDX3 

HSP90AA1 TPR AHCYL1 RAB1B STK24 

HSP90AB1 YWHAE AKAP8 RAB5A STK25 

HSPD1 EEF1D ATP5F1A SNAPIN TPM1 

KDM4D FADD CBX3 SPTLC1 TRAP1 
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MAP2K4 PIK3R1 CXCL11 AHNAK ECHS1 

MAP2K7 PLEC CYFIP1 AP2M1 HMMR 

MAPK3 RAB11B DIAPH1 DNM1 CSNK1A1 

MMS19 RHBDD1 EPRS1 FCHSD1 CSNK1D 

MRGBP APP ESRRG GAK RPL3 

MSH2 CDK5 GNAI2 LMNB1 RPS16 

MTA1 HIF1A LRP6 LMNB2 STIP1 

NPM1 PPP1CA MAP1B RAC1 TRADD 

PCNA RO60 MAP2K3 TOR1AIP1 YWHAG 

PHB BAG2 MAP2K6 ACIN1 YWHAH 

POLD1 CBLB MPC2 ARHGEF7 HSPH1 

POLE EEF1A1 MYO1C BAG1 HSPA1A 

PPP2R1A EEF1A2 NCL CAMK1D ITCH 

PRKDC HSPA8 PFKP DIDO1 KHSRP 

RAD51AP1 LAMP2 PKM ITGB3BP LDHA 

RBBP7 MSN PRKCZ PAK6 TUFM 

RIF1 RAB7A RAB10 RAI14 RAB29 

RPS3 RIPK1 RAB11FIP2 RPS3A MFN1 

RUVBL2 SNCA RAB8A STK40 NDUFAF7 

SAMHD1 VGLL4 RHOA YWHAZ RAB32 

SF3B3 ATP2A2 RIPK2 HK1  

PLK1 PPP1R8 PRKN RAB38  

 

G2 contained 71 GO-BPs and was associated with 247/418 (59.1%) interactors (Table B3). 

Keywords identified in G2 were: “trafficking”, “localisation”, “vesicle”, “protein”, 

“microtubule”, “organisation”, “synaptic”, “establishment” and “organelle”, suggesting the 

corresponding functional unit of G2 (FU2, Table 2) was related to biological functions of 

membrane trafficking, protein localisation, microtubule and organelle organisation. The FU2 

was found enriched in cytoskeleton, extracellular vesicle, and cell junction (Table B4).  

 

Table 2. Functional Unit 2 of the LRRK2int 

AHCYL1 HERC2 SMTNL2 TUBB4B ARPC5 

AIFM1 HIF1A TMOD3 TUBB6 ATP2A2 

AKAP8 HK1 TPM1 MMS19 CAPZA1 

AKT1 HSP90AA1 TPM2 SRPK1 CAPZA2 

AP2M1 HSP90AB1 TPM3 LARP7 CAPZB 

AP3B1 HSPA4 XIRP2 MSH2 CDC42EP3 

ARFGAP1 HSPA8 AURKB TOR1AIP1 CYFIP1 
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BAG3 HSPA9 CDK2 KLC2 TUBB2A 

BAX HSPB1 CSNK1D MFN1 TUBB3 

BRCA2 HSPD1 DYNC1H1 DBF4B TUBB4A 

CALM1 KPNB1 E2F4 DDB1 DBN1 

CBLB LAMP2 HSPA1A EIF4EBP1 DIAPH1 

CCT3 LRRK2 KIF2A PCNA DNAJB6 

CCT5 MAPT MDN1 POLE FCHSD1 

CDC37 MFN2 MSN TAOK3 IQGAP1 

CDC42 MPC2 PRKDC RIPK1 LATS1 

CDK5 MYO1C RPL23A VIM RHOA 

CETN3 MYO1D RPL24 DIS3 YWHAG 

CLTC NPM1 RPLP0 LAS1L RPL11 

COPG2 NUP107 RPS14 RBIS RPL23 

CSE1L NUP133 RPS15 RPL10A RUVBL2 

DNAJA1 NUP160 RPS19 RPL14 SCFD1 

DNM1L PIK3R1 RPS23 RPS16 SEC16A 

EMD PLK1 RPS27 RPS7 SFN 

GOLGA2 PRKACA RPS3 RPS8 SLC25A22 

GSK3B PRKCZ RPS5 CFAP20 SNAPIN 

HDAC6 PRKN RPSA ENKUR SQSTM1 

YWHAH RAB10 TUBB KHSRP STK3 

YWHAQ RAB11A DNM1 RGS2 TNPO1 

YWHAZ RAB11B SNCA SFXN1 TP53 

ACTA2 RAB11FIP2 SYNJ1 CAMK1D TPR 

ACTB RAB1A ABCE1 GNAI2 UFD1 

ACTBL2 RAB1B APP HMMR VPS4A 

LIMA1 RAB29 CNP APEX2 YWHAB 

MPRIP RAB32 DVL1 CDKL3 YWHAE 

MYL6 RAB38 GAK CSNK1A1 ACTR3 

MYL9 RAB5A JHY HELLS POLDIP3 

MYO1B RAB5B LMNB1 ITGB3BP PPP1R12A 

MYO1F RAB7A LMNB2 MAP2K6 RANBP1 

PLEC RAB8A LRP6 MRGBP SH3GL1 

RAC1 RACK1 MAP1B NEK1 SH3GL2 

ARPC1B RANBP2 MAPK3 PPP1CA SH3GL3 

ARPC2 RAPGEF4 NCBP3 RAD51AP1 SLC25A4 

ARPC4 RHBDD1 OPA1 RIF1 SLC25A5 

FANCM ABLIM1 CHD1L ARHGEF7 SLC25A6 

ACTG1 LARP4 MAP2K7 MARK1 STK25 
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ACTR2 PAK6 STN1 SKA3 TUBA1A 

TTLL1 RO60 NSL1 CKAP5 TUBA1C 

RPS15A UBXN10 PPP2R1A ATRX  
USP39 ACIN1 TUBG1   

 

G3 contained 62 GO-BPs, associated with 179 LRRK2 interactors (FU3, Table 3). Text analysis 

showed the key words of G3 as: “protein”, “phosphorylation”, “metabolic”, “ubiquitination”, 

“catabolic”, “transferase”, “kinase”, “binding” and “modification”, suggesting that FU3 was 

related to protein metabolism (Table B5). GO-CC analysis showed that the interactors in FU3 

were enriched in cytoskeleton and cell conjunction (Table B6). 

 

Table 3. Functional Unit 3 of the LRRK2int 

AKT1 BAX DNAJB6 GOLGA2 AGO1 

BAG2 CALM1 DVL1 PPP1CA AGO2 

BAG5 CASP8 HDAC6 SNAPIN AP3B1 

CDK5 CDC42 HSPB1 ACIN1 DDX5 

DNAJA1 DAPK1 LATS1 BAG3 DIS3 

HSPA1A DBF4B LRP6 CBX3 E2F4 

RPL11 DVL2 PLEC EIF4EBP1 ESRRG 

RPL23 DVL3 PPP1R8 EPRS1 GTF2I 

RPS15 EEF1A2 PRDX3 MAGED2 HSPA8 

RPS20 FADD PRKN RPS13 KHSRP 

RPS3 GNA12 RGS2 RPS14 LARP7 

RPS7 GNA13 SFN SCFD1 MLLT3 

SQSTM1 GNAI2 TP53 TCF25 MYO1C 

ADRM1 GSK3B YWHAG TPR NCL 

AIFM1 HIF1A ACTB TRAP1 NFATC2 

APP HSP90AA1 CDC37 VDAC1 NKRF 

ARHGEF7 HSP90AB1 DNM1L VGLL4 POU5F1 

AURKB HSPD1 EEF1A1 YWHAE PRPF6 

IQGAP1 RACK1 PIK3R1 YWHAQ RBBP7 

LRRK2 RANBP2 CSNK1A1 YWHAZ SF3B1 

MAP2K3 RAPGEF4 CSNK1D ZMYM5 SUPT4H1 

MAP2K6 RHOA PSMC6 RAB38 TCEA2 

MAP2K7 RIPK2 CDK2 AKAP8 YWHAH 

MAPK3 RPS2 PRKACA ARFGAP1 ATP2A2 

MAPT SNCA DDIT4 EEF1D CYREN 

MBP STK3 LRRK1 HACD3 SF3B3 

MSH2 STUB1 PPP2R1A HERC2 ACTR3 

NPM1 TAOK3 PRKDC PPP2R2A  

PCNA TBC1D22B SH3GL2 PSMD2  
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PHB TRAF2 ACTR2 PSMD6  

PLK1 YWHAB ATRX RANBP1  

PPP1R12A ABCE1 CCT3 CAMK1D  

PRKCZ CBLB CCT5 STAC  

RAB11FIP2 DFFA KDM4D TOR1AIP1  

MAP2K4 RUVBL2 RIF1 TPM1  

MMS19 STN1 FANCM TRADD  

MRGBP RAC1 MTA1 RHBDD1  

RAD51AP1 RIPK1 ITCH BRCA2  

 

G4 contained 50 terms, involving 179 LRRK2 interactors (FU4, Table 4), with functional key 

words: “organisation”, “microtubule”, “protein”, “actin”, “catabolic” and “polymerisation”, 

“assembly”, “projection” and “filament”, suggesting that FU4 contributed to cytoskeleton 

organisation (Table B7). In addition, FU4 was enriched in cytoskeleton and synapse (Table B8).  

 

Table 4. Functional Unit 4 of the LRRK2int 

ARHGEF7 TMOD3 CASP8 RACK1 FCHSD1 

CKAP5 TPM1 CBLB RHBDD1 IQGAP1 

CLTC DIAPH1 CSNK1A1 RIF1 LATS1 

DYNC1H1 MAPK3 CSNK1D RIPK1 LIMA1 

GSK3B NPM1 DAPK1 RIPK2 PIK3R1 

HDAC6 ATRX DBF4B RPS2 PRKN 

HSPA1A AURKB DDB1 RPS6KB2 CDKL3 

MAP1B BAX DVL1 SF3B1 GAK 

MAPT CCT3 DVL2 STK3 MARK1 

PLK1 CCT5 DVL3 STUB1 MLLT3 

RAC1 CDK2 EEF2 TAOK3 NFATC2 

RHOA DNM1L FADD TRAF2 PPP2R1A 

RPS3 HIF1A FANCM VGLL4 RAB29 

SKA3 MAP2K7 GNA12 VIM SFN 

SNCA MSN GOLGA2 BAG5 RBBP7 

TPR RAD51AP1 HSP90AA1 EEF1A1 ADRM1 

TUBB4A RUVBL2 HSP90AB1 EEF1A2 AIFM1 

ACTG1 SLC25A4 HSPD1 PRKACA AKAP8 

ARPC1B SLC25A5 ITCH PSMD2 APP 

ARPC2 SYNJ1 LARP4 RPL11 BAG2 

ARPC4 TP53 LRRK1 SF3B3 CALM1 

ARPC5 VDAC1 MAP2K3 ACTR2 SH3GL3 
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CAPZA1 AKT1 MAP2K4 ACTR3 SNAPIN 

CAPZA2 LRRK2 MAP2K6 DNAJB6 STK24 

CAPZB OPA1 MBP DNAJB8 STK25 

CDC42 RAB7A MTA1 HSPA8 TUBA1A 

CDC42EP3 SCFD1 MYO1C NCLN TUBB 

CDK5 SLC25A6 PHB RAB5A YWHAH 

CYFIP1 STN1 PKM VPS4A AGO2 

DBN1 SQSTM1 POLDIP3 BAG3 HSPB1 

RAB1A RPL23 SMTNL2 CFAP20 PPP1R12A 

RAB1B RGS2 ACTA2 RAB5B  
DIS3 SPTLC1 ATP2A2 CAMK1D  

KHSRP ACTB DDIT4 RPS7  
E2F4 AHNAK DFFA PRKCZ  

PPP1CA AP2M1 YWHAZ PRKDC  
RAB11A ARFGAP1 RAB8A PSMC6  

 

G5 contained 35 terms and related to 147 LRRK2 interactors (FU5, Table 5), associated with 

key words: “apoptotic”, “signalling” “stress”, “response”, “transduction”, “oxidative”, 

“programmed”, “intracellular”, “communication”, “intrinsic”, suggesting FU5 was related to 

apoptosis and response to stress (Table B9). GO-CC analysis showed that FU5 was enriched 

for cytoskeleton and mitochondria (Table B10). 

 

Table 5. Functional Unit 5 of the LRRK2int 

SH3GL2 HSPA8 RPS14 AKT1 PHB 

ACTR2 KHSRP SCFD1 BAG2 PLK1 

ATRX LARP7 TCF25 BAG5 PPP1R12A 

CCT3 MLLT3 TPR CDK5 PRKCZ 

CCT5 MYO1C TRAP1 DNAJA1 RAB11FIP2 

KDM4D NCL VDAC1 HSPA1A RACK1 

MAP2K4 NFATC2 VGLL4 RPL11 RANBP2 

MMS19 NKRF YWHAE RPL23 RAPGEF4 

MRGBP POU5F1 YWHAQ RPS15 RHOA 

RAD51AP1 PRPF6 YWHAZ RPS20 RIPK2 

RIF1 RBBP7 ZMYM5 RPS3 RPS2 

RUVBL2 SF3B1 RAB38 RPS7 SNCA 

STN1 SUPT4H1 AKAP8 SQSTM1 STK3 
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RAC1 TCEA2 ARFGAP1 ADRM1 STUB1 

RIPK1 YWHAH EEF1D AIFM1 TAOK3 

FANCM ATP2A2 HACD3 APP TBC1D22B 

MTA1 GOLGA2 HERC2 ARHGEF7 TRAF2 

ITCH PPP1CA PPP2R2A AURKB YWHAB 

RHBDD1 SNAPIN PSMD2 BAX ABCE1 

BRCA2 ACIN1 PSMD6 CALM1 CBLB 

CYREN BAG3 RANBP1 CASP8 DFFA 

SF3B3 CBX3 CAMK1D CDC42 DNAJB6 

ACTR3 EIF4EBP1 STAC DAPK1 DVL1 

AGO1 EPRS1 TOR1AIP1 DBF4B HDAC6 

AGO2 MAGED2 TPM1 DVL2 HSPB1 

AP3B1 RPS13 TRADD DVL3 LATS1 

DDX5 MAP2K3 MSH2 EEF1A2 LRP6 

DIS3 MAP2K6 NPM1 FADD PLEC 

E2F4 MAP2K7 PCNA GNA12 PPP1R8 

ESRRG MAPK3 CSNK1A1 GNA13 PRDX3 

GTF2I MAPT CSNK1D GNAI2 PRKN 

LRRK1 MBP PSMC6 GSK3B RGS2 

PPP2R1A HSPD1 CDK2 HIF1A SFN 

PRKDC IQGAP1 PRKACA HSP90AA1 TP53 

DNM1L LRRK2 DDIT4 HSP90AB1 YWHAG 

EEF1A1 PIK3R1 CDC37 ACTB  

 

G6 consisted of 20 GO-BPs, involving 110 interactors (FU6, Table 6) which linked to functional 

key words of “morphogenesis”, “projection”, “neuron”, “development”, “growth”, 

“bounded”, “membrane”, “lamellipodium”, “plasma” and “organisation”, suggesting FU6 

contributed to cell development and membrane organisation (Table B11). In addition, GO-CC 

analysis showed that FU6 was enriched for axon, synapse, vesicle and microtubule 

cytoskeleton (Table B12). 

 

Table 6. Functional Unit 6 of the LRRK2int 

YWHAG ACTR2 RAB29 CDK5 MAPK3 

YWHAH AFG3L2 RAB8A CDKL3 NUP133 

YWHAZ AIFM1 RAC1 CYFIP1 SYNJ1 

AP3B1 AKT1 RGS2 DBN1 DNM1L 
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ARHGEF7 APP RHOA DVL1 HSPA1A 

CAPZB BAG5 RPL24 GSK3B ITCH 

CDC42EP3 BAX SH3GL3 HDAC6 MAP2K4 

DIAPH1 CAMK1D SNAPIN HSP90AA1 NPM1 

GNA12 CDC42 STK24 HSP90AB1 PHB 

GNA13 CNP STK25 IQGAP1 PPP2R1A 

LARP4 CSNK1D TAOK3 MAP1B RACK1 

LATS1 DDIT4 TP53 MAPT RBBP7 

MSN DVL2 TTLL1 PAK6 SFN 

MYL12B DVL3 TUBB2A PRKCZ VGLL4 

PLEC GAK TUBB3 PRKN CFAP20 

PRKDC HIF1A VASH2 SH3GL2 E2F4 

SCFD1 LRP6 VIM ACTB JHY 

TPM1 LRRK2 YWHAE ACTBL2 LIMA1 

ABLIM1 MARK1 BRCA2 MYL9 NEK1 

ACTR3 MBP STK3 TMOD3 RAB5A 

ARPC2 RAB10 STK40 PDCL RO60 

PIK3R1 RAB11A ACTG1 ATRX UBXN10 

 

G7 contained 16 terms and in volved 92 LRRK2 interactors (FU7, Table 7), related to key words: 

“transport”, “protein”, “localisation”, “vesicle”, “intracellular”, “establishment”, “nucleus”, 

“export” and “nucleocytoplasmic”, suggesting that FU7 contributed to intracellular protein 

transport and localisation (Table B13). In addition, FU7 was enriched for intracellular vesicle, 

synapse and cell projection (Table B14). 

 

Table 7. Functional Unit 7 of the LRRK2int 

ACTB CLTC HSP90AB1 PPP1R12A RHOA 

ACTG1 CXCL11 HSPA1A PRKACA RIPK1 

AHCYL1 CYFIP1 HSPA8 PRKCZ RUVBL2 

AHNAK DAPK1 LARP7 PRKN SCFD1 

AKT1 DBN1 LATS1 RAB10 SFN 

AP2M1 DIAPH1 LRRK2 RAB11A SH3GL3 

APP DNAJA1 MAP1B RAB11B SLC25A22 

ARFGAP1 DNAJB6 MAP2K6 RAB29 SLC25A4 

ARHGEF7 DNM1L MAPK3 RAB38 SLC25A5 

ATP2A2 DVL1 MAPT RAB5A SLC25A6 
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AURKB DVL3 MDN1 RAB5B SNAPIN 

BAG3 DYNC1H1 MPC2 RAB7A SNCA 

BAX EMD MSN RAB8A SQSTM1 

CALM1 EPRS1 MYO1C RAC1 STAC 

CAMK1D GNAI2 NPM1 RACK1 SYNJ1 

CCT3 GSK3B PIK3R1 RAPGEF4 TPR 

CCT5 HDAC6 PLK1 RGS2 VDAC1 

CDC42 HIF1A YWHAE YWHAH VPS4A 

CDK5 HSP90AA1    

 

Of note, a total of 29 LRRK2 interactors exhibited in all the 7 functional units, thereby forming 

the functional core of the LRRK2int. These interactors were multifunctional and cooperated 

with LRRK2 in a range of biological processes (Figure 4C). Of note, the 29 interactors 

presented a significantly higher mean FS as compared to the overall average value (6.62 vs. 

4.24, t-test p < 0.001), suggesting that the functional core is composed of robust LRRK2 

interactors with high reproducibility.  

 

• GSEA 

In addition, Gene Set Enrichment Analysis (GSEA) showed that the 29 LRRK2 interactors were 

represented in all the 7 functional units significantly associated with PD and Alzheimer’s 

disease AD (p < 0.001), in which LRRK2, PRKN, MAPT and GSK3B were related to PD while 

MAPK3, CDK5, MAPT, APP, HSPA1A, HDAC6 and GSK3B were related to AD, suggesting that 

the functional core of LRRK2int is potentially closely related to neurodegeneration (Figure 4C).  
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Figure 4. Functional Enrichment Analysis on the LRRK2int 

A) The bar graph shows the number of functional terms in the 7 major GO-BP groups (G1-7, containing 

≥ 10 terms) identified based on hierarchy relations; B) The bar graph shows the number of LRRK2 

interactors in the 7 functional unit (FU1-7), i.e., interactors related to the functional terms of each GO-

BP group; C) The network graph shows the functional core of the LRRK2int, i.e., the 29 interactors that 

appeared in all the 7 functional units. . Hexagonal nodes represent GO-BP groups G1-7. Word clouds 

show the key words identified via text mining for each GO-BP group. The larger the word, the higher 

the frequency it shows in term names. Round nodes represent LRRK2 interactors. Round node fill colour 

represents the FS of interactors. The darker the round node, the higher the FS. AD and PD-related 

interactors identified in GSEA are highlighted with green circles and yellow circles, respectively.  

 

Main findings  

1. The LRRK2int consists of 418 interactors, including protein kinases, ribosomal proteins, 

cytoskeletal proteins, RAB GTPases, 14-3-3 proteins and others. 
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2. Self-interaction is the most robust/validated PPI of LRRK2. 

3. The LRRK2int can be divided into 7 functional units each of them related to different 

biological functions (GO:BPs) such as: response to stress, vesicular trafficking, protein 

metabolism, cytoskeleton organisation, apoptotic signalling, cell development and 

intracellular protein localisation. 

4. Functional units of LRRK2 interactors were mainly enriched in cellular components 

(GO:CCs) such as: microtubule and actin cytoskeleton, vesicle, synapse, mitochondria and 

cell junction. 

5. The LRRK2int has a functional core composed of 29 interactors that participate in multiple 

biological processes and is significantly enriched with AD and PD proteins/genes.  

 

Discussion 

This section collected a total of 1921 proteins as potential interactors of LRRK2 from peer-

reviewed literatures via 3 online PPI querying tools, PINOT, MIST and HIPPIE, without adding 

any type of filtering. These tools extract PPIs from multiple manually curated primary PPI 

databases using different pipelines. Out of the 1921 interactors, 73.5% were returned by all 

the 3 searching tools, 4.4% were returned by 2 tools, while 21.9% were found in only 1 tool. 

This suggested that although the 3 tools presented a relatively high overlap (thus were similar 

in performance), a combined use of these tools is essential to obtain a comprehensive LRRK2 

protein interactome with the maximised literature coverage.  

 

Considering the large dependence of in vitro high-throughput PPI detection techniques (such 

as yeast-2-hybrid screening) as well as ex-vivo experiments (such as proteo-arrays) which may 

produce false positives, PPIs derived from primary databases often require further QC. In this 

study, a simple but effective QC pipeline was established (as suggested by the PINOT tool), 

involving calculating the “final score” from the “method score” and “publication score”, which 

refers to the number of detection methods and independent publications where a PPI was 

reported. The obtained final score is therefore a direct reflection of how many times a certain 

PPI has been replicated in literature and as such it gives an indication of the 

reproducibility/reliability of the information. Compared to the QC systems utilised by other 

PPI tools, such as MIST and HIPPIE, which involves ranking different detection methods based 
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on “detection strength”, this pipeline avoids potential bias induce by subjective curation of 

PPI detection techniques and increases the replicability of the construction of LRRK2 

interactome. Of note, regarding the method score, a method reassignment and grouping 

approach was adapted from PINOT, which ensures a more accurate calculation system for the 

method score by counting only the technically different methods. By applying the QC pipeline, 

only the most reliable interactors that have been reported in multiple studies and/or with 

technically different detection methods were kept for further analysis, which reduced the size 

of LRRK2 interactome from 1921 to 418, with 1503 (78.2%) proteins removed from the list. 

This shows that one of the problems faced by LRRK2 PPI research is that most of the PPI data 

are not reproduced in literature and thereby not directly reliable. This may result from delays 

in literature curation in the primary databases, lack of interest in wet-lab research in 

reproducing PPIs that have already been published, or false interactions published in 

literature (Type I errors) produced for example by certain PPI detection methods such as 

tandem affinity purification (TAP) (Edwards et al., 2002).   

 

Among the 418 proteins, LRRK2 itself exhibited the highest score for interaction (final score = 

52), confirming LRRK2 self-interaction as the best known and reproducible PPI of LRRK2. This 

replicates previous 2 previous LRRK2 interactome studies (Manzoni et al., 2015; Porras et al., 

2015b). In the cell, LRRK2’s self-interactions occur at a range of sites within different domains 

of the protein structure and form dimer-sized structures with high molecular weight, which 

has been highly associated with its autophosphorylation activity (Greggio et al., 2008). 

Moreover, LRRK2 self-interaction is essential for autophosphorylation and multiple 

pathogenic mutations in LRRK2 have been reported to increase autophosphorylation both in 

vivo and in vitro and may contribute to the alterations in PPIs between LRRK2 and other 

proteins such as the 14-3-3 family and with downstream pathways such as endocytosis 

(Manschwetus et al., 2020b; Stevers et al., 2017). In addition, similar alterations were 

observed in sporadic PD patients too (Sheng et al., 2012). Together with these experimental 

data, this study confirms the importance of LRRK2 self-interactions in its protein interactome.  

 

Apart from LRRK2 itself, interactors of LRRK2 belong to a variety of families, among which 

there are 7 14-3-3 proteins and 13 Rab GTPases in the interactome. These 2 protein families 

are the most widely recognised LRRK2 interactors (Jeong et al., 2018b; Stevers et al., 2017). 
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Among the 14-3-3 proteins, YWHAQ, YWHAZ and YWHAG are the mostly reported LRRK2 

interactors based on their final score (FS = 13, 13 and 9, respectively), while for the Rab 

GTPases, RAB5B (FS = 9) is the protein most robustly associated with LRRK2. It was reported 

in 4 publications via 5 types of detection methods (D. H. Ho et al., 2016; Imai et al., 2015; Shin 

et al., 2008; Yun et al., 2015). In addition, 36 cytoskeleton proteins were included in the LRRK2 

interactome, among which 5 are from the actin family while 10 from the tubulin family. 

Previous studies have found that LRRK2 binds directly with actin proteins and affect its 

polymerisation and depolymerisation (Meixner et al., 2011; Parisiadou & Cai, 2010; Tombesi 

et al., 2022). Moreover, LRRK2 has been shown to phosphorylate tubulin and thereby 

enhance microtubule stability (Bonet-Ponce et al., 2020; Gillardon, 2009; Law et al., 2014). 

PPIs with cytoskeletal proteins form the foundation of LRRK2’s role in cytoskeleton 

organisation and microtubule dynamics, which is crucial for neuronal morphology, axonal 

transport, synaptic formation and maintenance. Impairment or dysregulation of these PPIs 

may lead to neuronal dysfunction and neuron loss. Additionally, there is a large proportion of 

ribosomal proteins in the LRRK2int (N = 38). Multiple lines of evidence have shown that LRRK2 

regulates ribosomal function especially in the neurons (Juli et al., 2016; Martin et al., 2014). 

Additionally, ribosomal function impairment and reduced protein synthesis have been found 

in striatal and substantia nigral neurons in mouse models of LRRK2-G2019S PD and other non-

genetic PD, as well as in fibroblast cells isolated from sporadic and LRRK2-G2019S PD patients 

(Deshpande et al., 2020; J. W. Kim et al., 2020; R. Wallings et al., 2015). Therefore, 

understanding LRRK2:Ribosome interaction will bring further insights for PD pathology and 

provide novel drug targets for PD therapy. Moreover, the LRRK2int includes a large number of 

protein kinases of various types. These proteins might either phosphorylate LRRK2 or function 

as LRRK2’s substrate, forming a complex kinase network that maintains the LRRK2-centred 

signalling cascade.  

 

A total of 578 GO-BP terms were returned from functional enrichment analysis on the entire 

LRRK2int. The large number of enriched terms made the interpretation process complicated, 

which is, in fact, a very common problem faced by any large query in functional/pathway 

enrichment analysis. In this study, a special dimension reduction pipeline was set-up and 

applied to gain a better understanding of the functional enrichment results. GO terms were 

firstly filtered by the “term size”. Terms size refers to the number of genes (in the entire 
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human genome) that have been annotated with a given GO term. A larger term size normally 

indicates a more general term. For example, the GO-BP term “autophagy (GO:0006914)” has 

a term size of 571, while another more specific term “chaperone-mediated autophagy 

(GO:0061684)” has a term size of 15. In this first part of the study, a hard threshold of 2500 

was set to define “general terms” (term size >2500) and “specific terms” (term size <2500), 

which was adapted from a previous study. This approach is easy to perform and assists in 

downsizing the enrichment results, though with a possibility of information loss, especially 

for the terms referring to complex cellular pathways that involve a wide range of proteins. 

However, the impact of losing several terms as such is expected to be small in this study since 

only 83/504 (16.5%) terms were removed.  

 

The remaining GO-BP terms were grouped based on their hierarchical relation in the GO 

ontology tree. Compared to semantic clustering, which is more commonly used, and simpler 

to perform, grouping by GO relations keeps the connection between terms, avoid variation 

induced by different (and subjective) semantic mappings and thereby increasing the 

replicability of the dimension reduction approach. The grouping process resulted in a total of 

7 GO-BP groups, among which 3 were related to microtubule dynamics and actin cytoskeleton 

organisation (G2, G4, G6), emphasizing a pivotal role of the LRRK2int in modulating the 

structural dynamics of the cell. The intricate orchestration of these cytoskeletal elements is 

crucial for maintaining cellular shape and facilitating intracellular transport. In addition, 2 GO-

BP groups (G1 and G5) were related to response to stress, autophagy, mitochondrial 

organisation and apoptotic signalling. These processes highlighted the potential role of LRRK2 

signalling in regulating cellular response to stimuli. In addition, there are 2 GO-BP groups 

related to protein synthesis, metabolism and modification. These functions play critical roles 

in regulating protein function, stability, and interactions and could have downstream effects 

on the above-mentioned cellular functions. Functional units contributing to each GO-BP 

groups were extracted, in which a total of 29 interactors were found in all of the 7 units. These 

proteins include LRRK2 (FS = 52), HSP90AA1 (FS = 18), MAPT (FS = 8), ARHGEF7 (FS = 8), SFN 

(FS = 7), HSP90AB1 (FS = 7), CDC42 (FS = 6), DNM1L (FS = 5), RAC1 (FS = 5), AKT1 (FS = 5), DVL1 

(FS = 5), RGS2 (FS = 4), MAPK3 (FS = 4), RACK1 (FS = 4), RHOA (FS = 4), CDK5 (FS = 4), HDAC6 

(FS = 4), GSK3B (FS = 4), LATS1 (FS = 3), ACTB (FS = 3), NPM1 (FS = 3), PRKN (FS = 3), PRKCZ (FS 

= 3), BAX (FS = 3), HIF1A (FS = 3), PIK3R1 (FS = 3), CAMK1D (FS = 3), APP (FS = 3), HSPA1A (FS 
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= 3), forming the functional core of LRRK2 signalling network. In addition, the functional core 

was significantly related to PD and AD, thereby linking the LRRK2int with neurodegenerative 

diseases. 
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Chapter 2. Construction and analysis of the LRRK2 PPI network 

(LRRK2net) 

Objectives 

• Add the “2nd layer” PPIs among LRRK2 interactors to construct a PPI network (LRRK2net) 

• Investigate the topological features of the LRRK2net 

• Detect potential topological clusters in the LRRK2net and perform functional 
annotation on these clusters 
 

Analysis pipeline 

 

Note: Some of the figures and text in Chapter 2 are adapted from the following manuscript deposited 
in bioRxiv: Zhao et al.; “Transcriptomics analyses of the LRRK2 protein interactome reveal distinct 
molecular signatures for sporadic and LRRK2 Parkinson’s Disease” 
https://doi.org/10.1101/2023.09.12.557373. Some of the results were further elaborated in a 
collaborative project in bioRxiv: Tombeisi et al.; “LRRK2 regulates synaptic function through BDNF 

signalling and actin cytoskeleton.” https://doi.org/10.1101/2022.10.31.514622. 

Methods 

• Construction of the LRRK2net 

PPIs between LRRK2 interactors were defined as the “1st-layer” interactions (downloaded and 

QC-ed in Chapter 1), while the “2nd-layer” interactions were defined as the PPIs among LRRK2 

https://doi.org/10.1101/2023.09.12.557373
https://doi.org/10.1101/2022.10.31.514622
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interactors (apart from LRRK2 itself). The “2nd-layer” PPIs were downloaded from HIPPIE (v2.3) 

on 5th May 2022. In order to keep the most robust PPIs and avoid overloading the network, 

only non-self-interaction PPIs with high confidence score (≥ 0.72) in HIPPIE were kept for 

further analyses. Of note, the confidence score in HIPPIE was calculated directly by the tool 

via a semi-computational manner, examining the number and the quality of the methods by 

which a PPI was detected, as well as the number of publications where a PPI was reported, as 

well as the number of non-human organisms in which a PPI was reproduced, aiming to reduce 

the number of false positives. The PPI network of LRRK2 (LRRK2net) was constructed by 

combining the 1st-layer and 2nd-layer PPIs (edges). Degree and betweenness centrality (BC) 

were calculated for each node (interactor) to identify “semi-seed” interactors in the LRRK2net, 

i.e., the interactors with high degree and/or high BC in the network (i.e., interactors with the 

most interactions and/or located on the “bridges” connecting different parts of network).  

 

• Topological cluster detection  

The Fast Greedy algorithm was used to identify topological clusters of LRRK2 interactors 

based on Edge Betweenness via Cytoscape (v3.9.1). Of note, LRRK2 itself was excluded from 

topological clustering to avoid its disturbance on the clustering algorithm due to its high 

degree residual of the “1st-layer” construction. Within each topological cluster, nodes with 

highest degree and/or highest BC were defined as the “hub proteins” within the cluster. These 

proteins may play a central role in mediating and maintaining the connection of the 

subnetwork within each cluster. Additionally, the variance of node degree and BC was 

compared across the clusters via F-test. In fact, clusters with lower variance on node 

betweenness are less centralised and are thereby more stable from a topological perspective 

(Valente, 2010).  

 

• Functional annotation of clusters 

GO Biological Processes (GO-BP) enrichment analysis were performed via g:GOSt 

(https://biit.cs.ut.ee/gprofiler/gost) on the topological clusters For each cluster, the 

Enrichment Score (ES) was defined as the total number of GO-BP terms returned from the 

enrichment analysis, and the ES was used as proxy to evaluate the biological significance of 

each topological cluster. Only clusters with high ES were kept for further analysis.  
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Results 

• LRRK2net 

A total of 4860 “2nd-layer” PPIs were extracted from the HIPPIE database (v2.3), among which 

1466 (30.2%) were scored as “high confidence” (HIPPIE confidence score ≥ 0.72), out of which 

121 self-interactions were removed from the list, thereby leaving 1345 “2nd-layer” PPIs for 

338 LRRK2 interactors. Combined with the “1st-layer” PPIs (N = 417), a final network of 418 

nodes and 1762 edges was constructed around LRRK2 and its interactors (LRRK2net, Figure 

5A).  

