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Abstract

Background: Mutations in LRRK2 are the most common genetic cause of familial Parkinson’s
disease (PD). However, the physiological/pathological roles of LRRK2 are still unclear. This
project aims at collecting the vast data of LRRK2 research and integrating them in a
homogeneous, computational model to describe LRRK2’s activity in physiological and
pathological pathways. Method: The protein interactome of LRRK2 was built in consecutive
steps: 1) peer-reviewed protein-protein interactions (PPIs) were derived to define the general
LRRK2 interactome (LRRK2int); 2) interactions among LRRK2 interactors were derived to
construct the LRRK2-centred protein-protein interactions network (LRRK2net); 3) topological
analysis was performed on the LRRK2..t to identify clusters of LRRK2 interactors with high-
density PPls; 4) each topological cluster was functionally annotated; 5) the LRRK2net were then
merged with transcriptomic data of healthy human tissues to define the tissue specificity
LRRK2 interactors; 6) the LRRK2,et was merged with transcriptomic and genomic data of
patients with sporadic PD, LRRK2 genetic PD and healthy controls to investigate the molecular
mechanisms of the 2 types of PD. Results: A total of 418 proteins were included in the LRRK2jnt,
involving a range of different protein families. PPIs among these interactors formed a scale-
free network, in which 7 topological clusters with biological significance were identified,
associated with ribosomal biosynthesis, cytoskeleton dynamics, synaptic transport,
mitophagy and protein metabolism. LRRK2 interactors presented distinct expression
signatures and functional patterns in the brain and the periphery. Of note, a striatal unit of
putamen, caudate and nucleus accumbens was identified where LRRK2 interactors presented
the highest co-expression with LRRK2 and similar expression profiles. At last, PD-associated
expression analysis identified 100 LRRK2 interactors with significant differential expression in
PD cases vs. control. Conclusion: This study defined a comprehensive protein interactome of
LRRK2 with high tissue specificity and substantial association with sporadic PD and LRRK2-
related PD.



Impact Statement

This study offers a comprehensive exploration of the protein interactome associated with
LRRK2, a protein closely implicated in Parkinson's disease (PD) and other inflammatory
conditions like Crohn’s disease (CD). The generated LRRK2 interactome was meticulously
annotated to unveil a "functional core," comprising a conserved list of LRRK2 interactors
participating across diverse biological processes enriched in the LRRK2 interactome
(LRRK2int). This functional core represents the foundational elements of the LRRK2 functional

network and highlights critical players in LRRK2-associated signalling pathways.

Moreover, PPIs among LRRK2 interactors were integrated into a network model, unveiling a
"topological core" comprised of highly-centred proteins forming the structural backbone of
the LRRK2 interaction network. The combination of the "functional core" and "topological
core," offers a concise list of potential hubs in LRRK2 signalling pathways, presenting
promising avenues for therapeutic intervention in both sporadic PD (sPD) and LRRK2-PD.
Identifying these hubs can guide targeted drug development strategies, focusing on key

players in the intricate network of LRRK2-mediated processes.

Furthermore, the study detected 7 topological clusters within the LRRK2 network, each
enriched for distinct biological functions. These clusters serve as valuable starting points for
pathway modelling, facilitating a deeper understanding of the player implicated in specific
LRRK2-mediated signalling cascades associated with functions such as ribosomal biosynthesis,
cytoskeleton dynamics, synaptic transport, mitophagy, and protein metabolism. Exploring
these clusters provides insights into the multifaceted roles of LRRK2 in cellular processes and

helps unravel the intricacies of its functional contributions.

The investigation also emphasizes the tissue-specificity of the LRRK2 interactome,
highlighting the need to differentiate LRRK2's role in the brain and peripheral tissues. This
insight is crucial for LRRK2-focused research and targeted drug development, acknowledging
the distinct functions and implications of LRRK2 in different tissues. The study suggests the
development of a "trimmed-LRRK2int" by filtering the general LRRK2 interactome based on

expression and co-expression levels in each tissue. This refined dataset enhances the tissue-



specificity of functional research, reducing complexity and focusing on key participants in

LRRK2 signalling pathways within specific tissues.

Additionally, the study provides novel insights into the early-stages of PD pathology by
identifying alterations in LRRK2 interactors in both the sPD and LRRK2-PD conditions. While
further research is warranted to validate these changes, they offer a foundation for the
understanding of the molecular differences of sporadic vs familial PD (which are currently
considered as one single disease) and aid in the development of potential therapeutic
strategies tailored to sporadic and LRRK2-associated Parkinson's disease. Overall, this
research significantly contributes to our understanding of LRRK2's role in health and disease,
providing a roadmap for future investigations and therapeutic developments in the realm of

neurodegenerative disorders.
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Introduction

1.1 LRRK2 (Leucine-rich Repeat Kinase 2)

LRRK2 is a is a large, multifunctional protein possessing both kinase and GTPase enzymatic
domains. In 2004, mutations in the LRRK2 gene were firstly associated with familial
Parkinson’s disease (PD) (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). Since then,
considerable efforts have been made to understand the exact functions of LRRK2 in the
physiological and pathological scenarios. It has been associated with a wide range of cellular
processes, such as autophagy, cytoskeleton organisation and immune response. However,
due to both its complex structure and its multifaceted involvement in the regulation of

cellular homeostasis, the exact role of LRRK2 is still unclear.

1.1.1 Structure of LRRK2

LRRK2 is a large, complex protein consisting of 2527 amino acids with a molecular weight of
285 kDa. It belongs to the ROCO protein superfamily. The term "ROCQO" is derived from the
unique combination of two functional domains: ROC (Ras of Complex) and COR (C-terminal
of ROC), in which the ROC domain exhibits GTPase activity while the COR domain is the hub
of protein-protein interactions. In addition, LRRK2 contains a serine-threonine kinase domain,
which is linked to the GTPase domain by the COR domain (Figure 1). With these 2 distinct
enzymatic domains, LRRK2 is engaged in a variety of complex biological process, either as a
direct participant or as a regulator. Of note, previous studies have found that the kinase
domain of LRRK2 is regulated by its GTPase domain (A. P. T. Nguyen & Moore, 2017). Possibly,
the reverse is also true as LRRK2:LRRK2 self-interaction has been reported in multiple studies
with assorted detection methods (Manzoni et al., 2015) and the kinase domain of LRRK2 is
able to phosphorylate the LRRK2 binding partner at different residues (those mainly studied
are Ser935 and Ser910) (Marchand et al., 2020). Consequently, the interplay between the 2
enzymatic domains adds another layer of complexity to the study of LRRK2 also considering
that these self-interactions are affected by LRRK2 pathogenic mutations in the ROC-COR and
kinase domains, thereby leading to enzymatic dysregulation (Sen et al., 2009). LRRK2 contains
4 protein-protein interaction domains, namely an Armadillo (ARM) region, an Ankyrin (ANK)
region, a leucine-rich repeat (LRR) domain, and a WD40 domain. These domains enable

another crucial role of LRRK2: a scaffold protein, serving as a platform for the assembly of
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protein complexes in cellular signalling events. For example, previous studies suggest that
LRRK2 may function as a scaffold in Wnt sigalling pathway, ASK1-mediated neuronal
apoptosis pathway (Berwick & Harvey, 2012; Yoon et al., 2017). Many single nucleotide
polymorphisms (SNPs) have been found in the LRRK2 gene, all coding and associated with
aminoacid changes along the entire LRRK2 molecule. However, the pathogenicity of these
variants is not fully understood. The recognized Parkinson’s Disease (PD) -related pathogenic
LRRK2 mutations concentrate in the LRRK2 catalytic core: the ROC domain contains the
R1441C/G/H and the N1437D/H mutations; the COR domain contains the Y1699C and the
R1628P mutations; and the kinase domain contains the G2019S and 12020T mutations (Figure
1) (Cookson, 2010; Mills et al., 2012). Only 1 PD risk variant occurs outside the catalytic core
(G2385R) (Tezuka et al., 2022). This implies that the enzymatic activities of LRRK2, rather than
other functions of LRRK2, might be associated with PD development. However, how these
mutations and the corresponding LRRK2 structural/functional alterations lead to PD is still

unclear.

R1441C/G/H 120207 G2358R
viegec G20198

PD-related mutations N1437H R1628P

Kinase I
Amino acid positions
180 660 690 860894 1239 1335 1510 1511 1878 1879 2138 2168 2387 2527
| J \ J \ J | J
Functional domains . Y o ] || T
Protein-protein interaction GTPase Kinase PPI
(PPI)

Figure 1. LRRK2 domain structure and PD-related pathogenic mutations

LRRK2 is a multidomain proteins comprised of 1 GTPase domain (ROC domain), 1 kinase domain and 5
protein-protein interaction domains (ARM, ANK, LRR, COR and WD40 domain). A total of 7 pathogenic
mutations of LRRK2 have been identified in the previous studies, located in different domains of the
LRRK2 protein. Abbreviations: ARM: Armadillo; ANK: Ankyrin; LRR: leucine-rich repeat; ROC: Ras of

Complex; COR: C-terminal of ROC. Originally designed with Power Point.

1.1.2 Localisation of LRRK2

LRRK2 is prominently expressed in the periphery, especially in lung, liver and kidney (Figure
2) (Madureira et al., 2020; Paisan-Ruiz et al., 2004). It also presents a high expression level in
the whole blood, as compared to other biofluids such as urine and cerebrospinal fluid (CSF).

On the contrary, LRRK2 exhibits relatively lower expression levels in the brain regions. It has

15



been shown that LRRK2 was mainly detected in dopamine-innervated regions such as frontal
cortex, striatum and cerebellum, while at a lower level in dopaminergic area like substantial
nigra (Biskup et al., 2006; Gaiter et al., 2006; Higashi et al., 2007). However, reports regarding
LRRK2's distribution in the brain seems to vary according to the different detection
techniques used. Hence, further confirmation is required for the expression profile of LRRK2
in the Central Nervous System (CNS). From a cell-specific point of view, LRRK2 presents higher
expression levels in peripheral innate and adaptive immune cells (B cells, monocytes, and
neutrophils) (Hakimi et al., 2011a; Westerlund et al., 2008). In the brain, higher LRRK2
expression is observed in glia cells (especially in microglia) in comparison with neurons
(Moehle et al., 2012). In cells, LRRK2 is mainly found associated with the intracellular
membranes and vesicular structures throughout the cytoplasm, such as endosomes,
lysosomes, and synaptic vesicles, Golgi complex and outer mitochondrial membrane (Alegre-
Abarrategui et al., 2009). It has been suggested that alterations of LRRK2 expression level are
probably associated with PD. For example, significantly increased LRRK2 expression was
found in immune cells (B cells, and T cells) of PD patients as compared to healthy controls
(Cook et al., 2017a). Another study observed decreased LRRK2 level in sigmoid colon biopsy

specimens from PD patients (De Guilhem De Lataillade et al., 2021).
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Figure 2. LRRK2 expression profiles in different tissues

(Adapted from The Human Protein Atlas, https://www.proteinatlas.org/) (Sjostedt et al., 2020)

1.1.3 Functions of LRRK2
Since 2004, when mutations in LRRK2 were firstly associated with PD, a great amount of
research has been conducted to understand the role of LRRK2 in health and disease,

associating LRRK2 with a wide range of cellular functions.