 

Degree distribution analysis showed that N = 216 interactors (51.7%) had degrees ≤ 4; N = 

141 interactors (33.7%) presented degrees between 5 and 14; N = 41 interactors (9.8%) 

presented degrees between 15 and 24; N = 24 interactors with degree ≥ 24, suggesting that 

the LRRK2net follows the Power Law distribution (log-log plot R-square = 0.8606) (Figure 5B-C, 

Table S2). Interactors with degree ≥ 24 (the top 5% of all) were defined as “sub seed” proteins 

in the LRRK2net, with TP53 (degree = 68), CDK2 (degree = 48), HSPA8 (degree = 46), HSP90AB1 

(degree = 44), HSP90AA1 (degree = 43), YWHAZ (degree = 43), LAPR7 (degree = 39), NPM1 

(degree = 37), TRAF2 (degree = 32), IQGAP1 (degree = 32), LIMA1 (degree =31), CAPZA2 

(degree = 31), PRKN (degree = 28), DBN1 (degree = 28), YWHAQ (degree = 27), RPS8 (degree 

= 27), YWHAG (degree = 26), TRADD (degree = 26), RPS3 (degree = 26), AKT1 (degree = 25), 

YWHAB (degree = 24), HSPA1A (degree = 24), RPS3A (degree = 24)  presenting the highest 

degree, suggesting that these proteins may play an essential role in maintaining the local 

connectivity of LRRK2net. Among the 25 “sub seed” proteins, 2 were AD-related (DBN1 and 

HSPA1A) while 1 was PD-related (PRKN). In terms of BC analysis, a total of 17 interactors 

presented high BC (top 5% of all), including TP53 (BC = 0.23), CDK2 (BC = 0.10), YWHAZ (BC = 

0.09), HSPA8 (BC = 0.07), HSP90AB1 (BC = 0.06), HSP90AA1 (BC = 0.05), LRRK1 (BC = 0.05), 

PRKN (BC = 0.05), TRAF2 (BC = 0.04), NPM1 (BC = 0.04), TUBA1C (BC = 0.04), LIMA1 (BC = 0.03), 

IQGAP1 (BC = 0.03), VIM (BC = 0.03), YWHAG (BC = 0.03), PPP1CA (BC = 0.03), AKT1 (BC = 0.03) 

(Figure 5D). These interactors are potentially mediators responsible for maintaining the 

overall connectivity of LRRK2net. These interactors formed the topological backbone of the 

LRRK2 (N = 27) (Figure 5E) 
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Figure 5. LRRK2 PPI network 

A) The network graph shows the PPI network of LRRK2. Nodes represent interactors (N = 418) while 

edges represent PPIs (N = 1762). Node size represents the degree centrality. The larger the node, the 

higher the degree. A total of 79 interactors exhibited a degree of 1 (highlighted with rectangular). Two 

isolated motifs containing 4 LRRK2 interactors were highlighted as well. These interactors have no 

connection with the rest of the network; B) The bar graph shows the distribution of degree of LRRK2 

interactors in the network. Interactors with degree ≥ 24 (top 5%) were defined as “sub seed” proteins; 

C) The log-log plot shows that LRRK2net follows power law, in which X-axis represents log-transformed 

degree (logD), while Y-axis represents log-transformed frequency of LRRK2 interactor with a certain 

degree level (log(n(D))). Regression analysis shows that the plot fits a linear regression with R-square 

= 0.8606; D) The scatter plot shows the distribution of betweenness centrality (BC) of LRRK2 interactors. 

LRRK2 was excluded from this graph. The rest of LRRK2 interactors with top 5% BC (above the red line) 

was selected as “sub seed” protein; E) The network graph shows LRRK2 interactors with highest (top 

5% of all interactors) degrees (marked with pink circles) and/or betweenness centrality (marked with 

blue circles). These interactors formed the topological core of the LRRK2net. 

 

Cluster detection within the LRRK2net 

In order to perform topological clustering on the LRRK2net, interactors with degree = 1 (i.e. 

those that only possessed connection with LRRK2 but not with the other members of the 

LRRK2 interactome) were discarded (N = 79). In addition, 2 isolated triangle motifs were 

identified in the LRRK2net. Each of them comprised LRRK2 and other 2 interactors with degree 

of 2, which only interacted with each other but not with any other interactors in the network 
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and were thereby excluded from the clustering analysis as well (Figure 6A). Finally, LRRK2 

itself was removed from the network, thereby generating the “trimmed-LRRK2net”, containing 

338 nodes and 1345 edges. The trimmed-LRRK2net was then subset into 14 topological clusters 

via the Fast Greedy algorithm based on Edge Betweenness (Cluster A-N), among which Cluster 

L, M, N contained ≤ 5 interactors and were thereby excluded from further analysis (Figure 6A, 

Table S3). Node centrality (degree and betweenness) analysis was performed for each 

remaining cluster (N = 7) to identify “hub” proteins of top 5% degree or betweenness (Figure 

6C-D). In addition, GO-BP enrichment analyses excluded 4 more clusters (Cluster H, I, J, K) due 

to their low ES < 10 (i.e., less than 10 terms were returned for the 3 clusters) (Figure 6B). 

 

 

Figure 6. Characterisation of topological clusters in the LRRK2net 

A) The bar graph shows the size of the 14 topological clusters identified in the LRRK2net via the Fast 

Greedy algorithm. Cluster L, M, N were excluded due to their small cluster size (N ≤ 5); B) The bar graph 

shows the number of GO-BP terms returned from enrichment analyses (Enrichment Score, ES) for the 
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remaining 11 clusters. Cluster H, I, J, K were excluded due to their low ES ≤ 10; C, D) The box plots show 

the distribution of node degree and betweenness in the remaining 7 clusters. The whiskers represent 

95% percentiles. Nodes with degree or betweenness above 95% percentiles within each cluster were 

marked as red dots F-test was preformed to compare the variance of node betweenness, in which 

Cluster C presented significant low SD as compared to other clusters apart from Cluster E (p < 0.05; *). 

 

Among the remaining 11 clusters, Cluster A comprised N = 45 interactors, among which CDK2 

(Degree = 26; Betweenness = 0.75) and RPS8 (Degree = 16; Betweenness = 0.10) were defined 

as “hub” proteins, among which 40 contributed to the functional enrichment of 42 GO-BPs 

(Figure 7A). A total of 28 GO-BPs were with a term size < 2500, from which GO hierarchy 

analysis identified 1 group which was related to translation, involving 40/45 (88.9%) 

interactors in the cluster (Figure 7B, Table C1). Of note, a robust ribosomal protein unit of 16 

RPs were identified in Cluster A, in which the RPs presented a condense within-unit 

connection, accounting for 71/115 (61.7%) edges in Cluster A. Among the 16 RPs, RPS8 

exhibited the highest centrality and connected with all other proteins, it also linked to 2 

mitochondrial RPs (MRPL19 and MRPL28), suggesting that the RB unit is potentially associated 

with mitochondrial function. In addition, the RB unit was connected with the rest of the 

cluster by CDK2, thereby suggesting a potentially crucial role of CDK2 as a “hub” in linking 

ribosomal biosynthesis and other stages of gene translation. 
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Figure 7. Analysis of Cluster A of the LRRK2net 

A) The network graph shows Cluster A in the LRRK2net, containing a total of 45 interactors (represented 

with round nodes). The “hub” proteins (CDK2 and RPS8) were highlighted with red circles. Node fill 

colour represents biological functions that a certain interactor is engaged in based on the GO-BP 

enrichment analysis, while node size represents the degree centrality (the larger the node, the higher 

the degree). Interactors that were not included in any functions were filled in grey. Of note, a condense 

unit of ribosomal proteins (the “RB unit”) was identified in Cluster A (highlighted in blue square), 

accounting for 71/115 (61.7%) of all edges. B) The network graph shows the hierarchical groups of GO-

BPs (term size < 2500, represented as rectangular nodes) returned from enrichment analysis for Cluster 

A. Only groups with ≥ 3 terms were presented. Node fill colour represents the hierarchical group. Edges 

represents hierarchy relations between GO-BP terms in Gene Ontology. Details regarding GO-BPs in 

the graph were shown in Table C1. 

 

In comparison, Cluster B contained N = 23 interactors, among which TRAF2 (Degree = 15, 

Betweenness = 0.50) was defined as “hub” protein (Figure 8A), though another 2 proteins 

TRADD (Degree = 13, Betweenness = 0.23) and RIPK1 (Degree = 9, Betweenness = 0.18) also 

exhibited high centralities in the cluster. These 3 proteins were responsible for 31/42 (73.8%) 

edges in the cluster, indicating their potential central roles in maintaining the connectivity of 

the subnetwork. GO-BP enrichment returned a total of 96 GO-BPs with term size < 2500, 

within which 3 hierarchical groups were identified: “Cell death”, “Protein metabolism”, 

“Response to stress” (Figure 8B, Table C2). These 3 groups involved 17, 14 and 15 interactors, 

respectively. Of note, a total of 14 interactors were engaged in all the 3 groups, suggesting 

that these 3 cellular pathways were closely connected with each other.  
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Figure 8. Analysis of Cluster B in the LRRK2net 

A) The network graph shows Cluster B in the LRRK2net, containing a total of 23 interactors (represented 

with round nodes). The “hub” proteins (TRAF2) was highlighted with a red circle. Node fill colour 

represents biological functions that a certain interactor is engaged in based on the GO-BP enrichment 

analysis, while node size represents the degree centrality (the larger the node, the higher the degree). 

Interactors that were not included in any functions were filled in grey. B) The network graph shows the 

hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes) returned from 

enrichment analysis for Cluster B. Only groups with ≥ 3 terms were presented. Node fill colour 

represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms in Gene 

Ontology. Details regarding GO-BPs in the graph were shown in Table C2. 

 

Cluster C included a total of 41 interactors, among which IQGAP1 (Degree = 20; Betweenness 

= 0.30), CAPZA2 (Degree = 17; Betweenness = 0.12) and LIMA1 (Degree = 16; Betweenness = 

0.22) were “hub” proteins (Figure 9A). Of note, pair-wise F-test showed that the variance of 

node betweenness in Cluster C was significantly lower than all other clusters apart from 

Cluster E (Figure 6D, 1-tailed p-value < 0.05), suggesting that interactors in Cluster C were 

well connected and thereby formed a stable PPI unit in the LRRK2net. GO-BP enrichment 

analysis returned 64 terms, in which 59 were with term size < 2500, involving 29 interactors. 

A total of 3 hierarchical groups of GO-BPs were identified in the 59 terms, related to 

cytoskeleton organisation, vesicular transport and translation (Figure 9B, Table C3). A total of 
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25, 9 and 4 interactors contributed to the 3 functions, respectively, suggesting that the 

dominate role of Cluster C was maintaining cytoskeleton dynamics. Of note, only 1 protein 

(ACTB) was shared by the 3 GO-BP groups, suggesting its potentially important role in 

connecting the 3 functions together.  

 

 

Figure 9. Analysis of Cluster C of the LRRK2net 

A) The network graph shows Cluster C in the LRRK2net, containing a total of 45 interactors (represented 

with round nodes). The “hub” proteins (IQGAP1, CAPZA2 and DBN1) were highlighted with red circles. 

Node fill colour represents biological functions that a certain interactor is engaged in based on the GO-

BP enrichment analysis, while node size represents the degree centrality (the larger the node, the 

higher the degree). Interactors that were not included in any functions were filled in grey. B) The 

network graph shows the hierarchical groups of GO-BPs (term size < 2500, represented as rectangular 

nodes) returned from enrichment analysis for Cluster C. Only groups with ≥ 3 terms were presented. 

Node fill colour represents the hierarchical groups. Edges represents hierarchy relations between GO-

BP terms in Gene Ontology. Details regarding GO-BPs in the graph were shown in Table C3. 

 

Cluster D contained 39 LRRK2 interactors, in which NPM1 (Degree = 14; Betweenness = 0.42) 

and VIM (Degree = 10; Betweenness = 0.31) were “hub” proteins (Figure 10A). Of note, 

Cluster D exhibited a significantly low node betweenness variance as compared to other 

clusters apart from Cluster C (F-test 1-tailed p-value < 0.05), thereby revealing another robust 

PPI unit in the LRRK2net (Figure 6D). GO-BP enrichment analysis associated Cluster D with 93 
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terms, in which 70 were with term size < 2500, among which a total of 4 hierarchical groups 

were identified: protein metabolism, protein localisation, translation and cell death, involving 

a total of 38, 18, 15 and 17 LRRK2 interactors, respectively (Figure 10B, Table C4). NPM1, 

AKT1, and RACK1 contributed to all the functions, thereby probably functioning as mediators 

of the 4 cellular processes. 

 

 

 

Figure 10. Analysis of Cluster D of the LRRK2net 

A) The network graph shows Cluster D in the LRRK2net, containing a total of 39 interactors (represented 

with round nodes). The “hub” proteins (NPM1 and VIM) were highlighted with red circles. Node fill 

colour represents biological functions that a certain interactor is engaged in based on the GO-BP 

enrichment analysis, while node size represents the degree centrality (the larger the node, the higher 

the degree). Interactors that were not included in any functions were filled in grey. B) The network 

graph shows the hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes) 

returned from enrichment analysis for Cluster D. Only groups with ≥ 3 terms were presented. Node fill 

colour represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms 

in Gene Ontology. Details regarding GO-BPs in the graph were shown in Table C4. 

 

Cluster E was composed of a total of 52 interactors, within which TP53 was the “hub” (Degree 

= 31; Betweenness = 0.95). Of note, TP53 exhibited dominating centrality, accounting for 
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31/65 (47.7%) of all edges in the cluster, suggesting that TP53 plays a crucial role in 

maintaining the function of the cluster (Figure 11A). GO-BP enrichment analysis returned a 

total of 91 terms for Cluster E, within which 64 were with term size < 2500, involving 77/91 

(84.6%) interactors. GO-BP hierarchy clustering identified 4 groups associated with: protein 

localisation, cell cycle, protein metabolism and response to stress, contributed by a total of 

25, 21, 16 and 5 interactors, respectively (Figure 11B, Table C5).  

 

 

Figure 11. Analysis of Cluster E of the LRRK2net 

A) The network graph shows Cluster E in the LRRK2net, containing a total of 52 interactors (represented 

with round nodes). The “hub” protein (TP53) was highlighted with a red circle. Node fill colour 

represents biological functions that a certain interactor is engaged in based on the GO-BP enrichment 

analysis, while node size represents the degree centrality (the larger the node, the higher the degree). 

Interactors that were not included in any functions were filled in grey. B) The network graph shows the 

hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes) returned from 

enrichment analysis for Cluster E. Only groups with ≥ 3 terms were presented. Node fill colour 

represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms in Gene 

Ontology. Details regarding GO-BPs in the graph were shown in Table C5. 

 

In comparison, Cluster F contained 15 LRRK2 interactors, in which PRKN (Degree = 12; 

Betweenness = 0.74) was defined as the “hub” protein (Figure 12A). Topological analysis 
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showed that Cluster F was highly centralised, in which the node betweenness variance was 

significantly higher than all other clusters (F-test 1-tailed p-value < 0.05), suggesting that the 

stability of Cluster F was highly dependent on the normal function of its “hub” PRKN, i.e., 

pathological alterations (e.g., pathogenic mutations or expression level changes) on PRKN 

may lead to an overall dysfunction of the cluster (Figure 6D). A total of 26 GO-BPs were 

returned by functional enrichment analysis for Cluster F, among which 23 were with term size 

< 2500. These terms were related to 1 hierarchy group of Autophagy, involving 6/15, 40%) 

interactors (Figure 12B, Table C6). 

 

Figure 12. Analysis of Cluster F of the LRRK2net 

A) The network graph shows Cluster F in the LRRK2net, containing a total of 52 interactors (represented 

with round nodes). The “hub” protein (PRKN) was highlighted with a red circle. Node fill colour 

represents biological functions that a certain interactor is engaged in based on the GO-BP enrichment 

analysis, while node size represents the degree centrality (the larger the node, the higher the degree). 

Interactors that were not included in any functions were filled in grey. B) The network graph shows the 

hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes) returned from 

enrichment analysis for Cluster F. Only groups with ≥ 3 terms were presented. Node fill colour 

represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms in Gene 

Ontology. Details regarding GO-BPs in the graph were shown in Table C6. 

 

As for Cluster G, a total of 29 interactors were included in the cluster, among which LRRK1 

(Degree = 15; Betweenness = 0.54) and HSPA8 (Degree = 16; Betweenness = 0.48) were 

defined as “hub” proteins (Figure 13A). The 29 interactors were related to 25 GO-BPs, among 

which 23 were with term size < 2500. A total of 2 hierarchical groups were identified from 

these functional terms, related to autophagy (involving 7/29 (24.1%) interactors) and protein 

metabolism (involving 17/29 (58.6%) interactors) (Figure 13B, Table C7).  
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Figure 13. Analysis of Cluster G of the LRRK2net 

A) The network graph shows Cluster G in the LRRK2net, containing a total of 29 interactors (represented 

with round nodes). The “hub” proteins (HSPA8 and LRRK1) was highlighted with red circles. Node fill 

colour represents biological functions that a certain interactor is engaged in based on the GO-BP 

enrichment analysis, while node size represents the degree centrality (the larger the node, the higher 

the degree). Interactors that were not included in any functions were filled in grey. B) The network 

graph shows the hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes) 

returned from enrichment analysis for Cluster G. Only groups with ≥ 3 terms were presented. Node fill 

colour represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms 

in Gene Ontology. Details regarding GO-BPs in the graph were shown in Table C7. 

 

Main findings  

1. The topological core of the LRRK2net (defined as the most highly connected interactors 

within the LRRK2net) contained 27 proteins, including 14-3-3 proteins, ribosomal proteins, 

heat shock proteins and cytoskeleton-related proteins.  Together with the functional core 

identified in Chapter 1, these proteins formed the fundamental set of proteins interacting 

with LRRK2. 

2. A total of 11 topological clusters containing N ≥ 5 interactors were identified in the 

LRRK2net, and 7 of them were found with high biological significance, suggesting a good 

overlap between topological models of LRRK2 interactors and the real functional modules. 
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3. The 7 biological significant clusters re-capitulated the primary functions of LRRK2 in: the 

regulation of ribosomal functionality, protein localisation, protein metabolism, protein 

transport, cellular response to stress, cell death and autophagy. 

4. An interesting ribosomal unit was identified in the LRRK2net, suggesting LRRK2’s potential 

role in mediating/regulating the process of protein translation (Topological Cluster A).  

5. An interesting cytoskeletal unit was identified in the LRRK2net, suggesting LRRK2’s 

potential role in mediating/regulating the maintenance of the cellular structure and the 

regulation of vesicle dynamics (Topological Cluster C).  

6. An interesting mitochondrial unit was identified in the LRRK2net, suggesting LRRK2’s 

potential role in regulating the maintenance of mitochondrial integrity is association with 

other PD related proteins (Topological Cluster F).  

Discussion 

In this section, PPIs among LRRK2 interactors were retrieved from literature to increase the 

connectivity of the simple LRRK2int and effectively construct an interaction network. As 

compared to the download pipeline for 1st-layer PPI, which included the combination of 3 PPI 

tools (PINOT, HIPPIE and MIST), retrieval of the 2nd-layer PPIs was conducted via HIPPIE (v2.3) 

solely. This is due to the following reasons: 1) HIPPIE (v2.3) offers time-efficient network 

query which allows for the construction of a subnetwork from an input query set of proteins, 

thereby avoiding the significant amount of time and computing power required by retrieving, 

filtering and merging of PPIs for individual LRRK2 interactors, while no such function is 

provided in the other 2 PPI tools; 2) As discussed in Chapter 1, the 3 tools share a relatively 

large overlap rate especially on the most replicated PPIs, suggesting that using 1 PPI tool 

solely is able to cover the most robust PPIs among LRRK2 interactors. In addition, with the 

score filter provided by HIPPIE (v2.3), the pipeline returns adequate 2nd-layer PPIs with high 

confidence for LRRK2net construction.  The LRRK2net turned out to be a scale-free network that 

follows the power law, in which only a few nodes are highly connected while most of the 

nodes are characterized by a relatively low degree (i.e., they possess few connections). This 

might indicate that there are some “hubs” in the LRRK2’s protein network sustaining the 

LRRK2 functions that are exerted via its interactome. These hubs were identified according to 

their degree or betweenness centrality via topological analysis. In graph theory, degree of 

node represents the number of edges connected to a given nodes, while betweenness 
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centrality reflects the number of shortest paths a node lies on, a proxy for the influence a 

node has over the flow of information or resources in the network. In scale-free networks, 

the degree of a node and its betweenness centrality are often correlated, but they do not 

always agree. Therefore, a combination of nodes with high degree or high betweenness 

ensures the coverage of the “topological core” with both centralised nodes and bridge nodes 

in the network. In this way, a total of 27 interactors were identified as hubs, including TP53, 

CDK2, HSPA8, HSP90AB1, HSP90AA1, YWHAZ, LAPR7, NPM1, TRAF2, IQGAP1, LIMA1, CAPZA2, 

PRKN, DBN1, YWHAQ, RPS8, YWHAG, TRADD, RPS3, AKT1, YWHAB, HSPA1A, RPS3A, TUBA1C, 

RPS2, PPP1CA, LRRK1. Of note, caution should be exercised when interpreting topological 

analyses in the context of protein interaction networks since these networks are inherently 

incomplete. Consequently, there is a risk of underestimating or overlooking central nodes and 

connectivity. Hence, these analyses require periodic repetition every few years to ensure the 

continuous incorporation of updated data and gradually enhance the completeness of the 

model over time. Among the hub proteins, AKT1, HSP90AB1, HSPA1A, NPM1 also presented 

in the functional core identified in Chapter 3, suggesting their central roles in supporting 

LRRK2 functionality.  

 

AKT1 is a central protein that participate in signal transduction for cell cycle progression, cell 

survival and prevention of apoptosis. Previous studies have found that AKT1 is a direct 

substrate of LRRK2 kinase. Phosphorylation of AKT1 negatively regulates apoptosis signalling 

molecule and activates some cascades for cell survival. PD-associated LRRK2 mutations, 

including LRRK2-R1441C, G2019S, and I2020T, were found to interrupt LRRK2:AKT1 

interaction (Ohta et al., 2011). Therefore, neurons with mutated LRRK2 are potentially more 

vulnerable to apoptotic stress, which could be a possible mechanism for the 

neurodegeneration in the LRRK2-PD.  

 

Heat shock proteins (HSPs) constitute a vital family of cellular components that respond to 

various stressors. Functioning as molecular chaperones, HSPs play a fundamental role in the 

maintenance of protein structure, preventing misfolding, aggregation, and degradation. In 

the meanwhile, heat shock proteins have been highly linked to PD. Previous studies found 

lower expression levels in a range of heat shock proteins in PD brains as compared to healthy 

control (Zhu et al., 2022). In addition, HSP90AB1 exhibits significantly negative correlation 
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with Lewy pathology by inhibiting the aggregation of α-synuclein (Gao et al., 2015). Also, 

HSPA1A (a member of HSP70 family) disaggregate complex is responsible for the disassembly 

of α-synuclein aggregates (Daturpalli et al., 2013). In this study, heat shock proteins present 

high final score (HSP90AA1, HSPA8 (a member of HSP70 family)) in the LRRK2int, high degree 

& betweenness centrality (HSP90AB1, HSP90AA1, HSPA8) in the LRRK2net, and high 

engagement in all enriched biological functions in the functional core (HSP90AB1, HSP90AA1, 

HSPA1A), suggesting an essential role of this protein family in LRRK2 signalling pathway. These 

findings are in accordance with previous studies which suggested a substantial association 

between LRRK2 and HSP90, HSP70 proteins. For example, it has been reported that 

pharmacological inhibition of HSP90 rescued cortical neurons in a LRRK2-G2019 mouse model 

from axonal growth retardation (Hurtado-Lorenzo & Anand, 2008). This may result from the 

fact that LRRK2:HSP90 interaction increase the stability of G2019S LRRK2 protein, while 

inhibition of HSP90 increases its proteasomal degradation (L. Wang et al., 2008). Hence, 

HSP90 inhibitors may thereby be a potential drug target for LRRK2-PD. However, on the other 

hand, some studies suggested that HSP70 overexpression enhanced neuronal survival against 

oxidative stress induced by increased LRRK2 kinase activity from pathogenic mutations (Jang 

et al., 2018). Therefore, HSP70 induction can also be a potential therapeutic route for LRRK2-

PD.  These findings suggest a complicated signalling network between LRRK2 and heat shock 

proteins. Future studies can extract functional, topological, transcriptomic and genetics data 

of heat shock proteins and establish a LRRK2:HSPs PPI network. By combining the network 

with experimental data, the edges can be directed based on inhibition/activation effect of 

each LRRK2:HSPs binding, thereby turning the PPI network to a pathway model. The model 

can be tested in the health condition as well as in the presence of pathogenic mutations of 

LRRK2, which will provide insights in the LRRK2:HSPs signalling system and prioritise “hub” 

heat shock proteins as drug target candidates.  

 

NPM1 (Nucleophosmin 1) is an abundant nucleolar protein that plays a crucial role in 

ribosome assembly, regulation of cell division, and response to cellular stress. Like HSP90 

proteins, NPM1 is also a type of chaperon that regulates protein misfolding and aggregating 

process, presenting a neuroprotective role in neurodegeneration process. One previous study 

found upregulated NPM1 expression level in Human dopaminergic SH-SY5Y cells under 1-

methyl-4-phenyl-pyridinium ion (MPP+) treatment, which is a commonly used model for 
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sporadic PD (Xie et al., 2016). However, not much research has been done in exploring the 

functional role of LRRK2:NPM1 interaction, either in healthy or PD cases. Considering the 

neuroprotective role of NPM1, it is worth to explore this PPI in further research to evaluate 

NPM1’s potential as a novel drug target for PD. 

 

Apart from the topological unit of hub proteins, a total of 14 topological clusters were 

identified in the LRRK2 network via Fast Greedy Clustering Algorithm. Fast Greedy is one of 

the simplest community detection approaches in topological analysis, involving a hierarchical 

clustering based on edge betweenness to detect the mostly connected nodes as the “core” 

of a subnetwork. Then the algorithm iteratively selects random edges that improve the 

modularity of the subnetwork and adds them in, until the modularity stops improving 

(Newman, 2004). One of the primary benefits of Fast Greedy algorithm lies in its high 

efficiency and low memory occupancy. Moreover, unlike Partitioning-based community 

detection, such as k-means, which is another commonly used clustering method, the Fast 

Greedy focus on optimising the local connectivity rather than the global optimum, which fits 

the goal of clustering analysis in this study, i.e., to identify dense interaction units within the 

LRRK2net. Among the 14 clusters, only half was linked with high biological significance 

(enriched for ≥ 10 GO-BPs), suggesting that in-silico models established via bioinformatics 

methods should always be interpreted in the biological context.  

 

Among the 7 biological significant topological clusters, Cluster A was highly associated with 

translation. It contains a “ribosomal unit” of 16 ribosomal proteins with 71 PPIs among them, 

which accounting for 35% nodes and 61% edges the whole subnetwork. This is in accordance 

with previous findings that LRRK2 plays an important role in regulating ribosomal functions in 

neurons. Wild type LRRK2 was found to repress protein synthesis in mouse neurons, while 

pharmacological inhibition of LRRK2 kinase or LRRK2 knockout rescued translation 

(Deshpande et al., 2020). Similar alterations have been found in fibroblasts from patients with 

sporadic PD and G2019S-PD, and LRRK2 inhibition restores normal protein synthesis 

(Flinkman et al., 2023). Interestingly, such changes were not observed in fibroblasts from 

patients with other neurodegenerative disease such as multiple system atrophy, suggesting 

that LRRK2’s impact on ribosomal functions is potentially disease-specific. Moreover, the 

ribosomal unit is connected to the other part of Cluster A via the hub protein CDK2, indicating 
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that CDK2 potentially functions as a mediator of ribosomal function. This is in accordance with 

previous findings which suggested that CDK2 positively modulates the assembly of the 

transcription initiation complex of ribosomes (Voit & Grummt, 2001).In addition, it has been 

suggested that inhibiting CDK2 activity leading to downregulation of rRNA synthesis (Iadevaia 

et al., 2010; Juli et al., 2016). Therefore, it can be hypothesised that LRRK2 and CDK2 form a 

balanced mediating system on ribosomal functions, though the detailed mechanism requires 

further research. Using Cluster A as a starting point, future research can focus on linking 

LRRK2, CDK2 and the LRRK2 ribosomal unit with other interactors in the cluster, which may 

function as signalling transductors in the regulation process.  

 

Cluster C was highly enriched for GO-BP terms related to cytoskeleton organisation and 

vesicular transport. It contained cytoskeleton proteins including actin, endophilin, myosin, 

tropomyosin, and vesicular transport regulators such as RAB1A and DNM1 (Mukhopadhyay 

et al., 2011; Von Spiczak et al., 2017; Zhuang et al., 2010). It also contained signal transductors 

such as HSP90AB1. Therefore, Cluster C can be considered as a model for the LRRK2-mediated 

regulating cascade for the regulation of cytoskeleton dynamics. There are 3 hub proteins in 

this cluster: IQGAP, CAPZA2 and DBN1. IQGAP is a conserved scaffold protein that facilitates 

the formation of protein complexes that regulate a range of cellular processes (Hedman et 

al., 2015). For example, it has been reported to interact with F-actin and small GTPase and 

promote actin polymerisation. In addition, IQGAP also scaffold signal transducing molecules 

such as participants of MAPK pathway, which is responsible for response to stimuli. CAPZA2 

regulates actin dynamics by capping the barbed ends of actin filaments. The capping of actin 

filaments helps control the polymerization and depolymerization of actin, which is essential 

for processes such as cell motility, muscle contraction, and maintenance of cell structure. 

DBN1 codes for Drebrin, a protein that binds actin and regulates actin cytoskeleton 

organisation and dynamics. Drebrin is particularly abundant in the brain, where it is involved 

in the regulation of neuronal morphology and synaptic function. To date, not much evidence 

has been reported regarding the impacts of LRRK2 interactions on the functions of the 3 

proteins. Considering their essential roles in regulating the cytoskeleton dynamics and the 

same downstream effectors, it is worth to investigate the connections among these 

mediators to obtain a more comprehensive understanding in the mechanism of cytoskeleton 

organisation. Of note, the PPIs in Cluster C have been selected and evaluated functionally via 
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affinity purification coupled with mass spectrometry (AP-MS/MS) in a collaborative study with 

Prof. Elisa Greggio’s group in University of Padova. The results showed that the interactions 

between LRRK2 and DBN1, ARPC2, ACTR2 and ACTR3 increased under brain derived 

neurotrophic factor (BDNF) stimulation, suggesting a potential role of LRRK2 and its 

interactors in Cluster C in regulating actin cytoskeleton dynamics in complementary neuronal 

models (Tombesi et al., 2023). Cluster F is highly correlated with mitophagy. It contains one 

hub protein PRKN, which is a well-established player in the ubiquitin-proteasome system and 

is intricately linked to mitophagy. Through its E3 ubiquitin ligase activity, PRKN targets 

damaged or dysfunctional mitochondria for degradation, thereby preventing the 

accumulation of compromised organelles and ensuring cellular health. In the meanwhile, 

cluster also include SNCA (α-synuclein), which has been reported to influence mitochondrial 

dynamics and potentially affecting the initiation of mitophagy. Moreover, RAB8A and RAB10 

also presented in Cluster F, which are the primary contributors to vesicular trafficking and 

membrane dynamics. Additionally, the presence of MFN1 and MFN2 underscores the 

significance of mitochondrial dynamics within this cluster considering their pivotal roles in 

mitochondrial fusion. Therefore, considering the complexity of LRRK2-associated mitophagy 

pathway, it is worth to analyses these interactions in 1 system, as how they were connected 

in Cluster F.. This can be applied to multiple research context: for example, since LRRK2, PRKN 

and SCNA are all confirmed familial PD-causing genes, it would be interesting to investigate 

how they work together in maintaining normal mitophagy process in the healthy cells. Also, 

in the disease scenario, it would be informative to dissect how pathogenic mutations of each 

of these PD genes affect the mitophagy network. These will provide valuable insights for PD 

pathology and mitophagy-targeted drug development for genetic PD.  The remaining 4 

topological clusters obtained from the LRRK2net were associated with a combination of 

different biological processes. For example, Cluster B was related to protein metabolism, 

response to stress and cell death, while Cluster E was associated with protein metabolism, 

protein localisation, response to stress and cell cycle. These clusters may function as bridges 

that connect each functional block of the LRRK2net together. In conclusion, the in-silico model 

of the LRRK2net and its subnetworks well recapitulated the primary biological functions of 

LRRK2 described in literature for PD and LRRK2 with the advantage of showing the actual 

component of the LRRK2 interactome that coordinate those functions with LRRK2 and 

describing their connectivity and the flux of information sustaining those biological pathways. 



 109 

  



 110 

Chapter 3. Tissue-specific expression profiles of LRRK2 protein 

interactors 

Objectives 

• Investigate the mRNA expression patterns of LRRK2 interactors in 15 different healthy 

human tissues 

• Compare the LRRK2:interactor co-expression features across the 15 healthy human 

tissues 

• Identify co-expression modules of LRRK2 interactors among the 15 healthy human tissues 

• Evaluate weighted connectivity of topological clusters of the LRRK2net detected in Chapter 

4 in different tissues 

 

Analysis pipeline 

 

Note: Figures and text in Chapter 3 are adapted from the following publication: Zhao et al.; “Tissue 
specific LRRK2 interactomes reveal a distinct striatal functional unit”; PLoS Compute Biol. 2023 Jan 
30;19(1):e1010847. doi: 10.1371/journal.pcbi.1010847. 

 

Methods 

• RNA-Seq data download and quality control (QC) 

The Genotype-Tissues Expression (GTEx) Portal (GTEx Analysis V8) was queried for mRNA 

expression levels (read counts) of LRRK2 interactors in different tissues on 19 August 2021 

(https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2015-06-

05_v8_RNASeQCv1.1.9_gene_reads.gct.gz). A total of 15 tissue sites were included in this 

section: 11 brain regions: amygdala, anterior cingulate cortex, caudate (basal ganglia), 

https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2015-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2015-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz


 111 

cerebellum/cerebellar hemisphere, cortex/frontal cortex (BA9), hippocampus, hypothalamus, 

nuclues accumbens (basal ganglia), putamen (basal ganglia), spinal cord (cervical c-1) and 

substantia nigra (basal ganglia); as well as 4 peripheral tissues: whole blood, lung, liver and 

kidney(cortex). Of note, in GTEx Portal, “cerebellum/cerebellar hemisphere” and 

“cortex/frontal cortex (BA9)” are duplicated pairs (https://www.gtexportal.org/home/faq – 

brainCortexAndCerebellum). The sets of “cerebellum” and “cortex” were chosen since they 

contain a larger sample size as compared to their duplicates (209 vs. 155; 205 vs. 155). 

Expression data were extracted for LRRK2 interactors using their HUGO/HGNC gene symbols. 

Samples quality control (QC) was performed via hierarchical clustering for each tissue 

expression dataset. Samples that fell outside the major cluster in the dendrogram were 

considered as outliers and were thereby excluded from analysis. Interactor-level QC involved 

excluding LRRK2 interactors with read counts < 15 in more than 75% of samples within each 

tissue. QC-ed tissue expression datasets were then merged into the “Tissue Expression 

Matrix”, in which rows were LRRK2 protein interactors while columns were all samples for 

the 15 tissues. Read counts normalisation was conducted via the R package “DESeq2”, 

obtaining the “Normalised Tissue Expression Matrix”. 

 

• Tissue-specific expression signature of the LRRK2int 

Hierarchical clustering was then performed on the “Normalised Tissue Expression Matrix” to: 

1) identify clusters of tissues in which LRRK2 interactors showed similar co-expression 

patterns. 

2) identify clusters of interactors that presented similar expression profiles with LRRK2 

across the 15 tissues (i.e., interactors that presented in the same cluster with LRRK2 

in the hierarchical dendrogram, hereby referred as “Exp_Cluster”). 

The optimal cutting height (h) for each dendrogram tree was selected by the Elbow method. 

The average expression levels of each Exp_Cluster in the 15 tissues were compared via One-

way ANOVA followed by post hoc Tukey’s test. 

• Pair-wise Differential Expression Analysis (DEA)  

The mRNA expression levels of each LRRK2 interactor in the 15 tissues were compared via 

pair-wise DEA using the R package “DESeq2”. Log2 fold change (log2FC) and p-value (adjusted 

via the Benjamini-Hochberg procedure) for each comparison were automatically calculated 

https://www.gtexportal.org/home/faq%20–%20brainCortexAndCerebellum
https://www.gtexportal.org/home/faq%20–%20brainCortexAndCerebellum
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by “DESeq2”. Of note, the p-values were further adjusted via the Bonferroni’s method to 

minimise the overall type II error and were utilised to calculate the “Tissue Scores” (TS) for 

the 15 tissues via the following approach:  

1) for each pair of tissues, if the expression level of interactor I is significantly higher in 

Tissue A than in Tissue B (log2FC > 1 and adjusted p-value < 0.05), then 𝑇𝑆𝐼,𝐴
𝐸 =

 𝑇𝑆𝐼,𝐴
𝐸 + 1, while 𝑇𝑆𝐼,𝐵

𝐸  remains unchanged, and vice versa;  

2) if the comparison between Tissue A and Tissue B is insignificant, both 𝑇𝑆𝐼,𝐴
𝐸  and 𝑇𝑆𝐼,𝐵

𝐸  

remain unchanged.  

In this way, each tissue was scored multiple times based on the expression levels of each 

LRRK2 interactor. The higher the score (𝑇𝑆𝐼,𝑇
𝐸 ), the higher the interactor I was expressed in 

tissue T. If 𝑇𝑆𝐼,𝑇
𝐸  ≥ 12, i.e., the expression level of I in tissue T is significantly higher than 12/15 

(80%) of tissues included in this study, I is then defined as a significant tissue-specifically 

expressed interactor of LRRK2. These tissue-specific interactors were then annotated via GO-

BP enrichment. 

 

• Tissue-specific LRRK2-Co-expression Analysis (L-CEA) on LRRK2 interactors 

Pearson’s Correlation test was performed on the expression level of LRRK2 and each of its 

interactor to examine their co-expression behaviours in the 15 tissues, thereby generating 

the “LRRK2-cor matrix”. The “LRRK2-cor matrix” was then used to perform hierarchical 

clustering on LRRK2 interactors and the 15 tissues in order to:  

i. identify tissues where similar LRRK2:interactor co-expression was observed 

ii. identify clusters of interactors presented similar co-expression behaviours with LRRK2 

in the 15 tissues (Co-ex_Cluster); 

In addition, the average LRRK2:interactor co-expression level of each Co-ex_Cluster was 

compared across the 15 tissues via One-way ANOVA followed by post-hoc Tukey HSD Test. 

Tissues were ranked based on the significant comparison results via the following approach:    

1) if the average LRRK2:interactor co-expression levels of Co-ex_Cluster X are 

significantly higher in Tissue A  than in Tissue B (|log2FC| > 1 and adjusted p-value < 

0.05), then 𝑇𝑆𝑋,𝐴
𝐶 =  𝑇𝑆𝑋,𝐴

𝐶 + 1, while 𝑇𝑆𝑋,𝐵
𝐶  remains unchanged, and vice versa;  

2) if the comparison between Tissue A and Tissue B is insignificant (p-value > 0.05), both 

𝑇𝑆𝑋,𝐴
𝐶  and 𝑇𝑆𝑋,𝐵

𝐶  remain unchanged.  
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In this way, for a given tissue, the higher the 𝑇𝑆𝑇
𝐶 , the higher the LRRK2:interactor co-

expression was observed in the tissue. 

 

• Weighted Gene Co-expression Network Analysis (WGCNA) 

WGCNA was performed on the “Tissue-matrix” to construct signed co-expression networks 

for the 15 tissues via the R package “WGCNA” through the following steps: 

1) Co-expression levels among LRRK2 interactors were calculated via Pearson’s 

correlation test (𝑠(𝑖,𝑗)), forming the similarity matrix. 

2) The adjacency between each pair of interactors (𝑎(𝑖,𝑗) ) was calculated as 𝑎(𝑖,𝑗) =

(
1+𝑠(𝑖,𝑗)

2
)𝛽, in which β represents the soft thresholding power (0 ≤ β ≤ 30). The value of 

β was selected via the “WGCNA” R package, by selecting the minimum β that achieves 

the largest Scale-free Fit Index and the lowest Mean Connectivity, forming the 

adjacency matrix.  

3) The Topological Overlap Matrix (TOM) was then calculated based on the adjacency 

matrix automatically the “WGCNA” package, thereby forming the weighted co-

expression network of LRRK2 interactors 

After the network construction, hierarchical clustering was then performed on the co-

expression network. Co-expression modules of LRRK2 interactors were identified 

automatically by cutting the hierarchical dendrogram. Optimal cutting height was 

automatically selected via the “WGCNA” package. Detected modules were then labelled with 

different colours for identification. Next, module eigengene (ME) was calculated as the first 

principal component of the module expression matrix. MEs were then associated with each 

tissue via the function “corPvalueStudent” in the same R package. A significant correlation 

was defined as with a) |correlation coefficient| > 0.50 and b) p-value < 0.05. Modules with 

their MEs significantly correlated with certain tissue(s) were defined as tissue-specific and 

were annotated by GO-BP enrichment analysis.  

 

• Weighted network analysis on topological clusters of the LRRK2net 

Subnetwork for each topological cluster identified in Chapter 4 was extracted from the 

LRRK2net. Within the subnetwork in tissue X, interactors were weighted based on the degree 

of node (D) and the expression score (ES), which is equal to 𝑇𝑆𝐼,𝑋
𝐸   (𝑛𝑜𝑑𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝐷𝐼 × 𝐸𝑆𝐼), 
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while edges were weighted based on the edge betweenness (𝐸𝐵(𝑖,𝑗)) and the co-expression 

levels of each pair of connected interactors (𝐶(𝑖,𝑗))(𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝐸𝐵(𝑖,𝑗) × 𝐶(𝑖,𝑗)). In this 

way, each topological cluster was weighted 15 times for the 15 tissues based on the 

expression and co-expression behaviours of LRRK2 interactors, thereby forming 15 weighted 

subnetworks. Node weights and edge weights were compared across the 15 weighted 

subnetworks via Kruskal-Wallis test followed by post hoc Dunn’s test.  

 

Results 

• Expression data preparation 

RNA-Seq read counts were extracted for 404 out of 418 (97.4%) LRRK2 interactors from GTEx 

(for 14 LRRK2 interactors no data was available). Out of 3954 samples, a total of 280 outlier 

samples was identified by hierarchical clustering and thereby excluded (Figure S1). In addition, 

interactor QC removed 20 proteins with low counts or missing values, including “ACTBL2”, 

“ANKS4B”, “AURKB”, “C1orf87”, “CXCL11”, “DNAJB8”, “ESRRG”, “FAM47B”, “GTSF1”, 

“KDM4D”, “PADI4”, “RAB38”, “SCEL”, “SH3GL3”, “SKA3”, “SMTNL2”, “TAS2R60”, “TGIF2LX”, 

“WTI1-AS” and “XIRP2”. The QC-ed read count matrix was further normalised via the R 

package “DESeq2”, generating the “Normalised Tissue Expression Matrix” of 384 LRRK2 

interactors for 3674 samples in 15 tissues.  

 

• Expression profile of the LRRK2int in different tissues 

Expression levels of each LRRK2 interactor in the 15 tissues were calculated and log2-

transformed. Hierarchical clustering was performed on the transformed matrix to identify 

clusters of interactors that exhibited similar expression signatures across the 15 tissues. The 

Elbow method suggested 4 clusters in the dendrogram (Figure 14A). Therefore, the tree was 

cut at the height of 20 (h = 20) to obtain the 4 clusters (Exp_Cluster1-4, containing N = 26, 

125, 17 and 217 interactors) (Figure 14B). Of note, LRRK2 presented in the Exp_Cluster2, 

suggesting that the 102 interactors in this cluster exhibited similar expression profiles as 

LRRK2 across the 15 tissues. One-way ANOVA showed that Exp_Cluster1 and Exp_Cluster3 

presented significantly higher expression in the lung and frontal cortex (adjusted p-value < 

0.05) (Figure 14C). Upon functional enrichment, no GO-BP term was found associated with 

Exp_Cluster1, while Exp_Cluster 3 was related to “negative regulation of calcium ion export 
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across plasma membrane” (N = 28/133 GO-BP terms) and “regulation of kinase activity and 

protein phosphorylation” (N = 34/133 GO-BP terms), suggesting that Exp_Cluster 3 plays an 

important role in maintaining calcium homeostasis and protein modification. In addition, 

hierarchical clustering was performed on the 15 tissues based on the similarities of expression 

profiles of the LRRK2int (Figure 14D).  The Elbow method suggested a total of 2 tissue groups 

in the dendrogram (cutting at h = 36) (Figure 14E). Therefore, the tree was cut at the height 

of 36 to obtain the 2 clusters, which contained N = 11 and 4 tissues, respectively. Of note, the 

11 brain regions and 4 peripheral tissues were well separated into the 2 groups, suggesting 

the LRRK2int possesses distinct mRNA expression signatures in the CNS and the periphery. 
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Figure 14. Expression profiles of the LRRK2int in the 15 tissues 

A) The line graph shows the optimal number of clusters (k) among LRRK2 interactors selected via the 

Elbow method. The elbow of the curve situated at k = 4 (marked with red dash lines), suggesting 4 

clusters in the dendrogram; B) The dendrogram shows the hierarchical clustering for LRRK2 interactors 

based on the mRNA expression patterns in the 15 tissues. The tree was cut at h = 20 to obtain 4 clusters 

(Exp_Cluster1-4), in which Exp_Cluster2 contains LRRK2; C) The heatmap shows the comparison of 

mean expression levels of each Exp_Cluster among the 15 tissues. Cell colour represent the mean 

(log2(rc)) of each Exp_Cluster in a certain tissue. The darker the colour, the higher the expression level. 

Significant comparisons were marked with *. D) The line graph shows the optimal number of clusters 

(k) among the 15 tissues selected via the Elbow method. The elbow of the curve situated at k = 2 

(marked with red dash lines), suggesting 2 clusters in the dendrogram; E) The dendrogram shows the 

hierarchical clustering of 15 tissues based on the expression profiles of the LRRK2int. By cutting the tree 

at h = 36, 2 clusters were obtained: 1 contained the 11 brain regions while the other contained 4 

peripheral tissues. The 3 striatal regions, namely putamen, nucleus accumbens and caudate was 

allocated in 1 subgroup (marked in blue rectangular); Abbreviations: AMYG: amygdala; ACC: anterior 

cingulate cortex; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: 

hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1. 

 

• Pair-wise DEA 

The mRNA levels of each LRRK2 interactor were compared across the 15 tissues via pair-wise 

DEA. Tissues were scored based on the pairwise comparison results of each interactor (Table 

S3). The results showed that a total of 197/384 (51.3%) interactors presented significant 

tissue-specificity (𝑇𝑆𝐼,𝑋
𝐸  ≥ 12), among which 171 (86.8%) interactors exhibited significantly 

high expression in only 1/15 tissue; 24 (12.1%) showed high expression in 2/15 tissues while 
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2 (1.0%) showed high expression in 3/15 tissues, suggesting that the tissue-specific expression 

pattern varies largely among LRRK2 interactors (Figure 15A). A total of 71 and 142 interactors 

presented significantly high expression levels in the brain and the periphery, respectively 

(hereby referred as the “brain list” and the “periphery list”), with an overlap of 45 interactors 

(Figure 15B). Functional enrichment analysis showed that the brain list was associated with 

“cell death”, “cell projection” and “intracellular transport”, while the peripheral list was 

related to “cell death”, “translation” and “protein metabolism” (Figure 15C,D). In specific, 

among the 15 tissues, a largest number of LRRK2 interactors were highly expressed in the 

whole blood (𝑇𝑆𝐼,𝑏𝑙𝑜𝑜𝑑
𝐸  ≥ 12; N = 142) and cerebellum (𝑇𝑆𝐼,𝐶𝑅

𝐸  ≥ 12; N = 92), followed by the 

frontal cortex and spinal cord c-1 (N = 41 and 39, respectively). A total of 15 and 14 interactors 

exhibited significantly high expression in anterior cingulate cortex and hypothalamus, 

respectively, while < 10 proteins were highly expressed in the rest of 9 tissues (Figure 15E). 

These findings suggest that although the expression level of LRRK2 is lower in the brain, some 

of its interactors are highly expressed in certain brain regions. 
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Figure 15. LRRK2 interactors with highly tissue-specific expression pattern 

A) The bar chart shows the percentages of LRRK2 interactors that presented significantly high 

expression levels in i.) 1 tissue, ii) 2 tissues and iii) 3 tissues; B) The Veen graph shows the overlap 

between highly-expressed LRRK2 interactors in the 11 brain regions (“brain”, marked in blue) and 4 

peripheral tissues (“periphery”, marked in red); C,D) The bubble graphs show the top 20 GO-BP terms 

(ordered by adjusted p-values) returned for the highly-expressed LRRK2 interactors in the brain and 

the periphery. Bubble size represent the term size (i.e., the number of genes annotated with a certain 

functional term), the larger the bubble, the larger the term size. Bubble colour represents the -

log10(adjusted-p), the darker the colour, the lower the adjusted-p and thereby the higher the 

significance of enrichment for a certain functional term. E) The bar graph shows the distribution of 

LRRK2 interactors with significantly higher expression level (𝑇𝑆𝐼,𝑇
𝐸  ≥ 12) in the 15 tissues. Abbreviations: 

AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: 

hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: substantia nigra; 

SPC: spinal cord c-1. 

 

• Co-expression between LRRK2 and its interactors in 15 tissues 

Pearson’s correlation test showed that a total of 201, 180, 154 and 138 interactors presented 

high co-expression level (Pearson’s coefficient > 0.7) with LRRK2 in the putamen, frontal 

cortex, nucleus accumbens, and caudate, respectively, followed by anterior cingulate cortex 

(N = 85), cerebellum (N = 62), hypothalamus (N = 62) and blood (N = 51) (Figure 16A, Table 

S4). The lowest LRRK2:interactor co-expression was observed in the substantia nigra, 

amygdala, lung, liver and hippocampus (N < 10). Functional enrichment analysis was 

performed on the interactors that highly co-expressed with LRRK2 in the brain and the 

periphery. There was an overlap of 61 interactors between the 2 query lists (Figure 16B). The 

enrichment results showed that interactors presenting high co-expression with LRRK2 in the 

brain were associated with autophagy, mitochondrial localisation and negative regulation of 

protein metabolism, while the interactors co-expressed with LRRK2 in the periphery were 

related to actin cytoskeleton organisation, apoptosis and positive regulation of protein 

metabolism (Figure 16C-D).  
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Figure 16. Tissue-specific co-expression profiles between LRRK2 and its interactors 

A) The bar graph shows the number of interactors with high co-expression level with LRRK2 (Pearson’s 

coefficient > 0.7) in the 15 tissues; B) The Veen graph shows the co-expressed interactors queried for 

functional enrichment analysis for the brain and the periphery. In order to keep similar query size, 

interactors with co-expression coefficients > 0.8 in brain regions and with co-expression coefficients > 

0.7 in peripheral tissues were included in the enrichment analysis; C,D) The bubble graphs show the 

top 20 GO-BP terms (ordered by adjusted p-values) returned for the highly co-expressed interactors 

with LRRK2 in the brain and the periphery. Bubble size represent the term size (i.e., the number of 

genes annotated with a certain functional term), the larger the bubble, the larger the term size. Bubble 

colour represents the -log10(adjusted-p), the darker the colour, the lower the adjusted-p and thereby 

the higher the significance of enrichment for a certain functional term. Abbreviations: AMYG: 

amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: 
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hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: substantia nigra; 

SPC: spinal cord c-1. 

 

Hierarchical clustering was then performed on the matrix of LRRK2:interactor co-expression 

coefficients to identify clusters of interactors that exhibited similar co-expression patterns 

with LRRK2 across the 15 tissues. The Elbow method suggested a total of 6 clusters among 

the interactors (Figure 17A), therefore, the dendrogram was cut at the height of 1.2 to obtain 

Co-ex_ClusterA-F (Figure 17B). For each of the 6 clusters, the average LRRK2:interactor co-

expression levels were compared across the 15 tissues. The result showed that: Co-

ex_ClusterA and B presented higher co-expression level with LRRK2 in blood (𝑇𝑆𝐴, blood
𝐶 = 8) 

and kidney cortex 𝑇𝑆𝐴, kidney
𝐶 = 7, respectively, while Co-ex_ClusterC-F presented higher co-

expression level in brain regions especially in caudate, frontal cortex, nucleus accumbens and 

putamen, suggesting a tissue specific profile of LRRK2:interactor co-expression (Figure 17C). 

In addition, hierarchical clustering was performed on the 15 tissues based on the similarity of 

LRRK2:interactor co-expression profiles. The Elbow method showed 7 groups of tissues, 

therefore the dendrogram was cut at the height of 2.6, obtaining 3 groups of brain regions: 

Group 1 comprises of the substantia nigra, hippocampus and amygdala; Group 2 contains the 

spinal cord c-1, cerebellum, anterior cingulate cortex and hypothalamus, while Group 3 

includes frontal cortex, putamen, caudate and nucleus accumbens (Figure 17D-E). No group 

was identified among the 4 peripheral tissues.  
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Figure 17. Hierarchical clustering on LRRK2:interactor co-expression feature 

A) The line graph shows the optimal number of clusters (k) among LRRK2 interactors selected via the 

Elbow method based on the co-expression levels with LRRK2 in 15 different tissues. The elbow of the 

curve situated at k = 6 (marked with red dash lines), suggesting 6 clusters in the dendrogram B) The 

dendrogram shows the hierarchical clustering for LRRK2 interactors based on their co-expression levels 

with LRRK2 in 15 different tissues. The tree was cut at h = 1.2 to obtain 6 clusters (Co-ex_ClusterA-F); 

C) The heatmap shows the 15 tissues (rows in the heatmap) were scored based on the comparison of 

LRRK2:interactor co-expression levels of each Co-ex_Cluster (columns in the heatmap). Scores were 

represented by the numbers in the cells. The higher the score is, the higher the co-expression with 

LRRK2 for a given Co-ex_Cluster in a given tissue (adjusted p-value < 0.05); D) The line graph shows 

the optimal number of clusters (k) among the 15 tissues selected via the Elbow method based on the 

overall LRRK2:interactor co-expression features. The elbow of the curve situated at k = 7 (marked with 

red dash lines), suggesting 7 clusters in the dendrogram; E) The dendrogram shows the hierarchical 

clustering for 15 tissues based on the overall LRRK2:interactor co-expression features. The tree was cut 

at h = 2.6 to obtain 7 clusters, among which 3 clusters contains ≥ 3 tissues (highlighted in rectangles). 



 125 

Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: 

frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: 

substantia nigra; SPC: spinal cord c-1. 

 

• Weight Gene Co-expression Network Analysis (WGCNA) 

WGCNA was performed on the “Normalised Tissue Matrix” to identify co-expression modules 

of LRRK2 interactors across the 15 tissues. A power of β = 28 was selected as the soft-

threshold to ensure a scale-free network (SFT R-square = 0.72) as well as to maintain a low 

mean connectivity in the signed co-expression network (mean connectivity = 2.17) (Figure 

18A- B). After merging submodules at the height of 0.20, a total of 2 co-expression modules 

were identified within LRRK2 interactors (“MBlue”, N = 34; “MTurquoise”, N = 43) (Figure 

18C). Module-Trait correlation analysis showed that ME of” MBlue” was highly expressed in 

blood (Pearson’s coefficient = 0.69), while ME of “MTurquoise” was highly expressed in lung 

(Pearson’s coefficient = 0.53), suggesting that “MBlue” possessed high expression level in 

blood while “MTurquoise” showed high expression level in lung (Figure 18D). Functional 

enrichment analysis showed that “MBlue” was associated with actin cytoskeleton 

organisation and cell morphology, while “MTurquoise” was related to ribosomal function and 

gene translation (Figure 18E-F). 
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Figure 18. WGCNA on LRRK2int across the 15 tissues 

A,B) The scatter plots show the selection of the proper power β for WGCNA. The optimal power β = 28 

was selected on 1) achieving a high (> 0.7) scale-free topology fit index (showed in A) and low mean 

connectivity in the network (showed in B); C) The dendrogram shows hierarchical clustering of LRRK2 

interactors based on the dissimilarity matrix generated by WGCNA. A total of 2 modules of interactors 

were obtained (“MBlue” and “MTurquoise”) in both preliminary (unmerged) and final (merged) 

module detection process; D) The heatmap shows the results of Module-Tissue correlation analysis, in 

which module eigengene of MBlue (MEblue) was positively correlated with blood while the module 

eigengene of MTurquoise (MEturquoise) was positively correlated with lung; E,F) The bubble graphs 

show the top 10 GO-BP terms (ordered by adjusted p-values) returned for the 2 co-expression modules 

obtained for WGCNA. Bubble size represent the term size (i.e., the number of genes annotated with a 

certain functional term), the larger the bubble, the larger the term size. Bubble colour represents the -

log10(adjusted-p), the darker the colour, the lower the adjusted-p and thereby the higher the 

significance of enrichment for a certain functional term.  

 

• Tissue-specific weighted topological clusters of the LRRK2net 

The subnetwork for Topological Cluster A consisted of 45 nodes and 115 edges, which was 

mainly enriched for ribosomal biosynthesis (Figure 19A). Node weight analysis found no 

significant differences across the 15 tissues apart from the frontal cortex and cerebellum, in 

which the median node weight was significantly lower than 4 and 5 of other tissues, 

respectively, suggesting that the median expression level of LRRK2 interactors in Cluster 1 

was lower in these 2 brain regions (Figure 20A). No significant difference was found in edge 

weight comparison among the 15 tissues, suggesting the co-expression levels among the 

interactors in this topological cluster were similar in the brain and the periphery (Figure 20C). 

Of note, there is a high-density unit of interactors consisting of 16 ribosomal proteins (the 

“ribosomal unit”). These proteins also exhibited high co-expressions in all of the tissues 

analysed (median Pearson’s coefficient > 0.88). Median node weight of the ribosomal unit is 

highest in amygdala and blood, followed by substantia nigra and spinal cord, but lower in 

cerebellum and frontal cortex (Figure 20B). These findings suggest that ribosomal function is 

maintained by a unit of highly connected and highly co-expressed LRRK2 interactors existing 

in both of the brain and the periphery. Of note, the hub protein of Cluster 1 (CDK2) presented 

the lowest node weight among all the 45 nodes in 8/15 of the tissues. It presented low co-

expression levels with its first neighbours (average Pearson’s coefficients < 0.5) in 14/15 
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tissues apart from liver (average Pearson’s coefficients = 0.6), suggesting that CDK2 may 

function as a regulator of ribosomal synthesis in these tissues rather than a direct participator 

in the process.  
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Figure 19. Expression profiles of Topological Cluster A in the 15 tissues 
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 The network graphs show the tissue-specific expression and co-expression profiles of interactors in 

Cluster A, in which LRRK2 interactors are represented as nodes while PPIs were represented as edges. 

Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the 

node, the higher the degree. Node colour refers to the expression level of each interactor in different 

tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels 

between each pair of connected proteins. The higher the co-expression level, the thicker the edge. A 

high-density unit of 16 ribosomal proteins was found in Cluster 1 (circled).  

 

 

Figure 20. Tissue-specific weighted network analysis on Topological Cluster A 

A) The box plot shows the pairwise comparison of median node weight of Cluster 1 across the 15 tissues, 

in which cerebellum and frontal cortex presented the lowest level, with median node weight 

significantly lower than 6 and 4 of other tissues of analysis (adjusted p < 0.05, *). B) The box plot shows 

the pairwise comparison of median node weight of the ribosomal unit in Cluster 1 across the 15 tissues, 

in which cerebellum and frontal cortex presented the lowest level, while blood, substantia nigra, 
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amygdala and spinal cord presented the highest level (adjusted p < 0.05, *). C) The box plot shows the 

pairwise comparison of median edge weight between each pair of connected proteins. No significant 

difference was found; Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; 

CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; 

PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1. 

 

Topological Cluster B contained 23 interactors and 42 PPIs, associated with cell death, protein 

metabolism and response to stress (Figure 21). There was no significant difference in terms 

of the median node weight or median edge weight among the 15 tissue-specific subnetworks 

(apart from putamen vs. liver, adjusted p < 0.05) (Figure 22A,B). Of note, the hub protein 

TRAF2 presented high node weight and moderate co-expression levels with its first 

neighbours in the networks of cerebellum, caudate, putamen, and nucleus accumbens 

(Pearson’s coefficients > 0.55), suggesting a potentially higher activity of TRAF2 in mediating 

the function of Cluster 2 in these brain regions.  
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Figure 21. Expression profiles of Topological Cluster B in the 15 tissues 

The network graphs show the tissue-specific expression and co-expression profiles of interactors in 

Cluster B, in which LRRK2 interactors are represented as nodes while PPIs were represented as edges. 

Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the 

node, the higher the degree. Node colour refers to the expression level of each interactor in different 
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tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels 

between each pair of connected proteins. The higher the co-expression level, the thicker the edge. 

 

 

 

Figure 22. Tissue-specific weighted network analysis on Topological Cluster B 

A) The box plot shows the pairwise comparison of median node weight of Cluster B across the 15 tissues. 

B) The box plot shows the pairwise comparison of median edge weight between each pair of connected 

proteins. Significant comparisons was found between putamen and liver (adjusted p < 0.05); 

Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: 

frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: 

substantia nigra; SPC: spinal cord c-1. 

 

Topological Cluster C was associated with vesicular transport, cytoskeleton organisation and 

translation, consisting of a total of 41 LRRK2 interactors and 104 PPIs (Figure 23). Weighted 

network analysis found no significant difference in median node weight across the 15 tissues. 

Lowest median edge weight was found in the subnetwork of blood as compared to all the 

other tissues except for liver, suggesting that the connection of the LRRK2 interactors in 

Cluster C possess weaker collaboration in the 2 tissues (adjusted p < 0.05, Figure 24A,B). 

There are 3 hub proteins in Cluster C: IQGAP1, CAP2A2 and DBN1, among which CAP2A2 

exhibited the highest co-expression levels with its first neighbour in the network across the 

15 tissues (average Pearson’s coefficient = 0.69, t-test p < 0.05), suggesting it may function as 

the primary participator in the cytoskeleton dynamics mediated by Cluster C, while the other 

2 hub proteins may function as regulators. 
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Figure 23. Expression profiles of Topological Cluster C in the 15 tissues 

The network graphs show the tissue-specific expression and co-expression profiles of interactors in 

Cluster C, in which LRRK2 interactors are represented as nodes while PPIs were represented as edges. 

Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the 

node, the higher the degree. Node colour refers to the expression level of each interactor in different 

tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels 

between each pair of connected proteins. The higher the co-expression level, the thicker the edge. 

 

 

Figure 24. Tissue-specific weighted network analysis on Topological Cluster C 

 A) The box plot shows the pairwise comparison of median node weight of Cluster C across the 15 

tissues. No significant difference was observed; B) The box plot shows the pairwise comparison of 

median edge weight between each pair of connected proteins. Abbreviations: AMYG: amygdala; ACC: 

anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: 

hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1. 

 

Topological Cluster D was comprised of 39 LRRK2 interactors connected by 63 PPIs, which was 

enriched for protein metabolism, protein localisation and translation (Figure 25). No 

significant difference was found in the comparison of average node weight across the 15 

tissues, apart from blood vs. caudate (5.60 vs. 2.72, adjusted p < 0.05, Figure 26A). In terms 

of the average edge weight, higher values were observed in the subnetworks of putamen, 

hypothalamus, substantia nigra and nucleus accumbens as compared to other brain regions 

but with no statistical significance (adjusted p > 0.05, Figure 26B). Subnetworks of blood and 

liver presented the lowest edge weight as compared to the 4 above-mentioned brain regions 
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(adjusted p < 0.05). These findings suggest that although the mean expression level of Cluster 

D was similar across brain regions and peripheral tissues, the co-expression behaviours 

among these interactors are higher in the brain regions. 
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Figure 25. Expression profiles of Topological Cluster D in the 15 tissues 

 The network graphs show the tissue-specific expression and co-expression profiles of interactors in 

Cluster D, in which LRRK2 interactors are represented as nodes while PPIs were represented as edges. 

Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the 

node, the higher the degree. Node colour refers to the expression level of each interactor in different 

tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels 

between each pair of connected proteins. The higher the co-expression level, the thicker the edge. 

 

 

Figure 26. Tissue-specific weighted network analysis on Topological Cluster D 

 A) The box plot shows the pairwise comparison of median node weight of Cluster D across the 15 

tissues. No significant difference was observed; B) The box plot shows the pairwise comparison of 

median edge weight between each pair of connected proteins. No significant difference was observed; 

Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: 

frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: 

substantia nigra; SPC: spinal cord c-1. 

 

Topological Cluster E consisted of 52 interactors and 65 PPIs, which were associated with 

protein localisation, cell cycle, protein metabolism and response to stress (Figure 27). No 

significant difference was found in node weight analysis or edge weight analysis (Figure 

27A,B). The hub protein TP53 presented high node weight and high co-expression levels with 

its first neighbours in the subnetwork of lung, liver and kidney, suggesting its potentially 

important role in the periphery. 
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Figure 27. Expression profiles of Topological Cluster E in the 15 tissues 

The network graphs show the tissue-specific expression and co-expression profiles of interactors in 

Cluster E, in which LRRK2 interactors are represented as nodes while PPIs were represented as edges. 

Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the 
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node, the higher the degree. Node colour refers to the expression level of each interactor in different 

tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels 

between each pair of connected proteins. The higher the co-expression level, the thicker the edge.  

 

 

Figure 28. Tissue-specific network analysis on Topological Cluster E 

A) The box plot shows the pairwise comparison of median node weight of Cluster E across the 15 tissues. 

No significant difference was observed; B) The box plot shows the pairwise comparison of median edge 

weight between each pair of connected proteins. No significant difference was observed; 

Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: 

frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: 

substantia nigra; SPC: spinal cord c-1. 

 

Topological Cluster F contained 15 LRRK2 interactors and 20 edges associated with autophagy 

(Figure 29). The highest median node weight was observed in the cerebellum and frontal 

cortex (adjusted p < 0.05, Figure 30A). No significant difference was found in median edge 

weight (Figure 30B). The hub protein PRKN showed low co-expression level with its first 

neighbours, while a motif comprised by RAB8A, RAB10, SNCA, VDAC1, HK1, YWHAH, TUBG1 

and LMNB2 presented high connection in all brain regions but not in the peripheral tissues. 

GO-BP and GO-CC enrichment showed that this motif was highly enriched in transport vesicle 

and associated with regulation of neuronal synaptic plasticity.  
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Figure 29. Expression profiles of Topological Cluster F in the 15 tissues 

The network graphs show the tissue-specific expression and co-expression profiles of interactors in 

Cluster F, in which LRRK2 interactors are represented as nodes while PPIs were represented as edges. 

Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the 

node, the higher the degree. Node colour refers to the expression level of each interactor in different 

tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels 

between each pair of connected proteins. The higher the co-expression level, the thicker the edge.  
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Figure 30. Tissue-specific weighted network analysis on Topological Cluster F 

A) The box plot shows the pairwise comparison of median node weight of Cluster F across the 15 tissues. 

Highest values were observed for Cerebellum and frontal cortex (adjusted p < 0.05); B) The box plot 

shows the pairwise comparison of median edge weight between each pair of connected proteins. No 

significant difference was observed; Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; 

CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: 

Nucleus Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1. 

 

Topological Cluster G contained 29 interactors and 50 PPIs, which were associated with 

protein metabolism and autophagy (Figure 31). No significant difference was observed in the 

median node weight among the 15 tissues, while subnetwork of blood presented the lowest 

median edge weight as compared to other tissues (adjusted p < 0.05, Figure 32A-B). There 

were 2 hub proteins in Cluster G, LRRK1 and HSPA8. Both of them presented high node weight 

and high co-expression level with its neighbours in frontal cortex, while LRRK1 exhibited these 

features in anterior cingulate cortex as well, suggesting that these proteins possessed higher 

activity in mediating the functions of Cluster G in these 2 tissues. 
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Figure 31. Expression profiles of Topological Cluster G in the 15 tissues 

The network graphs show the tissue-specific expression and co-expression profiles of interactors in 

Cluster G, in which LRRK2 interactors are represented as nodes while PPIs were represented as edges. 

Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the 

node, the higher the degree. Node colour refers to the expression level of each interactor in different 

tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels 
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between each pair of connected proteins. The higher the co-expression level, the thicker the edge. The 

hub proteins LRRK1 and HSPA8 are marked with red circle;  

 

 

Figure 32. Tissue-specific weighted network analysis on Topological Cluster G 

A) The box plot shows the pairwise comparison of median node weight of Cluster G across the 15 

tissues. No significant difference was observed; B) The box plot shows the pairwise comparison of 

median edge weight between each pair of connected proteins, in which lowest value was observed in 

blood (adjusted p-value < 0.05); Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: 

caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus 

Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1. 