1.1.3.1 Autophagy
Autophagy is a highly orchestrated lysosomal degradative process designed to degrade and

recycle obsolete cellular components, such as aged or dysfunctional organelles and proteins.
Dysregulation of autophagy can lead to the accumulation of misfolded proteins and other
cellular debris, contributing to the pathogenesis of various neurodegenerative disorders; in
PD reduced autophagy has been linked with the accumulation of a-synuclein, the main
constituent of Lewy bodies (LB) (Lu et al., 2020). There are 3 main types of autophagy:
macroautophagy, microautophagy and chaperone-medicated autophagy (CMA). Previous
studies have associated LRRK2 with macroautophagy and CMA, while no sufficient evidence
support its linkage with microautophagy, which may be due to the fact that microautophagy

is the least characterised form of autophagy.

1.1.3.1.1 LRRK2 and macroautophagy
Under normal circumstance, macroautophagy is primarily a cytoprotective mechanism,

involving the formation and intracellular transport of autophagosomes (a type of intracellular
double-membrane vesicles to sequester waste molecules), autophagosome-lysosome fusion
and the degradation and recycling of cell waste in lysosome. However, dysregulated
macroautophagy in disease scenario can lead to cell death. Previous studies have suggested
a profound association between LRRK2 and macroautophagy. For example, increased number
of autophagosomes was identified in rat neurons while overexpressing LRRK2-G2019S, a PD
pathogenic variant that increases LRRK2’s kinase function, in comparison with neurons
overexpressing wild-type LRRK2 or kinase-dead LRRK2 mutant (D. MaclLeod et al., 2006).
Similar alterations have been observed in fibroblasts from LRRK2-G2019S PD patients (Bravo-

San Pedro et al., 2013). Furthermore, pharmacological inhibition of LRRK2 function seems to
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decrease macroautophagy in monocyte cell lines (Bravo-San Pedro et al., 2013). However,
LRRK2 kinase inhibition shows opposite effect in in primary astrocytes, HEK293T cells, H4
neuroglioma cells and SH-SY5Y neuroblastoma cells, in which it stimulates macroautophagy,
suggesting that the regulation of LRRK2 on the process of macroautophagy is primarily
dependent on its kinase function and is potentially cell-type specific (Manzoni et al., 2013,

2016; Saez-Atienzar et al., 2014).

The mechanism by which LRRK2 modulates macroautophagy is still unclear. Previous studies
have found that LRRK2 may regulate the early and late stage of macroautophagy by
modulating autophagy signal induction and lysosomal function via its kinase activities. In the
normal scenario, macroautophagy is induced by cellular response to stress, involving the
inhibition of mammalian target of rapamycin (mTOR). However, multiple lines of evidence
have suggested that LRRK2-mediated autophagy induction is independent from mTOR
pathway, although the down-stream alterations are similar. For example, it was reported that
inhibitor of mTOR-activated autophagy has no effect on the macroautophagy induced by
LRRK2-G2019S overexpression in in HEK293T cells (Gdmez-Suaga et al., 2012). Similar results
were found in H4 neuroglioma cells (Manzoni et al., 2016). Rather, LRRK2-mediated
autophagy was deactivated by the inhibition of the Ca?*/CaMKK (calcium-dependent protein
kinase kinase)/AMPK (adenosine monophosphate activated protein kinase) pathway. In
addition, while under long-term stress, cells with mutant LRRK2 exhibit significantly higher
death rate, which can be alleviated by enhancing the mTOR-mediated autophagy (Gémez-
Suaga et al.,, 2012). These results indicate that LRRK2-mediated and mTOR-mediated
macroautophagy are independent but interplay with each other. Furthermore, LRRK2
mutants have been found delaying autophagosome-lysosome fusion by interrupting
autophagosomes transportation and increased lysosomal Ca?* levels and reduced lysosomal
Ca?* release in both mouse and human neurons, which may further perturb the early stage of
macroautophagy (Boecker et al., 2021; Dou et al., 2022). The last stage of macroautophagy
involves waste degradation and recycling in lysosome. Previous studies have revealed that
LRRK2-G2019S and LRRK2-R1441C lead to significant increase in lysosomal pH and thereby
causing decreased lysosomal protein degradation in mouse and rat neurons (Schapansky et
al.,, 2014; R. Wallings et al., 2019). In addition, increased lysosomal count and decreased

lysosomal size were observed in these neurons. These changes lead to increased intracellular
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accumulation of a-synuclein, which is the hallmark of PD, and neuronal a-synuclein release
into the cell culture media, suggesting that LRRK2-related lysosomal function changes and

sequential autophagy dysregulation are associated with PD progression.

1.1.3.1.2 LRRK2 and CMA
Compared to macroautophagy, CMA is a highly selective form of autophagy that targets

individual proteins for degradation. These targeted proteins typically contain a specific amino
acid motif, called the KFERQ-like motif, which can be recognised by the chaperone protein
HSC70. Subsequently, the protein:chaperon complex is translocated to the lysosomal surface,
where HSC70 binds to the lysosomal protein LAMP2A and facilitating the transport of the
target protein into the lysosome for degradation by proteases. Aberrant CMA is highly linked
to PD pathology since it is responsible for accumulation of a-synuclein, which is the hallmark
of the disease pathology (Cuervo et al., 2004). Additionally, LRRK2 is also a substrate of CMA
and a protein interactor of LAMP2A. Previous studies suggest that LRRK2-G2019S mutant
presents more stable binding with LAMP2A and seem to prevent its multimerization and
formation of the lysosomal membrane translocation complex, leading to aberrant
degradation of other CMA substrates including a-synuclein. This hypothesis has been
supported by observations in both human and mouse neurons. For example, impaired CMA
has been observed in dopaminergic neurons from PD patients with LRRK2-G2019S variant
(Sanchez-Danés et al., 2012). Similar alterations have been found in PD mouse model with
LRRK2-R1441C (P. W. L. Ho et al.,, 2020). In addition, accumulation of a-synuclein was

observed in these mouse neurons.

1.1.3.2 LRRK2 and synaptic function

Synaptic functionality is crucial for efficient communication between neurons. Synaptic
communication encompasses the synthesis and release of neurotransmitter-loaded synaptic
vesicles from the presynaptic terminal to the postsynaptic terminal, where vesicles are
merged with cell membrane and the neurotransmitters are released to bind with receptors.
At the end, the vesicles are either re-uptaken for recycling or enzymatically degraded. It is
vulnerable to multifactorial neuronal stress, such as abnormal protein aggregation,
mitochondrial dysfunction, oxidative stress and inflammation, etc. Collective loss or

impairment of synaptic health leads to neurodegenerative diseases. For example, loss of
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dopaminergic synapses in the substantia nigra contributes to typical motor symptoms in PD.

Previous studies have associated LRRK2 with both presynaptic and post synaptic functions.

1.1.3.2.1 The role of LRRK2 in the presynaptic site

Multiple lines of evidence have linked LRRK2 pathogenic mutation with aberrant presynaptic
function. For example, decreased dopamine release in the striatum has been observed in a
LRRK2-G2019S mouse model. Intraneuronal metabolism analysis showed that extracellular
metabolites:dopamine ratios in the striatum were significantly higher in LRRK2-G2019S
mutant mice, suggesting that in the presence of the LRRK2 variant, newly synthesised
dopamine is trapped in presynaptic terminal (Hammes et al., 2019a). This can either due to
the impaired vesicle packing and/or disrupted exocytotic release process in the presynaptic
site. Furthermore, another study found that overexpression of wild-type LRRK2 and LRRK2-
G2019S increased Ca?* current density in the presynaptic membrane, which dramatically
influenced neurotransmitter vesicle release (Bedford et al., 2016). Collective upregulated Ca%*
signalling may affect other organelle that crucial for maintaining presynaptic homeostasis,
such as mitochondria. Presynaptic mitochondria are important for providing ATP to
continuously support synaptic activity and buffering Ca?* signals. Therefore, LRRK2 mutant
induced Ca?* increase may overwhelm mitochondria’s buffering capability and thereby

further perturb vesicle release in the presynaptic terminal.

The molecular mechanism behind these alterations is not fully understood yet, though LRRK2
has been shown to interact and phosphorylate a panel of presynaptic proteins, among which
Rab proteins are unambiguous substrates of LRRK2’s kinase domain. Rabs are a group of small
GTPase functioning as key regulators of membrane trafficking and selective vesicle targeting
(Jeong et al., 2018). These proteins participate in each single step of synaptic vesicle transport,
from the formation of endosome in endoplasmic reticulum (ER) and the Golgi (RAB1 and
RAB43), intracellular vesicle transport (RAB3 and RABS), vesicle-membrane fusion (RAB8 and
RAB35) to endosome recycling and exocytosis (RAB10) (Steger et al., 2016a). LRRK2
phosphorylation blocks the effector binding sites in Rab proteins so that they get trapped on
intracellular membranes and unable to bind with upstream and downstream protein
interactors, thereby perturbing vesicle endocytosis. In addition, LRRK2 phosphorylates

presynaptic N-ethylmaleimide sensitive fusion (NSF) protein and enhances its ATPase activity
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(Belluzzi et al., 2016). NSF is a housekeeping protein which is broadly required for intercellular
membrane fusion. It also plays an important role in sustaining the pool of synaptic vesicles
that are readily available for release. Furthermore, LRRK2 has been found to directly interact
with synaptic vesicle via the synapsin | protein via its kinase domain and WD40 protein-
protein interaction domain (Marte et al.,, 2019). These findings suggest that the
understanding of the protein-protein interaction network around LRRK2 is the key to

understand its role in regulating presynaptic functions.

1.1.3.2.2 The role of LRRK2 in the postsynaptic site

When the synaptic vesicles diffuses across the cleft and bind with receptors at the
postsynaptic site, the vesicles fuse with the postsynaptic neuron membrane and release the
neurotransmitter, leading to the sequential neuron activation. Within this process, LRRK2 has
been shown to affect the expression and activity of postsynaptic receptor, the endocytosis of
synaptic vesicles and the postsynaptic morphology. Studies have suggested that the
postsynaptic expression of glutamatergic AMPAR and dopamine D1 receptor (D1R) could be
affected by overexpression of wild-type LRRK2 and its pathogenic variants. Of note, LRRK2 is
primarily expressed in glutamatergic and dopaminergic projection regions such as striatum,
where the postsynaptic terminals are located, while hardly expressed in substantia nigra
where presynaptic dopamine neurons are located. Therefore, these findings suggest that
LRRK2-mediated dopamine synaptic transmission impairment may mainly occur at the
postsynaptic sites and then reflect at presynaptic sites. In fact, it has been suggested that
postsynaptic overexpression of LRRK2 leads to retrograde upregulation of presynaptic
neurotransmitter release (Foffani & Obeso, 2018; Kuhlmann & Milnerwood, 2020; Lamonaca
& Volta, 2020). Further research is required to understand this regulation mechanism of
LRRK2. In addition, aberrant synaptic vesicle endocytosis has been observed in ventral
midbrain neurons in the presence of LRRK2-G2019S variant. This alteration can be rescued by
LRRK2 kinase inhibition (Pan et al., 2017). However, no such change was observed in other
brain regions, suggesting that the regulatory role of LRRK2 is probably brain-region specific.
Furthermore, a critical role of LRRK2 in modulating dendritic spine morphology has been
reported. Increased LRRK2 kinase activity induced by extracellular stimuli or pathogenic
mutations (LRRK2-G2019S) engages LRRK2 with a macromolecular complex required to

regulate actin dynamics during postsynaptic plasticity. Additionally, enhanced kinase function

21



significantly affects its protein-protein interactions with cytoskeleton proteins such as drebrin,
ACTR2, ACTR3 and ARPC2, etc., which are important for spine maturation (Tombesi et al.,
2022).