 

Main findings (summarised in Figure 33) 

1. The LRRK2int possesses distinct mRNA expression profiles in the brain regions and 

peripheral tissues based both on analysis of DEA and co-expression. 

2. In general, highly expressed interactors in the brain regions are related with cell projection, 

cell death and protein transport, while those highly expresses in the peripheral tissues are 

associated with apoptosis, protein metabolism and translation. 

3. Interactors that are highly co-expressed with LRRK2 in the brain regions are associated 

with negative regulation of protein modification and organelle localisation (especially for 

mitochondria), while those in peripheral tissues are related to positive regulation of 

protein metabolism and response to stimuli.  
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4. LRRK2 interactors that associated with calcium membrane transport exhibits particularly 

high expression levels in the frontal cortex. 

5. LRRK2:interactor co-expression level is higher in the brain regions than the periphery, 

especially in the frontal cortex, putamen, caudate and nucleus accumbens. 

6. LRKK2 interactors within the putamen, caudate and nucleus accumbens also show similar 

differential expression profiles. 

7. A total of 2 tissue-specific co-expression modules were identified in the LRRK2int, highly 

expressed in the whole blood and lung, respectively. These 2 modules are associated with 

cell morphology and protein synthesis, respectively. 

8. Topological clusters of the LRRK2net shows similar connectivity across the 15 tissues, 

suggesting that the PPI network of LRRK2 is equally maintained in different healthy tissues 

regardless being central or peripheral. 

9. The “ribosomal unit” in the LRRK2int presented significantly higher expression levels in the 

amygdala, spinal cord, substantia nigra and whole blood. 

 

 

Figure 33. Summary of tissue-specificity of the LRRK2int 

 

Discussion 

This section investigated the tissue specificity of expression patterns (mRNA level) of LRRK2 

interactors by comparing 1) mRNA levels of each interactor, 2) co-expression levels between 

LRRK2 and its interactor and 3) co-expression modules of LRRK2 interactors among 11 brain 

regions and 4 peripheral tissues of healthy individuals.  
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It is worth to mention that the level of LRRK2 was relatively low in the brain; however, the 

expression levels of LRRK2 passed the QC test (genes with read counts lower than 15 in ≥ 75% 

of all samples) used by the R package DESeq2, which is one of the most commonly used RNA-

Seq analysing pipelines. On the one hand, this very low expression of LRRK2 in the brain might 

affect the co-expression analysis due to the mean-correlation relationship in RNA-seq data, 

both bulk and single-cell (Y. Wang et al., 2020). The mean-correlation refers to the fact that 

the distribution of gene correlations depend on the expression level of the involved genes, 

i.e., highly expressed genes are more likely to be highly correlated and vice versa. However, 

it is also worth remembering that there is no golden standard for the acceptable range of 

expression level for co-expression analysis, therefore it was still worth trying the co-

expression analysis on the LRR2int to gain an insight into the potential collaboration between 

LRRK2 and its interactors in different tissues. On the other hand, it was interesting to notice 

that such an important protein in terms of disease involvement had such a low expression. 

One possible explanation for this is that the tissues analysed were collected from healthy 

individuals who experienced sudden death – it might be that LRRK2 levels are tightly 

modulated and elevated only in specific circumstances such as infections and immune system 

activation (Herbst & Gutierrez, 2019; R. L. Wallings & Tansey, 2019a). 

 

The results of the hierarchical clustering on mRNA levels showed that a total of 4 clusters 

could be identified based on their expression patterns across the 15 tissues, in which 2 

presented significant tissue specificity (Exp_Cluster1 and Exp_Cluster3). Exp_Cluster1 

exhibited significantly high expression level in the lungs. GO-BP enrichment analysis 

associated Exp_Cluster1 with peptide biosynthesis, apoptotic signalling and cytoskeleton 

organisation. Similarly, 1 of the 3 co-expression modules identified in WGCNA (MTurquoise) 

was also highly expressed in lung and enriched for ribosomal biogenesis. These are in 

accordance with previous studies showing that LRRK2 plays a crucial role in preventing 

pulmonary fibrosis (Tian et al., 2021). In addition, an increased LRRK2 level was observed in 

lung cancer cells, while disrupting LRRK2 expression induce apoptosis of these cancer cells 

and increase the secretion of proinflammatory factors (J. Wu et al., 2023). Moreover, LRRK2 

kinase inhibitors have been found to induce abnormal cytoplasmic accumulation of secondary 

lysosomes known as lamellar bodies in type II pneumocytes of the lung in mouse models (Fuji 
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et al., 2015). The highly expressed LRRK2 interactors identified in the Exp_Cluster1 may help 

in understanding the molecular mechanism behind these lung-specific processes.  

 

In comparison, Exp_Cluster3 exhibited significantly high expression in the frontal cortex. This 

cluster was related to the regulation of calcium ion export and regulation of protein 

phosphorylation. The role of LRRK2 in regulating calcium homeostasis has been revealed in 

previous studies and it might be related to the function of LRRK2 in the modulation of cellular 

signalling cascade such as the Wnt pathway and the MAPK pathway (Berwick et al., 2017; 

Boon et al., 2014; R. L. Wallings & Tansey, 2019b). In addition, LRRK2 knock-out was found to 

enhance cellular response to calcium ion by upregulating the expression levels of associated 

proteins (Chen et al., 2020). In addition, pathogenic mutations of LRRK2 (including LRRK2-

G2019S and LRRK2-R1441C) perturbed calcium buffering capability of mitochondria in mouse 

cortex neurons and increased depolarization-induced mitochondrial calcium uptake  (Verma 

et al., 2017, 2022). Interactors in Exp_Cluster3 thus provide a shortlist of candidate LRRK2 

interaction partners that could be used as a starting point to investigate the LRRK2 signalling 

network particularly in the frontal cortex.  

 

The DEA found that a large number of LRRK2 interactors were highly expressed in the whole 

blood and the cerebellum as compared to other tissues. High LRRK2 expression has been 

widely reported in peripheral blood mononuclear cells (PBMCs), including B cells, monocytes, 

and dendritic cells and closely related to immune response pathways (Gardet et al., 2010b; 

Hakimi et al., 2011c; Kubo et al., 2010; Thévenet et al., 2011b). In accordance with these 

findings, the authors found that highly-expressed LRRK2 interactors in the whole blood were 

significantly related to response to cytokine stress, apoptotic signalling, and actin 

cytoskeleton organisation. The regulatory role of LRRK2 in peripheral immune response has 

been closely linked to the pathology of PD and CD. For example, a positive correlation 

between cytokine level and LRRK2 expression was observed in PD patients but not in healthy 

controls (Cook et al., 2017d). Taken together, these results suggest a crucial role of LRRK2 and 

its interactors in the peripheral immune system.  

 

In comparison, the highly expressed LRRK2 interactors in the cerebellum were related to 

intracellular transport of protein and RNA, gene expression and nucleus organisation. The role 
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of LRRK2 in cerebellum has not been widely studied since it is regarded as unaffected brain 

region in PD progression. Considering the fact that the cerebellum is responsible for motor 

control and that the Purkinje neurons are vulnerable to undergo conspicuous degeneration, 

it could be worth to pay more attention on this brain region in neurological pathology 

(Mandemakers et al., 2012). Indeed, some lines of evidence have shown that LRRK2 may play 

an important role in cerebellar Purkinje neurons. For example, overexpression of LRRK2 or 

kinase-enhancing LRRK2 mutations (LRRK2-G2019S and I2020T) have been liked to increase 

mRNA translation in cerebellum (Friedman et al., 2012b). In addition, accumulation of LRRK2 

and increased LRRK2 mRNA level were observed in the autophagy-impaired neurons in 

cerebellar nuclei (Plotegher & Civiero, 2012). Together with the highly-expressed LRRK2 

interactors identified in this study, LRRK2 interactors may participate in the regulation of 

protein synthesis and localisation in the cerebellum (Friedman et al., 2012a).  

 

Finally, functional enrichment analysis was performed on the interactors with either high 

expression levels or co-expression with LRRK2 in the brain and the periphery separately. The 

results showed that the portion of the LRRK2 interactors with a better expression profile in 

the brain were associated with intracellular organisation, organelle localisation, cell 

projection and negative regulation of protein modification. In comparison, those with higher 

expression level in the peripheral tissues were more related to positive regulation of protein 

metabolism, response to stimuli, cytoskeleton organisation and apoptotic signalling 

suggesting that it might be indeed possible to differentiate (considering both composition 

and functional association) a central or brain-related LRRK2int and a peripheral LRRK2int. 

 

Similar results were found when considering the LRRK2int expression behaviour. When tissues 

were grouped via hierarchical clustering based on the similarity of overall expression profiles, 

the 11 brain regions and 4 peripheral tissues were allocated into 2 distinct groups. Similarly, 

LRRK2 and its interactors presented distinct co-expression behaviours in the brain and the 

periphery, in which the co-expression levels were higher in the brain regions, especially in 

frontal cortex, putamen, nucleus accumbens and caudate. These findings suggest the LRRK2int 

exhibits distinct functional patterns in the brain in comparison with the periphery.  
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Finally, tissue grouping based on mRNA level and LRRK2:interactor co-expression level 

suggested that putamen, caudate and nucleus accumbens shares similar transcriptomic 

patterns of LRRK2 interactors, indicating that the striatum could be a functional unit for the 

LRRK2 interactome, in which LRRK2 interactors presented harmonious expression patterns 

and high co-expression levels with LRRK2. Of note, the striatum is the target for the projection 

of dopaminergic neurons and one of the most affected brain regions during Parkinson’s 

disease (PD) progression. In fact, multiple studies have associated the degeneration of 

putamen and caudate with motor and non-motor PD symptoms (Manes et al., 2018; Playford 

et al., 1992; J. Wang et al., 2018); while nucleus accumbens, involved in mediating emotional 

and motivational processes such as rewarding experiences, impulsive and compulsive 

behaviours, might be implicated in the neuropsychiatric symptoms of PD (Barbosa et al., 2019; 

Hammes et al., 2019b). 
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Chapter 4. LRRK2 protein interactome in the context of PD 

Objectives 

• Compare the expression patterns of LRRK2 interactors and LRRK2:interactor co-

expression features in the sPD and LRRK2-PD cohorts as compared to healthy controls 

based on the whole blood mRNA-Seq data. 

• Identify co-expression modules of LRRK2 interactors among the sPD, LRRK2-PD and 

healthy control cohorts. 

• Evaluate weighted connectivity of topological clusters of the LRRK2net detected in Chapter 

4 in the sPD and LRRK2-PD cases 

• Identify LRRK2 interactors with SNPs significantly related to the disease status  

• Construct Machine Learning (ML) classification models on expression levels of LRRK2 

interactors and genetic variants 
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Analysis pipeline 

 
Note: Some of the figures and text in this chapter are adapted from the following manuscript 
deposited in bioRxiv: Zhao et al.; “Transcriptomics analyses of the LRRK2 protein interactome reveal 
distinct molecular signatures for sporadic and LRRK2 Parkinson’s Disease” 
https://doi.org/10.1101/2023.09.12.557373. 

 

Methods 

• mRNA data download and QC 

Whole blood mRNA levels (in read counts) at baseline patient screening (time at enrolment) 

were extracted for the PPMI cohorts “de novo PD” and “healthy control” on 24th January 

2023. The 2 cohorts were firstly examined on the robustness of genetic status record for 

each individual via the following criteria: 

 

i.) The genetic status needed to be confirmed by at least 3 out of 6 detection techniques 

(WGS, WES, RNA-Seq, GWAS, CLIA, SANGER sequencing);  

https://doi.org/10.1101/2023.09.12.557373
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ii.) The genetic status needed to be confirmed by at least 1 next generation sequencing 

technique (WGS, WES, RNA-Seq) and 1 screening technique (GWAS, CLIA, SANGER 

sequencing) 

Only individuals with robust genetic status record proceeded to the next QC step, involving 

filtering out subjects with non-LRRK2 mutations, including variants in GBA, PINK, Parkin and 

SNCA. QC-ed subjects were then allocated into 3 groups: Healthy control, Sporadic PD (with 

not known LRRK2 mutations in record, hereby referred to as sPD) and PD patients with 

pathogenic LRRK2-G2019S or LRRK2-R1441C/G/H variants (hereby referred to as LRRK2-PD). 

Interactor-level QC was performed by excluding transcripts with mRNA read counts ≤ 15 in 

more than 75% subjects. QC-ed read counts were then normalised using the R package 

“DESeq2”, thereby generating the “PPMI_rc_Matrix”. 

• Cohort characterisation  

Baseline characteristics of QC-ed subjects in the “PPMI_rc_Matrix” were downloaded on 21 

Dec 2022, including gender, age-at-baseline, progression of PD as evaluated by Hoehn and 

Yahr Scale (H&Y); PD motor symptoms measured by MDS-Unified Parkinson’s Disease Rating 

Scale III (MDS-UPDRS III); depression as evaluated by geriatric depression scale (GDS); state 

and trait anxiety as evaluated by State-Trait Anxiety Inventory (STAI);  visuospatial function 

as evaluated by the 15-item Benton Judgment of Line Orientation Test (BJLOT); repaid eye 

movement behaviour disorder as evaluated using the REM Sleep Behaviour Disorder 

Screening Questionnaire (RBDSQ); daytime sleepiness as evaluated by the Epworth 

Sleepiness Scale (ESS); cognitive functions as evaluated by the 1) Montreal Cognitive 

Assessment (MoCA) in general, 2) the Semantic Fluency Test (SFT; total score of animal, fruit 

and vegetable) for semantic memory, 3) the Letter-Number Sequencing (LNS) test for 

executive function and working memory, 4) the Hopkins Verbal Learning Test (HVLT; 

immediate recall and delayed recall) for memory. 

 

• Differential Expression Analysis (DEA) 

DEA was performed on the “PPMI_rc_Matrix” to compare the baseline expression levels of 

LRRK2 interactors in healthy controls vs. the 2 PD cohorts respectively using the R package 

“DESeq2”. Of note, all DEA results were adjusted for gender. Multiple test adjustment was 
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automatically conducted by the “DESeq2” package via Benjamini-Hochberg procedure. 

Interactors with significant differential expression figures in the 2 PD cohorts as compared to 

controls were queried in functional enrichment analysis. Significant changes were defined as 

with |log2FC| > 0.1 and adjusted p-value < 0.05 (threshold adapted from (Craig et al., 2021)). 

 

• LRRK2 co-expression analysis  

Baseline co-expression levels between LRRK2 and its interactors in the “PPMI_rc_Matrix” 

were calculated for the 3 PPMI cohorts via Pearson’s correlation test. Significant co-

expression was defined as with having Pearson’s coefficient > 0.6. Interactors that presented 

different co-expression behaviours with LRRK2 in the 2 PD cohorts as compared to the healthy 

controls were annotated via functional enrichment analysis. 

 

• Weighted Gene Co-expression Network Analysis (WGCNA) 

Weighted Gene Co-expression Network Analyses (WGCNA) was performed on the 

“PPMI_rc_Matrix” to identify co-expression modules of LRRK2 interactors in healthy and PD 

conditions (healthy vs. sPD and healthy vs. LRRK2-PD). Co-expression levels between LRRK2 

interactors were calculated via Pearson’s correlation test. Soft power  was selected to 

ensure the gene co-expression networks follow the power law, i.e., reaching the largest Scale-

free Fit Index and the lowest Mean Connectivity. Co-expression modules of interactors were 

detected automatically by R package “WGCNA”. Eigengene for each module was calculated 

as the first principal component of the module’s topological overlap matrix (TOM). The 

similarity between modules returned from WGCNA on control vs. sPD cases (M_sPD) and 

control vs. LRRK2-PD cases (M_LPD) were compared via permutation test. For each pair of 

M_sPD and M_LPD, the number of overlapping proteins (test_intersection) was compared to 

the overlap count distribution generated by 1000 pairs of randomly sampled protein lists from 

the LRRK2net at same size of M_sPD and M_LPD (random_intersection). Of note, the 

random_intersection distribution curve was considered as normal distributed. A significant 

overlap between 2 modules was defined as:  1) test_intersection > 95% of the points in the 

random overlap distribution curve and 2) the percentage of overlapped interactors in both of 

the 2 modules > 60%.  
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• SNP association analysis  

In PPMI, genotyping was performed using the Illumina Immunochip and NeuroX arrays, which 

produced 3 datasets: PPMI_IMMUNOCHIP_Nov11th2013, PPMI_NEUROX_ Nov11th2013, 

and PPMI_Project_107_NeutoX_Genotyping, hereby referred as: “Immuno”, “NeuroX1” and 

“NeuroX2”, respectively. The 3 datasets were downloaded on 15th September 2022. SNPs for 

LRRK2 interactors were extracted based on gene positions on the chromosomes.  These SNPs 

went through a QC pipeline as following: 1) Conversion of SNP ID to rsID; 2) removal of non-

coding SNPs (based on the annotation retrieved from Ensembl Variant Effect Predictor, 

https://www.ensembl.org/info/docs/tools/vep/index.html); 3) removal of palindromic SNPs; 

4) removal of SNPs with low genotyping rate (< 95%); 5) removal of SNPs with significant 

missingness in the cohort (Bonferroni adjusted-p < 0.05). Another QC pipeline was applied to 

the genotyped subjects: 1) subjects with abnormal heterozygosity rates were exclude (< 

Mean-4SD or > Mean+4SD) since an abnormal heterozygosity rate suggests potential DNA 

sample contamination or low sample quality; 2) subjects that exhibited high genetic 

relatedness (3rd relatives or beyond) were calculated to reduce familial biases via PI_HAT; 3) 

ethnicities of included PPMI subjects were investigated using cohorts of HapMap3 project as 

reference (Altshuler et al., 2010) via PCA. Of note, considering the small amount of available 

genotyping data for LRRK2-PD patients, prodromal participants with the LRRK2-G2019S or 

LRRK2-R1441C/G/H were also included in this section. Univariate logistic regression was used 

to identify LRRK2int-SNPs that were associated with sPD and PD cases with LRRK2 mutation 

(LRRK2-PD + prodromal LRRK2-PD). All univariate logistic regression analyses were adjusted 

for gender and significant Principal Components (PCs). Multiple test correction was 

performed via Bonferroni’s method. In addition, genetic burden analyses were performed to 

determine the contribution of SNPs in each LRRK2 interactor to sPD and LRRK2-PD via the R 

package “SKAT”. Multiple test correction was performed via Bonferroni’s method. 

 

• Classification model of sPD and LRRK2-PD using transcriptomic and genetic features of 
LRRK2 interactors 

Whole blood mRNA levels of the LRRK2 interactors which presented significant differential 

expression (DE) in the DEA test of the sPD and/or LRRK2-PD cases vs. the healthy controls 

were utilised as independent variables in a Least Absolute Shrinkage and Selection Operator 

https://www.ensembl.org/info/docs/tools/vep/index.html
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(LASSO) regression model to classify the 2 types of PD cases (Model 1). To reduce the 

dimensionalities, univariate logistic analyses was performed on each DE interactors. Only 

interactors with p < 0.05 were included in the model. In addition, the coding SNPs of LRRK2 

interactors which showed significant association in univariate logistic regression analyses as 

well as the burden of SNPs at gene level which exhibited significant difference between 

controls and sPD and/or LRRK2-PD  were utilised as independent variables in a second LASSO 

regression model (Model 2), with the phenotype (sPD/LRRK2-PD) as outcome. Of note, only 

LRRK2-PD and sPD patients were included in Model 2. For the 2 models, the train:test sets 

were split as 4:1. The lambdas (λ) were tuned by a 10-fold cross-validation (CV) method via 

the “cv.glmnet” function of the “glmnet” R package. The refined models were then assessed 

on the test cohort. Receiver Operating Characteristic (ROC) curves were generated via the 

“roc.glmnet” function of the “glmnet” R package. 

Results 

• PPMI cohort characterisation 

After subject QC a total of 657 individuals with robust genetic status were retained (170 

controls, 116 LRRK2-PD cases, 371 sPD cases). Among these individuals, 389 were male 

(59.2%). Average baseline age of the control, sPD and LRRK2-PD cohorts were 60.9Y, 61.3Y, 

63.1Y, respectively. No significant different were observed in gender and age among the 3 

cohorts (chi-square and One-way ANOVA p > 0.05, Table 1). Moreover, 95.1% (N = 625) of the 

657 subjects were Caucasian, 2.5% (N = 16) were Africans (removed from the cohort), while 

1.6% (N = 10) were Asian (removed from the cohort). Among the 116 LRRK2-PD patients, 102 

carry the LRRK2-G2019S mutation while 12 carry the LRRK2-R1441C mutation. Comparisons 

on baseline clinical features of the sPD and LRRK2-PD showed that LRRK2-PD patients 

presented significantly more daytime sleepiness, depression, trait anxiety and worse 

visuospatial function but less REM sleep disorders and better cognitive functions. No 

difference was observed between the 2 PD cohort in terms of immediate and delayed 

memory, executive function, state anxiety, and motor symptoms. 

 

Table 8. Cohort characterisation 

 Control sPD LRRK2-PD p-value 



 155 

Male (%) 94 (55.3%) 224 (60.4%) 71 (61.2%) 0.875 

Age 60.9 (0.8) 61.3 (0.5) 63.1 (0.8) 0.987 

ESS - 5.8 (0.2) 7.1 (0.4) 0.002* 

GDS - 2.5 (0.1) 3.1 (0.3) 0.009* 

HVLT_recall - 11.1 (0.1) 11.1 (0.1) 0.762 

LNS - 11.2 (0.1) 10.9 (0.2) 0.271 

BJLOT - 12.6 (0.1) 11.7 (0.3) <0.001* 

MoCA - 26.9 (0.1) 26.2 (0.2) 0.013* 

RBDSQ - 3.3 (0.1) 2.6 (0.2) 0.014* 

STAI_state - 47.3 (0.3) 46.5 (0.5) 0.151 

STAI_trait - 46.1 (0.2) 43.9 (0.6) <0.001* 

MDS-UPDRS III - 21.1 (0.5) 20.1 (0.9) 0.290 

Data is reported as Mean (SE). * p-value < 0.05. Abbreviations: ESS: Epworth Sleepiness Scale; GDS: 

Geriatric Depression Scale; HVLT: Hopkins Verbal Learning Test; LNS: Letter-Number Sequencing; 

BJLOT: 15-item Benton Judgment of Line Orientation Test; MoCA: Montreal Cognitive Assessment; 

RBDSQ: REM Sleep Behaviour Disorder Screening Questionnaire; STAI: State-Trait Anxiety Inventory; 

NP3: MDS-Unified Parkinson’s Disease Rating Scale III. 

 

• PD-associated DEA 

Baseline whole blood mRNA read counts were extracted for 416 out of 418 LRRK2 interactors 

(no data was available for GTF2I and CYFIP1). Among these 416 interactors, 38 with missing 

or low baseline mRNA levels (with < 15 read counts in > 75% samples) were excluded, 

including MAP1B, MAPT, SFN, HSPB1, CHGB, TUBB4A, ACTBL2, ACTG2, ANKS4B, C17orf53, 

EEF1A2, EEF1G, PAK6, RAI14, SH3GL2, TK1, AURKB, C1orf87, CXCL11, DNAJB8, ESRRG, 

FAM47B, FAM90A1, KDM4D, POU5F1, RAPGEF4, SCEL, SH3GL3, SMTNL2, STAC, TGIF2LX, 

TUBB3, VASH2, VN1R1, WT1-AS, XIRP2, SERF1 and MARK1, thereby leaving 378 interactors 

for further analysis. DEA identified 34 interactors with significantly differential expression in 

the sPD cohort as compared to healthy controls, in which 13 were up-regulated while 21 were 

down-regulated (Figure 26A, Table S5). Functional enrichment analysis showed that the up-

regulated interactors were enriched for protein metabolism, response to stress and negative 

regulation of apoptotic signal transduction, while the down-regulated interactors were 

associated with translation and ribosomal function (Figure 26B,C).  
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Figure 34. Differential expression of LRRK2 interactors in the sPD cohort vs. control 

A) The scatter plot shows differential expression profiles of LRRK2 interactors in the sPD cases and 

controls at baseline of diagnosis. Scatters located on left side of y-axis were considered as down-

regulated (highlighted in the blue area), i.e., the interactor presented lower expression levels in the 

sPD cases as compared to controls; while scatters located on right side were considered as up-

regulated (in the red area), i.e., the interactors presented significantly higher expression levels in the 

sPD cases as compared to controls. Scatters in the blue/red highlighted zones (adjusted p < 0.05, 

|log2FC| > 0.1) are defined as significant differential expression; B,C) The bubble graphs show the GO-

BP terms associated with significantly up-regulated and down-regulated LRRK2 interactors in the sPD 

subjects vs. Controls. Bubble colour represents the enrichment significance, while bubble size 

represents the term size. 

 

There were 48 interactors with significantly altered expression levels in the LRRK2-PD cohort 

as compared to the controls, in which 20 were upregulated and 28 were down-regulated 
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(Figure 27A, Table S5). GO-BP enrichment analysis associated the up-regulated interactors at 

BL with synaptic signalling and cell morphogenesis while down-regulated proteins were 

related with protein biosynthesis, apoptotic signal transduction, negative regulation of 

ubiquitin-dependent protein catabolism (Figure 27B,C).  
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Figure 35. Differential expression of LRRK2 interactors in the LRRK2-PD cohort vs. Control 

A) The scatter plot shows differential expression profiles of LRRK2 interactors in the LRRK2-PD cases 

and controls at baseline of diagnosis. Scatters located on left side of y-axis were considered as down-

regulated (highlighted in the blue area), i.e., the interactor presented lower expression levels in the 

LRRK2-PD cases as compared to controls; while scatters located on right side were considered as up-

regulated (in the red area), i.e., the interactors presented significantly higher expression levels in the 

LRRK2-PD cases as compared to controls. Scatters in the blue/red highlighted zones (adjusted p < 0.05, 

|log2FC| > 0.1) are defined as significant differential expression; B,C) The bubble graphs show the GO-

BP terms associated with significantly up-regulated and down-regulated LRRK2 interactors in the 

LRRK2-PD subjects vs. Controls. Bubble colour represents the enrichment significance, while bubble size 

represents the term size. 
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• LRRK2 co-expression analysis in the 3 cohorts 

In general, LRRK2:interactor co-expression was similarly low in the whole blood sample from 

the 3 cohorts, with median correlation coefficient < 0 (Figure 29A, Table S6). Pearson’s 

correlation test found a total of 48, 44 and 46 interactors co-expressed with LRRK2 

(Correlation Coefficients > 0.5) in the control, sPD and LRRK2-PD subjects, among which 34 

presented co-expression with LRRK2 in all the 3 cohorts (Figure 29B). Functional enrichment 

analysis associated the 34 interactors with intracellular organisation and cell division (Figure 

29C). These findings suggest that LRRK2:interactor co-expression is not altered by LRRK2 

pathogenic variants and remain stable at the early stage of PD. 
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Figure 36. PD-associated LRRK2 co-expression analysis 

A) The box plot shows the distribution of LRRK2:interactor co-expression in the control, sPD and LRRK2-

PD cohorts. One-way ANOVA found no significant difference in the LRRK2:interactor co-expression 

among the 3 cohorts; B) The Veen graph shows the intersection of interactors that were co-expressed 

with LRRK2 in the LRRK2-PD cases, sPD cases and controls at baseline of diagnosis; C) The bubble graph 

shows the GO-BPs enriched for interactors that exhibited co-expression with LRRK2 at BL , in which the 

bubble size represents term size: the larger the bubble, the larger the term size, the more genes were 

annotated with a given GO-BP term in Gene Ontology; while bubble colour represents the significance 

of enrichment: the darker the bubble, the lower the adjusted p-value, the more significant a GO-BP 

terms were associated with the given protein list. 
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• PD-associated WGCNA on LRRK2 interactors 

Co-expression levels among LRRK2 interactors at baseline were calculated via Pearson’s 

correlation test. A signed gene co-expression network was constructed with the soft power  

= 19, within which a total of 3 co-expression modules were identified: MBrown (N = 36 

interactors), MBlue (N = 61 interactors), and MTurquoise (N = 75 interactors) (Figure 30A). 

Functional enrichment analysis associated MBrown with nucleus transport and cell cycle; 

while MBlue was related with protein biosynthesis, ribosomal functions and negative 

regulation of protein ubiquitination; while MTurquoise was enriched for regulation of protein 

metabolism (Figure 30B-D). These 3 co-expression modules were conserved in both healthy 

and PD status regardless of the presence of LRRK2 pathogenic mutations. Module-Trait 

correlation analysis showed that the eigengene of MBlue (MEBlue) was significantly down-

regulated in the LRRK2-PD and sPD cases as compared to control cohort (p < 0.05), while 

MEBrown was only down-regulated in the LRRK2-PD cohort, suggesting that these 2 

functional units were potentially negatively affected by PD progression and/or LRRK2 variants 

(Figure 30E). No significant alteration was observed in METurquoise in the PD cohorts as 

compared to controls, suggesting that the functional unit of protein metabolism maintained 

stable at the early stage of PD.  
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Figure 37. WGCNA on LRRK2 interactors across the 3 cohorts 

A) The dendrogram shows the co-expression modules identified in LRRK2 interactors among the 3 

cohorts at BL. Modules are represented by colours (MBrown, MBlue and MTurquoise). B-D) The bubble 

graphs show GO-BPs enriched for MBrown, MBlue and MTurquoise; respectively. Bubble colour 

represents the significance of enrichment while bubble size represents term size; E) The heatmap shows 

the Module-Trait correlation between the eigengene of the 3 co-expression modules (MEbrown, 

MEblue and MEturquoise) and PD phenotype. The numbers in cells and cell colours represent Pearson’s 

coefficient. Significant correlation was defined as Pearson’s p-value < 0.05 (marked with *). 

 

• PD-associated edge weight analysis on LRRK2net’s topological clusters  

Weighted network analysis was performed on the 7 topological clusters identified in Chapter 

2. In Cluster A, a total of 72 (62.6%) and 57 (49.5%) edges were down-regulated in the sPD 

and LRRK2-PD cohorts, respectively, which were significantly higher than the percentages of 

up-regulated and unchanged edges (Figure 31A,B). Of note, the ribosomal unit was highly 

affected in the sPD and LRRK2-PD cases, involving decrease in both co-expression and 

expression levels among ribosomal proteins. In addition, the expression level of the seed 

protein CDK2 significantly increased in these 2 PD conditions as compared to the control 

cohort. CDK2 serves as a bridge node connecting the ribosomal unit with the other half of the 

network.  Therefore, increased CDK2 level may function as a compensation decreased 

ribosomal function. 
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Figure 38. PD-associated edge weight analysis on Topological Cluster A 

The network graphs show how Cluster A was affected by the sPD and LRRK2-PD. Edge width represents 

the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s 

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected 
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proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD 

condition as compared to the controls; orange edges represent that 1 of the 2 proteins were 

significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that 

1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls, 

while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD 

conditions as compared to the controls. Grey edges means that none of the 2 connected proteins 

presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of 

edges that were up-regulated and down-regulated in the 2 PD conditions.  

 

In comparison, Cluster B remained stable in the sPD cases, with 35 (83%) edges with 

unchanged weight, 6 (14%) with up-regulated weight and 1 (3%) with down-regulated weight 

(Figure 32A). In the LRRK2-PD cohort, a total of 24 (57%) edges were up-regulated, while 18 

(43%) edges were unchanged (Figure 32B). No edge was down-regulated in the LRRK2-PD 

cohort. Of note, the up-regulated edges in the LRRK2-PD condition result from the increased 

expression level of hub protein TRADD, suggesting that LRRK2 may function as a mediator of 

TRADD expression and the pathogenic variants in the LRRK2 gene can cause dysregulation of 

TRADD level in the blood. 
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Figure 39. PD-associated edge weight analysis on Topological Cluster B 

The network graphs show how Cluster B was affected by the sPD and LRRK2-PD. Edge width represents 

the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s 

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected 
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proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD 

condition as compared to the controls; orange edges represent that 1 of the 2 proteins were 

significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that 

1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls, 

while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD 

conditions as compared to the controls. Grey edges means that none of the 2 connected proteins 

presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of 

edges that were up-regulated and down-regulated in the 2 PD conditions.  

 

Similarly, the edge weight of Cluster C remained stable, with a total of 66 (64%) and 75 (72%) 

edges unchanged in the 2 PD conditions (Figure 33A,B). In the sPD cases, 37 edges were up-

regulated because of the increased expression of the seed protein IQGAP1, while such 

alteration was not observed in the LRRK2-PD condition, suggesting this pathological change 

may rely on the normal LRRK2 structure. In addition, there were 10 edges with decreased 

weight in the LRRK2-PD cases, which was due to the down-regulation of HSPA4 and HSP0AB1, 

suggesting that the expression level of these 2 proteins may be regulated by the activity of 

LRRK2 and can potentially be affected by its pathogenic mutations.  



 172 

 

Figure 40. PD-associated edge weight analysis on Topological Cluster C 

The network graphs show how C was affected by the sPD and LRRK2-PD. Edge width represents the 

co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s 

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected 
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proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD 

condition as compared to the controls; orange edges represent that 1 of the 2 proteins were 

significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that 

1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls, 

while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD 

conditions as compared to the controls. Grey edges means that none of the 2 connected proteins 

presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of 

edges that were up-regulated and down-regulated in the 2 PD conditions.  

 

In Cluster D, most of edges remained unchanged in the 2 PD conditions (88% in the sPD 

condition while 92% in the LRRK2-PD) (Figure 34A,B). Moreover, 7 edges were down-

regulated in the LRRK2-PD condition due to decreased NPM1 expression. Of note, NPM1 is 

one of the hub proteins in Cluster D which connect to 8/10 ribosomal proteins in the network. 

Therefore, down-regulation of NPM1 may affect its interaction with these proteins and 

thereby negatively affect the ribosomal functions. 
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Figure 41. PD-associated edge weight analysis on Topological Cluster D 

The network graphs show how Cluster D was affected by the sPD and LRRK2-PD. Edge width represents 

the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s 

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected 

proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD 

condition as compared to the controls; orange edges represent that 1 of the 2 proteins were 

significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that 

1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls, 

while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD 

conditions as compared to the controls. Grey edges means that none of the 2 connected proteins 

presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of 

edges that were up-regulated and down-regulated in the 2 PD conditions.  

 

In terms of Cluster E, a total of 50 (77%) and 41 (63%) edges remained unchanged in the 2 PD 

conditions (Figure 35). In the sPD cases, a unit formed by TP53, ITCH, SFN, POU5F1, DVL2 and 

DVL3 was up-regulated because of a significant increased ITCH expression. GO-BP enrichment 

analysis associated this unit with RNA biosynthesis and metabolism, suggesting that RNA 

transcription may increase in the early stage of sPD. However, such alteration was not 

observed in the LRRK2-PD cases. Instead, a unit of KPNB1, UNP160, UNP170 and TPR was 

down-regulated as compared to the controls, which result from the decreased level of 

NUP107. This unit presented high co-expression and was associated with intracellular 

transport of RNA and protein.These findings suggest that gene translation may be differently 

affected by the sPD and LRRK2-PD. 
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Figure 42. PD-associated edge weight analysis on Topological Cluster E 
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The network graphs show how Cluster E was affected by the sPD and LRRK2-PD. Edge width represents 

the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s 

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected 

proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD 

condition as compared to the controls; orange edges represent that 1 of the 2 proteins were 

significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that 

1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls, 

while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD 

conditions as compared to the controls. Grey edges means that none of the 2 connected proteins 

presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of 

edges that were up-regulated and down-regulated in the 2 PD conditions.  

 

In comparison, edge weight of Cluster F increased significantly in the LRRK2-PD condition, 

with 76% of edges up-regulated and 24% unchanged (Figure 36B). The alteration results from 

increased expression levels of the hub protein PRKN, TUBG1, RAB8A and RAB10. These 

proteins are crucial contributors of autophagy, suggesting that pathogenic mutation is linked 

to up-regulated autophagy in the early stage of PD, while this alteration was not observed in 

the sPD situation, where 75% (N = 16) of the edges remained unchanged (Figure 36A). 
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Figure 43. PD-associated edge weight analysis on Topological Cluster F 

The network graphs show how Cluster F was affected by the sPD and LRRK2-PD. Edge width represents 

the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s 

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected 
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proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD 

condition as compared to the controls; orange edges represent that 1 of the 2 proteins were 

significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that 

1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls, 

while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD 

conditions as compared to the controls. Grey edges means that none of the 2 connected proteins 

presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of 

edges that were up-regulated and down-regulated in the 2 PD conditions.  

 

A total of 37 (74%) and 40 (80%) edges in Cluster G remained unchanged in the 2 PD 

conditions. However, a unit of BAG1, BAG2, BAG3, STUB1, DNAJB6, HIF1A, LAMP2, RGS2 and 

the 2 hub proteins LRRK1, HSPA8 were un-regulated in both sPD and LRRK2-PD conditions, 

involving upregulation of 12 (24%) edges and 7 (14%) edges in the network. This unit is 

enriched for GO-BPs regarding protein metabolism, suggesting that protein dynamics is 

enhanced in the early stage of PD (Figure 37). 
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Figure 44. PD-associated edge weight analysis on Topological Cluster G 

The network graphs show how Cluster G was affected by the sPD and LRRK2-PD. Edge width represents 

the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s 

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected 

proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD 

condition as compared to the controls; orange edges represent that 1 of the 2 proteins were 

significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that 

1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls, 

while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD 

conditions as compared to the controls. Grey edges means that none of the 2 connected proteins 

presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of 

edges that were up-regulated and down-regulated in the 2 PD conditions.  

 

• Single SNP association analysis 

After QC, a total of 136, 3887 and 4047 high-quality, protein-coding SNPs of LRRK2 interactors 

remained in the SNP sets of “Immuno”, “NeuroX1” and “NeuroX2”, respectively. Of note, 

“Immuno” only contains SNPs for 42 out of 418 (10.3%) LRRK2 interactors and was thereby 

discarded, while “NeuroX1” and “NeuroX2” contain SNPs for 323 and 322 LRRK2 interactors, 

respectively. “NeuroX1” was used to evaluate the association between SNPs of LRRK2 

interactors and sPD (involving 339 sPD patients and 154 controls), while a merged list of 

“NeuroX1” and “NeuroX2” (N = 2091 SNPs, involving 49 controls and 41 LRRK2 pathogenic 

variant carriers) was used to assess the association between SNPs and LRRK2-PD. After 

adjusted by gender and 7 PCs ( = 1.000), the logistic regression on “NeuroX1” set returned  

23 SNPs with MAF higher (p < 0.05) in sPD patients as compared to controls, namely 

rs151264467, rs8178046, rs3218772, rs6133278, rs79181168, rs2230801, rs116938571, 

rs200046311, rs78436829, rs35625617, rs55945045, rs117843818, rs4841, rs35303786, 

rs41286651, rs35589976, rs1056719, rs5030752, rs1049951, rs8178017, rs79308175, 

rs148283548, rs3194151 (Figure 38, Table 9). Among these SNPs, only rs151264467, which is 

located on the TTC27 passed Bonferroni’s correction (adjusted-p = 0.006). Burden analysis 

showed a total of 15 genes associated sPD, including TUBB6, TRAF2, PRKDC, TK1, DIDO1, 
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KIF2A, RPL11, MFN2, CDKL3, RAB29, DYNC1H1, CYREN, DVL3, TAOK3, STK40. Only 3 GO-BPs 

were associated with these genes:  

 

 

Figure 45. Manhattan plot for single SNP association analysis on LRRK2 interactors (sPD vs. 

controls) 

Line denotes statistical significance (p < 0.05). The results have been adjusted for a genomic control 

inflation factor λ = 1.000 (sample size = 493). 

 

Table 9. SNPs of LRRK2 interactors associated with sPD 

Chr SNP p Adjusted-p 

2 rs151264467 <0.001 0.006 

8 rs8178046 0.002 0.544 

19 rs3218772 0.002 0.651 

20 rs6133278 0.002 0.855 

2 rs79181168 0.003 0.992 

8 rs2230801 0.003 1.000 

13 rs116938571 0.007 1.000 

17 rs200046311 0.007 1.000 

2 rs78436829 0.010 1.000 

2 rs35625617 0.013 1.000 

6 rs55945045 0.016 1.000 

2 rs117843818 0.024 1.000 

5 rs4841 0.030 1.000 
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12 rs35303786 0.032 1.000 

4 rs41286651 0.033 1.000 

12 rs35589976 0.034 1.000 

9 rs1056719 0.038 1.000 

1 rs5030752 0.039 1.000 

10 rs1049951 0.040 1.000 

8 rs8178017 0.040 1.000 

1 rs79308175 0.042 1.000 

2 rs148283548 0.047 1.000 

16 rs3194151 0.049 1.000 

 

In comparison, the logistic regression on “Neuro_merge” set was adjusted by gender and 13 

PCs ( = 1.029) and returned 19 SNPs with MAF higher (p < 0.05) in LRRK2 variant carriers as 

compared to controls, namely rs5030752, rs8178046, rs7170637, rs142831657, rs4842, 

rs62317770, rs79383654, rs16853333, rs299295, rs118103955, rs1049951, rs143662421, 

rs2273660, rs79385421, rs9294445, rs34688574, rs34143723, rs2924835, rs114147582 

(Figure 39, Table 10). None of these SNPs passed Bonferroni’s correction. Burden analysis 

showed a total of 15 genes associated with LRRK2 variants, including ITCH, ANKS4B, RIPK2, 

MAP2K3, PRKCZ, NFATC2, CHGB, RPS14, ARHGEF7, TRAF2, HSP90AB1, LRRK2, MRPL28, 

MAP2K6, AP2M1, CAPZB, GAK. A total of 41 GO-BPs were enriched for these genes, which 

were mainly associated with regulation of protein phosphorylation, vesicle transport, MAKP 

cascade and cytokine production (Table 11). 
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Figure 46. Manhattan plot for single SNP association analysis on LRRK2 interactors (LRRK2 
variant carriers vs. controls) 
Line denotes statistical significance (p < 0.05). The results have been adjusted for a genomic control 

inflation factor λ = 1.029 (sample size = 90). 

 

Table 10. SNPs of LRRK2 interactors associated with LRRK2 variants 

Chr SNP p Adjusted-p 

1 rs5030752 <0.001 0.152 

8 rs8178046 0.003 1.000 

15 rs7170637 0.007 1.000 

1 rs142831657 0.008 1.000 

21 rs4842 0.010 1.000 

4 rs62317770 0.012 1.000 

4 rs79383654 0.013 1.000 

2 rs16853333 0.014 1.000 

5 rs299295 0.016 1.000 

20 rs118103955 0.016 1.000 

10 rs1049951 0.019 1.000 

14 rs143662421 0.027 1.000 

2 rs2273660 0.027 1.000 

17 rs79385421 0.031 1.000 

6 rs9294445 0.035 1.000 

17 rs34688574 0.037 1.000 

12 rs34143723 0.037 1.000 

15 rs2924835 0.037 1.000 

2 rs114147582 0.039 1.000 

 

Table 11. GO-BPs enriched for LRRK2 interactors with significant burden on the presence of 

LRRK2 pathogenic variants 

Term ID Term name Term size Adjusted p-value 

GO:0051770 
positive regulation of nitric-oxide synthase 

biosynthetic process 
16 <0.001 
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GO:0043408 regulation of MAPK cascade 643 0.001 

GO:0051767 nitric-oxide synthase biosynthetic process 19 0.001 

GO:0051769 
regulation of nitric-oxide synthase 

biosynthetic process 
19 0.001 

GO:0000165 MAPK cascade 745 0.001 

GO:0043410 positive regulation of MAPK cascade 461 0.002 

GO:0001817 regulation of cytokine production 773 0.002 

GO:0001816 cytokine production 779 0.002 

GO:0031399 regulation of protein modification process 1229 0.003 

GO:0072709 cellular response to sorbitol 4 0.005 

GO:0001932 regulation of protein phosphorylation 910 0.005 

GO:0006468 protein phosphorylation 1346 0.006 

GO:0141124 intracellular signaling cassette 1861 0.006 

GO:0001934 positive regulation of protein phosphorylation 603 0.008 

GO:0042325 regulation of phosphorylation 966 0.008 

GO:0042327 positive regulation of phosphorylation 630 0.010 

GO:0042981 regulation of apoptotic process 1463 0.011 

GO:0043067 regulation of programmed cell death 1506 0.014 

GO:1900244 
positive regulation of synaptic vesicle 

endocytosis 
6 0.014 

GO:0072708 response to sorbitol 6 0.014 

GO:0007254 JNK cascade 173 0.014 

GO:0051246 regulation of protein metabolic process 2102 0.017 

GO:0045937 
positive regulation of phosphate metabolic 

process 
705 0.018 

GO:0010562 
positive regulation of phosphorus metabolic 

process 
705 0.018 

GO:0044093 positive regulation of molecular function 1097 0.019 

GO:0016310 phosphorylation 1579 0.019 

GO:0019220 regulation of phosphate metabolic process 1132 0.023 

GO:0051174 regulation of phosphorus metabolic process 1133 0.023 

GO:0031098 
stress-activated protein kinase signaling 

cascade 
62 0.024 
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GO:1903423 
positive regulation of synaptic vesicle 

recycling 
8 0.025 

GO:0070534 protein K63-linked ubiquitination 64 0.026 

GO:0043085 positive regulation of catalytic activity 773 0.031 

GO:0031401 
positive regulation of protein modification 

process 
787 0.034 

GO:0048488 synaptic vesicle endocytosis 72 0.037 

GO:0140238 presynaptic endocytosis 73 0.039 

GO:2000514 
regulation of CD4-positive, alpha-beta T cell 

activation 
75 0.042 

GO:0051247 
positive regulation of protein metabolic 

process 
1253 0.044 

GO:0033554 cellular response to stress 1770 0.044 

GO:0010647 positive regulation of cell communication 1777 0.046 

GO:0023056 positive regulation of signaling 1778 0.046 

GO:0065009 regulation of molecular function 1799 0.050 

 

• Transcriptomic features of LRRK2 interactors differentiated the sPD and LRRK2-PD cases 
 
Model 1 was constructed on the mRNA levels (whole blood) of the 100 LRRK2 interactors with 

significant differential expression in the sPD and/or LRRK2-PD cohorts (N = 371 and 116, 

respectively) as compared to the controls. Univariate logistic analyses found a total of 14 

interactors for model construction, including STUB1, DVL1, ACTA2, CDK2, MMS19, PRKN, 

TUBB6, TUBG1, BAG3, HSPA1A, LMNB1, SNCA, RPS2 and SLC25A6 (Table 12, Table D1). Model 

1 was then trained on a randomly-picked cohort of 296 sPD cases and 92 LRRK2-PD cases 

using the read counts of the 14 interactors listed above. A λ value of 0.008 (log(λ) = -4.869 

was chosen to reach the minimum Mean-Squared Error (MSE), leaving a total of 8 interactors 

in the model, including STUB1 (coefficient = -1.61), ACTA2 (coefficient = -0.85), PRKN 

(coefficient = = -0.38), TUBB6 (coefficient = -1.21), HSPA1A (coefficient = 3.12), LMNB1 

(coefficient = 0.55), SNCA (coefficient = -0.46) and SLC25A6 (coefficient = -0.68) (Figure 48A,B). 

The cut-off value on the predicted value was optimised as 0.94 to reach the maximum 

accuracy in the training set (AC_train = 72.9%, Figure 48C). The refined model was then 
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validated on the test set, containing 75 sPD cases and 24 LRRK2-PD cases. ROC curve showed 

an AUC = 0.68 (95% CI: 0.56-0.80) (Figure 48D).  

 

Table 12. Significant LRRK2 interactors selected by univariate analyses for Model 1 
 

Interactor OR 
95% CI 

p-value 
Upper Limit Lower Limit 

STUB1 0.24 0.06 0.91 0.036 

DVL1 0.17 0.04 0.68 0.012 

ACTA2 0.31 0.13 0.77 0.012 

CDK2 0.22 0.06 0.86 0.029 

MMS19 0.23 0.06 0.83 0.025 

PRKN 0.18 0.06 0.56 0.003 

TUBB6 0.18 0.06 0.49 0.001 

TUBG1 0.25 0.07 0.90 0.035 

BAG3 0.18 0.05 0.61 0.006 

HSPA1A 3.23 1.25 8.34 0.016 

LMNB1 2.92 1.14 7.44 0.025 

SNCA 0.45 0.21 0.96 0.040 

RPS2 0.29 0.10 0.86 0.026 

SLC25A6 0.24 0.07 0.84 0.025 

Univariate Logistic regression was performed on the expression profile (whole blood mRNA level) of 

each LRRK2 interactor in the sPD and LRRK2-PD cases to identify those with significant association with 

phenotype (sPD or LRRK2-PD). A total of 12 LRRK2 interactors were selected by this procedure and 

were thereby included in further analysis. The complete result for univariate analyses see Table D1. 

Abbreviations: OR: Odd Ratio; CI: Confidence Interval 
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Figure 47. Classification Model 1 of sPD and LRRK2-PD based on the transcriptomic levels of 
LRRK2 interactors 
A) The Logistic regression model with LASSO (Least Absolute Shrinkage and Selection Operator) was 

adopted to further reduce the dimensionalities and to select the most significant expression profiles of 

LRRK2 interactors to differentiate sPD and LRRK2-PD. A λ value of 0.008, with log(λ) = -4.869 was 

selected according to 10-fold cross-validation; B) LASSO coefficient profiles of 14 LRRK2 interactors are 

plotted. The optimal coefficient profile was produced against the selected λ (marked as the vertical red 

line), comprised of 8 LRRK2 interactors, namely STUB1 (coefficient = -1.61), ACTA2 (coefficient = -0.85), 

PRKN (coefficient = = -0.38), TUBB6 (coefficient = -1.21), HSPA1A (coefficient = 3.12), LMNB1 

(coefficient = 0.55), SNCA (coefficient = -0.46) and SLC25A6 (coefficient = -0.68). C) A cut-off of 0.94 

was selected on the predicted values to reach the highest accuracy of 72.9%. D) ROC of the refined 

model returned an AUC of 0.68. 

 



 189 

Model 2 was constructed using the SNP rs151264467 (with adjusted p-value < 0.05 in 

univariate logistic regression in SNP association analysis for sPD vs. control), as well as the 

SNPs burden of 31 LRRK2 interactors, including ANKS4B, AP2M1, ARHGEF7, CAPZB, CHGB, 

GAK, HSP90AB1, ITCH, LRRK2, MAP2K3, MAP2K6, MRPL28, NFATC2, PRKCZ, RIPK2, RPS14, 

TRAF2, CDKL3, CYREN, DIDO1, DVL3, DYNC1H1, KIF2A, MFN2, PRKDC, RAB29, RPL11, STK40, 

TAOK3, TK1 and TUBB6 (with p-values < 0.05 in genetic burden analysis in the sPD or LRRK2-

PDvs. controls). These data involved a total of 611 subjects, including 566 sPD cases and only 

45 LRRK2-PD cases, which resulted in a high Imbalance Ratio (IR) of 12.5. Therefore, a random 

under-sampling process was performed on the sPD cohort to keep the IR ≤ 1:4 (Krawczyk, 

2016), in which a total of 180 sPD cases were randomly selected to construct Model 2 

together with the 45 LRRK2-PD cases. The model was firstly trained on a randomly-picked set 

of 144 sPD cases and 36 LRRK2-PD cases. The result showed that LASSO logistic regression 

failed to classify sPD and LRRK2-PD cases as all predictors were dropped from the model 

(Figure 48). 

 
Figure 48. Classification Model 1 of sPD and LRRK2-PD based on the transcriptomic levels of 
LRRK2 interactors 
A) LASSO logistic regression was adopted to evaluate the classifying performance of the combination 

of 1 SNP (rs151264467) and 31 LRRK2 interactor genes ANKS4B, AP2M1, ARHGEF7, CAPZB, CHGB, GAK, 

HSP90AB1, ITCH, LRRK2, MAP2K3, MAP2K6, MRPL28, NFATC2, PRKCZ, RIPK2, RPS14, TRAF2, CDKL3, 

CYREN, DIDO1, DVL3, DYNC1H1, KIF2A, MFN2, PRKDC, RAB29, RPL11, STK40, TAOK3, TK1 and TUBB6 

() on the sPD and LRRK2-PD cohort. A λ value of 0.062, with log(λ) = -1.209 achieved the least MSE 

according to 10-fold cross-validation but left no predictors in the model. B) LASSO coefficient profiles 

of the 32 predictors are plotted. No predict remained at the λ value selected by cross-validation process 

(marked as red line). 
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Main findings 

1. Early-stage sPD patients and LRRK2-PD patients showed similar motor symptoms analysis 

and non-motor symptoms, such as sleeping disorders, depression, cognitive impairment 

and anxiety. 

2. A total of 53 LRRK2 interactors presented significant differential expression in the sPD 

cases as compared to controls. The 29 up-regulated interactors were enriched for 

autophagy, negative regulation of apoptotic signalling and positive regulation of protein 

metabolism, while the 24 down-regulated interactors were associated with ribosomal 

biogenesis. 

3. A total of 64 LRRK2 interactors exhibited significant differential expression in the LRRK2-

PD cases as compared to Controls. The 28 up-regulated interactors were enriched for 

microtubule cytoskeleton organisation and positive regulation of protein metabolism, 

while the 36 down-regulated ones were enriched for apoptotic signalling, protein 

ubiquitination and peptise biosynthesis. 

4. LRRK2:interactor co-expression levels remained stable across the sPD, LRRK2-PD and 

control cohorts. 

5. WGCNA identified 3 co-expression modules of LRRK2 interactors, which were associated 

with intracellular protein transport, protein biosynthesis and protein metabolism, 

respectively. Among these 3 modules, the module that associated with protein 

biosynthesis were significantly down-regulated in both sPD and LRRK2-PD cases as 

compared to controls, while the module that related to intracellular protein transport was 

only down-regulated in the LRRK2-PD condition 

6. In accordance with Point 5, Weighted network analysis showed that Topological Cluster 

A, which is responsible for ribosomal function was down-regulated in both sPD and LRRK2-

PD cohort vs. controls, while Cluster F, which was responsible for mitophagy, was up-

regulated only in the LRRK2-PD cohort. 

7. A total of 23 and 19 SNPs in LRRK2 interactors were associated with sPD and LRRK2-PD 

respectively, though only 1 of them pass the multiple testing correction. 
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8. The sPD cases and LRRK2-PD cases can be differentiated based on the expression profiles 

of 8 LRRK2 interactors, including STUB1, ACTA2, PRKN, TUBB6, HSPA1A, LMNB1, SNCA 

and SLC25A6. 

9. A total of 15 LRRK2 interactors showed a significant burden of variants (in the sPD scenario) 

while a different set of 15 LRRK2 interactors showed a significant burden of variants (in 

the LRRK2-PD scenario) 

Figure 49. Summary of PD association of the LRRK2int 

 

Discussion 

In this section, the whole blood mRNA levels of LRRK2 interactors, the LRRK2:interactor co-

expression and co-expression modules withing the LRRK2net were compared between 

healthy controls and patients with sPD or LRRK2-PD. DEA identified a total of 29 LRRK2 up-

regulated interactors in the sPD cohort as compared to controls. These interactors were 

related to autophagy, MAPK cascade, negative regulation of apoptotic signalling, regulation 

of protein metabolism and regulation of response to stress, which might suggest the early-

stage sPD to be characterized by: 1) increase in cellular stress and activation of apoptosis;  2) 

self-adjustment mechanisms to down-regulate the apoptotic signalling to avoid excessive cell 

death; 3) waste disposal processes such as autophagy activated to digest or recycle damaged 

proteins or organelles to avoid protein aggregation and maintain cellular homeostasis.  
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In comparison, DEA identified a total of 28 LRRK2 up-regulated interactors in the LRRK2-PD 

cohort as compared to controls. LRRK2 interactors up-regulated in LRRK2-PD showed 

enrichment for cellular morphogenesis, unfolded protein response (UPR), microtubule 

cytoskeleton organisation, response to stimulus and vesicle transport suggesting that in the 

presence of pathogenic LRRK2 variants, although stress-initiated cellular response is probably 

still present, recovering microtubule-mediated intracellular transport might become a cell 

priority. The implication might be that the main impact of mutated LRRK2 could be in 

perturbing vesicle trafficking and cytoskeleton dynamics (at least in while blood cells since 

the analyses were run with whole blood mRNA data). Moreover, the down-regulated 

interactors in the LRRK2-PD cases were also enriched for negative regulation of protein 

ubiquitination, suggesting that in the LRRK2-PD cases, as the pathological stress accumulates, 

cells might increase misfolded protein clearance by removing negative control over protein 

ubiquitination. 

 

The difference in the identity and the functions of the LRRK2 interactors differentially 

expressed in sPD vs controls and those in LRRK2-PD vs controls suggested a potentially 

different molecular mechanism between these 2 conditions. Albeit the disease being the 

same from a clinical perspective, the disease might be able to induce changes in a different 

set of LRRK2 interactors depending on whether a mutation in LRRK2 was present (LRRK2-PD) 

or not (sPD).  

 

It is worth noticing that in both sPD and LRRK2-PD a small set of interactors responsible for 

protein synthesis were down-regulated is a similar fashion in comparison with controls. This 

was in accordance with the results from WGCNA and weighted network analysis (see Chapter 

6), showing the ribosomal-function-related co-expression module was equally down-

regulated in both sPD and LRRK2-PD as compared to the controls, and the “ribosomal unit” in 

Topological Cluster A presented a similar pattern of alterations. This suggests that despite the 

molecular differences discussed above, PD might be able to induce alterations in protein 

synthesis exerted via the LRRK2 interactomes in both the sporadic and the familial disease 

scenario. 
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The expression levels and genetic profiles of LRRK2 interactors were used to differentiate the 

sporadic and the LRRK2-PD scenarios (Model 1). The results showed that using whole blood 

mRNA levels of 8 interactors were able to differentiate the 2 types of PD, suggesting that sPD 

and LRRK2-PD shared distinct molecular pathologies. However, SNPs and genetic burden of 

LRRK2 interactors were not able to classify the 2 types of PD (Model 2). However, it is worth 

noting that Model 2 was trained on a smaller sample size, involving only 36 LRRK2-PD cases 

and 144 sPD cases due to the limited availability of genotyping data in PPMI dataset. 

Therefore, the differences between sPD and LRRK2-PD pathogenesis (defined via genetic 

analyses) requires future investigation on larger sample size cohorts.  

 

 

Conclusion 

This project is focused on understanding the role of LRRK2 in the physiological and disease 

(PD) scenarios utilizing systems biology approaches. First of all, a protein interactome 

consisting of 418 robust LRRK2 interactors was constructed based on peer-reviewed data 

derived from multiple online resources. This is by far the most comprehensive protein 

interactome of LRRK2, involving a range of protein families such as ribosomal proteins, Rab 

GTPases, 14-3-3 proteins, heat shock proteins, cytoskeleton proteins and multiple types of 

protein kinases, which was in accordance with the previous 2 interactome study of LRRK2 

(Manzoni et al., 2015; Porras et al., 2015b). The LRRK2 interactome was enriched for an array 

of diverse functions which was also expected given the fact that even the LRRK2 protein in 

isolation has always been associated with multiple cellular activities. Functional enrichment 

analysis found a “functional core” of the LRRK2 interactome, which included LRRK2 interactor 

that contributed to all categories of enriched biological processes. These proteins may 

function as the basis of LRRK2 functional network. In the meanwhile, it was possible to 

identify specific groups of interactors that were involved in selected LRRK2 functions (the 

functional units). 

 

Next, PPIs across the LRRK2 interactors were retrieved to construct a scale-free PPI network 

around LRRK2, in which LRRK2 interactors were represented as nodes, while the interactions 

among these proteins were represented as edges. A topological core of LRRK2 PPIN was 
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identified, which included the mostly connected LRRK2 interactors (network hubs). These 

proteins form the fundamentals of LRRK2 PPIN and may function as pivotal elements able to 

mediate the physiological functions of LRRK2 by sustaining the flux of information within the 

LRRK2 network.  In addition, clustering analysis was performed on the whole network and a 

total of 7 clusters of densely connected LRRK2 interactors (on the local scale) and associated 

with biological significance were identified.  

 

These 7 clusters were all associated with different biological processes such as ribosomal 

function, cytoskeleton organisation, protein metabolism, autophagy, cellular response to 

stress and apoptotic signal transduction, which represented the mostly-reported biological 

functions of LRRK2 in previous studies (Albanese et al., 2019; Jiang et al., 2019; Martin et al., 

2014; Parisiadou et al., 2009). These clusters of LRRK2 interactors are therefore likely to 

represent the local units within the networks that are specialized in helping LRRK2 sustaining 

very specific functions. The network model and detected clusters were then merged with i) 

transcriptomics data of brain regions and peripheral tissues from healthy individuals to 

investigate tissue-specific expression and co-expression patterns of LRRK2 interactors, and ii) 

transcriptomics data of whole blood from patients with sporadic PD and LRRK2-related PD to 

investigate impact of the disease scenario on the LRRK2 PPI network.  The main new findings 

obtained after the work in this thesis can be recapitulated as such: 

 

1. LRRK2 interactors enriched for ribosomal function were highly expressed in lung, and 

their expression levels (whole blood) were significantly down-regulated in both sPD and 

LRRK2-PD patients as compared to controls 

A total of 38 ribosomal proteins presented in the LRRK2 interactome. These proteins 

exhibited similar expression patterns and showed the highest mRNA levels in the lung of 

healthy individuals. In the meantime, they were also found in the same co-expression 

modules whose eigengene was highly correlated with the lung. In addition, 16 of them 

presented high PPI connection across each other and therefore were allocated into 1 unique 

topological cluster (Cluster A). This cluster showed significantly decreased connectivity in 

both sPD and LRRK2-PD cases when compared with controls. These findings suggested a 

robust “ribosomal unit” is present in the LRRK2 interactome, through which LRRK2 might 

control ribosomal function and protein expression. This functional unit may play an important 
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role especially for the biology of the lung and it probably participates in the cellular response 

to stress induced by disease. Also, pathogenic LRRK2 mutations seems to have little to no 

impact on the function of this cluster as alteration of this ribosomal cluster during disease 

was similar in sPD and LRRK2-PD. 

 

2. LRRK2 interactors related to cytoskeleton dynamics were expressed in both brain and 

in the peripheral tissues, and were only down-regulated in the LRRK2-PD but not in the 

sPD cases when compared with controls. 

A total of 36 cytoskeleton proteins presented in the LRRK2 interactome, mainly including actin 

proteins and tubulin proteins (the basic unit of microtubule). Actin filament and microtubule 

are both essential elements of the cytoskeleton, in which the former contributes to 

maintaining cell morphology while the latter is responsible for intracellular vesicle trafficking. 

Transcriptomic analysis on healthy data showed that microtubule-associated proteins 

exhibited high expression levels and co-expression behaviours with LRRK2 in the brain, while 

actin-related proteins showed these features in the periphery. This was also confirmed by the 

identification of a co-expression module of LRRK2 interactors enriched for actin filament 

organisation that was found via WGCNA run with transcriptomics data from healthy 

individuals, and showed significantly high expression in the whole blood. A similar co-

expression module was identified when WGCNA was run on expression data of PD patients. 

The eigengene of this module showed significantly lower expression level among the LRRK2-

PD cases as compared to the healthy controls but not when sPD cases were compared with 

controls. These findings may suggest that LRRK2 and its interactors play an important role in 

the regulation of the cytoskeletal dynamics, with a dichotomy between the brain and the 

periphery where the actin cytoskeleton organisation seems a more relevant function for the 

peripheral tissues while microtubules dynamics (and therefore cellular trafficking) might be a 

specific function sustained by the LRRK2 interactome in the brain regions. Additionally, these 

results might suggest that one specific mechanism through which LRRK2 mutations can 

induce alterations correlated with disease might be via alterations of cytoskeletal dynamics, 

while this is probably not a molecular pathway for the sporadic disease.  

 

3. The mitophagy-related topological cluster was up-regulated in the LRRK2-PD but not in 

the sPD cases when compared with healthy controls. 
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A topological cluster (Cluster F) made of 16 interactors was detected in the LRRK2 network, 

which was strongly associated with mitophagy and contained other PD genes related to 

mitophagy (PRKN, VDAC1, RAB8A, MFN1, MFN2). This cluster presented significantly higher 

connectivity in the LRRK2-PD cases as compared to the controls and this finding was not 

recapitulated in the sporadic scenario. A mitochondrial role for LRRK2 has been reported, 

these new findings may suggest that this role might not be altered in the disease scenario 

unless in the presence of LRRK2 mutations. In other words, one specific mechanism through 

which LRRK2 mutations could induce alterations correlated with disease might be via 

alterations of mitophagy, while this is probably not a molecular pathway for the sporadic 

disease.  

 

4. There was a dichotomy between the LRRK2 interactome in the brain vs the peripheral 

tissues. 

From an expression behaviour point of view, it was possible to distinguish between a “central” 

and a “peripheral” LRRK2 interactome. This was confirmed also when functional enrichment 

was taken into consideration, showing overlapping but also distinct biological functions of the 

LRRK2 interactors between the brain and the peripheral tissues. This might suggest that 

LRRK2, a protein that is indeed implicated in many different functions, might not hold the 

same relevance in all tissues. This might have implications for the modelling of the LRRK2 

activity in physiological and disease conditions with cellular models since responses might be 

indeed tissue specific. 

  

5. There was a dichotomy between the expression behaviour of the LRRK2int in the sPD 

cases vs LRRK2-PD cases. 

A total of 53 and 64 LRRK2 interactors presented differential expression in the sPD and LRRK2-

PD cases as compared to controls, respectively. Among these interactors, 100/117 (85.5%) 

presented distinct alterations in the sPD and LRRK2-PD cases, suggesting that sPD and LRRK2-

PD shares heterogeneous molecular signature of the LRRK2int. In addition, the topological 

cluster of mitophagy (Cluster F) was significantly up-regulated in the LRRK2-PD cases but not 

in the sPD cases, suggesting that mitophagy is vulnerable to the pathogenic mutations of 

LRRK2. On the other hand, the “ribosomal unit” of the LRRK2net was down-regulated in both 

LRRK2-PD and sPD cases, suggesting that ribosomal function is universally affected by the 2 
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types of PD regardless the presence of LRRK2 variants. In addition, LASSO logistic regression 

model based on transcriptomic profiles of LRRK2 interactors was able to classify sPD and 

LRRK2-PD cases with an accuracy of 68%. This accuracy is not sufficient in a diagnostic 

scenario; however, it provides the proof of principle for differences in molecular mechanisms 

underlying the 2 types of PD (at least when using classifiers from the whole blood). Future 

studies can focus on exploring the expression patterns of LRRK2 interactors in other tissues 

especially for the brain regions. In addition, longitudinal expression alterations of LRRK2 

interactors are also worth exploring considering the long-term disease progression. 

Limitations and future directions 

Limitations of different types of analysis have been discussed after each chapter. Here is the 

summary of the main points: 

1. The LRRK2 interactome and PPI network model established in this study is comprehensive 

but not complete, due to the nature of systems biology, which is largely dependent on 

the available data. It is possible that some proteins exist with strong interactions with 

LRRK2 that were missed by this study because they are not know or recorded yet. 

However, this is an inevitable disadvantage of nearly all types of interactome analysis. 

Therefore, it is necessary to repeat the protocol established within this thesis in the future 

to keep the findings updated with the PPI literature. 

2. The expression data included in transcriptomic analysis were obtained from the whole 

blood sample from PD patients and healthy controls, which may not perfectly reflect the 

alterations in the brain regions. In addition, it would be helpful to analyse longitudinal 

changes of the expression profile of LRRK2 interactors to investigate the continuity of 

alterations observed in this study alongside PD progression. Therefore, future work 

should be focused on exploring tissue-specific gene expression patterns in relevant brain 

regions to better capture the intricacies of Parkinson's disease pathology. Additionally, 

incorporating longitudinal analyses of LRRK2 interactors' expression profiles over 

different stages of PD could provide a more comprehensive understanding of the 

molecular changes associated with disease progression. 

3. Considering the biased ethnicity distribution of participant cohort included in this study, 

in which Caucasian account for 95% of the population, alterations observed in this study 

may not be applicable to other populations due to genetic variation. Future studies can 
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address this limitation by incorporating more diverse and representative participant 

cohorts that encompass a broader range of ethnic backgrounds. 

4. Alterations of expression and co-expression level may not reflect the true changes in the 

PPIs, which may affect the accuracy of weighted network analysis in this study. Future 

studies should employ structural analyses, such as molecular modelling and PPI 

simulations, to precisely elucidate the impact of pathogenic LRRK2 variants on the 

structural dynamics of the LRRK2 protein and its interactions within the PPI network. 