Taken together, by interacting with a panel of essential proteins at both presynaptic and
postsynaptic terminals, LRRK2 plays a crucial and complicated role in synaptic signal
transduction. Therefore, protein interaction analysis might bring valuable insight into the

molecular mechanism of LRRK2-mediated synaptic regulation.

1.1.3.3 LRRK2 and immune system

The immune system is a sophisticated network crucial for maintaining homeostasis. It can be
broadly categorized into 2 major components: the central nervous system (CNS) and the
peripheral immune system. The CNS, composed of the brain and spinal cord, traditionally
operates within an immune-privileged environment owing to the blood-brain barrier, which
restricts the access of immune cells (Proulx & Engelhardt, 2022). Nevertheless, recent studies
have revealed that the CNS is not entirely immune-isolated; instead, it maintains a delicate
balance to ensure protection against pathogens while preventing excessive immune
activation that may lead to neuroinflammation (Ampie & McGavern, 2022; Matejuk et al.,
2021; Waltl & Kalinke, 2022). On the other hand, the peripheral immune system operates
outside the CNS, encompassing various tissues and organs. Its primary function is to defend
against invading pathogens and maintain overall systemic health. Recent studies have
reported an intricate role of LRRK2 as the interplay between CNS and peripheral immune

system and thereby further highlight its essential role in physiology and pathology.

1.1.3.3.1 The role of LRRK2 in CNS immunity

The immune system in the CNS is distinct from its peripheral counterpart in terms of the
composition of immune cells. In the CNS, glia, especially microglia and astrocytes, play the
main roles in innate and adaptive immune responses (Ousman & Kubes, 2012).Microglia are
the tissue-resident macrophages in the brain, mainly skilled in removing dysfunctional or
damaged protein aggregates and neurons; while astrocytes predominately function as

maintaining a normal biochemical environment for neuronal signalling. These glial cells
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constitute the first barrier of CNS immunity, and are associated with pathological
neuroinflammation in numerous diseases (Stevenson et al., 2020). In 2012, a high level of
LRRK2 expression was firstly observed in activated murine microglia, though no accompanied
high level of mRNA was detected(Moehle et al., 2012). Since then, numerous studies have
been conducted to understand the role of LRRK2 in microglia. Multiple studies suggest that
the LRRK2 protein, especially its kinase function, is a key regulator of microglia-mediated
neuroinflammation (reviewed in (Filippini et al., 2021)). For example, increased LRRK2 kinase
function in microglia is paired with increased production of pro-inflammatory cytokines,
reduced microglial migration and increased microglial phagocytosis compared with
respective control cells (Marek et al., 2018; Panagiotakopoulou et al., 2020). In parallel, such
elevated microglial activation can be attenuated by downregulating LRRK2 expression. On the
other hand, it has been reported that LRRK2-KO mice exhibit reduced microglial activation,
dopaminergic neuron degeneration and movement deficit after LPS exposure, suggesting
normal-functioning LRRK2 protein is essential for maintaining neuronal functions under
inflammation (Dwyer et al., 2020).So far, the mechanisms underlying these observations are
still unclear. Some studies suggest LRRK2 might impact microglial functions through PKA-
NFkB pathway, which is supported by the evidence that reduced NF«B transcription has been
observed in microglia with LRRK2 KO(C. Kim et al., 2020; Russo et al., 2015). However, more
work is required to understand the details of these signalling pathways. The role of LRRK2 in
astrocytes has been prevalently linked with endosomal-lysosomal functions and regulation of
a-synuclein degradation (Bonet-Ponce et al., 2020; Booth et al., 2019; di Domenico et al.,
2019). For example, astrocytes derived from transgenic mice carrying the LRRK2-G2019S
mutation, which increases LRRK2’s kinase activity, exhibited enlarged lysosomes and deficits
in protein aggregates degradation. These dysfunctions were attenuated by chemical LRRK2
kinase inhibition (Henry et al., 2015). Similarly, patient-derived induced pluripotent stem cells
(iPSC) carrying the same LRRK2 mutation exhibited increased cytokine release, reduced ability
to degrade a-synuclein compared to the control cells during the exposure of inflammatory
stimuli (Sonninen et al., 2020). Inhibiting LRRK2 kinase activity downregulated immune

response in these astrocytes.
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1.1.3.3.2 The role of LRRK2 in peripheral immunity

The role of LRRK2 at the periphery has been underestimated and poorly investigated for a
long time. However, a high expression of LRRK2 has been observed in immune-related organs
(lung, kidney, spleen), myeloid cells and peripheral immune cells and the expression level
increases under inflammatory conditions (Biskup et al., 2007; Melrose et al., 2007; Thévenet
et al., 2011a). Furthermore, LRRK2 is upregulated in B cells, T cells, macrophages and non-
classical monocytes of sporadic PD patients, accompanied by enhanced pro-inflammatory
cytokines secretion (Cook et al., 2017b; Hakimi et al., 2011b; Miklossy et al., 2006; Thévenet
et al., 2011a). Taken together, these findings suggest a crucial role of LRRK2 at the interface
of periphery immune response and PD. In fact, the correlation between PD and peripheral
inflammation has been observed in the past 2 decades. For example, increased levels of
peripheral inflammatory cytokines, such as TNF, IL-1B and IL-6 have been found in the serum
of patients with sporadic PD, LRRK2-related PD as well as asymptomatic LRRK2-G2019S
carriers as compared to healthy controls (Bu et al., 2015; Dursun et al., 2015; Dzamko et al.,
2016; Williams-Gray et al., 2016). In the meantime, PD patients who experience viral or
bacterial infections often display a decline in both motor and cognitive functions, suggesting
that peripheral inflammation may contribute to the PD progression (Brugger et al., 2015).
Therefore, LRRK2 has been suggested as a target for modulating peripheral inflammation

induced by PD progression.

How LRRK2 regulates immune response is still unclear. However, previous findings have
associated this function with its kinase activity. For example, it has been reported that LRRK2
autophosphorylation increases in human peripheral blood mononuclear cells (PBMCs) and
mouse in bone-marrow derived macrophages (BMDMs) under immune stimulation of
cytokine, while the altered pattern was not observed in Lrrk2 knock-out mouse macrophages
(Cook et al.,, 2017b; Dzamko et al., 2012). In contrast, it was observed that the
phosphorylation of LRRK2 decreased in the peripheral blood mononuclear cells (PBMCs) of
individuals carrying the LRRK2-G2019S mutation. This suggests that the increased kinase
activity resulting from the pathogenic mutation might trigger a compensatory mechanism
aimed at reducing LRRK2 autophosphorylation, thereby helping to maintain immune balance
in the periphery (R. L. Wallings et al., 2020). In addition, previous studies have suggested that

LRRK2:RAB10 interaction may play an essential role in mediating cellular response to

24



inflammation. RAB10 is a robust substrate of LRRK2 kinase. It is expressed in peripheral
immune cells including B cells, monocytes and neutrophils. It has been shown that in the
healthy status, phosphorylated-RAB10 (pRAB10) decreased in the above-mentioned cells by
pharmacological LRRK2 inhibition, suggesting that reduced LRRK2 kinase activity may affect
immune response conducted via these blood cells (Fan et al., 2018; Thirstrup et al., 2017a).
In addition, the level of LRRK2 and pRAB10 in mouse and human primary macrophages were
found associated with PD-implicated plasma cytokine levels TNF-a and IL-6 (Atashrazm et al.,
2019; Z. Liu et al., 2020). Considering that the main function of RAB10 is to modulate
membrane trafficking and its phosphorylation is pro-inflammatory stimulation, these findings
suggest a potential mechanism by which LRRK2 regulates peripheral immunity via adjusting
the phosphorylation of RAB10 and thereby affecting the release of PD-related cytokine (Z. Liu
et al., 2020; Nazish et al., 2021; D. Wang et al., 2010). However, further research is required

to fully understand this complicated pathway.

1.1.4 LRRK2’s relevance to Disease
Considering the complicated functionality of the LRRK2 protein, its relevance to disease
becomes increasingly apparent. Up to now, LRRK2 has been primarily associated with

Parkinson’s disease (PD) and Crohn’s disease (CD).

1.1.4.1PD

1.1.4.1.1 Prevalence, symptoms, pathology and genetics of PD

According to the PD technical brief launched in 2022 by the World Health Organisation (WHO),
the global prevalence of PD has doubled in the past 25 years, with an estimate of 8.5 million
people living with PD in 2019 (https://www.who.int/news/item/14-06-2022-launch-of-who-
s-parkinson-disease-technical-brief). Furthermore, disability and mortality attributed to PD
are rising at a more rapid pace compared to any other neurological condition, as indicated by
the 2019 estimates, which show PD causing 5.8 million disability-adjusted life years, marking
a growth of over 100% since 2000. As the world's population continues to age, the prevalence
of Parkinson's disease is expected to rise, making PD an increasingly significant global health

concern.
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PD was first identified by British physician James Parkinson in 1817, the disease was initially
known as "shaking palsy", which refer to a set of progressive motor deficits including resting
tremors, bradykinesia, muscle rigidity, and postural instability, which remain the defining
features of the disease to this day (Parkinson, 1817). Over the years, apart from its
characteristic motor symptoms, a wide array of non-motor symptoms such as cognitive
impairment, depression, sleep disorder and hallucinations were described with PD (Poewe,
2008). In 1960s, researchers found that damage to dopaminergic neurons in the substantia
nigra and deletion of dopamine in the brain is responsible for the movement symptoms of PD

(Fénelon & Walusinski, 2021).

Treatment for Parkinson's disease aims to manage and alleviate the various motor and non-
motor symptoms associated with the condition, as there is currently no cure for the
neurodegeneration. In terms of medications, levodopa is one of the most effective and
commonly used drugs, helping to replenish dopamine levels (Lewitt & Library, 2015). Other
medications like dopamine agonists, MAO-B inhibitors, and anticholinergic drugs can be
prescribed to address specific symptoms or enhance the effectiveness of levodopa. In some
cases, surgical interventions, such as deep brain stimulation, may be considered to alleviate
motor symptoms when medications become less effective. A holistic approach to treatment
often includes addressing non-motor symptoms, such as depression, anxiety, and sleep
disturbances, through counselling and appropriate medications. Ongoing research and
clinical trials continue to explore new treatments and potential disease-modifying therapies,
providing hope for improved management and outcomes for those living with Parkinson's

disease.

The cause of movement disorders during PD progression results from the impairment of the
dopaminergic nigrostriatal system. However, the pathology underlying the dopaminergic
neurons remains unclear, but it is believed to involve a complex interplay of assorted cellular
and molecular mechanisms in both CNS and periphery, among which the pathological
hallmark is the aggregations of a-synuclein in the form of Lewy bodies (LB). LB pathology is
found in multiple brain regions of PD patients: it starts from early affected areas such as
amygdala and anterior cingulate cortex and the reaches late affected areas such as insula

cortex, middle temporal cortex and anterior middle frontal gyrus (de Boni et al., 2022). LB is
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also found in peripheral tissues such as heart, gastrointestinal tract, saliva gland, skin and lung
(Devicetal., 2011; Ennemoser et al., 2022a, 2022b; Y. yan Li et al., 2022; Niemann et al., 2021).
These findings suggest that PD is a multi-system disorder rather than a localised brain
condition. Dysregulation of different cellular pathways has been found associated with PD,
such as autophagy, synaptic vesicle transport, mitochondrial function, ribosomal function etc,
indicating a complicated cellular and molecular mechanism for PD (Gongalves et al., 2021; Lu

et al., 2020; M. Nguyen et al., 2019; Picca et al., 2021).

Additionally, many lines of evidence suggest that PD involves a complex interplay of
environmental and genetic factors. Environmental risk factors associated with PD include the
exposure to toxins, heavy metals, pesticides, traumatic brain lesions, and bacterial or viral
infections (Wirdefeldt et al., 2011). Long-term expose to these factors elicits intense
neuroinflammation especially in the substantia nigra. In addition, some viral proteins (such as
HSV-1 and EBV) exhibit molecular similarity with a-synuclein, leading to a-synuclein
accumulation and the formation of LB (Maries et al., 2003). Moreover, previous studies have
shown that viral infection in the enteric nervous system (ENS) induce accumulation of a-
synuclein in the neurites of the upper gastrointestinal tract (Stolzenberg et al., 2017).
Considering the fact that a-synuclein produced in the ENS can be trafficked from the gut to
the brain; therefore the viral infection may eventually cause LB pathology in the CNS (Del
Tredici & Braak, 2016). In terms of genetic factors, until now, rare variants in more than 20
genes have been reported to cause PD, in which SNCA, PRKN, PARK7, LRRK2, PINK1, ATP13A2,
GBA1, PLA2G6 and VPS35 are found with the highest correlation (Wirdefeldt et al., 2011). It
is important to note that these mutations are responsible for a minority of PD cases (familial
cases) as the vast majority of PD patients have a sporadic origin with absence of any classical
mutation. Familial mutations in these genes show different frequencies across populations
and may have varying effects on the set of disease symptoms manifested by the patients, age
of onset, and the rate of disease progression. For example, mutations in LRRK2 are rare in
general populations but are considerably higher in Ashkenazi Jews (about 15%) and North
African Imazighen (about 40%), though patients with LRRK2 mutations present similar
symptoms as sporadic PD patients (Bar-Shira et al., 2009; El Haj et al., 2017). In comparison,
PD patients with mutations in SNCA gene are more likely to develop dementia as compared

to sporadic PD patients while PRKN, PRAK7, PINK1 and PLA2G6 mutations usually cause early-
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onset parkinsonism (Wirdefeldt et al., 2011). The complexity of PD genetics implies a

complicated etiopathogenesis of the disease.

1.1.4.1.2 LRRK2 and Familial PD (fPD)

e Pathogenic LRRK2 mutations

Among the above-mentioned PD-related genes, mutations in LRRK2 are the most common
genetic causes of PD, accounting for 2-40% of familial PD cases depending on the population
under analysis (Bras et al., 2005; Drolet et al., 2011; Lesage et al., 2006). The first PD-related
LRRK2 mutation was discovered in 2004 within a large Japanese family exhibiting autosomal
dominant parkinsonism (Funayama et al., 2002, 2005). To the date, there are > 100 coding
and non-coding mutations identified within the LRRK2 gene that have been confirmed to be
associated with fPD, within which 7 coding mutations have been confirmed as disease-causing,
namely G2019S, R1441C/G/H, Y1699C, N1437D/H and 12020T, among which the G2019S
mutation is by far the most prevalent. Despite its worldwide distribution, the G2019S
mutation exhibits a higher frequency in North African Imazighen (42%), Ashkenazi Jewish
(28%) and Portuguese (16%) populations, while barely present in Asia (<0.1%) (Gaig et al.,
2009; Lesage et al., 2006; Ozelius et al., 2006). With respect to the R1441C/G/H mutations,
although these 3 variants occur at the same position on the LRRK2 protein, they are actually
observed in different populations. After LRRK2-G2019S, LRRK2-R1441C represents the second
most common LRRK2 mutation identified in Europe, especially in the Belgian population,
where R1441C accounts for 10.7% of fPD cases (Nuytemans et al., 2008). In comparison,
LRRK2-R1441G is present with a frequency of 46% in fPD within the Basque population, but it
is barely presents in other European populations (Gorostidi et al., 2009). A wider distribution
has been found for the R1441H mutation, including Asia (Taiwanese population), Europe
(Portuguese and Greek populations) and North America (US) (Ferreira et al., 2007; Mata et
al., 2005; Spanaki et al., 2006; Zabetian et al., 2005). In comparison, the 12020T has only been
reported in 9 cases from one family in Japan (the Sagamihara kindred), and it was the first PD-
related LRRK2 mutation was observed (Funayama et al., 2005). Similarly, the Y1699C mutation
has only been reported in 3 families, 1 German-Canadian family and 2 British families (Nicholl
et al., 2002; Wszolek et al., 1997), while the other mutation N1437H present primarily in

European populations, especially in Norwegian and Polish (Aasly et al., 2010; Turski et al.,
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2022). It is worth to highlight that the association between LRRK2 mutations and PD is
affected by age-dependent penetrance. For example, penetrance of the G2019S mutation
increases from 17% at 50 years old to 85% at 70 years old (Kachergus et al., 2005; Lee et al.,
2017; Luciano et al., 2010).

e Clinical symptoms and pathology of LRRK2-related fPD (LRRK2-PD)

In general, patients with LRRK2-PD present typical clinical symptoms similar to those with
sporadic PD (sPD), though subtle variance has been observed among patients with different
LRRK2 variants. For example, patients with the G2019 mutation were reported with longer
disease duration, slower progression and various age of onset (from 41 to 79 years). PD
pathology (neuronal loss in the substantia nigra and LB pathology) is different when
comparing LRRK2-PD vs sPD. Neuron loss is observed in the substantia nigra of patients with
all types of LRRK2 variants while LB pathology was only reported to consistently occur in 90%
of LRRK2-PD cases. However, though less a-synuclein aggregation was observed in the other
10% LRRK2-PD cases, tau inclusions and TDP-43 accumulation seem to increase, especially
with the LRRK2-G2019S cases (Kalia et al., 2015). These findings might suggest that the same
clinical motor symptoms consequent to the PD neurodegeneration may result from different

pathologies when comparing sPD and LRRK2-PD.

e Effects of the pathogenic variants on LRRK2's enzymatic functions

All pathogenic mutations have been found to increase the kinase activity of LRRK2, although
to different extents (Ito & Utsunomiya-Tate, 2023). In vitro kinase assays (performed using
the isolated LRRK2 kinase in an artificial reaction setting, checking the LRRK2 rate of auto-
phosphorylation) consistently showed that the G2019S mutation significantly increases
LRRK2's kinase activity, while the impacts of other mutations vary among studies, which is
likely due to differences in the assay systems (Marchand et al., 2020). On the contrary, in cell
culture experiments, the non-G2019S mutations seem to increase the LRRK2 kinase activity
to a larger extent as compared to the G2019S mutation. For example, overexpression of
LRRK2-R1441G and Rab proteins led to a significant increase of RAB10 phosphorylation (~3-4
folds), which is larger than the impact of the LRRK2-G2019S mutation (~2 folds)(Ito et al.,

2016a). Also in vivo, Rab10 phosphorylation was increased in peripheral blood neutrophils
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obtained from R1441G carriers but not from G2019S carriers (Fan et al., 2021). These findings
may suggest that the mechanism by which non-G2019S mutations upregulate LRRK2
substrate phosphorylation might be different from the G2019S mutation and that the LRRK2
substrate of phosphorylation (either LRRK2 itself or downstream substrates) could be

differently affected by the type of mutation.

Multiple lines of evidence have shown that some mutations also alter (decrease) LRRK2’s
GTPase activity, though this effect it is not as well-studied as the impact of mutations on the
kinase function and the results vary among studies. For example, the R1441C/G/H and
N1437H mutations have been reported to decrease in vitro LRRK2 GTPase activity to different
extents, while there was not enough evidence for the impact of the G2019S mutation (Guo
et al., 2007; C. X. Wu et al., 2019; Xiong et al., 2010). However, these findings have not been
confirmed in vivo yet. Considering the structural proximity between the kinase and the
GTPase domains, and the fact that LRRK2 can phosphorylate itself probably as a self-
regulatory process, it is possible that alterations in the kinase domain might affect the GTPase
activity of LRRK2 and vice-versa. Therefore, further investigations are needed on the co-
regulation of the 2 enzymatic domains by LRRK2 mutations to gain a more comprehensive
view of the LRRK2-fPD pathogenesis. Finally, the R1441C/G/H, Y1699C, and 12020T mutations
have been shown to downregulate autophosphorylation of LRRK2 at Ser910/935, while the
G2019S mutation does not (Doggett et al., 2012; X. Li et al., 2011; Nichols et al., 2010a). Since
the Ser910/935 phosphorylation is crucial for LRRK2's interaction with 14-3-3 proteins by
impacting its subcellular localization, it is likely that this localization mechanism does

contribute to the fPD pathology (Nichols et al., 2010a).

1.1.4.1.2 Involvement of LRRK2 in Sporadic PD (sPD)

The association between LRRK2 mutations/variants and sPD is complex. On the one hand,
mutations that cause fPD, such as G2019S and R1441C, are present in sPD cases and not only
in fPD cases (Bardien et al., 2011; Correia Guedes et al., 2010). However, it is worth to
highlight that the presence of LRRK2 mutations does not always lead to sPD as there are
asymptomatic LRRK2 mutations carriers in the general population (Trinh et al.,, 2014).
Additionally, some other variants, even though have not been confirmed as causing

mutations, have been found to increase the risk for sPD, such as the G2385R mutation in the
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WD40 domain and the R1628P mutation in the ROC domain. These 2 variants are more
common in PD patients with Asian ancestry as compared to the ethnicity-matching healthy
individuals (Di Fonzo et al., 2005; O. A. Ross et al., 2008). Further studies have linked these 2
mutations with alteration of the LRRK2 structure and increased kinase activity, which may
cause perturbed vesicle transport and excessive cell death (Carrion et al., 2017; Shu et al.,
2016). On the other hand, some LRRK2 mutations (such as the R1398H mutation in the ROC
domain) have been shown to have protective effect against PD by reducing the kinase activity
and the strength of GTP binding to the LRRK2 protein (Nixon-Abell et al., 2016; Tan et al.,
2010). Furthermore, non-coding LRRK2 variants have also been suggested as risk factors for
sPD by altering the expression level of the LRRK2 protein (Ryan et al., 2017). Previous studies
have shown that increased LRRK2 expression may impair inflammatory response and
apoptotic signalling, thereby contribute to the PD pathology (Hartlova, Herbst, Peltier,
Rodgers, Bilkei-Gorzo, et al., 2018; K. S. Kim et al., 2018). Taken together, the linkage between
LRRK2 and sPD is far more complicated than just a simple cause-and-effect relationship,
involving intricate genetic, environmental, and molecular factors that interact in multiple

ways to modulate the development and progression of sPD.