Additionally, integrating experimental techniques like co-immunoprecipitation and 

proximity-dependent labelling assays can offer experimental validation of the predicted 

changes in PPIs  
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Appendix A: Supplementary Figures: QC on GTEx samples 
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Figure A1. Subject QC on GTEx mRNA dataset 

Hierarchical Clustering was performed to identify outlier samples in expression dataset of each of the 

15 tissue included in Chapter 2. Outliers are marked in red rectangular and were discarded in the 

following expression analysis. Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: 

caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus 

Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1. 
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Appendix B: GO terms enriched for LRRK2 interactors 

Table B1. GO-BP terms enriched for Functional Unit 1 of the LRRK2int 

Term ID Term Name Term Size Adjusted p-value 

GO:0006259 DNA metabolic process 1054 <0.001 

GO:0044265 cellular macromolecule catabolic process 1030 <0.001 

GO:0009266 response to temperature stimulus 184 <0.001 

GO:0071214 cellular response to abiotic stimulus 336 0.011 

GO:0009314 response to radiation 449 0.031 

GO:0104004 
cellular response to environmental 
stimulus 336 0.011 

GO:0030163 protein catabolic process 1031 <0.001 

GO:0034599 cellular response to oxidative stress 275 <0.001 

GO:1901565 
organonitrogen compound catabolic 
process 1386 <0.001 

GO:0006281 DNA repair 591 0.006 

GO:0007006 mitochondrial membrane organization 116 <0.001 

GO:0000723 telomere maintenance 158 0.011 

GO:0061726 mitochondrion disassembly 94 0.009 

GO:0097193 intrinsic apoptotic signalling pathway 299 <0.001 

GO:0009057 macromolecule catabolic process 1391 <0.001 

GO:0071310 cellular response to organic substance 1993 <0.001 

GO:0035966 
response to topologically incorrect 
protein 161 <0.001 

GO:0034097 response to cytokine 914 <0.001 

GO:0010243 response to organonitrogen compound 1034 0.001 

GO:0009725 response to hormone 861 0.003 

GO:0014070 response to organic cyclic compound 933 0.003 

GO:0034614 
cellular response to reactive oxygen 
species 142 0.003 

GO:1901653 cellular response to peptide 363 0.010 

GO:0071495 cellular response to endogenous stimulus 1445 <0.001 

GO:0072331 signal transduction by p53 class mediator 175 <0.001 

GO:0009628 response to abiotic stimulus 1141 <0.001 

GO:0009719 response to endogenous stimulus 1692 <0.001 

GO:0033554 cellular response to stress 1941 <0.001 

GO:0034605 cellular response to heat 63 <0.001 

GO:0062197 cellular response to chemical stress 332 <0.001 

GO:0006974 cellular response to DNA damage stimulus 881 0.001 

GO:0034976 response to endoplasmic reticulum stress 259 0.001 

GO:0031098 
stress-activated protein kinase signalling 
cascade 246 0.001 

GO:0035967 
cellular response to topologically 
incorrect protein 119 0.002 

GO:0098780 response to mitochondrial depolarisation 21 0.010 
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GO:0043632 
modification-dependent macromolecule 
catabolic process 713 0.005 

GO:0006914 autophagy 562 <0.001 

GO:0016236 macroautophagy 321 <0.001 

GO:0061684 chaperone-mediated autophagy 16 <0.001 

GO:0061912 selective autophagy 89 <0.001 

GO:0000422 autophagy of mitochondrion 94 0.009 

GO:0061919 process utilizing autophagic mechanism 562 <0.001 

GO:0043161 
proteasome-mediated ubiquitin-
dependent protein catabolic process 455 0.001 

GO:0061024 membrane organization 886 <0.001 

GO:0009411 response to UV 148 0.001 

GO:0034644 cellular response to UV 88 0.036 

GO:0070266 necroptotic process 39 0.042 

GO:0051603 
proteolysis involved in protein catabolic 
process 799 0.001 

GO:0019941 
modification-dependent protein catabolic 
process 701 0.003 

GO:0051403 stress-activated MAPK cascade 239 0.004 

GO:0000423 mitophagy 37 <0.001 

GO:0006511 
ubiquitin-dependent protein catabolic 
process 691 0.002 

GO:0098779 
positive regulation of mitophagy in 
response to mitochondrial depolarization 10 0.003 

GO:0061734 
parkin-mediated stimulation of mitophagy 
in response to mitochondrial 
depolarization 6 0.010 

GO:0044248 cellular catabolic process 2138 <0.001 

GO:0012501 programmed cell death 1948 <0.001 

GO:1901575 organic substance catabolic process 2148 <0.001 

GO:0007254 JNK cascade 176 0.039 

GO:0006915 apoptotic process 1894 <0.001 

GO:0097300 programmed necrotic cell death 46 0.001 

GO:1901700 response to oxygen-containing compound 1665 <0.001 

GO:1901698 response to nitrogen compound 1123 <0.001 

GO:0009408 response to heat 110 <0.001 

GO:0006979 response to oxidative stress 420 0.003 

GO:0071345 cellular response to cytokine stimulus 823 <0.001 

GO:1904923 
regulation of autophagy of mitochondrion 
in response to mitochondrial 
depolarization 15 0.034 

GO:0097190 apoptotic signalling pathway 597 <0.001 

GO:0000302 response to reactive oxygen species 194 0.005 

GO:0008637 apoptotic mitochondrial changes 105 0.001 

GO:0032870 cellular response to hormone stimulus 598 0.001 
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GO:0071407 
cellular response to organic cyclic 
compound 579 0.004 

GO:0071417 
cellular response to organonitrogen 
compound 642 0.032 

GO:0009416 response to light stimulus 319 0.018 

GO:0006986 response to unfolded protein 139 <0.001 

GO:1904925 
positive regulation of autophagy of 
mitochondrion in response to 
mitochondrial depolarization 14 0.023 

GO:1901701 
cellular response to oxygen-containing 
compound 1191 <0.001 

GO:1901699 cellular response to nitrogen compound 698 <0.001 

GO:0010498 proteasomal protein catabolic process 526 0.001 

GO:0008219 cell death 2113 <0.001 

GO:0070997 neuron death 367 <0.001 

GO:0036473 cell death in response to oxidative stress 91 0.001 

GO:0070265 necrotic cell death 62 0.013 

GO:0008631 
intrinsic apoptotic signalling pathway in 
response to oxidative stress 45 0.010 

GO:0070059 
intrinsic apoptotic signalling pathway in 
response to endoplasmic reticulum stress 64 0.017 

GO:0072332 
intrinsic apoptotic signalling pathway by 
p53 class mediator 82 0.019 

GO:0034620 cellular response to unfolded protein 99 0.015 

GO:0007005 mitochondrion organization 539 <0.001 

 
Table B2. GO-CC terms enriched for Functional Unit 1 of the LRRK2int 

Term ID Term Name Term size Adjusted p-value 

GO:0070062 extracellular exosome 2109 <0.001 

GO:1903561 extracellular vesicle 2133 <0.001 

GO:0043230 extracellular organelle 2134 <0.001 

GO:0065010 
extracellular membrane-bounded 
organelle 2134 <0.001 

GO:0005856 cytoskeleton 2407 <0.001 

GO:0005925 focal adhesion 421 <0.001 

GO:0030055 cell-substrate junction 431 <0.001 

GO:0030054 cell junction 2214 <0.001 

GO:0015630 microtubule cytoskeleton 1388 <0.001 

GO:0070161 anchoring junction 903 <0.001 

GO:0045202 synapse 1451 <0.001 

GO:1902494 catalytic complex 1781 <0.001 

GO:0005739 mitochondrion 1672 <0.001 

GO:0048471 perinuclear region of cytoplasm 733 <0.001 

GO:0042995 cell projection 2329 <0.001 

GO:0031410 cytoplasmic vesicle 2476 <0.001 



 236 

GO:0097708 intracellular vesicle 2481 <0.001 

GO:0099080 supramolecular complex 1404 <0.001 

GO:0044297 cell body 567 <0.001 

GO:0099512 supramolecular fibre 1034 <0.001 

GO:0016234 inclusion body 74 <0.001 

GO:0099081 supramolecular polymer 1042 <0.001 

GO:0120025 
plasma membrane bounded cell 
projection 2217 <0.001 

GO:0005819 spindle 431 <0.001 

GO:0101031 protein folding chaperone complex 41 <0.001 

GO:0048770 pigment granule 111 <0.001 

GO:0042470 melanosome 111 <0.001 

GO:0099513 polymeric cytoskeletal fibre 793 <0.001 

GO:0043005 neuron projection 1299 <0.001 

GO:0036477 somatodendritic compartment 849 <0.001 

GO:0140535 intracellular protein-containing complex 951 <0.001 

GO:0030424 axon 641 <0.001 

GO:0098687 chromosomal region 399 <0.001 

GO:0031967 organelle envelope 1293 <0.001 

GO:0031975 envelope 1293 <0.001 

GO:0030425 dendrite 621 <0.001 

GO:0097447 dendritic tree 623 <0.001 

GO:0043025 neuronal cell body 500 <0.001 

GO:0098978 glutamatergic synapse 426 <0.001 

GO:0098562 cytoplasmic side of membrane 213 <0.001 

GO:0005874 microtubule 474 <0.001 

GO:0005815 microtubule organizing center 855 <0.001 

GO:0000781 chromosome, telomeric region 170 <0.001 

GO:0098794 postsynapse 644 <0.001 

GO:0098793 presynapse 561 <0.001 

GO:0005938 cell cortex 314 <0.001 

GO:0031968 organelle outer membrane 249 <0.001 

GO:0101002 ficolin-1-rich granule 184 <0.001 

GO:0019867 outer membrane 251 <0.001 

GO:0031966 mitochondrial membrane 771 <0.001 

GO:0005741 mitochondrial outer membrane 220 <0.001 

GO:0005768 endosome 1047 <0.001 

GO:0022626 cytosolic ribosome 110 <0.001 

GO:0035861 site of double-strand break 86 <0.001 

GO:0098588 bounding membrane of organelle 2160 <0.001 

GO:0031252 cell leading edge 424 <0.001 

GO:0045335 phagocytic vesicle 141 <0.001 

GO:0150034 distal axon 277 <0.001 

GO:0005740 mitochondrial envelope 820 <0.001 

GO:0090734 site of DNA damage 117 <0.001 



 237 

GO:0099503 secretory vesicle 1039 <0.001 

GO:0098857 membrane microdomain 286 <0.001 

GO:0005813 centrosome 647 <0.001 

GO:0030139 endocytic vesicle 342 <0.001 

GO:0022627 cytosolic small ribosomal subunit 44 <0.001 

GO:0045121 membrane raft 285 <0.001 

GO:0005757 
mitochondrial permeability transition 
pore complex 7 <0.001 

GO:0120111 neuron projection cytoplasm 90 <0.001 

GO:0030141 secretory granule 871 <0.001 

GO:0034399 nuclear periphery 151 <0.001 

GO:1904813 ficolin-1-rich granule lumen 124 <0.001 

GO:0031264 death-inducing signalling complex 9 0.001 

GO:0030670 phagocytic vesicle membrane 78 0.001 

GO:0015935 small ribosomal subunit 79 0.001 

GO:0016235 aggresome 36 0.001 

GO:0030426 growth cone 170 0.001 

GO:0043197 dendritic spine 171 0.001 

GO:0098796 membrane protein complex 1357 0.001 

GO:0044309 neuron spine 175 0.001 

GO:0030427 site of polarized growth 175 0.001 

GO:1990234 transferase complex 892 0.001 

GO:0005838 proteasome regulatory particle 22 0.001 

GO:0001726 ruffle 181 0.001 

GO:1904115 axon cytoplasm 63 0.002 

GO:0005853 
eukaryotic translation elongation factor 1 
complex 4 0.002 

GO:0005694 chromosome 1942 0.002 

GO:0044391 ribosomal subunit 189 0.002 

GO:0022624 proteasome accessory complex 25 0.002 

GO:0012506 vesicle membrane 1230 0.002 

GO:0015629 actin cytoskeleton 501 0.002 

GO:0030666 endocytic vesicle membrane 194 0.003 

GO:0043209 myelin sheath 45 0.003 

GO:1990909 Wnt signalosome 13 0.003 

GO:0019866 organelle inner membrane 566 0.004 

GO:1902554 serine/threonine protein kinase complex 136 0.005 

GO:0009898 cytoplasmic side of plasma membrane 175 0.007 

GO:0097342 ripoptosome 6 0.009 

GO:0005903 brush border 111 0.009 

GO:0043679 axon terminus 112 0.009 

GO:0030659 cytoplasmic vesicle membrane 1213 0.012 

GO:0043204 perikaryon 155 0.015 

GO:0051233 spindle midzone 37 0.016 

GO:0000793 condensed chromosome 278 0.016 
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GO:1902911 protein kinase complex 156 0.016 

GO:0061695 
transferase complex, transferring 
phosphorus-containing groups 325 0.017 

GO:0005769 early endosome 428 0.020 

GO:1905368 peptidase complex 125 0.021 

GO:0044306 neuron projection terminus 127 0.023 

GO:0030496 midbody 206 0.026 

GO:0000502 proteasome complex 67 0.028 

GO:0000922 spindle pole 172 0.034 

GO:0032587 ruffle membrane 100 0.035 

GO:0044294 dendritic growth cone 9 0.035 

GO:0000775 chromosome, centromeric region 258 0.037 

GO:0043195 terminal bouton 45 0.041 

GO:1990565 HSP90-CDC37 chaperone complex 2 0.042 

GO:0030135 coated vesicle 310 0.044 

GO:0031256 leading edge membrane 179 0.046 

 

Table B3. GO-BP enriched for Functional Unit 2 of the LRRK2int 

Term ID Term name Term size Adjusted p-value 

GO:0045184 establishment of protein localization 1898 <0.001 

GO:0030029 actin filament-based process 813 <0.001 

GO:0015031 protein transport 1788 <0.001 

GO:0072594 
establishment of protein localization to 
organelle 

664 

<0.001 

GO:0140694 
non-membrane-bounded organelle 
assembly 

386 
<0.001 

GO:0097479 synaptic vesicle localization 53 0.036 

GO:0051649 establishment of localization in cell 2340 <0.001 

GO:0046907 intracellular transport 1806 <0.001 

GO:0036465 synaptic vesicle recycling 80 <0.001 

GO:0051650 establishment of vesicle localization 194 <0.001 

GO:0099504 synaptic vesicle cycle 196 <0.001 

GO:0140238 presynaptic endocytosis 67 <0.001 

GO:0051261 protein depolymerization 123 <0.001 

GO:0098813 nuclear chromosome segregation 340 0.003 

GO:0006886 intracellular protein transport 1095 <0.001 

GO:0051169 nuclear transport 330 <0.001 

GO:0030705 
cytoskeleton-dependent intracellular 
transport 
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<0.001 

GO:0072384 organelle transport along microtubule 88 0.001 

GO:0000226 microtubule cytoskeleton organization 652 <0.001 

GO:0030036 actin cytoskeleton organization 727 <0.001 

GO:0007059 chromosome segregation 434 <0.001 

GO:0033365 protein localization to organelle 1144 <0.001 

GO:0034504 protein localization to nucleus 309 <0.001 
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GO:0070585 protein localization to mitochondrion 128 <0.001 

GO:0007052 mitotic spindle organization 135 0.010 

GO:0051640 organelle localization 577 <0.001 

GO:0048488 synaptic vesicle endocytosis 67 <0.001 

GO:0006913 nucleocytoplasmic transport 330 <0.001 

GO:0051168 nuclear export 165 <0.001 

GO:0051170 import into nucleus 170 <0.001 

GO:1903047 mitotic cell cycle process 773 <0.001 

GO:0097435 supramolecular fibre organization 814 <0.001 

GO:0008088 axo-dendritic transport 76 0.009 

GO:0042254 ribosome biogenesis 311 0.001 

GO:0042274 ribosomal small subunit biogenesis 77 0.001 

GO:0000819 sister chromatid segregation 252 0.038 

GO:0007017 microtubule-based process 939 <0.001 

GO:0007018 microtubule-based movement 419 0.001 

GO:0042255 ribosome assembly 59 <0.001 

GO:0051225 spindle assembly 129 0.006 

GO:0010970 transport along microtubule 167 0.001 

GO:0099518 vesicle cytoskeletal trafficking 70 0.037 

GO:0051656 establishment of organelle localization 443 <0.001 

GO:0007051 spindle organization 199 <0.001 

GO:0031109 
microtubule polymerization or 
depolymerization 

126 

<0.001 

GO:0051648 vesicle localization 211 <0.001 

GO:0071705 nitrogen compound transport 2252 <0.001 

GO:0051646 mitochondrion localization 50 <0.001 

GO:0015931 
nucleobase-containing compound 
transport 

227 

0.009 

GO:0072319 vesicle uncoating 9 <0.001 

GO:0072318 clathrin coat disassembly 8 <0.001 

GO:0008154 
actin polymerization or 
depolymerization 

202 

0.002 

GO:0099111 microtubule-based transport 208 0.001 

GO:0000028 ribosomal small subunit assembly 17 <0.001 

GO:0048489 synaptic vesicle transport 40 0.004 

GO:0016192 vesicle-mediated transport 1638 0.015 

GO:0007015 actin filament organization 452 <0.001 

GO:0072655 
establishment of protein localization to 
mitochondrion 

122 

<0.001 

GO:0046785 microtubule polymerization 85 <0.001 

GO:0051258 protein polymerization 284 <0.001 

GO:0030041 actin filament polymerization 172 0.001 

GO:0006611 protein export from nucleus 59 <0.001 

GO:0006606 protein import into nucleus 165 <0.001 

GO:0007049 cell cycle 1818 <0.001 

GO:0099003 vesicle-mediated transport in synapse 217 <0.001 
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GO:0007010 cytoskeleton organization 1507 <0.001 

GO:0070925 organelle assembly 944 <0.001 

GO:0000278 mitotic cell cycle 929 <0.001 

GO:0022402 cell cycle process 1270 <0.001 

GO:0051276 chromosome organization 635 <0.001 

GO:0016191 synaptic vesicle uncoating 7 <0.001 

 
Table B4. GO-CC enriched for Functional Unit 2 of the LRRK2int 

Term ID Term Name Term Size Adjusted p-value 

GO:0005856 cytoskeleton 2407 <0.001 

GO:0070062 extracellular exosome 2109 <0.001 

GO:1903561 extracellular vesicle 2133 <0.001 

GO:0043230 extracellular organelle 2134 <0.001 

GO:0065010 
extracellular membrane-bounded 
organelle 2134 <0.001 

GO:0015630 microtubule cytoskeleton 1388 <0.001 

GO:0099080 supramolecular complex 1404 <0.001 

GO:0005925 focal adhesion 421 <0.001 

GO:0030054 cell junction 2214 <0.001 

GO:0030055 cell-substrate junction 431 <0.001 

GO:0099512 supramolecular fibre 1034 <0.001 

GO:0099081 supramolecular polymer 1042 <0.001 

GO:0099513 polymeric cytoskeletal fibre 793 <0.001 

GO:0070161 anchoring junction 903 <0.001 

GO:0045202 synapse 1451 <0.001 

GO:0015629 actin cytoskeleton 501 <0.001 

GO:0005874 microtubule 474 <0.001 

GO:0022626 cytosolic ribosome 110 <0.001 

GO:0042995 cell projection 2329 <0.001 

GO:0005819 spindle 431 <0.001 

GO:0120025 
plasma membrane bounded cell 
projection 2217 <0.001 

GO:0005815 microtubule organizing centre 855 <0.001 

GO:0022627 cytosolic small ribosomal subunit 44 <0.001 

GO:0044391 ribosomal subunit 189 <0.001 

GO:0031410 cytoplasmic vesicle 2476 <0.001 

GO:0097708 intracellular vesicle 2481 <0.001 

GO:0015935 small ribosomal subunit 79 <0.001 

GO:0031252 cell leading edge 424 <0.001 

GO:0098794 postsynapse 644 <0.001 

GO:0005813 centrosome 647 <0.001 

GO:0048471 perinuclear region of cytoplasm 733 <0.001 

GO:0048770 pigment granule 111 <0.001 

GO:0042470 melanosome 111 <0.001 

GO:0043005 neuron projection 1299 <0.001 

GO:0098687 chromosomal region 399 <0.001 
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GO:0030424 axon 641 <0.001 

GO:0044297 cell body 567 <0.001 

GO:0098978 glutamatergic synapse 426 <0.001 

GO:0072686 mitotic spindle 184 <0.001 

GO:0005768 endosome 1047 <0.001 

GO:0000793 condensed chromosome 278 <0.001 

GO:0031975 envelope 1293 <0.001 

GO:0031967 organelle envelope 1293 <0.001 

GO:0036477 somatodendritic compartment 849 <0.001 

GO:0098793 presynapse 561 <0.001 

GO:0150034 distal axon 277 <0.001 

GO:0030425 dendrite 621 <0.001 

GO:0097447 dendritic tree 623 <0.001 

GO:0005885 Arp2/3 protein complex 11 <0.001 

GO:0043025 neuronal cell body 500 <0.001 

GO:0005938 cell cortex 314 <0.001 

GO:0030684 preribosome 108 <0.001 

GO:0005903 brush border 111 <0.001 

GO:0045335 phagocytic vesicle 141 <0.001 

GO:0030426 growth cone 170 <0.001 

GO:0032040 small-subunit processome 73 <0.001 

GO:0005739 mitochondrion 1672 <0.001 

GO:0016234 inclusion body 74 <0.001 

GO:0030427 site of polarized growth 175 <0.001 

GO:0000779 
condensed chromosome, centromeric 
region 178 <0.001 

GO:0042641 actomyosin 77 <0.001 

GO:0034399 nuclear periphery 151 <0.001 

GO:0043292 contractile fiber 245 <0.001 

GO:0099503 secretory vesicle 1039 <0.001 

GO:0005840 ribosome 524 <0.001 

GO:0000775 chromosome, centromeric region 258 <0.001 

GO:0035861 site of double-strand break 86 <0.001 

GO:0000776 kinetochore 167 <0.001 

GO:0030139 endocytic vesicle 342 <0.001 

GO:0030027 lamellipodium 201 <0.001 

GO:0030016 myofibril 236 <0.001 

GO:0098588 bounding membrane of organelle 2160 <0.001 

GO:0000922 spindle pole 172 <0.001 

GO:0001725 stress fibre 70 <0.001 

GO:0097517 contractile actin filament bundle 70 <0.001 

GO:0030017 sarcomere 215 <0.001 

GO:0030141 secretory granule 871 <0.001 

GO:0098984 neuron to neuron synapse 371 <0.001 

GO:0032432 actin filament bundle 78 <0.001 

GO:0005635 nuclear envelope 502 <0.001 
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GO:0032279 asymmetric synapse 339 <0.001 

GO:0101031 protein folding chaperone complex 41 <0.001 

GO:0012506 vesicle membrane 1230 <0.001 

GO:0005876 spindle microtubule 83 <0.001 

GO:0098862 cluster of actin-based cell projections 167 <0.001 

GO:1904115 axon cytoplasm 63 <0.001 

GO:0099572 postsynaptic specialization 352 <0.001 

GO:0005884 actin filament 113 <0.001 

GO:0043209 myelin sheath 45 <0.001 

GO:0030659 cytoplasmic vesicle membrane 1213 <0.001 

GO:0120111 neuron projection cytoplasm 90 <0.001 

GO:0014069 postsynaptic density 323 <0.001 

GO:0090734 site of DNA damage 117 <0.001 

GO:0005929 cilium 747 <0.001 

GO:0005844 polysome 73 0.001 

GO:0005643 nuclear pore 99 0.001 

GO:0005694 chromosome 1942 0.001 

GO:0022625 cytosolic large ribosomal subunit 54 0.001 

GO:0030670 phagocytic vesicle membrane 78 0.001 

GO:0000781 chromosome, telomeric region 170 0.001 

GO:0043197 dendritic spine 171 0.001 

GO:0098857 membrane microdomain 286 0.002 

GO:0044309 neuron spine 175 0.002 

GO:0031968 organelle outer membrane 249 0.002 

GO:0099568 cytoplasmic region 290 0.002 

GO:0019867 outer membrane 251 0.002 

GO:0005862 muscle thin filament tropomyosin 4 0.002 

GO:0032838 
plasma membrane bounded cell 
projection cytoplasm 252 0.002 

GO:0036464 
cytoplasmic ribonucleoprotein 
granule 255 0.002 

GO:0001726 ruffle 181 0.003 

GO:0030133 transport vesicle 427 0.003 

GO:0005769 early endosome 428 0.003 

GO:0005741 mitochondrial outer membrane 220 0.003 

GO:0101002 ficolin-1-rich granule 184 0.003 

GO:1990909 Wnt signalosome 13 0.004 

GO:0030666 endocytic vesicle membrane 194 0.005 

GO:0035770 ribonucleoprotein granule 272 0.005 

GO:0055037 recycling endosome 201 0.007 

GO:0031966 mitochondrial membrane 771 0.008 

GO:0045121 membrane raft 285 0.008 

GO:0030175 filopodium 107 0.011 

GO:0005802 trans-Golgi network 257 0.014 

GO:0098858 actin-based cell projection 219 0.015 

GO:0043679 axon terminus 112 0.015 
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GO:0016459 myosin complex 57 0.016 

GO:0015934 large ribosomal subunit 114 0.017 

GO:0005757 
mitochondrial permeability transition 
pore complex 7 0.019 

GO:0016235 aggresome 36 0.019 

GO:0030135 coated vesicle 310 0.019 

GO:0005740 mitochondrial envelope 820 0.020 

GO:0010008 endosome membrane 551 0.020 

GO:0000940 outer kinetochore 19 0.021 

GO:0070382 exocytic vesicle 228 0.021 

GO:0051233 spindle midzone 37 0.022 

GO:0098590 plasma membrane region 1304 0.023 

GO:0043204 perikaryon 155 0.025 

GO:0005865 striated muscle thin filament 20 0.025 

GO:0140535 
intracellular protein-containing 
complex 951 0.026 

GO:0005814 centriole 156 0.026 

GO:1902911 protein kinase complex 156 0.026 

GO:0008290 F-actin capping protein complex 8 0.030 

GO:0044306 neuron projection terminus 127 0.037 

GO:0098791 Golgi apparatus subcompartment 377 0.037 

GO:0016363 nuclear matrix 128 0.039 

GO:0044294 dendritic growth cone 9 0.044 

GO:0016461 unconventional myosin complex 9 0.044 

GO:0030496 midbody 206 0.045 

GO:1990565 HSP90-CDC37 chaperone complex 2 0.050 

 
Table B5. GO-BP enriched for Functional Unit 3 of the LRRK2int 

Term ID Term name Term size Adjusted p-value 

GO:1903321 
negative regulation of protein 
modification by small protein 
conjugation or removal 

96 

<0.001 

GO:0043085 positive regulation of catalytic activity 1181 <0.001 

GO:0043086 negative regulation of catalytic activity 768 <0.001 

GO:0051338 regulation of transferase activity 908 <0.001 

GO:0051336 regulation of hydrolase activity 1007 0.003 

GO:0051348 negative regulation of transferase activity 271 <0.001 

GO:0043549 regulation of kinase activity 775 <0.001 

GO:0051438 
regulation of ubiquitin-protein 
transferase activity 

59 

<0.001 

GO:1903052 
positive regulation of proteolysis 
involved in protein catabolic process 

138 

0.013 

GO:0051347 positive regulation of transferase activity 584 <0.001 

GO:0010952 positive regulation of peptidase activity 189 0.019 

GO:2000058 
regulation of ubiquitin-dependent 
protein catabolic process 

173 

<0.001 
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GO:0061136 
regulation of proteasomal protein 
catabolic process 

196 

<0.001 

GO:0032434 
regulation of proteasomal ubiquitin-
dependent protein catabolic process 

142 

<0.001 

GO:0042326 negative regulation of phosphorylation 363 <0.001 

GO:0051054 
positive regulation of DNA metabolic 
process 

299 

<0.001 

GO:0042327 positive regulation of phosphorylation 822 <0.001 

GO:0031396 regulation of protein ubiquitination 210 <0.001 

GO:0031397 
negative regulation of protein 
ubiquitination 

83 

<0.001 

GO:0030162 regulation of proteolysis 737 <0.001 

GO:0071900 
regulation of protein serine/threonine 
kinase activity 

386 

0.002 

GO:1901800 
positive regulation of proteasomal 
protein catabolic process 

119 

0.002 

GO:0051052 regulation of DNA metabolic process 535 <0.001 

GO:0045935 
positive regulation of nucleobase-
containing compound metabolic process 

2051 

<0.001 

GO:1904666 
regulation of ubiquitin protein ligase 
activity 

27 

<0.001 

GO:0032069 regulation of nuclease activity 22 0.001 

GO:0032436 
positive regulation of proteasomal 
ubiquitin-dependent protein catabolic 
process 

95 

0.010 

GO:0032075 positive regulation of nuclease activity 7 0.023 

GO:1904667 
negative regulation of ubiquitin protein 
ligase activity 

13 

<0.001 

GO:0051444 
negative regulation of ubiquitin-protein 
transferase activity 

23 

0.001 

GO:0033673 negative regulation of kinase activity 228 0.002 

GO:0043393 regulation of protein binding 202 <0.001 

GO:0032091 negative regulation of protein binding 95 <0.001 

GO:0032092 positive regulation of protein binding 89 0.039 

GO:0031324 
negative regulation of cellular metabolic 
process 

2244 

<0.001 

GO:0019220 
regulation of phosphate metabolic 
process 

1400 

<0.001 

GO:0042325 regulation of phosphorylation 1244 <0.001 

GO:0045936 
negative regulation of phosphate 
metabolic process 

419 

<0.001 

GO:0045937 
positive regulation of phosphate 
metabolic process 

907 

<0.001 

GO:0051174 
regulation of phosphorus metabolic 
process 

1401 

<0.001 
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GO:0010563 
negative regulation of phosphorus 
metabolic process 

420 

<0.001 

GO:0010562 
positive regulation of phosphorus 
metabolic process 

907 

<0.001 

GO:0031399 
regulation of protein modification 
process 

1540 

<0.001 

GO:0031400 
negative regulation of protein 
modification process 

493 

<0.001 

GO:1903320 
regulation of protein modification by 
small protein conjugation or removal 

252 

<0.001 

GO:0001932 regulation of protein phosphorylation 1101 <0.001 

GO:0031401 
positive regulation of protein 
modification process 

1005 

<0.001 

GO:0071902 
positive regulation of protein 
serine/threonine kinase activity 

227 

0.041 

GO:0045859 regulation of protein kinase activity 661 <0.001 

GO:0001934 
positive regulation of protein 
phosphorylation 

745 

<0.001 

GO:0045862 positive regulation of proteolysis 369 <0.001 

GO:1903050 
regulation of proteolysis involved in 
protein catabolic process 

231 

<0.001 

GO:0033674 positive regulation of kinase activity 494 0.017 

GO:0051100 negative regulation of binding 162 0.015 

GO:0010950 
positive regulation of endopeptidase 
activity 

169 

0.024 

GO:0050790 regulation of catalytic activity 2356 <0.001 

GO:0051098 regulation of binding 372 <0.001 

GO:0044093 positive regulation of molecular function 1580 <0.001 

GO:0032070 regulation of deoxyribonuclease activity 10 0.003 

GO:0044092 negative regulation of molecular function 1115 <0.001 

GO:0051345 positive regulation of hydrolase activity 582 <0.001 

GO:0001933 
negative regulation of protein 
phosphorylation 

320 

<0.001 

 
Table B6. GO-CC enriched for Functional Unit 3 of the LRRK2int 

Term ID Term Name Term size Adjusted p-value 

GO:0005925 focal adhesion 421 <0.001 

GO:0005856 cytoskeleton 2407 <0.001 

GO:0030055 cell-substrate junction 431 <0.001 

GO:0016234 inclusion body 74 <0.001 

GO:0030054 cell junction 2214 <0.001 

GO:0015630 microtubule cytoskeleton 1388 <0.001 

GO:1902494 catalytic complex 1781 <0.001 

GO:0070062 extracellular exosome 2109 <0.001 

GO:1903561 extracellular vesicle 2133 <0.001 
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GO:0065010 
extracellular membrane-bounded 
organelle 2134 <0.001 

GO:0043230 extracellular organelle 2134 <0.001 

GO:0070161 anchoring junction 903 <0.001 

GO:0045202 synapse 1451 <0.001 

GO:0044297 cell body 567 <0.001 

GO:0101031 protein folding chaperone complex 41 <0.001 

GO:0098687 chromosomal region 399 <0.001 

GO:0022626 cytosolic ribosome 110 <0.001 

GO:0098562 cytoplasmic side of membrane 213 <0.001 

GO:0140535 intracellular protein-containing complex 951 <0.001 

GO:0042995 cell projection 2329 <0.001 

GO:0022627 cytosolic small ribosomal subunit 44 <0.001 

GO:0043005 neuron projection 1299 <0.001 

GO:0036477 somatodendritic compartment 849 <0.001 

GO:0005815 microtubule organizing centre 855 <0.001 

GO:0048471 perinuclear region of cytoplasm 733 <0.001 

GO:0005694 chromosome 1942 <0.001 

GO:0120025 
plasma membrane bounded cell 
projection 2217 <0.001 

GO:0030424 axon 641 <0.001 

GO:0005739 mitochondrion 1672 <0.001 

GO:0000781 chromosome, telomeric region 170 <0.001 

GO:0015935 small ribosomal subunit 79 <0.001 

GO:0005813 centrosome 647 <0.001 

GO:0098978 glutamatergic synapse 426 <0.001 

GO:0043025 neuronal cell body 500 <0.001 

GO:0030425 dendrite 621 <0.001 

GO:0097447 dendritic tree 623 <0.001 

GO:0099080 supramolecular complex 1404 <0.001 

GO:0098794 postsynapse 644 <0.001 

GO:0044391 ribosomal subunit 189 <0.001 

GO:0005819 spindle 431 <0.001 

GO:0016235 aggresome 36 <0.001 

GO:0031410 cytoplasmic vesicle 2476 <0.001 

GO:0097708 intracellular vesicle 2481 <0.001 

GO:0031264 death-inducing signalling complex 9 <0.001 

GO:0120111 neuron projection cytoplasm 90 <0.001 

GO:0099512 supramolecular fibre 1034 <0.001 

GO:0099081 supramolecular polymer 1042 <0.001 

GO:0009898 cytoplasmic side of plasma membrane 175 <0.001 

GO:1902554 serine/threonine protein kinase complex 136 <0.001 

GO:0005853 
eukaryotic translation elongation factor 1 
complex 4 0.001 

GO:0000793 condensed chromosome 278 0.001 

GO:1990909 Wnt signalosome 13 0.001 
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GO:0005903 brush border 111 0.001 