1.1.4.1.3 LRRK2-targeted PD therapy: oppurtunities and challenges

e Current development of LRRK2-targeted drug development for PD

Despite our incomplete understanding of the exact functions of LRRK2 in health and PD
conditions, there has been successful development of small-molecule LRRK2 kinase inhibitors
as potential PD therapy. These inhibitors seem to be appropriate for clinical use considering
their pharmacological and pharmacokinetics properties confirmed in preclinical assessment,
such as kinase targeting selectivity, bioavailability and blood-brain barrier (BBB) permeability.
Two LRRK2 kinase inhibitors, DNL201 and DNL151/BIIB122 were evaluated in Phase 1 clinical
trials, in which no adverse events were observed after short-term administration, though
DNL151/BIIB122 presented better pharmacokinetics features and thereby was selected for
further clinical trials (Jennings et al., 2022). Multi-centre Phase 2 (NCT05348785) and Phase 3
(NCT05418673) clinical trials are on-going to evaluate the efficacy and safety of
DNL151/BIIB122 in participants with early clinical stage PD (30-80 years old) and LRRK2-PD
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patients with the G2019S mutation. Other LRRK2 kinase inhibitors under Phase 1 or preclinical
development include S221237, NEU-723, PFE-360, MLi-2 and PF-06685360 (Kingwell, 2023).
However, it is worth to mention that even if these trials are successful, further assessment
would be required to validate the efficacy and safety of LRRK2 inhibitors as a viable option for
patients with sPD, which is much more common than LRRK2-PD in the worldwide. Apart from
kinase inhibitors, other approached have been considered to modify other domains of the
LRRK2 protein, such as the GTPase domain or the PPl domains. However, little evidence
suggests the efficacy of alterations of non-kinase domains in PD models, which may result
from the difficulty of selective targeting. Moreover, 1 clinical trial (NCT03976349) at Phase I
has been conducted to assess the use of antisense oligonucleotides (ASOs) to decrease the
entire LRRK2 protein expression levels, thereby blocking both kinase and GTPase activities as

well as removing the interaction domains functions.

e Challenges in LRRK2-target drug development

o Selectivity
The above-mentioned LRRK2 kinase inhibitors under pre-clinical or clinical trials are non-
selective LRRK2 kinase inhibitors, i.e., they inhibit both mutant and wild-type LRRK2.
Considering the crucial role of LRRK2’s kinase function in maintaining normal cellular
processes, non-selective suppression of wide-type kinase activity may lead to undesired
pathological alterations. For example, most preclinical studies suggested that pharmacologic
inhibition of LRRK2 kinase induce morphological changes to the lung cell in rodents and non-
human primates, though no further changes in respiratory function were observed (Lesniak
et al.,, 2022). Furthermore, these alterations were found to be washed out after drug
withdrawal. No adverse events were observed in pulmonary function during the monitoring
time frame in clinical trials of DNLI-201 and DNL-151/BIIB122. It remains to be determined if

long-term exposure of LRRK2 kinase inhibitors lead to pathological changes in lung in human.

o Lack of biomarker
Another major challenge in PD clinical trials is the absence of dependable biomarkers and
scalable assays for assessing LRRK2 activity in patients. Theoretically, some LRRK2 substrates
can be potential biomarkers for the assessment of LRRK2 kinase inhibition, such as specific

Rab GTPases. Pathogenic LRRK2 mutations have been shown to enhance Rab phosphorylation,
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implying that measuring phosphorylated Rab levels may serve as a reflection of LRRK2 activity
(Steger et al., 2016b, 2017a). Additionally, these mutations also modulate phosphorylation of
the LRRK2 protein at Ser910 and Ser935 (Dhekne et al., 2018). Developing these biomarkers
for clinical use is crucial for drug development and clinical trials, enabling patient stratification
based on the efficacy of kinase inhibition, and supporting personalized dosing and adaptive
trial designs.
o Timing of trials

Most reviews of PD have suggested that the diagnosable motor symptoms of PD first appear
at relatively late stage in the disease progression, when approximately 50-70% of
dopaminergic neurons have been lost in the substantia nigra (Noyce et al., 2016; G. W. Ross
et al., 2004). By then, PD pathology may be too advanced to be affected by pharmacological
treatments. Therefore, identifying individuals at the earliest stages of disease would facilitate
clinical trials. Since identifying prodromal sPD patients is nearly an unreachable goal due to
the mildness and diversity of pre-motor symptoms, the population of prodromal LRRK2
mutation carriers is the probably most appealing group for clinical trials. However, screening
of the general population to identify this subgroup of people is still a challenge. Tracing and
including relatives of LRRK2-PD patients will help alleviate this problem, but it requires well-
organised collaboration of multiple clinical centres. There are a few international PD-focused
research project that recruit pre-symptomatic cohort with PD-related gene mutation for
pathological study and drug development, such as the PPMI (Parkinson’s Progression Markers
Initiative) study sponsored by the Michael J. Fox Foundation (https://www.ppmi-info.org/).

These studies may provide promising subject cohort for further clinical trials.

1.1.4.2 CD

Crohn’s disease (CD) is an inflammatory bowel disease (IBD) that causes chronic inflammation
of the gastrointestinal tract. Common symptoms of Crohn's disease include abdominal pain,
diarrheal, weight loss, fatigue, and sometimes rectal bleeding. The exact cause of Crohn's
disease is still not fully understood, but it is believed to result from a combination of genetic,
environmental, and immunological factors. For example, active and passive smoking, high-
saturated-fat diet and bacterial or viral infection (Ananthakrishnan et al., 2014; Chapman-

Kiddell et al., 2010; Gradel et al., 2009; Higuchi et al., 2012; Hou et al., 2011; Mahid et al.,
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2006). In terms of genetic factors, multiple GWAS have identified LRRK2 as a major
susceptibility gene for CD (Anderson et al., 2011; Barrett et al., 2008a; Franke et al., 2010).

GWAS has linked the LRRK2 M2397T coding variant in the WD40 domain to sporadic CD cases
in European population (Barrett et al., 2008b; Fava et al., 2016a; lkezu et al., 2020; Z. Liu et
al., 2011). In addition, a newly identified CD mutation, LRRK2-N2081D in the kinase domain,
has been associated with a similar kinase function increase as the PD LRRK2-G2019S mutation
which is highly linked to PD. Moreover, 2 other variants (LRRK2-N551K and R1398H in the ROC
domain) seemed to increase the GTPase activity and reduce risk for both diseases (Gopalai et
al., 2019; Hui et al., 2018). This suggests that the pathogeneses of PD and CD may overlap in
altering specific LRRK2 enzymatic functions. On this note, several epidemiological studies
have identified the connection between PD and CD. For example, increased risk of PD was
found in CD patients in multiple populations in US, Taiwan, South Korea and Sweden (Lai et
al., 2014; Lin et al., 2016; Peter et al., 2018; Weimers et al., 2019). Anti-TNF-a treatment of
CD patients eliminated the increased risk for PD (Peter et al., 2018). On the other hand,
gastrointestinal dysfunction is known as a non-motor symptom among PD patients that often
appears prior to the typical motor symptoms (Suzuki et al., 2019). In addition, a-synuclein
aggregates have been detected in the gastrointestinal tract years before the motor-symptom
onset, which may gradually precede into the CNS and lead to sequential neuronal damage (J.
S. Kim et al., 2017; Rota et al., 2019; Stokholm et al., 2016). These findings suggest a potential
pathological association between the 2 diseases. Multiple studies have tried to determine the
role of LRRK2 at the interface between PD and CD. For example, upregulated expression level
of LRRK2 and increased LRRK2 kinase function have been observed in gastrointestinal tract
cells as well as peripheral immune cells such as the CD14+ monocytes in both LRRK2-CD and
LRRK2-PD patients (Cook et al., 2017c; Gardet et al., 2010a). Also, an enhanced pro-
inflammatory response to multiple types of cytokines was observed in these cases as well as
LRRK2 mutation carriers (Gardet et al., 2010a; Ikezu et al., 2020). These finding suggest that
LRRK2 functions either as an upstream regulator or a downstream responder of increased
immune response in the disease scenario. In addition, since the 2 diseases seem to share a
LRRK2-mediated inflammatory pathway, it is worth to keep caution in drug development
since it is still unknown whether these alterations are beneficial or harmful for the affected
area. Further research is required to understand the function of LRRK2 at the interplay of

these 2 diseases.
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Apart from Parkinson's disease (PD) and Crohn's disease (CD), LRRK2 variants have been
implicated in the susceptibility to other immune-related diseases. For example, the LRRK2-
M2397T variant was reported to aggravate the type-1 reaction (T1R) in leprosy, accompanied
with excessive inflammatory response (Fava et al., 2016b, 2019). In addition, LRRK2 has been
linked to the regulation of the innate immune response against Mycobacterium tuberculosis
(Mtb) (CG et al., 2020; Weindel et al., 2019). This alteration has been associated with the
protein’s kinase function, which inhibits the formation and maturation of Mtb phagosome
(Hartlova et al., 2018). The intricate association between LRRK2 and various disease indicates

its crucial role in maintaining homeostasis and regulating CNS and peripheral pathology.

=  Protein interactions
Protein-protein interactions (PPIs) are the elementary molecular interactions responsible for
sustaining cellular functions. In homeostasis, PPls coordinate biological processes such as
subcellular molecular biosynthesis and trafficking, signal transduction and the regulation of
organelle dynamics. Alterations of PPIs can lead to functional impairment and thereby cause
disease. Therefore, PPl analysis is essential for understanding the physiological and
pathological role of less-recognised proteins like LRRK2. Up to now, a large number of studies

have been focused on identifying LRRK2 protein interactors.

1.1.5.1 LRRK2:Rab interaction

Out of the many LRRk2 protein interactors reported in literature, only 3 are widely accepted
by the scientific community: LRRK2 itself and Rab proteins (as both binding partner and kinase
substrate); 14-3-3 proteins (just as binding partners).

Rab proteins constitute the largest family of small GTPases. They regulate almost every stage
of intracellular membrane traffic, including the formation, motility and fusion of vesicles with
target membranes (Mizuno-Yamasaki et al., 2012; Pfeffer, 2017; Zerial & McBride, 2001).
Phosphoproteomics study showed that a subset of Rab proteins are endogenous substrates
of LRRK2, including a total of 10 Rab GTPases: RAB3A/B/C/D, RAB 8A/B, RAB 10, RAB 12, RAB
35, and RAB43 (Ito et al., 2016b; Steger et al., 2016b, 2017b; Thirstrup et al., 2017b). These
proteins are key regulators of neurotransmitter release (RAB3 isoforms), ciliogenesis (RAB8

and RAB10), endocytosis (RAB10, 12 and 35) and ER-Golgi trafficking (RAB43) (Blacque et al.,
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2018; C. Li et al., 2017; Schllter et al., 2004; Thirstrup et al., 2017b). Previous studies
suggested that LRRK2 phosphorylation may block effector binding sites of some Rab proteins
(e.g. RAB8A) and perturb intracellular localisation of other Rab proteins (e.g. RAB10).
However, how LRRK2 phosphorylation affect structures and functions of Rab proteins have
not been fully understood yet. Activities of Rab proteins are usually downregulated after
LRRK2 phosphorylation, which have been observed especially in the presence of pathogenic
LRRK2 variants which increase its kinase function. For example, the LRRK2-G2019S and LRRK2-
R1441C variants have been associated with primary cilia formation inhibition as well as
perturbated endosomal trafficking due to dysregulated LRRK2:Rab interaction (Dhekne et al.,
2018; Madero-Pérez et al.,, 2018a; Rivero-Rios et al., 2019; Steger et al., 2017a). Further
research is required to understand the mechanisms of these alterations. Apart from
phosphorylation, LRRK2 interacts with other Rab proteins through other functional domains.
For example, LRRK2 interacts with RAB29 via its ANK domain (Beilina et al., 2014; D. A.
Macleod et al., 2013). Unlike the above-mentioned Rab proteins, RAB29 functions upstream
of LRRK2. It recruits LRRK2 to specific cellular compartments, such as the trans-Golgi network,
where RAB29 is normally located, and activate its kinase activity(Beilina et al., 2014; Helip-
Wooley & Thoene, 2004; D. A. MaclLeod et al., 2013; Madero-Pérez et al., 2018b; Purlyte et
al., 2018a). Increased LRRK2 kinase function further affects the downstream recruitment and
phosphorylation of other Rab proteins (such as RAB8 and RAB10), thereby regulating their
cellular functions. These processes together form the “RAB29-LRRK2-RAB8/10 cascade”
(Kuwahara & Iwatsubo, 2020). This signalling pathway exhibits heightened activation in the
presence of pathogenic LRRK2 mutations, as it appears that the mutated LRRK2 is significantly
more activated by RAB29 compared to the wild-type LRRK2 (Purlyte et al., 2018b).

Nonetheless, the precise mechanism underlying this cascade remains to be fully investigated.

1.1.5.2 LRRK2:14-3-3 interaction

The 14-3-3 protein family constitute a group universally conserved and highly abundant
regulatory molecules. The family contains a total of 7 known mammalian isoforms, namely
14-3-3 B (YWHAB), 14-3-3 y (YWHAG), 14-3-3 & (YWHAQ), 14-3-3 n (YWHAH), 14-3-3 T
(YWHAZ), 14-3-3 & (YWHAE), and 14-3-3 B (SFN). These interact with a wide range of
intracellular proteins and regulate various cellular processes such as apoptosis, transcription,

protein transport and cytoskeleton organisation. Furthermore, 14-3-3 proteins have been
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associated with preventing the formation of neurotoxic aggregates by directly interact with
related proteins, such as a-synuclein, tau and neurofilament (NFL). These findings have
identified 14-3-3 proteins as potential drug targets for a variety of neurodegenerative
diseases such as PD, Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS).
Structurally, 14-3-3 proteins share a comparable domain organisation and sequence, resulting
in an overlap in their sets of protein interactors, which includes LRRK2. The interactions
between LRRK2 and 14-3-3 proteins involve multiple binding sites spreading across the entire
LRRK2 structure, including the ANK domain at the N-terminal, ROC domain in the middle and
the WD40 domain at the C-terminal (Manschwetus et al., 2020a; Nichols et al., 2010b). These
binding sites are highly influenced by the kinase activity of the LRRK2 protein. Therefore,
LRRK2:14-3-3 interaction can be perturbed by LRRK2 kinase inhibitors or pathogenic
mutations that alters its kinase function (Lavalley et al., 2016; Manschwetus et al., 2020b;
Nichols et al.,, 2010c; Stevers et al.,, 2017). Also, impaired or weakened LRRK2:14-3-3
interaction has been related with dysregulated exosome secretion of LRRK2 and sequential
cytoplasmic accumulation of LRRK2, which was observed in CSF and urine samples of PD cases
(Fraser et al., 2013; Giusto et al., 2021; Gu et al., 2020; Kilisch et al., 2016). These findings

suggest an important role of LRRK2:14-3-3 protein in PD pathology.

1.1.5.3 Previous in-silico protein interactome analysis of LRRK2

In-silico Protein interactome analysis refers to the systematic study of the complete set of
PPIs within a biological system based on the vast biodata resources. This approach offers a
comprehensive exploration of potential interaction partners of an unknown protein, enabling
researchers to infer its functional associations, predict its involvement in specific cellular
pathways and thereby generate hypotheses for experimental validation. Up to now, 2 protein
interactome studies have been performed on the LRRK2 protein, which were independently

published in 2015.

In the first study (Porras et al., 2015a), both human and mouse LRRK2 (Q55007 and Q5S006,
respectively) were queried in primary PPl database IntAct (Orchard et al., 2014) returning
1075 binary interactions for 612 interacting pairs and 598 interactors of LRRK2. These

interactions were reported from literature as detected with various of methods, which
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reduces the impact of false positives and negatives resulting from single detection method.
However, due to the variety in the accuracy and precision among these detection methods,
the author suggested that a quality control process is needed to keep only high-quality
interactions in the network. In the study, the authors defined three selection criteria: 1)
detection of the protein interaction in native tissue, 2) the use of the Ml score scoring system,
3) evidence of the protein to be phosphorylated by LRRK2 in vitro. Native detecting conditions
were defined as the interactions that were obtained using untagged, full-length LRRK2 in vivo
methods. However, due to the complex structure and the large size of the LRRK2 protein,
most of interactions were unable to fit this criterion. In fact, out of 598 human or mouse
LRRK2 interactions, only 25, including LRRK2 and Lrrk2, were detected in native condition.
The Ml score scoring system was defined based on the number of literature reports of a given
interaction. Theoretically, higher Ml score associates to interactions that were repeated in a
consistent number of studies and thereby may be more reliable. However, the author pointed
that some nonspecific kinase substrates get comparatively higher Ml score because their wide
usage in protein assays. In parallel, an interaction with low Ml score may result from limited
scientific interest in repeating the analysis. Due to the important role of LRRK2’s kinase
activity in biological processes, which is supported by multiple lines of evidence from
functional studies of LRRK2, the author added more confidence on those interactors of LRRK2
that were detected with kinase assays. By combining these three criteria, the author
generated a high-confidence LRRK2 interactome comprising 25 proteins including LRRK2 itself
and performed pathway annotation on it. The result showed that the LRRK2 interactome is
enriched in functions related to axon development, cell cycle, intrinsic apoptosis, membrane

trafficking, EGFR signalling and response to stress.

In the second study (Manzoni et al., 2015), only human LRRK2 (Q5S007) was queried in 2
primary PPl databases, IntAct and BioGrid, returning 542 and 260 interactions. The author
defined two filters to keep human-human LRRK2 interactions only and to remove replicated
entries. After filtering and merging, the two databases gave a total of 422 LRRK2 protein
interactors. Similar to the first study, a scoring process was also included to control the quality
of interactions, though the process here was simpler considering for each interactor only the
number of publications and interaction detection methods. Following this strategy, 62

interactors, which were reported in more than one publication or with multiple detection
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methods, were selected for the final LRRK2 interactome. Functional analysis and family
domain check were then performed on the interactome. The result indicates that LRRK2
interactors are more likely associated with intracellular vesicle transport and cell projections.
Additionally, the author compared the complete LRRK2 interactome (comprising 269
interactors after removing the scoring filter) and the result of PD genome-wide association
study (GWAS), identifying four genes coding for proteins in the LRRK2 interactome (SNCA,
RAB29, GAK and MAPT) as present within a short physical distance from PD GWAS risk signals.
In conclusion, these two independent comprehensive LRRK2 PPI study returned two vast
interactomes consisting of more than 200 proteins found in literature as able to interact with
LRRK2. In parallel, these studies also revealed the importance of quality control during the
construction of interactomes, considering the massive data sources and the great variety of
detection methods with different accuracy and specificity. Functional enrichment analysis in
both studies presented similar results to the observations from wet-lab research, suggesting
LRRK2 interactors are enriched in intracellular transport, apoptosis and cell development.
However, it is worth noticing that the information regarding LRRK2 PPIs within these studies
is non-tissue specific. Multiple lines of evidence have shown that the expression levels of
LRRK2 differs in different tissues and cell types. Therefore, it is possible to hypothesise that
the LRRK2 functions can also change based on tissue and cell specificity. So far, nobody has
attempted an investigation of the LRRK2 interactome with a focus on its variability across
different tissues and cell types. This approach will be part of the project within this thesis and
the obtained information would be instrumental in furthering understanding the role of

LRRK2 in health and disease, as well as in drug development for targeting the LRRK2 protein.

1.2. Systems biology

1.2.1 Development of systems biology

Systems biology is a dynamic and interdisciplinary field that has revolutionized our
understanding of complex biological systems. It emerged as a response to the limitations of
traditional reductionist approaches, which involve dissecting complex systems into their

constituent parts, such as individual genes, proteins, or specific cellular pathways. Instead,
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systems biology aims to elucidate the intricate interplay of biological components in a

complex system and the emergent properties that arise from these interactions.

While systems biology started to gain its prominence in the late 20" century, its origins can
be traced back to the mid-20t™ century. General systems theory, introduced by Ludwig von
Bertalanffy in the 1930s, laid the conceptual groundwork for systems thinking (Fries, 1936).
Bertalanffy's theory focused on the relationships and interactions between biological
components rather than their isolated properties, emphasizing the importance of a holistic
approach. In 1968, Mihajlo Mesarovic introduced the term "systems biology" as he applied
general systems theory to study the relationships between biological entities (Mesarovic,
1968; Mesarovic et al., 2004). This marked an essential step in the convergence of biology
and systems thinking, though the term "systems biology" would not become widely adopted
for several decades. In the late 20" century, as molecular biology advanced and high-
throughput techniques were developed, the vast volume of molecular data was generated,
highlighting the complexity of biological systems. This made it challenging to study molecular
processes in a reductional manner. Since then, it became evident that understanding
molecular networks was essential. This realization led to the convergence of systems
molecular biology and systems mathematical biology, with mathematic and computational
theories applied to analyse gene regulatory networks, protein interactions, metabolic
pathways, and other biological systems, which formed the basis of contemporary systems

biology.

Nowadays, systems biology stands as a crucial field, seeking to enhance the understanding of
complex biological systems by integrating data produced from a wide range of disciplines,
including molecular biology, multi-omics study, structural biology and so on, via
computational and mathematical approaches. At its core, systems biology relies on the
generation and analysis of big datasets generated by recent high-throughput techniques such
as next-generation sequencing and microarray, and encompass diverse molecular

information about a biological system.
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1.2.2 Network analysis

1.2.2.1 Types of networks

Network analysis is a fundamental tool in systems biology. It involves the construction and
examination of biological networks, where individual entities, such as genes, proteins,
metabolites or other biological elements, are represented as nodes while the connections or
relationships between these entities are represented as edges (i.e. connections among
nodes). According to the categories of included entitles and types of their interactions,
molecular networks can be classified into protein-protein interaction networks (PPIN) that
describe physical interactions between proteins, Gene Regulatory Networks (GRNs) that
illustrate the regulatory relationships between genes, Metabolic Networks, which present
metabolic reactions in organisms, and Gene Co-expression Networks (GCN) which help
identify functionally related genes based on their expression patterns, etc (Li & Wang, 2020).
These networks represent a combination of topological features and biological features and

provide a more comprehensive view of a biological system.