GO:0048770 pigment granule 111 0.001 

GO:0042470 melanosome 111 0.001 

GO:0090734 site of DNA damage 117 0.001 

GO:1902911 protein kinase complex 156 0.001 

GO:0035861 site of double-strand break 86 0.002 

GO:1904813 ficolin-1-rich granule lumen 124 0.002 

GO:0031252 cell leading edge 424 0.002 

GO:0005938 cell cortex 314 0.002 

GO:0030426 growth cone 170 0.002 

GO:0097342 ripoptosome 6 0.003 

GO:1904115 axon cytoplasm 63 0.003 

GO:0030427 site of polarized growth 175 0.003 

GO:0150034 distal axon 277 0.004 

GO:0101002 ficolin-1-rich granule 184 0.005 

GO:0045121 membrane raft 285 0.005 

GO:0098857 membrane microdomain 286 0.005 

GO:0032993 protein-DNA complex 1435 0.006 

GO:0016328 lateral plasma membrane 72 0.006 

GO:0005838 proteasome regulatory particle 22 0.007 

GO:0005874 microtubule 474 0.007 

GO:1990234 transferase complex 892 0.007 

GO:0034399 nuclear periphery 151 0.008 

GO:0031975 envelope 1293 0.008 

GO:0031967 organelle envelope 1293 0.008 

GO:0000775 chromosome, centromeric region 258 0.011 

GO:0022624 proteasome accessory complex 25 0.012 

GO:0098862 cluster of actin-based cell projections 167 0.016 

GO:0099513 polymeric cytoskeletal fibre 793 0.016 

GO:0030141 secretory granule 871 0.017 

GO:1990565 HSP90-CDC37 chaperone complex 2 0.018 

GO:0098552 side of membrane 656 0.019 

GO:0000785 chromatin 1366 0.020 

GO:0099503 secretory vesicle 1039 0.021 

GO:0016604 nuclear body 888 0.022 

GO:0000779 
condensed chromosome, centromeric 
region 178 0.025 

GO:0042405 nuclear inclusion body 12 0.028 

GO:0099568 cytoplasmic region 290 0.030 

GO:0070603 SWI/SNF superfamily-type complex 96 0.032 

GO:0016607 nuclear speck 418 0.035 

GO:0098793 presynapse 561 0.043 

GO:0098574 cytoplasmic side of lysosomal membrane 14 0.047 

 
Table B7. GO-BP terms enriched for Functional Unit 4 of the LRRK2int 
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Term ID Term name Term size Adjusted p-value 

GO:0070507 
regulation of microtubule cytoskeleton 
organization 

158 

<0.001 

GO:0032956 
regulation of actin cytoskeleton 
organization 

364 

0.003 

GO:0051495 
positive regulation of cytoskeleton 
organization 

194 

0.026 

GO:0051493 regulation of cytoskeleton organization 541 <0.001 

GO:0010638 
positive regulation of organelle 
organization 

507 

<0.001 

GO:0010639 
negative regulation of organelle 
organization 

367 

<0.001 

GO:0010821 regulation of mitochondrion organization 151 <0.001 

GO:0051247 
positive regulation of protein metabolic 
process 

1499 

<0.001 

GO:0042176 regulation of protein catabolic process 366 <0.001 

GO:0030833 
regulation of actin filament 
polymerization 

142 

0.003 

GO:0031113 regulation of microtubule polymerization 54 0.004 

GO:1903146 
regulation of autophagy of 
mitochondrion 

37 

0.002 

GO:0032273 
positive regulation of protein 
polymerization 

92 

0.007 

GO:0044087 
regulation of cellular component 
biogenesis 

955 

<0.001 

GO:0016241 regulation of macroautophagy 160 0.002 

GO:0051128 
regulation of cellular component 
organization 

2365 

<0.001 

GO:0033043 regulation of organelle organization 1189 <0.001 

GO:0043254 
regulation of protein-containing complex 
assembly 

409 

<0.001 

GO:0051130 
positive regulation of cellular component 
organization 

1056 

<0.001 

GO:0051129 
negative regulation of cellular 
component organization 

702 

<0.001 

GO:1902903 
regulation of supramolecular fibre 
organization 

381 

<0.001 

GO:0031110 
regulation of microtubule polymerization 
or depolymerization 

89 

0.005 

GO:0031344 regulation of cell projection organization 656 <0.001 

GO:0001558 regulation of cell growth 429 0.047 

GO:0120035 
regulation of plasma membrane bounded 
cell projection organization 

640 

<0.001 

GO:0110053 regulation of actin filament organization 276 <0.001 

GO:0010506 regulation of autophagy 348 <0.001 
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GO:0031331 
positive regulation of cellular catabolic 
process 

420 

<0.001 

GO:1902743 regulation of lamellipodium organization 53 0.003 

GO:0010975 
regulation of neuron projection 
development 

447 

0.009 

GO:0008064 
regulation of actin polymerization or 
depolymerization 

161 

0.002 

GO:0032535 regulation of cellular component size 373 <0.001 

GO:0030832 regulation of actin filament length 164 0.003 

GO:0032886 regulation of microtubule-based process 259 0.001 

GO:0032970 
regulation of actin filament-based 
process 

404 

0.001 

GO:0032271 regulation of protein polymerization 203 <0.001 

GO:1903599 
positive regulation of autophagy of 
mitochondrion 

13 

0.015 

GO:0031334 
positive regulation of protein-containing 
complex assembly 

193 

<0.001 

GO:1902745 
positive regulation of lamellipodium 
organization 

37 

0.002 

GO:0010592 
positive regulation of lamellipodium 
assembly 

29 

0.005 

GO:0009896 positive regulation of catabolic process 521 <0.001 

GO:0010591 regulation of lamellipodium assembly 41 0.005 

GO:0009894 regulation of catabolic process 992 <0.001 

GO:0031329 regulation of cellular catabolic process 790 <0.001 

GO:0090066 regulation of anatomical structure size 511 <0.001 

GO:0044089 
positive regulation of cellular component 
biogenesis 

502 

<0.001 

GO:0010823 
negative regulation of mitochondrion 
organization 

53 

0.003 

GO:0031346 
positive regulation of cell projection 
organization 

353 

0.007 

GO:1902905 
positive regulation of supramolecular 
fibre organization 

175 

0.036 

GO:0045732 
positive regulation of protein catabolic 
process 

212 

<0.001 

 
Table B8. GO-CC enriched for Functional Unit 4 of the LRRK2int 

Term ID Term name Term size Adjusted p-value 

GO:0005856 cytoskeleton 2407 <0.001 

GO:0070062 extracellular exosome 2109 <0.001 
GO:1903561 extracellular vesicle 2133 <0.001 

GO:0043230 extracellular organelle 2134 <0.001 

GO:0065010 
extracellular membrane-bounded 
organelle 2134 <0.001 

GO:0005925 focal adhesion 421 <0.001 

GO:0030055 cell-substrate junction 431 <0.001 
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GO:0030054 cell junction 2214 <0.001 
GO:0015630 microtubule cytoskeleton 1388 <0.001 

GO:0005739 mitochondrion 1672 <0.001 

GO:0070161 anchoring junction 903 <0.001 

GO:0016234 inclusion body 74 <0.001 
GO:0045202 synapse 1451 <0.001 

GO:0044297 cell body 567 <0.001 

GO:0042995 cell projection 2329 <0.001 

GO:0120025 
plasma membrane bounded cell 
projection 2217 <0.001 

GO:1902494 catalytic complex 1781 <0.001 

GO:0005819 spindle 431 <0.001 
GO:0043005 neuron projection 1299 <0.001 

GO:0098794 postsynapse 644 <0.001 

GO:0036477 somatodendritic compartment 849 <0.001 
GO:0043025 neuronal cell body 500 <0.001 

GO:0098687 chromosomal region 399 <0.001 

GO:0098562 cytoplasmic side of membrane 213 <0.001 

GO:0005815 microtubule organizing centre 855 <0.001 
GO:0005938 cell cortex 314 <0.001 

GO:0048471 perinuclear region of cytoplasm 733 <0.001 

GO:0030425 dendrite 621 <0.001 

GO:0097447 dendritic tree 623 <0.001 

GO:0030424 axon 641 <0.001 

GO:0005813 centrosome 647 <0.001 
GO:0022627 cytosolic small ribosomal subunit 44 <0.001 

GO:0022626 cytosolic ribosome 110 <0.001 

GO:0015935 small ribosomal subunit 79 <0.001 

GO:0005757 
mitochondrial permeability transition 
pore complex 7 <0.001 

GO:0031967 organelle envelope 1293 <0.001 

GO:0031975 envelope 1293 <0.001 
GO:0016235 aggresome 36 <0.001 

GO:0120111 neuron projection cytoplasm 90 <0.001 

GO:0031252 cell leading edge 424 <0.001 

GO:0098978 glutamatergic synapse 426 <0.001 
GO:0031410 cytoplasmic vesicle 2476 <0.001 

GO:0097708 intracellular vesicle 2481 <0.001 

GO:0031966 mitochondrial membrane 771 <0.001 
GO:0030426 growth cone 170 <0.001 

GO:0031264 death-inducing signaling complex 9 <0.001 

GO:0098796 membrane protein complex 1357 <0.001 

GO:0009898 cytoplasmic side of plasma membrane 175 <0.001 
GO:0030427 site of polarized growth 175 <0.001 

GO:0150034 distal axon 277 <0.001 

GO:0099512 supramolecular fibre 1034 <0.001 
GO:0099081 supramolecular polymer 1042 <0.001 

GO:0045121 membrane raft 285 <0.001 

GO:0098857 membrane microdomain 286 <0.001 

GO:0099080 supramolecular complex 1404 <0.001 
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GO:0005740 mitochondrial envelope 820 <0.001 
GO:0044391 ribosomal subunit 189 <0.001 

GO:0048770 pigment granule 111 <0.001 

GO:0042470 melanosome 111 <0.001 

GO:1990909 Wnt signalosome 13 <0.001 
GO:0035861 site of double-strand break 86 0.001 

GO:1990234 transferase complex 892 0.001 

GO:0000781 chromosome, telomeric region 170 0.001 
GO:0043197 dendritic spine 171 0.001 

GO:0044309 neuron spine 175 0.001 

GO:0005694 chromosome 1942 0.001 

GO:1904115 axon cytoplasm 63 0.001 
GO:0051233 spindle midzone 37 0.002 

GO:0140535 intracellular protein-containing complex 951 0.002 

GO:0097342 ripoptosome 6 0.002 
GO:0031968 organelle outer membrane 249 0.003 

GO:0019867 outer membrane 251 0.003 

GO:0101031 protein folding chaperone complex 41 0.003 

GO:0016328 lateral plasma membrane 72 0.003 
GO:0030496 midbody 206 0.004 

GO:0090734 site of DNA damage 117 0.005 

GO:0005741 mitochondrial outer membrane 220 0.007 

GO:0000922 spindle pole 172 0.008 

GO:0044294 dendritic growth cone 9 0.009 

GO:0046930 pore complex 26 0.010 
GO:0099568 cytoplasmic region 290 0.010 

GO:0097225 sperm midpiece 54 0.011 

GO:1902554 serine/threonine protein kinase complex 136 0.014 

GO:1990565 HSP90-CDC37 chaperone complex 2 0.017 

GO:0032838 
plasma membrane bounded cell 
projection cytoplasm 252 0.019 

GO:0030027 lamellipodium 201 0.023 
GO:0005768 endosome 1047 0.026 

GO:0034399 nuclear periphery 151 0.026 

GO:0099513 polymeric cytoskeletal fibre 793 0.030 

GO:0005874 microtubule 474 0.031 
GO:0043204 perikaryon 155 0.031 

GO:1902911 protein kinase complex 156 0.032 

GO:0044292 dendrite terminus 14 0.038 
GO:0005903 brush border 111 0.038 

GO:0019866 organelle inner membrane 566 0.041 

GO:0031616 spindle pole centrosome 15 0.047 

GO:0099073 mitochondrion-derived vesicle 3 0.050 
GO:0000322 storage vacuole 3 0.050 

 
Table B9. GO-BP enriched for Functional Unit 5 of the LRRK2int 

Term ID Term name Term size Adjusted p-value 

GO:1902531 
regulation of intracellular signal 
transduction 

1725 

<0.001 



 252 

GO:0010648 
negative regulation of cell 
communication 

1353 

0.005 

GO:2001242 
regulation of intrinsic apoptotic 
signalling pathway 

168 

<0.001 

GO:1902533 
positive regulation of intracellular 
signal transduction 

995 

<0.001 

GO:0048584 
positive regulation of response to 
stimulus 

2267 

<0.001 

GO:0023056 positive regulation of signalling 1727 <0.001 

GO:1901796 
regulation of signal transduction by 
p53 class mediator 

105 

0.001 

GO:2001243 
negative regulation of intrinsic 
apoptotic signalling pathway 

100 

0.002 

GO:1902532 
negative regulation of intracellular 
signal transduction 

514 

0.011 

GO:0009967 
positive regulation of signal 
transduction 

1528 

0.002 

GO:0009968 
negative regulation of signal 
transduction 

1248 

0.002 

GO:1902176 
negative regulation of oxidative 
stress-induced intrinsic apoptotic 
signalling pathway 

19 

0.005 

GO:0080135 
regulation of cellular response to 
stress 

711 

<0.001 

GO:1900407 
regulation of cellular response to 
oxidative stress 

82 

0.019 

GO:0080134 regulation of response to stress 1441 <0.001 

GO:0048585 
negative regulation of response to 
stimulus 

1611 

0.040 

GO:1903202 
negative regulation of oxidative 
stress-induced cell death 

47 

0.014 

GO:2001234 
negative regulation of apoptotic 
signalling pathway 

231 

0.001 

GO:0010942 positive regulation of cell death 588 <0.001 

GO:0010647 
positive regulation of cell 
communication 

1729 

<0.001 

GO:0010941 regulation of cell death 1638 <0.001 

GO:0043067 regulation of programmed cell death 1483 <0.001 

GO:0060548 negative regulation of cell death 1001 <0.001 

GO:1901214 regulation of neuron death 324 <0.001 

GO:1903201 
regulation of oxidative stress-
induced cell death 

71 

0.005 

GO:1902882 
regulation of response to oxidative 
stress 

91 

0.048 

GO:0042981 regulation of apoptotic process 1454 <0.001 



 253 

GO:0043068 
positive regulation of programmed 
cell death 

522 

<0.001 

GO:0043069 
negative regulation of programmed 
cell death 

900 

<0.001 

GO:0023057 negative regulation of signalling 1353 0.005 

GO:0043066 
negative regulation of apoptotic 
process 

881 

<0.001 

GO:0043065 
positive regulation of apoptotic 
process 

509 

<0.001 

GO:2001233 
regulation of apoptotic signalling 
pathway 

366 

<0.001 

GO:2001235 
positive regulation of apoptotic 
signalling pathway 

130 

0.006 

GO:1901216 positive regulation of neuron death 93 <0.001 

 
Table B10. GO-CC enriched for Functional Unit 5 of the LRRK2int 

Term iD Term name Term size Adjusted p-value 

GO:0005856 cytoskeleton 2407 <0.001 

GO:0070062 extracellular exosome 2109 <0.001 
GO:1903561 extracellular vesicle 2133 <0.001 

GO:0043230 extracellular organelle 2134 <0.001 

GO:0065010 
extracellular membrane-bounded 
organelle 2134 <0.001 

GO:0005925 focal adhesion 421 <0.001 

GO:0030055 cell-substrate junction 431 <0.001 

GO:0030054 cell junction 2214 <0.001 
GO:0015630 microtubule cytoskeleton 1388 <0.001 

GO:0005739 mitochondrion 1672 <0.001 

GO:0070161 anchoring junction 903 <0.001 
GO:0016234 inclusion body 74 <0.001 

GO:0045202 synapse 1451 <0.001 

GO:0044297 cell body 567 <0.001 

GO:0042995 cell projection 2329 <0.001 

GO:0120025 
plasma membrane bounded cell 
projection 2217 <0.001 

GO:1902494 catalytic complex 1781 <0.001 
GO:0005819 spindle 431 <0.001 

GO:0043005 neuron projection 1299 <0.001 

GO:0098794 postsynapse 644 <0.001 

GO:0036477 somatodendritic compartment 849 <0.001 
GO:0043025 neuronal cell body 500 <0.001 

GO:0098687 chromosomal region 399 <0.001 

GO:0098562 cytoplasmic side of membrane 213 <0.001 
GO:0005815 microtubule organizing center 855 <0.001 

GO:0005938 cell cortex 314 <0.001 

GO:0048471 perinuclear region of cytoplasm 733 <0.001 

GO:0030425 dendrite 621 <0.001 
GO:0097447 dendritic tree 623 <0.001 
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GO:0030424 axon 641 <0.001 
GO:0005813 centrosome 647 <0.001 

GO:0022627 cytosolic small ribosomal subunit 44 <0.001 

GO:0022626 cytosolic ribosome 110 <0.001 

GO:0015935 small ribosomal subunit 79 <0.001 

GO:0005757 
mitochondrial permeability transition 
pore complex 7 <0.001 

GO:0031967 organelle envelope 1293 <0.001 
GO:0031975 envelope 1293 <0.001 

GO:0016235 aggresome 36 <0.001 

GO:0120111 neuron projection cytoplasm 90 <0.001 

GO:0031252 cell leading edge 424 <0.001 
GO:0098978 glutamatergic synapse 426 <0.001 

GO:0031410 cytoplasmic vesicle 2476 <0.001 

GO:0097708 intracellular vesicle 2481 <0.001 
GO:0031966 mitochondrial membrane 771 <0.001 

GO:0030426 growth cone 170 <0.001 

GO:0031264 death-inducing signalling complex 9 <0.001 

GO:0098796 membrane protein complex 1357 <0.001 
GO:0009898 cytoplasmic side of plasma membrane 175 <0.001 

GO:0030427 site of polarized growth 175 <0.001 

GO:0150034 distal axon 277 <0.001 

GO:0099512 supramolecular fibre 1034 <0.001 

GO:0099081 supramolecular polymer 1042 <0.001 

GO:0045121 membrane raft 285 <0.001 
GO:0098857 membrane microdomain 286 <0.001 

GO:0099080 supramolecular complex 1404 <0.001 

GO:0005740 mitochondrial envelope 820 <0.001 

GO:0044391 ribosomal subunit 189 <0.001 
GO:0048770 pigment granule 111 <0.001 

GO:0042470 melanosome 111 <0.001 

GO:1990909 Wnt signalosome 13 <0.001 
GO:0035861 site of double-strand break 86 0.001 

GO:1990234 transferase complex 892 0.001 

GO:0000781 chromosome, telomeric region 170 0.001 

GO:0043197 dendritic spine 171 0.001 
GO:0044309 neuron spine 175 0.001 

GO:0005694 chromosome 1942 0.001 

GO:1904115 axon cytoplasm 63 0.001 
GO:0051233 spindle midzone 37 0.002 

GO:0140535 intracellular protein-containing complex 951 0.002 

GO:0097342 ripoptosome 6 0.002 

GO:0031968 organelle outer membrane 249 0.003 
GO:0019867 outer membrane 251 0.003 

GO:0101031 protein folding chaperone complex 41 0.003 

GO:0016328 lateral plasma membrane 72 0.003 
GO:0030496 midbody 206 0.004 

GO:0090734 site of DNA damage 117 0.005 

GO:0005741 mitochondrial outer membrane 220 0.007 

GO:0000922 spindle pole 172 0.008 
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GO:0044294 dendritic growth cone 9 0.009 
GO:0046930 pore complex 26 0.010 

GO:0099568 cytoplasmic region 290 0.010 

GO:0097225 sperm midpiece 54 0.011 

GO:1902554 
serine/threonine protein kinase 
complex 136 0.014 

GO:0032838 
plasma membrane bounded cell 
projection cytoplasm 252 0.019 

GO:0030027 lamellipodium 201 0.023 

GO:0005768 endosome 1047 0.026 

GO:0034399 nuclear periphery 151 0.026 

GO:0099513 polymeric cytoskeletal fibre 793 0.030 
GO:0005874 microtubule 474 0.031 

GO:0043204 perikaryon 155 0.031 

GO:1902911 protein kinase complex 156 0.032 
GO:0044292 dendrite terminus 14 0.038 

GO:0005903 brush border 111 0.038 

GO:0019866 organelle inner membrane 566 0.041 

GO:0031616 spindle pole centrosome 15 0.047 

 
Table B11. GO-BP enriched for Functional Unit 6 of the LRRK2int 

Term ID Term name Term size Adjusted p-value 

GO:0060560 
developmental growth involved in 
morphogenesis 

238 

0.018 

GO:0030030 cell projection organization 1556 <0.001 

GO:0032989 cellular component morphogenesis 778 <0.001 

GO:0097581 lamellipodium organization 91 0.048 

GO:0040007 growth 933 0.008 

GO:0120039 
plasma membrane bounded cell 
projection morphogenesis 

651 

<0.001 

GO:0031175 neuron projection development 976 <0.001 

GO:0120036 
plasma membrane bounded cell 
projection organization 

1518 

<0.001 

GO:0048588 developmental cell growth 224 <0.001 

GO:0016049 cell growth 497 <0.001 

GO:0048666 neuron development 1130 <0.001 

GO:0032990 cell part morphogenesis 675 <0.001 

GO:0048812 neuron projection morphogenesis 635 <0.001 

GO:0030182 neuron differentiation 1401 <0.001 

GO:0022008 neurogenesis 1688 <0.001 

GO:0030032 lamellipodium assembly 73 0.006 

GO:0048858 cell projection morphogenesis 656 <0.001 

GO:0000902 cell morphogenesis 965 <0.001 

GO:0048699 generation of neurons 1473 <0.001 

GO:1990138 neuron projection extension 175 0.001 

 
Table B12. GO-CC enriched for Functional Unit 6 of the LRRK2int 
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Term ID Term name Term size Adjusted p-value 

GO:0005856 cytoskeleton 2407 <0.001 

GO:0042995 cell projection 2329 <0.001 

GO:0030054 cell junction 2214 <0.001 

GO:0120025 
plasma membrane bounded cell 
projection 2217 <0.001 

GO:0005925 focal adhesion 421 <0.001 

GO:0030055 cell-substrate junction 431 <0.001 

GO:0045202 synapse 1451 <0.001 

GO:0070161 anchoring junction 903 <0.001 

GO:0043005 neuron projection 1299 <0.001 

GO:0070062 extracellular exosome 2109 <0.001 

GO:1903561 extracellular vesicle 2133 <0.001 

GO:0065010 
extracellular membrane-bounded 
organelle 2134 <0.001 

GO:0043230 extracellular organelle 2134 <0.001 

GO:0030424 axon 641 <0.001 

GO:0031252 cell leading edge 424 <0.001 

GO:0036477 somatodendritic compartment 849 <0.001 

GO:0043025 neuronal cell body 500 <0.001 

GO:0015630 microtubule cytoskeleton 1388 <0.001 

GO:0098978 glutamatergic synapse 426 <0.001 

GO:0030425 dendrite 621 <0.001 

GO:0097447 dendritic tree 623 <0.001 

GO:0044297 cell body 567 <0.001 

GO:0098794 postsynapse 644 <0.001 

GO:0048471 perinuclear region of cytoplasm 733 <0.001 

GO:0150034 distal axon 277 <0.001 

GO:0031410 cytoplasmic vesicle 2476 <0.001 

GO:0097708 intracellular vesicle 2481 <0.001 

GO:0015629 actin cytoskeleton 501 <0.001 

GO:0099080 supramolecular complex 1404 <0.001 

GO:0099512 supramolecular fiber 1034 <0.001 

GO:0099081 supramolecular polymer 1042 <0.001 

GO:0030426 growth cone 170 <0.001 

GO:0030427 site of polarized growth 175 <0.001 

GO:0005903 brush border 111 <0.001 

GO:0099513 polymeric cytoskeletal fiber 793 <0.001 

GO:0098793 presynapse 561 <0.001 

GO:0030027 lamellipodium 201 <0.001 

GO:0005938 cell cortex 314 <0.001 

GO:0048770 pigment granule 111 <0.001 

GO:0042470 melanosome 111 <0.001 

GO:0098862 cluster of actin-based cell projections 167 <0.001 

GO:0005874 microtubule 474 <0.001 
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GO:0005815 microtubule organizing center 855 <0.001 

GO:0005911 cell-cell junction 517 <0.001 

GO:0016234 inclusion body 74 <0.001 

GO:0098590 plasma membrane region 1304 <0.001 

GO:0042641 actomyosin 77 <0.001 

GO:0043197 dendritic spine 171 <0.001 

GO:0031253 cell projection membrane 354 <0.001 

GO:0044309 neuron spine 175 <0.001 

GO:0001726 ruffle 181 <0.001 

GO:0120111 neuron projection cytoplasm 90 <0.001 

GO:1990909 Wnt signalosome 13 <0.001 

GO:0099503 secretory vesicle 1039 <0.001 

GO:0005768 endosome 1047 <0.001 

GO:0032279 asymmetric synapse 339 <0.001 

GO:0097517 contractile actin filament bundle 70 <0.001 

GO:0001725 stress fiber 70 <0.001 

GO:0005739 mitochondrion 1672 0.001 

GO:0098984 neuron to neuron synapse 371 0.001 

GO:0032432 actin filament bundle 78 0.001 

GO:0043209 myelin sheath 45 0.001 

GO:0014069 postsynaptic density 323 0.002 

GO:0045335 phagocytic vesicle 141 0.002 

GO:0030139 endocytic vesicle 342 0.003 

GO:0044294 dendritic growth cone 9 0.003 

GO:0005819 spindle 431 0.004 

GO:0099572 postsynaptic specialization 352 0.004 

GO:0098562 cytoplasmic side of membrane 213 0.004 

GO:0043204 perikaryon 155 0.004 

GO:0099568 cytoplasmic region 290 0.005 

GO:1904115 axon cytoplasm 63 0.005 

GO:0005885 Arp2/3 protein complex 11 0.007 

GO:0005929 cilium 747 0.007 

GO:0043679 axon terminus 112 0.007 

GO:0030141 secretory granule 871 0.009 

GO:0016328 lateral plasma membrane 72 0.010 

GO:0016235 aggresome 36 0.010 

GO:0101002 ficolin-1-rich granule 184 0.013 

GO:0032838 
plasma membrane bounded cell 
projection cytoplasm 252 0.013 

GO:0005794 Golgi apparatus 1613 0.014 

GO:0044292 dendrite terminus 14 0.014 

GO:0098845 postsynaptic endosome 14 0.014 

GO:0044306 neuron projection terminus 127 0.014 

GO:0005769 early endosome 428 0.019 

GO:0000322 storage vacuole 3 0.025 
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GO:0099073 mitochondrion-derived vesicle 3 0.025 

GO:0043195 terminal bouton 45 0.025 

GO:0005813 centrosome 647 0.031 

GO:0031143 pseudopodium 18 0.032 

GO:0098858 actin-based cell projection 219 0.039 

GO:0012506 vesicle membrane 1230 0.041 

GO:0098685 Schaffer collateral - CA1 synapse 97 0.043 

GO:0098588 bounding membrane of organelle 2160 0.045 

 
Table B13. GO-BP enriched for Functional Unit 7 of the LRRK2int 

Term ID Term name Term size Adjusted p-value 

GO:0046827 
positive regulation of protein export from 
nucleus 

18 

<0.001 

GO:0046825 regulation of protein export from nucleus 32 0.001 

GO:0032386 regulation of intracellular transport 335 <0.001 

GO:0017157 regulation of exocytosis 215 0.020 

GO:1903421 regulation of synaptic vesicle recycling 20 0.008 

GO:0046822 
regulation of nucleocytoplasmic 
transport 

110 

0.007 

GO:0070201 
regulation of establishment of protein 
localization 

523 

0.002 

GO:0046824 
positive regulation of nucleocytoplasmic 
transport 

61 

0.011 

GO:0060627 regulation of vesicle-mediated transport 538 <0.001 

GO:1904951 
positive regulation of establishment of 
protein localization 

315 

0.015 

GO:0051050 positive regulation of transport 905 0.004 

GO:0032388 
positive regulation of intracellular 
transport 

199 

0.001 

GO:0032880 regulation of protein localization 854 <0.001 

GO:0051049 regulation of transport 1754 <0.001 

GO:0060341 regulation of cellular localization 963 <0.001 

GO:0032879 regulation of localization 2101 <0.001 

 
Table B14. GO-CC enriched for Functional Unit 7 of the LRRK2int 

Term ID Term name Term size Adjusted p-value 

GO:0005856 cytoskeleton 2407 <0.001 

GO:0030054 cell junction 2214 <0.001 

GO:0045202 synapse 1451 <0.001 

GO:0015630 microtubule cytoskeleton 1388 <0.001 

GO:0070062 extracellular exosome 2109 <0.001 

GO:1903561 extracellular vesicle 2133 <0.001 

GO:0065010 
extracellular membrane-bounded 
organelle 2134 <0.001 

GO:0043230 extracellular organelle 2134 <0.001 

GO:0098794 postsynapse 644 <0.001 
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GO:0043005 neuron projection 1299 <0.001 

GO:0120025 
plasma membrane bounded cell 
projection 2217 <0.001 

GO:0031410 cytoplasmic vesicle 2476 <0.001 

GO:0097708 intracellular vesicle 2481 <0.001 

GO:0048471 perinuclear region of cytoplasm 733 <0.001 

GO:0042995 cell projection 2329 <0.001 

GO:0098978 glutamatergic synapse 426 <0.001 

GO:0098793 presynapse 561 <0.001 

GO:0044297 cell body 567 <0.001 

GO:0030424 axon 641 <0.001 

GO:0150034 distal axon 277 <0.001 

GO:0036477 somatodendritic compartment 849 <0.001 

GO:0099512 supramolecular fiber 1034 <0.001 

GO:0099081 supramolecular polymer 1042 <0.001 

GO:0030425 dendrite 621 <0.001 

GO:0097447 dendritic tree 623 <0.001 

GO:0099080 supramolecular complex 1404 <0.001 

GO:0005815 microtubule organizing centre 855 <0.001 

GO:0042470 melanosome 111 <0.001 

GO:0048770 pigment granule 111 <0.001 

GO:0005925 focal adhesion 421 <0.001 

GO:0070161 anchoring junction 903 <0.001 

GO:0030055 cell-substrate junction 431 <0.001 

GO:0099503 secretory vesicle 1039 <0.001 

GO:0005813 centrosome 647 <0.001 

GO:0016234 inclusion body 74 <0.001 

GO:0043025 neuronal cell body 500 <0.001 

GO:0005819 spindle 431 <0.001 

GO:0005768 endosome 1047 <0.001 

GO:0099513 polymeric cytoskeletal fibre 793 <0.001 

GO:0005874 microtubule 474 <0.001 

GO:0030426 growth cone 170 <0.001 

GO:0030139 endocytic vesicle 342 <0.001 

GO:0030427 site of polarized growth 175 <0.001 

GO:0045335 phagocytic vesicle 141 <0.001 

GO:0005739 mitochondrion 1672 <0.001 

GO:0012506 vesicle membrane 1230 <0.001 

GO:0098588 bounding membrane of organelle 2160 <0.001 

GO:0031252 cell leading edge 424 <0.001 

GO:0043197 dendritic spine 171 <0.001 

GO:0030141 secretory granule 871 <0.001 

GO:0070382 exocytic vesicle 228 <0.001 

GO:0044309 neuron spine 175 <0.001 

GO:0030659 cytoplasmic vesicle membrane 1213 <0.001 

GO:0005938 cell cortex 314 <0.001 
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GO:0005757 
mitochondrial permeability transition 
pore complex 7 <0.001 

GO:0098590 plasma membrane region 1304 <0.001 

GO:0101031 protein folding chaperone complex 41 <0.001 

GO:0008021 synaptic vesicle 212 <0.001 

GO:0043679 axon terminus 112 <0.001 

GO:0030133 transport vesicle 427 <0.001 

GO:0000922 spindle pole 172 <0.001 

GO:0044306 neuron projection terminus 127 <0.001 

GO:0015629 actin cytoskeleton 501 <0.001 

GO:0030496 midbody 206 <0.001 

GO:0005911 cell-cell junction 517 <0.001 

GO:0098562 cytoplasmic side of membrane 213 <0.001 

GO:0045121 membrane raft 285 <0.001 

GO:0098857 membrane microdomain 286 <0.001 

GO:0005773 vacuole 838 <0.001 

GO:0016235 aggresome 36 <0.001 

GO:0098984 neuron to neuron synapse 371 <0.001 

GO:0010008 endosome membrane 551 <0.001 

GO:0030670 phagocytic vesicle membrane 78 <0.001 

GO:0030672 synaptic vesicle membrane 127 <0.001 

GO:0099501 exocytic vesicle membrane 127 <0.001 

GO:0043195 terminal bouton 45 <0.001 

GO:0005802 trans-Golgi network 257 <0.001 

GO:0032279 asymmetric synapse 339 <0.001 

GO:0030666 endocytic vesicle membrane 194 <0.001 

GO:0120111 neuron projection cytoplasm 90 0.001 

GO:0099572 postsynaptic specialization 352 0.001 

GO:0098791 Golgi apparatus subcompartment 377 0.001 

GO:0046930 pore complex 26 0.001 

GO:0030658 transport vesicle membrane 232 0.002 

GO:0044294 dendritic growth cone 9 0.002 

GO:1904115 axon cytoplasm 63 0.002 

GO:0014069 postsynaptic density 323 0.002 

GO:0098796 membrane protein complex 1357 0.003 

GO:0001726 ruffle 181 0.003 

GO:0031984 organelle subcompartment 1505 0.003 

GO:0072686 mitotic spindle 184 0.004 

GO:0101002 ficolin-1-rich granule 184 0.004 

GO:0005764 lysosome 745 0.004 

GO:0000323 lytic vacuole 745 0.004 

GO:0005905 clathrin-coated pit 75 0.005 

GO:0051233 spindle midzone 37 0.005 

GO:1990909 Wnt signalosome 13 0.006 

GO:0030027 lamellipodium 201 0.006 

GO:0055037 recycling endosome 201 0.006 
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GO:0031975 envelope 1293 0.006 