Moreover, based on how connections are established between nodes, biological networks
can be allocated into “direct network”, in which the linkage between nodes have a specific
direction or orientation, indicating that signal flows from one node to anther but not in the
reverse direction (Xiao et al., 2022). A typical example of direct network is metabolic networks,
where metabolic reactions involve direct chemical transformation of metabolites and thereby
make the edges in these networks direct (Junker & Schreiber, 2007). On the contrary, in an
“indirect network”, connections between nodes do not have a specified direction. For
example, in a gene co-expression network, edges represent co-expression behaviour between
genes which are based on the similarity in their expression profiles and are thereby indirect.
Additionally, nodes and edges can be weighted based on assorted features such as expression
levels, confident scores, reaction rates, etc., thereby generating “weighted networks” (Gillis

& Pavlidis, 2011).

Taken together, various networks provide a holistic representation of how biological
molecules collaborate and influence one another. Network analysis enables the identification
of crucial nodes (hubs) and their connectivity, unveiling the most influential elements within

a system. It also offers insights into the flow of information, energy, or materials through the
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network, helping researchers understand the underlying principles governing a biological
process. By applying topological analysis, statistical analysis, and machine learning algorithms,
network analysis aids in understanding the dynamics, robustness, and vulnerabilities of

complex biological systems.

1.2.2.2 Graph theory

Graph theory is a branch of mathematics dating back to the 18th century. It provides a
framework for understanding and analysing relationships and connections between
individual nodes or node groups in a network. In systems biology, graph theory plays a pivotal
role in the representation, analysis, evaluation and exploration of various types of biological
networks, enabling the identification of critical nodes, pathways, and patterns in biological
processes. Key concepts in graph theory includes degree of nodes, shortest path, closeness

centrality and betweenness (Ma’ayan, 2011).

1.2.2.2.1 Degree of nodes

The degree of a node in a graph is the number of edges connected to it. In a directed graph,
nodes have both in-degree (incoming edges) and out-degree (outgoing edges). Nodes with
high degrees are often considered hubs and are crucial for maintaining network connectivity

and information flow.

1.2.2.2.2 Shortest path
Shortest path represents the minimum number of edges or the lowest total edge weight (in
weighted graphs) required to traverse from one node to another. It provides a way to

determine the most efficient route between 2 nodes within a network.

1.2.2.2.3 Closeness centrality (CC)

Closeness centrality is used to quantify the centrality or importance of a node within a
network based on its ability to quickly reach other nodes (Bavelas, 1948). It measures how
efficiently a node can access all other nodes in the network, considering the shortest path
lengths between them. Nodes with high closeness centrality are those that can be reached

more rapidly from the rest of the network, making them central in terms of communication
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efficiency. Mathematically, CC is calculated as CC (i) = where i # j, djj is the length of

the shortest path between nodes j and j in the network, N is the number of nodes.

1.2.2.2.4 Edge betweenness (EB)

Edge betweenness is defined by the number of shortest paths going through an edge
(Freeman, 1977). It quantifies the importance of an edge within a network by measuring its
role in maintaining efficient communication between nodes and helps reveal potential
bottlenecks or weak points in a network, as the removal of edges with high betweenness can

disrupt communication and influence the network's overall robustness.

1.2.2.3 Topological analysis

In the context of network analysis and graph theory, topological analysis involves the
examination of the structural properties and connectivity patterns of a network graph and
provide insights into the behaviour, functionality, and properties of the represented biological
system.

1.2.2.3.1 Degree distribution analysis

Degree distribution in a network refers to the statistical pattern of node degrees. It evaluates
whether a network follows a specific structural pattern, such as a scale-free network where a
few nodes have a significantly higher degree (hubs), or a random network where node
degrees are more evenly distributed. Of note, most of known molecular networks are scale-
free (Arita, 2005). Therefore, topological features such as degree of nodes are usually with
biological significance. For example, in a cellular signalling network, key proteins like kinases
may possess higher degrees, serving as essential hubs that relay information to various
downstream targets (Buljan et al., 2020). Hence, degree distribution analysis aids in
identifying hub nodes, assessing network robustness, and gaining information regarding the

network's functional properties and organizational structure.

1.2.2.3.2 Module detection and Fast Greedy Clustering
Module detection in network analysis involves the identification of densely connected
subgroups or communities (often referred as “modules” or “clusters”) within a network.

These modules usually reveal functional or interactional units that connect more frequently
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with each other than with the rest of the network (i.e. higher local density). For example, in a
protein-protein interaction network, module detection helps uncover protein complexes or
pathways with related functions, whereas in a gene regulation network, a detected module
may represent a unit of co-regulated or co-expressed genes that contribute to a specific
biological process. Various clustering algorithms have been developed to identify modules
(clusters), such as the Markov Cluster Algorithm (MCL) (Van Dongen, 2008) which is based on
random walk, the Lancichinetti-Fortunato-Radicchi (LFR) benchmark (Lancichinetti &
Fortunato, 2009) which is based on modularity (a measure that quantifies the strength of
division of a network into distinct communities or groups of nodes), the K-Means Clustering

(Krishna & Murty, 1999) which is based on unsupervised machine learning algorithms, etc .

The Fast Greedy Clustering is particularly known for its speed and efficiency in module
detection for large networks, which has wildly used in molecular network analysis (Clauset et
al., 2004; He et al., 2012; Rahiminejad et al., 2019; R. Wang et al., 2020). The algorithm's key
idea is to iteratively merge or split communities to maximize modularity, identifying cohesive
groups of nodes within the network. It begins by considering each node as a separate
community and then combines them to form larger communities, pursuing an increase in
modularity at each step. This process continues until no further modularity improvement can
be achieved, resulting in the identification of communities with high internal connectivity and
relatively fewer connections between them. Such an algorithm excels in optimizing
modularity and helps identify communities that maximize the network's division strength. It
also supports hierarchical clustering based on different topological parameters such as edge
betweenness and degree of node. However, this is also its limitations encompassing the need
to carefully select suitable parameters and accounting for potential sensitivity to initialization
conditions during the community detection process. In addition, Fast Greedy Clustering may

have limited power in identifying overlapping modules (Mahé et al., 2014).

1.2.2.4 Examples of network analysis

1.2.2.4.1 Protein-protein interaction network (PPIN) analysis
Protein-protein interactions (PPIs) are fundamentals of all cellular pathways, such as DNA

replication and repair, signal transduction, molecular trafficking, regulation of apoptosis,
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response to stimuli, etc. PPIN analysis collects the enormous amount of experimental data
produced by a variety of PPl detection methods, as well as predictive data generated by
machine learning algorithms, providing a systematic framework to explore the organisation
and dynamics within a list of proteins (Koh et al., 2012). The process of PPIN analysis typically

includes PPl detection, data collection, network construction, analysis and interpretation.

e PPl detection

PPl detection methods can be classified into 3 categories: in vitro, in vivo and in silico
approaches. In vitro detection techniques are performed outside a living cell in a controlled
environment, such as under a particular pH or temperature. Examples of in vitro methods
include Tandem Affinity Purification-Mass Spectroscopy (TAP-MS), Affinity Chromatography,
Coimmunoprecipitation, Protein microarrays, and X-ray crystallography. These methods
normally have high specificity since they directly assess interactions between purified
proteins. Also, methods like X-ray crystallography provides structural insights about protein
complexes. However, these methods are not able to fully present the interactions occurring
within living cells, which are normally more complex due to cellular dynamics. This may result
in false negatives since certain PPIs may only occur under specific cellular conditions. In
comparison, in vivo techniques involve detecting PPIs within the living organism, such as the
Yeast 2-Hybrid (Y2H) system. These methods provide a detection environment with higher
cellular relevance but are normally lower throughput than in vitro approaches. Distinct from
the other 2 types, in silico methods predict PPIs based on a range of properties of queried
proteins such as amino acid sequence, 3D structure, chromosome proximity, expression
profiles, etc. Taking advantage of machine learning algorithms, these methods are always
high-throughput and time-efficient. Also, after years of development, modern computational
tools such as SPPS (X. Liu et al., 2012) and ProteinPrompt (Canzler et al., 2022) can predict
PPIs with high accuracy. However, the main limitation of in silico methods is their high
dependence on the quality and completeness of input data for the training of machine
learning algorithms. Therefore, they may have limited power in predicting PPIs for unknown

or less-studied proteins.
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e PPl data collection

Data for constructing a PPIN can be gathered from above-mentioned detection techniques or
derived from curated PPl databases, which are produced on the needs of storing, organising
and interpreting the vast amount of PPl data generated by high-throughput detection
techniques. Based on the data source and processing procedure, PPl databases can be

categorised into 2 types: the primary and secondary repositories.

o Primary PPl databases
Primary databases are the foundational repositories that directly compile experimental data
on protein-protein interactions from peer-reviewed literature. Information such as the
identifies of protein interactors, detection methods, publications where the PPls were
reported, and other experimental details are curated manually and uploaded into repositories.
Depending on different purposes, these databases can be general and comprehensive (i.e.,
IntAct, MINT and BioGrid), organism-specific (i.e., FlyBase and WormBase) or subject-specific
(i.e., immunology, InnateDB). Apart from experimental data, some primary PP| databases are
based on predictive PPIs via in silico method, such as (PESCADOR and iHOP). However, it is
worth to note that none of the primary database is complete as they cover a limited potation
of the literature. Therefore, in PPIN, in order to construct a comprehensive network as
possible, it is always important to merge information derived from multiple primary

databases to obtain the maximum literature coverage.

o Secondary PPl databases
By contrast, secondary databases aggregate and integrate interaction data from multiple
primary sources, often providing additional features, such as network analysis, functional
annotation, and integration with other types of biological data, such as gene expression or
pathway information to facilitate PPI data analysis. Of note, many secondary PPI databases
also collect interaction data from literature, thereby forming some commonly used hybrid
tools/repositories such as STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins)(von Mering et al.,, 2005), HIPPIE (Human Integrated Protein-Protein
Interaction Reference) (Alanis-Lobato et al., 2017) and APID (Agile Protein Interactomes Data

Server) (Alonso-Lépez et al., 2019).
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e PPIN construction and network analysis
After deriving PPIs from multiple types of resources, the next steps are to construct a PPIN,
investigate the features of its structure and organisation and probably integrate annotation
data from other datasets such as functional/pathway enrichment knowledgebases, gene-
disease association catalogues, etc. Manually connecting and annotating each PPI in the
network is impractical, especially for large scale PPIN analysis. Therefore, some user-friendly
tools have been developed to visualise and analyse PPINs.

o Cytoscape
Cytoscape is one of the most commonly used open-source tools for biological network
analysis. It is a multi-platform desktop application for network visualisation, integration,
annotation and analysis (Shannon et al., 2003). The most pronounced feature of Cytoscape is
the extensive selection of add-in apps that provide offering specialized features to
complement its core functionality. These apps cover the diverse analytical needs across
various knowledge domains, such as topological analysis (e.g., NetworkAnalyzer), cluster
detection (e.g., MCODE, clusterMaker2) and Gene set enrichment analysis (e.g., BINGO,
ClueGO, EnrichmentMap). In addition, some Cytoscape apps are connected to annotation
databases (e.g., ReactomeFIPlugin and KEGGscape) and empower the users to interpret the
network from multiple aspects. The major limitation of Cytoscape is the high demand of
computing resources, especially when it comes to large-scake networks.

o Scripting packages
In terms of large-scale network analysis, some scripting packages have been developed via
different programming languages, such as igraph for R, Python and C/C++ (https://igraph.org/)
and NetworkC (https://networkx.org/) for python. These programmatic packages are less
computing-resource-demanding and can be implemented as part of bioinformatics analysing

pipelines.