GO:0031967 organelle envelope 1293 0.006 

GO:0044292 dendrite terminus 14 0.007 

GO:0098845 postsynaptic endosome 14 0.007 

GO:0005876 spindle microtubule 83 0.007 

GO:0099568 cytoplasmic region 290 0.008 

GO:0005794 Golgi apparatus 1613 0.009 

GO:0031616 spindle pole centrosome 15 0.009 

GO:1902494 catalytic complex 1781 0.010 

GO:0098858 actin-based cell projection 219 0.011 

GO:0005770 late endosome 305 0.012 

GO:0043204 perikaryon 155 0.014 

GO:0005798 Golgi-associated vesicle 96 0.015 

GO:0030016 myofibril 236 0.017 

GO:0030132 clathrin coat of coated pit 19 0.019 

GO:0055038 recycling endosome membrane 103 0.021 

GO:0043292 contractile fibre 245 0.022 

GO:0099522 cytosolic region 20 0.022 

GO:0097225 sperm midpiece 54 0.022 

GO:0030175 filopodium 107 0.025 

GO:0032838 
plasma membrane bounded cell 
projection cytoplasm 252 0.026 

GO:0031256 leading edge membrane 179 0.030 

GO:0031253 cell projection membrane 354 0.034 

GO:0140535 
intracellular protein-containing 
complex 951 0.045 
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Appendix C: GO-BPs enriched for topological clusters of the LRRK2net 

Table C1. GO-BP enriched for topological cluster A of the LRRK2net 

Term ID Term Name Term size Adjusted p-value Term Group 

GO:0006412 translation 743 <0.001 translation 

GO:0002181 cytoplasmic translation 159 <0.001 translation 
GO:0043043 peptide biosynthetic 

process 

772 

<0.001 

translation 

GO:0043604 amide biosynthetic process 905 <0.001 translation 

GO:0006518 peptide metabolic process 926 <0.001 translation 

GO:0034645 cellular macromolecule 
biosynthetic process 

1208 

<0.001 

translation 

GO:0006260 DNA replication 285 <0.001 translation 

GO:0043603 amide metabolic process 1204 <0.001 translation 

GO:1901566 organonitrogen compound 
biosynthetic process 

1805 

<0.001 

translation 

GO:0140694 non-membrane-bounded 
organelle assembly 

386 
<0.001 

translation 

GO:0042255 ribosome assembly 59 <0.001 translation 
GO:0042274 ribosomal small subunit 

biogenesis 

77 

<0.001 

translation 

GO:0000028 ribosomal small subunit 
assembly 

17 

<0.001 

translation 

GO:0030490 maturation of SSU-rRNA 54 <0.001 translation 

GO:0070925 organelle assembly 944 <0.001 translation 

GO:0042254 ribosome biogenesis 311 0.001 translation 

GO:0006364 rRNA processing 229 0.002 translation 

GO:0045005 DNA-templated DNA 
replication maintenance of 
fidelity 

56 

0.004 

translation 

GO:0045004 DNA replication 
proofreading 

2 

0.006 

translation 

GO:0006261 DNA-templated DNA 
replication 

162 

0.007 

translation 

GO:0000462 maturation of SSU-rRNA 
from tricistronic rRNA 
transcript (SSU-rRNA, 5.8S 
rRNA, LSU-rRNA) 

38 

0.009 

translation 

GO:0016072 rRNA metabolic process 268 0.010 translation 

GO:0006281 DNA repair 591 0.013 translation 

 
Table C2. GO-BP enriched for Topological Cluster B of the LRRK2net 

Term ID Term Name Term size Adjusted p-value Term Group 

GO:0043065 positive regulation of 
apoptotic process 

509 

<0.001 

cell death 
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GO:2001235 positive regulation of 
apoptotic signalling 
pathway 

130 

0.020 

cell death 

GO:0043068 positive regulation of 
programmed cell death 

522 

<0.001 

cell death 

GO:0062100 positive regulation of 
programmed necrotic cell 
death 

7 

0.042 

cell death 

GO:0010942 positive regulation of cell 
death 

588 

<0.001 

cell death 

GO:0097190 apoptotic signalling 
pathway 

597 

<0.001 

cell death 

GO:0097191 extrinsic apoptotic 
signalling pathway 

224 

<0.001 

cell death 

GO:0097193 intrinsic apoptotic signalling 
pathway 

299 

0.027 

cell death 

GO:0042981 regulation of apoptotic 
process 

1454 

<0.001 

cell death 

GO:2001233 regulation of apoptotic 
signalling pathway 

366 

<0.001 

cell death 

GO:0043067 regulation of programmed 
cell death 

1483 

<0.001 

cell death 

GO:0062098 regulation of programmed 
necrotic cell death 

28 

<0.001 

cell death 

GO:0043069 negative regulation of 
programmed cell death 

900 

0.005 

cell death 

GO:0097300 programmed necrotic cell 
death 

46 

<0.001 

cell death 

GO:0070266 necroptotic process 39 <0.001 cell death 

GO:0010941 regulation of cell death 1638 <0.001 cell death 

GO:0010939 regulation of necrotic cell 
death 

42 

<0.001 

cell death 

GO:0060548 negative regulation of cell 
death 

1001 

0.011 

cell death 

GO:0070265 necrotic cell death 62 <0.001 cell death 

GO:0006915 apoptotic process 1894 <0.001 cell death 

GO:0060544 regulation of necroptotic 
process 

25 

<0.001 

cell death 

GO:0060546 negative regulation of 
necroptotic process 

16 

0.001 

cell death 

GO:0060545 positive regulation of 
necroptotic process 

6 

0.030 

cell death 

GO:0012501 programmed cell death 1948 <0.001 cell death 

GO:0062099 negative regulation of 
programmed necrotic cell 
death 

17 

0.001 

cell death 
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GO:0008219 cell death 2113 <0.001 cell death 

GO:2001236 regulation of extrinsic 
apoptotic signalling 
pathway 

153 

0.037 

cell death 

GO:0060547 negative regulation of 
necrotic cell death 

22 

0.003 

cell death 

GO:2001238 positive regulation of 
extrinsic apoptotic 
signalling pathway 

50 

0.038 

cell death 

GO:0043122 regulation of I-kappaB 
kinase/NF-kappaB signalling 

254 

<0.001 

cell death 

GO:0043123 positive regulation of I-
kappaB kinase/NF-kappaB 
signalling 

191 

<0.001 

cell death 

GO:0043124 negative regulation of I-
kappaB kinase/NF-kappaB 
signalling 

46 

0.029 

cell death 

GO:0001959 regulation of cytokine-
mediated signalling 
pathway 

152 

0.001 

cell death 

GO:1902531 regulation of intracellular 
signal transduction 

1725 

0.001 

cell death 

GO:0009967 positive regulation of signal 
transduction 

1528 

0.003 

cell death 

GO:0009968 negative regulation of signal 
transduction 

1248 

0.006 

cell death 

GO:1902533 positive regulation of 
intracellular signal 
transduction 

995 

0.011 

cell death 

GO:1902532 negative regulation of 
intracellular signal 
transduction 

514 

0.025 

cell death 

GO:0023056 positive regulation of 
signalling 

1727 

0.010 

cell death 

GO:0023057 negative regulation of 
signalling 

1353 

0.011 

cell death 

GO:0010647 positive regulation of cell 
communication 

1729 

0.010 

cell death 

GO:0010648 negative regulation of cell 
communication 

1353 

0.011 

cell death 

GO:0010803 regulation of tumor necrosis 
factor-mediated signalling 
pathway 

54 

0.001 

cell death 

GO:1903265 positive regulation of tumor 
necrosis factor-mediated 
signalling pathway 

12 

<0.001 

cell death 
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GO:0001961 positive regulation of 
cytokine-mediated 
signalling pathway 

57 

0.001 

cell death 

GO:0060760 positive regulation of 
response to cytokine 
stimulus 

64 

0.001 

cell death 

GO:0060759 regulation of response to 
cytokine stimulus 

163 

0.001 

cell death 

GO:0048585 negative regulation of 
response to stimulus 

1611 

0.005 

cell death 

GO:0044093 positive regulation of 
molecular function 

1580 

<0.001 

protein 
metabolism 

GO:0043085 positive regulation of 
catalytic activity 

1181 

<0.001 

protein 
metabolism 

GO:0051091 positive regulation of DNA-
binding transcription factor 
activity 

268 

0.016 

protein 
metabolism 

GO:0050790 regulation of catalytic 
activity 

2356 

0.022 

protein 
metabolism 

GO:0045862 positive regulation of 
proteolysis 

369 

<0.001 

protein 
metabolism 

GO:0010952 positive regulation of 
peptidase activity 

189 

0.003 

protein 
metabolism 

GO:0051345 positive regulation of 
hydrolase activity 

582 

0.003 

protein 
metabolism 

GO:2001056 positive regulation of 
cysteine-type 
endopeptidase activity 

143 

0.001 

protein 
metabolism 

GO:0043280 positive regulation of 
cysteine-type 
endopeptidase activity 
involved in apoptotic 
process 

124 

0.016 

protein 
metabolism 

GO:0030162 regulation of proteolysis 737 

0.016 

protein 
metabolism 

GO:0010950 positive regulation of 
endopeptidase activity 

169 

0.002 

protein 
metabolism 

GO:0032075 positive regulation of 
nuclease activity 

7 

0.042 

protein 
metabolism 

GO:2000116 regulation of cysteine-type 
endopeptidase activity 

234 

0.008 

protein 
metabolism 

GO:0051092 positive regulation of NF-
kappaB transcription factor 
activity 

157 

0.001 

protein 
metabolism 

GO:0034976 response to endoplasmic 
reticulum stress 

259 

0.013 

response to 
stress 
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GO:0071345 cellular response to 
cytokine stimulus 

823 

<0.001 

response to 
stress 

GO:0071356 cellular response to tumor 
necrosis factor 

225 

<0.001 

response to 
stress 

GO:0019221 cytokine-mediated 
signalling pathway 

480 

0.017 

response to 
stress 

GO:0033209 tumor necrosis factor-
mediated signalling 
pathway 

105 

<0.001 

response to 
stress 

GO:0034612 response to tumor necrosis 
factor 

245 

<0.001 

response to 
stress 

GO:0034097 response to cytokine 914 

<0.001 

response to 
stress 

GO:0031098 stress-activated protein 
kinase signalling cascade 

246 

0.010 

response to 
stress 

GO:0062197 cellular response to 
chemical stress 

332 

0.002 

response to 
stress 

GO:0034599 cellular response to 
oxidative stress 

275 

0.018 

response to 
stress 

GO:0033554 cellular response to stress 1941 

0.003 

response to 
stress 

GO:0071310 cellular response to organic 
substance 

1993 

0.004 

response to 
stress 

 
Table C3. GO-BP enriched for Topological Cluster C of the LRRK2net 

Term ID Term Name Term size Adjusted p-value Term Group 

GO:0006897 endocytosis 
660 

0.045 

Vesicular 
transport 

GO:2000781 
positive regulation of 
double-strand break repair 

86 

0.034 
Translation 

GO:0010569 
regulation of double-strand 
break repair via 
homologous recombination 

73 

0.018 

Translation 

GO:1905168 

positive regulation of 
double-strand break repair 
via homologous 
recombination 

39 

0.001 

Translation 

GO:0045911 
positive regulation of DNA 
recombination 

71 

0.016 
Translation 

GO:0099003 
vesicle-mediated transport 
in synapse 

217 

0.005 

Vesicular 
transport 

GO:0099504 synaptic vesicle cycle 
196 

0.003 

Vesicular 
transport 

GO:0140238 presynaptic endocytosis 
67 

<0.001 

Vesicular 
transport 
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GO:0048488 synaptic vesicle endocytosis 
67 

<0.001 

Vesicular 
transport 

GO:0036465 synaptic vesicle recycling 
80 

<0.001 

Vesicular 
transport 

GO:0120039 
plasma membrane bounded 
cell projection 
morphogenesis 

651 

0.041 

Cytoskeleton 
organisation 

GO:1990138 
neuron projection 
extension 

175 

0.032 

Cytoskeleton 
organisation 

GO:0048812 
neuron projection 
morphogenesis 

635 

0.034 

Cytoskeleton 
organisation 

GO:0000902 cell morphogenesis 
965 

0.015 

Cytoskeleton 
organisation 

GO:0048858 
cell projection 
morphogenesis 

656 

0.044 

Cytoskeleton 
organisation 

GO:0031529 ruffle organization 
58 

0.007 

Cytoskeleton 
organisation 

GO:0120036 
plasma membrane bounded 
cell projection organization 

1518 

0.004 

Cytoskeleton 
organisation 

GO:0030030 cell projection organization 
1556 

0.005 

Cytoskeleton 
organisation 

GO:0120034 
positive regulation of 
plasma membrane bounded 
cell projection assembly 

112 

0.004 

Cytoskeleton 
organisation 

GO:1902743 
regulation of lamellipodium 
organization 

53 

<0.001 

Cytoskeleton 
organisation 

GO:0090066 
regulation of anatomical 
structure size 

511 

<0.001 

Cytoskeleton 
organisation 

GO:0030032 lamellipodium assembly 
73 

<0.001 

Cytoskeleton 
organisation 

GO:0097581 lamellipodium organization 
91 

<0.001 

Cytoskeleton 
organisation 

GO:0010591 
regulation of lamellipodium 
assembly 

41 

<0.001 

Cytoskeleton 
organisation 

GO:0044087 
regulation of cellular 
component biogenesis 

955 

<0.001 

Cytoskeleton 
organisation 

GO:0043254 
regulation of protein-
containing complex 
assembly 

409 

0.001 

Cytoskeleton 
organisation 

GO:0051128 
regulation of cellular 
component organization 

2365 

<0.001 

Cytoskeleton 
organisation 

GO:0010592 
positive regulation of 
lamellipodium assembly 

29 

<0.001 

Cytoskeleton 
organisation 

GO:1902745 
positive regulation of 
lamellipodium organization 

37 

<0.001 

Cytoskeleton 
organisation 
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GO:0032271 
regulation of protein 
polymerization 

203 

<0.001 

Cytoskeleton 
organisation 

GO:0051258 protein polymerization 
284 

<0.001 

Cytoskeleton 
organisation 

GO:0034314 
Arp2/3 complex-mediated 
actin nucleation 

47 

<0.001 

Cytoskeleton 
organisation 

GO:0032535 
regulation of cellular 
component size 

373 

<0.001 

Cytoskeleton 
organisation 

GO:0030833 
regulation of actin filament 
polymerization 

142 

<0.001 

Cytoskeleton 
organisation 

GO:0033043 
regulation of organelle 
organization 

1189 

<0.001 

Cytoskeleton 
organisation 

GO:1902903 
regulation of 
supramolecular fiber 
organization 

381 

<0.001 

Cytoskeleton 
organisation 

GO:0032970 
regulation of actin filament-
based process 

404 

<0.001 

Cytoskeleton 
organisation 

GO:0030041 
actin filament 
polymerization 

172 

<0.001 

Cytoskeleton 
organisation 

GO:0008064 
regulation of actin 
polymerization or 
depolymerization 

161 

<0.001 

Cytoskeleton 
organisation 

GO:0030832 
regulation of actin filament 
length 

164 

<0.001 

Cytoskeleton 
organisation 

GO:0110053 
regulation of actin filament 
organization 

276 

<0.001 

Cytoskeleton 
organisation 

GO:0032956 
regulation of actin 
cytoskeleton organization 

364 

<0.001 

Cytoskeleton 
organisation 

GO:0051493 
regulation of cytoskeleton 
organization 

541 

<0.001 

Cytoskeleton 
organisation 

GO:0099188 
postsynaptic cytoskeleton 
organization 

12 

0.002 

Cytoskeleton 
organisation 

GO:0007010 cytoskeleton organization 
1507 

<0.001 

Cytoskeleton 
organisation 

GO:0097435 
supramolecular fiber 
organization 

814 

<0.001 

Cytoskeleton 
organisation 

GO:0098974 
postsynaptic actin 
cytoskeleton organization 

10 

0.001 

Cytoskeleton 
organisation 

GO:0030036 
actin cytoskeleton 
organization 

727 

<0.001 

Cytoskeleton 
organisation 

GO:0030029 
actin filament-based 
process 

813 

<0.001 

Cytoskeleton 
organisation 

GO:0045010 actin nucleation 
62 

<0.001 

Cytoskeleton 
organisation 

GO:0008154 
actin polymerization or 
depolymerization 

202 

<0.001 

Cytoskeleton 
organisation 
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GO:0007015 actin filament organization 
452 

<0.001 

Cytoskeleton 
organisation 

 
Table C4. GO-BP enriched for Topological Cluster D of the LRRK2net 

Term ID Term Name 
Term size Adjusted 

p-value 
Term Group 

GO:0008219 cell death 2113 0.003 Cell death 

GO:0006915 apoptotic process 1894 0.005 Cell death 

GO:0012501 programmed cell death 1948 0.001 Cell death 

GO:0010942 
positive regulation of cell 
death 

588 

0.002 
Cell death 

GO:0010941 regulation of cell death 1638 0.001 Cell death 

GO:0043065 
positive regulation of 
apoptotic process 

509 

0.006 
Cell death 

GO:0042981 
regulation of apoptotic 
process 

1454 

0.002 
Cell death 

GO:0043068 
positive regulation of 
programmed cell death 

522 

0.001 
Cell death 

GO:0043067 
regulation of programmed 
cell death 

1483 

<0.001 
Cell death 

GO:0071705 
nitrogen compound 
transport 

2252 

0.040 

Protein 
localisation 

GO:1903829 
positive regulation of 
protein localization 

459 

0.033 

Protein 
localisation 

GO:0015031 protein transport 
1788 

0.017 

Protein 
localisation 

GO:0045184 
establishment of protein 
localization 

1898 

0.032 

Protein 
localisation 

GO:1903078 
positive regulation of 
protein localization to 
plasma membrane 

60 

0.009 

Protein 
localisation 

GO:1904377 
positive regulation of 
protein localization to cell 
periphery 

68 

0.014 

Protein 
localisation 

GO:1904375 
regulation of protein 
localization to cell periphery 

125 

0.006 

Protein 
localisation 

GO:0006886 
intracellular protein 
transport 

1095 

0.005 

Protein 
localisation 

GO:0046907 intracellular transport 
1806 

0.003 

Protein 
localisation 

GO:0051649 
establishment of localization 
in cell 

2340 

0.002 

Protein 
localisation 

GO:0051170 import into nucleus 
170 

0.027 

Protein 
localisation 

GO:0006913 nucleocytoplasmic transport 
330 

<0.001 

Protein 
localisation 
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GO:0051169 nuclear transport 
330 

<0.001 

Protein 
localisation 

GO:0006606 protein import into nucleus 
165 

0.024 

Protein 
localisation 

GO:0034504 
protein localization to 
nucleus 

309 

<0.001 

Protein 
localisation 

GO:0043603 amide metabolic process 
1204 

<0.001 

Protein 
Metabolism 

GO:0050790 
regulation of catalytic 
activity 

2356 

0.013 

Protein 
Metabolism 

GO:0043086 
negative regulation of 
catalytic activity 

768 

0.014 

Protein 
Metabolism 

GO:0044092 
negative regulation of 
molecular function 

1115 

0.006 

Protein 
Metabolism 

GO:0045859 
regulation of protein kinase 
activity 

661 

0.004 

Protein 
Metabolism 

GO:0001934 
positive regulation of 
protein phosphorylation 

745 

0.001 

Protein 
Metabolism 

GO:0042327 
positive regulation of 
phosphorylation 

822 

0.003 

Protein 
Metabolism 

GO:0010563 
negative regulation of 
phosphorus metabolic 
process 

420 

0.018 

Protein 
Metabolism 

GO:0010562 
positive regulation of 
phosphorus metabolic 
process 

907 

0.007 

Protein 
Metabolism 

GO:0051174 
regulation of phosphorus 
metabolic process 

1401 

<0.001 

Protein 
Metabolism 

GO:0045936 
negative regulation of 
phosphate metabolic 
process 

419 

0.018 

Protein 
Metabolism 

GO:0045937 
positive regulation of 
phosphate metabolic 
process 

907 

0.007 

Protein 
Metabolism 

GO:0042325 
regulation of 
phosphorylation 

1244 

<0.001 

Protein 
Metabolism 

GO:0019220 
regulation of phosphate 
metabolic process 

1400 

<0.001 

Protein 
Metabolism 

GO:0043549 regulation of kinase activity 
775 

0.002 

Protein 
Metabolism 

GO:0051348 
negative regulation of 
transferase activity 

271 

0.001 

Protein 
Metabolism 

GO:0051338 
regulation of transferase 
activity 

908 

<0.001 

Protein 
Metabolism 

GO:0031401 
positive regulation of 
protein modification process 

1005 

0.017 

Protein 
Metabolism 
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GO:0001932 
regulation of protein 
phosphorylation 

1101 

<0.001 

Protein 
Metabolism 

GO:0031399 
regulation of protein 
modification process 

1540 

<0.001 

Protein 
Metabolism 

GO:0001933 
negative regulation of 
protein phosphorylation 

320 

0.045 

Protein 
Metabolism 

GO:0031400 
negative regulation of 
protein modification process 

493 

<0.001 

Protein 
Metabolism 

GO:0006518 peptide metabolic process 926 <0.001 Translation 

GO:0042273 
ribosomal large subunit 
biogenesis 

76 

0.022 
Translation 

GO:0042255 ribosome assembly 59 0.008 Translation 

GO:0042254 ribosome biogenesis 311 0.038 Translation 

GO:1901566 
organonitrogen compound 
biosynthetic process 

1805 

<0.001 
Translation 

GO:0034645 
cellular macromolecule 
biosynthetic process 

1208 

<0.001 
Translation 

GO:0043043 peptide biosynthetic process 772 <0.001 Translation 
GO:0043604 amide biosynthetic process 905 <0.001 Translation 

GO:0002181 cytoplasmic translation 159 <0.001 Translation 

GO:0006412 translation 743 <0.001 Translation 

 
Table C5. GO-BP enriched for Topological Cluster E of the LRRK2net 

Term ID Term Name 
Term size Adjusted 

p-value 
Term Group 

GO:0010564 
regulation of cell cycle 
process 

720 

0.020 
Cell cycle 

GO:0051726 regulation of cell cycle 1124 0.033 Cell cycle 

GO:0000226 
microtubule cytoskeleton 
organization 

652 

0.009 
Cell cycle 

GO:0007017 microtubule-based process 939 0.005 Cell cycle 

GO:1903047 mitotic cell cycle process 773 0.038 Cell cycle 

GO:0007051 spindle organization 199 0.022 Cell cycle 

GO:0000278 mitotic cell cycle 929 0.031 Cell cycle 

GO:0022402 cell cycle process 1270 0.004 Cell cycle 

GO:0007049 cell cycle 1818 <0.001 Cell cycle 

GO:0015031 protein transport 
1788 

0.040 

Protein 
localisation 

GO:0051170 import into nucleus 
170 

0.009 

Protein 
localisation 

GO:0006913 nucleocytoplasmic transport 
330 

<0.001 

Protein 
localisation 

GO:0034502 
protein localization to 
chromosome 

117 

0.024 

Protein 
localisation 
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GO:0033365 
protein localization to 
organelle 

1144 

<0.001 

Protein 
localisation 

GO:0006886 
intracellular protein 
transport 

1095 

0.001 

Protein 
localisation 

GO:0051169 nuclear transport 
330 

<0.001 

Protein 
localisation 

GO:0051649 
establishment of localization 
in cell 

2340 

<0.001 

Protein 
localisation 

GO:0046907 intracellular transport 
1806 

<0.001 

Protein 
localisation 

GO:0045184 
establishment of protein 
localization 

1898 

0.001 

Protein 
localisation 

GO:0006606 protein import into nucleus 
165 

0.007 

Protein 
localisation 

GO:0034504 
protein localization to 
nucleus 

309 

<0.001 

Protein 
localisation 

GO:0051338 
regulation of transferase 
activity 

908 

0.025 

Protein 
metabolism 

GO:0051603 
proteolysis involved in 
protein catabolic process 

799 

0.007 

Protein 
metabolism 

GO:0043632 
modification-dependent 
macromolecule catabolic 
process 

713 

0.002 

Protein 
metabolism 

GO:0019941 
modification-dependent 
protein catabolic process 

701 

0.002 

Protein 
metabolism 

GO:0006511 
ubiquitin-dependent protein 
catabolic process 

691 

0.002 

Protein 
metabolism 

GO:0043161 
proteasome-mediated 
ubiquitin-dependent protein 
catabolic process 

455 

<0.001 

Protein 
metabolism 

GO:0010498 
proteasomal protein 
catabolic process 

526 

0.001 

Protein 
metabolism 

GO:0006508 proteolysis 
1787 

0.040 

Protein 
metabolism 

GO:0044265 
cellular macromolecule 
catabolic process 

1030 

0.002 

Protein 
metabolism 

GO:0051438 
regulation of ubiquitin-
protein transferase activity 

59 

0.032 

Protein 
metabolism 

GO:0090175 
regulation of establishment 
of planar polarity 

57 

0.028 

Response to 
stress 

GO:0033554 cellular response to stress 
1941 

0.024 

Response to 
stress 

GO:0008630 
intrinsic apoptotic signalling 
pathway in response to DNA 
damage 

108 

0.016 

Response to 
stress 



 273 

GO:0006974 
cellular response to DNA 
damage stimulus 

881 

0.019 

Response to 
stress 

GO:0090179 
planar cell polarity pathway 
involved in neural tube 
closure 

12 

0.007 

Response to 
stress 

GO:0090178 
regulation of establishment 
of planar polarity involved in 
neural tube closure 

13 

0.009 

Response to 
stress 

GO:0060071 
Wnt signalling pathway, 
planar cell polarity pathway 

53 

0.021 

Response to 
stress 

GO:0035567 
non-canonical Wnt signalling 
pathway 

67 

0.002 

Response to 
stress 

GO:0072332 
intrinsic apoptotic signalling 
pathway by p53 class 
mediator 

82 

0.004 

Response to 
stress 

GO:0072331 
signal transduction by p53 
class mediator 

175 

0.001 

Response to 
stress 

 
Table C6. GO-BP enriched for Topological Cluster F of the LRRK2net 
 

Term ID Term Name 
Term size Adjusted 

p-value 
Term Group 

GO:0000423 Autophagy 37 0.003 Autophagy 
GO:0061912 selective autophagy 89 0.044 Autophagy 

GO:0006914 autophagy 562 0.043 Autophagy 

GO:0061919 
process utilizing autophagic 
mechanism 

562 

0.043 
Autophagy 

GO:0007005 mitochondrion organization 539 0.035 Autophagy 

GO:0098780 
response to mitochondrial 
depolarisation 

21 

0.001 
Autophagy 

GO:1904923 

regulation of autophagy of 
mitochondrion in response 
to mitochondrial 
depolarization 

15 

<0.001 

Autophagy 

GO:1904925 

positive regulation of 
autophagy of 
mitochondrion in response 
to mitochondrial 
depolarization 

14 

<0.001 

Autophagy 

GO:0008053 mitochondrial fusion 29 0.001 Autophagy 

GO:0048284 organelle fusion 154 <0.001 Autophagy 

GO:0061734 

parkin-mediated 
stimulation of Autophagy in 
response to mitochondrial 
depolarization 

6 

<0.001 

Autophagy 
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GO:0098779 

positive regulation of 
Autophagy in response to 
mitochondrial 
depolarization 

10 

<0.001 

Autophagy 

 
Table C7. GO-BP enriched for Topological Cluster G 

Term ID Term Name 
Term size Adjusted 

p-value 
Term Group 

GO:0061919 
process utilizing autophagic 

mechanism 

562 

0.011 
Autophagy 

GO:0071211 
protein targeting to vacuole 

involved in autophagy 

4 

0.017 
Autophagy 

GO:0006914 autophagy 562 0.011 Autophagy 

GO:0061740 

protein targeting to 
lysosome involved in 
chaperone-mediated 

autophagy 

3 

0.008 

Autophagy 

GO:0061684 
chaperone-mediated 

autophagy 

16 

<0.001 
Autophagy 

GO:0051084 
'de novo' post-translational 

protein folding 

36 

0.024 

Protein 
metabolism 

GO:0018108 
peptidyl-tyrosine 
phosphorylation 

379 

0.014 

Protein 
metabolism 

GO:0018212 
peptidyl-tyrosine 

modification 

381 

0.015 

Protein 
metabolism 

GO:0009896 
positive regulation of 

catabolic process 

521 

<0.001 

Protein 
metabolism 

GO:0009894 
regulation of catabolic 

process 

992 

0.005 

Protein 
metabolism 

GO:0051085 
chaperone cofactor-

dependent protein refolding 

31 

0.015 

Protein 
metabolism 

GO:0031396 
regulation of protein 

ubiquitination 

210 

0.013 

Protein 
metabolism 

GO:1903320 

regulation of protein 
modification by small protein 

conjugation or removal 

252 

0.001 

Protein 
metabolism 

GO:0006458 'de novo' protein folding 
40 

0.033 

Protein 
metabolism 

GO:0061077 
chaperone-mediated protein 

folding 

70 

0.004 

Protein 
metabolism 

GO:0006457 protein folding 
219 

<0.001 

Protein 
metabolism 
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Appendix D: Univariate Logistic analyses on the association between 

mRNA levels of LRRK2 interactors and cohort phenotype (sPD/LRRK2-

PD) 

Table D1. Univariate logistic analyses on LRRK2 interactor expression levels and cohort 
phenotype 
 

Interactor OR 
95% CI 

p-value 
Upper Limit Lower Limit 

TUBB6 0.18 0.06 0.49 0.001 

PRKN 0.18 0.06 0.56 0.003 

BAG3 0.18 0.05 0.61 0.006 

ACTA2 0.31 0.13 0.77 0.012 

DVL1 0.17 0.04 0.68 0.012 

HSPA1A 3.23 1.25 8.34 0.016 

SLC25A6 0.24 0.07 0.84 0.025 

MMS19 0.23 0.06 0.83 0.025 

LMNB1 2.92 1.14 7.44 0.025 

RPS2 0.29 0.10 0.86 0.026 

CDK2 0.22 0.06 0.86 0.029 

TUBG1 0.25 0.07 0.90 0.035 

STUB1 0.24 0.06 0.91 0.036 

SNCA 0.45 0.21 0.96 0.040 

SPATS2 0.28 0.07 1.11 0.071 

LRRK2 2.24 0.91 5.55 0.080 

PSMC6 2.36 0.87 6.44 0.093 

TRADD 0.34 0.10 1.21 0.097 

RAB5B 0.36 0.11 1.24 0.106 

RPS27 1.59 0.88 2.89 0.125 

RACK1 0.42 0.13 1.29 0.127 

RPLP0 0.47 0.18 1.25 0.131 

BAX 0.40 0.11 1.43 0.158 

RPL11 1.70 0.79 3.65 0.172 

TUBA1C 0.42 0.12 1.46 0.172 

RPL23 1.54 0.82 2.87 0.178 

RPL13 0.51 0.19 1.40 0.193 

RPL34 1.50 0.80 2.83 0.207 

EEF2 0.48 0.15 1.52 0.210 

CYREN 0.43 0.11 1.64 0.218 

ACTG1 0.50 0.16 1.55 0.231 

CFAP20 0.47 0.14 1.65 0.239 



 276 

RPS15A 1.52 0.75 3.07 0.243 

HSPA4 1.87 0.64 5.43 0.251 

DNM1 0.68 0.34 1.33 0.258 

KPNB1 1.94 0.60 6.30 0.272 

USP39 0.50 0.14 1.84 0.297 

YWHAB 1.78 0.60 5.30 0.302 

EPRS1 1.69 0.62 4.61 0.304 

RAB8A 0.52 0.14 1.89 0.320 

MAPK3 0.57 0.18 1.74 0.320 

RBIS 1.57 0.62 3.95 0.337 

RIF1 1.63 0.59 4.52 0.344 

RPL9 1.33 0.72 2.48 0.364 

RPS3A 1.30 0.73 2.31 0.377 

HS71B 0.63 0.23 1.76 0.381 

BAG5 1.62 0.53 4.95 0.398 

ZFAND5 1.58 0.54 4.58 0.403 

RPL30 1.39 0.64 3.03 0.407 

HSP90AB1 1.62 0.51 5.12 0.409 

OPA1 1.52 0.56 4.10 0.410 

ITGB3BP 1.49 0.57 3.93 0.417 

PRKCZ 0.56 0.13 2.33 0.421 

RPS13 1.43 0.59 3.48 0.426 

TUBA1A 0.63 0.20 1.98 0.434 

RAC1 0.62 0.19 2.03 0.434 

RPL23A 1.42 0.56 3.62 0.458 

FADD 0.63 0.19 2.15 0.464 

HIF1A 1.48 0.52 4.27 0.465 

MAP2K4 1.47 0.51 4.23 0.470 

RAB5A 1.48 0.48 4.54 0.493 

ITCH 1.46 0.48 4.46 0.504 

CCDC43 1.43 0.50 4.05 0.505 

RGS2 1.33 0.57 3.10 0.506 

FANCM 1.40 0.49 3.98 0.527 

MBP 0.69 0.21 2.27 0.544 

LARP4 1.40 0.46 4.26 0.550 

EEF1A1 1.28 0.55 2.95 0.567 

PADI4 0.77 0.32 1.88 0.569 

CMAS 1.35 0.48 3.83 0.571 

RPS5 0.76 0.29 1.99 0.576 

RAB1A 1.34 0.47 3.84 0.583 

RPS7 1.20 0.62 2.35 0.587 

PRKDC 0.74 0.24 2.31 0.600 
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NUP107 1.30 0.46 3.73 0.620 

SKA3 0.82 0.36 1.84 0.625 

LAMP2 1.27 0.46 3.53 0.640 

FAM192A 0.78 0.23 2.67 0.694 

IQGAP1 1.23 0.43 3.54 0.700 

ARPC2 1.26 0.39 4.03 0.702 

RPL19 0.83 0.30 2.32 0.727 

AFG3L2 1.25 0.35 4.42 0.728 

RPL10A 0.85 0.34 2.14 0.729 

RPS11 1.18 0.46 2.99 0.731 

TMPO 1.19 0.43 3.24 0.738 

SRPK1 1.20 0.40 3.55 0.745 

RPS18 1.12 0.53 2.38 0.769 

RHBDD1 0.84 0.24 2.90 0.779 

RPS14 1.12 0.47 2.66 0.791 

DNAJB6 1.17 0.35 3.88 0.803 

TAOK3 1.16 0.34 3.90 0.815 

DNM1L 1.12 0.37 3.38 0.841 

RPSA 1.08 0.44 2.66 0.873 

SSR4 1.07 0.34 3.42 0.906 

RPS8 1.05 0.43 2.53 0.921 

TMOD3 1.06 0.32 3.50 0.930 

RPL36A 1.04 0.31 3.48 0.949 

TOR1AIP1 0.97 0.31 3.00 0.954 

ATP5MG 0.99 0.36 2.75 0.992 

GSK3B 1.00 0.30 3.38 1.000 

Abbreviations: OR: Odd Ratio; CI: Confidence Interval 
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