e Applications of PPIN analysis

o Predicting biological functions of uncharacterised proteins
PPIN analysis aids in understanding and predicting biological functions of unknown proteins
by examining the interactions they have with well-studies proteins. Grounded in the principle

that interacting proteins often participate in similar pathways or processes, these proteins
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may share the established roles in specific functions as their protein interactors, which is
known as “guilt by association principle”. Moreover, pathway enrichment analysis on the
neighbourhood of the unknown protein helps identify overrepresented cellular pathways or
functional categories, which refines the predictions by highlighting the most relevant
biological contexts. However, it is important to note that the accuracy of functional
predictions depends on the quality and comprehensiveness of the interaction data and
thereby should be interpreted with caution and validated through experimentation to

confirm the true function of the unknown protein.

o Mapping a complicated cellular cascade
PPINs can be used to map pathways characterised by only several confirmed hub proteins.
Starting from these hubs, a PPIN can be constructed by investigating the direct interactors of
these key proteins, which are often referred as “neighbour proteins”. By examining the
network, neighbour proteins with higher topological centrality are prioritised as potential
novel hub proteins of the pathway. Though further validation is required, these proteins may
unveil the missing links in the pathway. In addition, topological clustering on the neighbour
proteins may reveal functional units, in which the proteins closely interact with each other

and participate in the pathway as form of protein complexes.

o Investigating disease mechanisms and guiding drug development
A disease-specific PPl network can be constructed based on proteins of disease-causing genes
and potential or established therapeutic targets. By expanding and analysing the networks
through investigating interactors of these proteins, a more comprehensive view of the
molecular mechanism is obtained for the disease of study. Additionally, pathway enriched
within these proteins can reveal critical pathways and processes that are probably altered in
the disease state. Furthermore, such disease-specific PPINs are instrumental in drug discovery.
For example, novel hub proteins identified in the expanded PPIN probably play a central role
in the disease-associated signalling pathways and thereby are potential drug targets for
therapeutic intervention. After further computational analysis and experimental validation,
researchers can design drugs that modulate the interactions or activity of disease-related
proteins, ultimately working to protect or restore normal cellular function. Moreover, the
analysis of disease-specific PPIN aids in the repurposing of existing drugs. By identifying

connections between known drugs and disease-associated proteins within the network,
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researchers can explore the potential of these drugs for new therapeutic applications, which

accelerates the drug development process to a large extent.

e [imitations of PPIN analysis

Despite the advantages and wide application of PPIN analysis, it is important to recognise the
limitations the come with it. First of all, the accuracy of PPIN analysis largely replies on
comprehensive and reliable data resources. However, while most of PPI databases are well-
organised and precisely-annotated, some problems cannot be avoided. For example, a large
proportion of PPIs provided by current online resources were produced by high-throughput
techniques, which comes with risk of false positives or false negatives (Tarassov et al., 2008;
von Mering et al., 2002). These inaccuracies can impact the quality of interaction data. Also,
it is challenging to keep PPl data up-to-date if a database relies on manual annotation.
Outdated data within these databases can introduce inaccuracies into PPIN analyses and
leading to potentially misleading conclusions. In addition, literature-based PPI databases are
generally incomplete (Manconi et al., 2012). Proteins that lack of study possess insufficient
PPIs and thereby lack of centrality in typical topological analysis of PPIN. However, these
proteins may actually have more extensive set of interactors and play an essential role in the
PPIN in the real case (Tomkins & Manzoni, 2021). A combinative use of multiple PPl data
resources can help alleviate this bias. Additionally, combining PPI data with other types of
information such as expression levels or binding sites may help fill the gaps in the incomplete
PPINs. Moreover, for predicted PPIN network, although the predictions are made on the base
of experimental data, the PPIN may not represent the true dynamic and multifaceted nature
of cellular PPl systems. For example, some PPls may only occur in a particular cell
compartment or only happen in a certain stimuli circumstance. Therefore, the need for
experimental validation should never be ignored despite the development of advanced
network analysis algorithms. Finally, PPIs lack in tissue specificity as they are generally defined
in few cancer cell line experiments or in completely ex-vivo systems, while in reality they have

biological meaning within specific tissues and cell types.
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1.2.2.4.2 Weighted gene co-expression network (WGCN) analysis

Gene co-expression refers to the tendency of certain genes to exhibit similar expression
patterns across diverse experimental conditions or biological samples. In the molecular
biology context, co-expressed genes often participate in common biological processes.
WGCNSs are built upon this principle by creating a weighted network on co-expressed genes,
where genes are represented as nodes while the connections between the co-expressed
genes are represented as edges. Different weights are assigned to their connections based on
the strength of their co-expression. The main aim of WGCN analysis is to identify co-
expression modules based on weighted network analysis, define hub genes within each
module and study the relationships between co-expression modules. These modules usually
reveal the coordinated functioning of genes and the underlying regulatory mechanisms
governing various physiological and pathological processes. Based on the consideration of the
directionality of gene correlations, WGCN analysis can be divided into 3 types: signed,
unsigned and signed hybrid forms. In the signed approach, the analysis incorporates both
positive and negative correlations between genes, while the unsigned approach focuses
solely on the strength of correlations, regardless of their direction. In the signed hybrid

approach, positive correlations are kept while negative correlations are defined as 0.

e Data source for gene co-expression analysis

In co-expression analysis, mRNA level is often used as a reflection of gene. Microarray and
RNA-Sequencing (RNA-Seq) are 2 primarily used high-throughput techniques for measuring
MRNA levels, in which RNA-Seq has higher sensitivity and throughput than microarray but it
is more expensive to run, especially for large-scale studies. In recent years, several data
repositories have been established to store well-formatted and curated RNA-Seq data. These
resources can be a catalogue of a range of individual studies such as the Expression Atlas

(https://www.ebi.ac.uk/gxa/home) and GEO (Gene Expression Omniubs,

https://www.nchi.nlm.nih.gov/geo/), or based on a large-scale study based on a single cohort,

such as GTEx (Genotype-Tissue Expression project, https://www.gtexportal.org/home/).
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e Network construction and module detection

After getting the expression data, the first step of WGCN construction is the calculation of
pairwise gene correlations. Common correlation measures include Pearson correlation,
Spearman rank correlation, or biweight midvariance. Pairwise co-expression coefficients form
the “correlation matrix”. Afterwards, a soft thresholding power (B) is applied to the
correlation matrix to generate the “adjacency matrix”, in which strong correlations are

emphasize out of weaker ones. The way B is implemented on the correlation matrix varies

1+cor(i,j)

across different types of WGCN analyses. For signed networks, a;; = ( - )? in which a;;

refers to the adjacency between gene / and j; while for unsigned networks, a;; = |cor(i, j) 1%,
and in terms of signed hybrid networks, for positive correlations, a;; = |cor(i, j)|8, while for
negative correlations, a;; = 0. Next, the adjacency matrix is converted into a Topological
Overlap Matrix (TOM), where the correlation information between genes is transformed into
topological similarities among nodes in the network. Afterwards, hierarchical clustering is
performed on the TOM to group genes with similar co-expression patterns. This results in a
dendrogram, to which a dynamic tree cutting algorithms is applied to identify gene modules.
Furthermore, an eigengene is calculated for each module, representing the first principal
component of the module’s overall expression profiles. Similarities between these module
eigengenes can be further examined and modules with highly correlated eigengenes can be
merged. In addition, the eigengenes can be correlated with clinical traits or phenotypes to

identify disease or function-related gene modules.

e Limitations of WGCN analysis

Although WGCN analysis is a powerful tool in systems biology that provides insight into the
complicated gene regulation and connection network, it has some limitations. First of all, this
analysis is highly sensitive to the choice of B, the soft thresholding parameter. A high 8 leads
to a more stringent threshold, resulting in a sparser network with stronger connections, while
a low B yields a denser network with weaker connections. There are multiple algorithms that
help in B selection. For example, the R package “WGCNA” contains a function named as
“pickSoftThreshold”, which optimise the value of B to ensure scale-free topology for the
WGCN network (Langfelder & Horvath, 2008). An appropriate 3 is crucial for maintaining

reliability and biological interpretability of the co-expression modules identified through
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WGCNA. In the meantime, as for other in silico network models in systems biology, WGCNs
are not able to fully represent the detailed signalling flow of in a biological process. For
example, since they only model the co-expression patterns between genes, there is lack of
directionality, they are unable to distinguish between upstream and downstream regulatory
interactions. Therefore, it is always important to interpret these computational models with

experimental validation.

1.2.2.4.3 Differential expression analysis (DEA)

e Data preprocessing

DEA identifies genes exhibiting significant changes in their expression level under different
experimental conditions. Data source for DEA include proteomics and transcriptomics data
produced by high-throughput techniques such as Mass Spectrometry and RNA-Seq. As
compared to co-expression analysis, DEA is more sensitive to data quality since it focuses on
the absolute value of expression. Therefore, the data preparation process is more complex
for DEA. For example, for RNA-Seq data, quality control (QC) should be performed at sample
and gene-level (Anders & Huber, 2010; Qi et al., 2017). Sample-level QC is aimed to i) observe
whether the experimental condition explains the major source of variation among samples
and ii) remove any possible outliers caused by batch effect or technical errors. In comparison,
Gene-level QC involves omitting genes with missing, zero or extremely low counts in most of
samples or the genes with count outlier, to increase the statistical power of further analysis.
Principal component analysis (PCA) and hierarchical clustering are commonly-used QC
method to visualise clustering pattern and detect outliers in large datasets (Tang et al., 2015).
Moreover, read count normalisation is another crucial step in data preprocessing for DEA
performed with RNA-Seq data. By far, plenty of normalisation methods have been suggested
for RNA-Seq data, such as RPKM (Reads Per Kilobase Million) or FPKM (Fragments Per Kilobase
Million). These methods normalise the raw read counts for gene length and sequencing depth
(i.e., to the total number of reads or fragments obtained from an RNA-seq experiment) (Zhao
et al., 2021). However, these methods do not take consideration of RNA library composition
(i.e., the relative abundance and diversity of different RNA molecules present in a sample),
though it is an important concept since a few highly differentially expressed genes or the

presence of contamination can perturb mRNA expression profile in the examined samples
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and thereby cause bias (Maza et al., 2013). Therefore, some new normalisation methods have
been implemented and are applied like DESeq and TMM (Trimmed Mean of M-values) which
are robust against high-count genes and differences in RNA composition(Love et al., 2014;

Robinson et al., 2010).

e Statistical testing

Multiple types of statistical tests can be applied for DEA, such as t-tests, ANOVA, or specialized
statistical methods within algorithms like DESeq2 and edgeR for RNA-seq data (Love et al.,
2014; Robinson et al., 2010). Of note, multiple test correction, such as Bonferroni correction
or false discovery correction, is necessary for controlling the Type Il error rate especially in

large-scale DEA pipeline.

e Data visualisation

Comparison results of DEA are normally presented via a volcano plot, in which the x-axis
pepresents the fold change in gene expression between two conditions: a positive value
indicates upregulation, and a negative value indicates downregulation, while the y-axis
prepresents the statistical significance of the observed changes (W. Li, 2012). Typically, the
negative logarithm (base 10) of the adjusted p-value is used. The higher the point on the Y-

axis, the more statistically significant the change in expression.

1.2.2.4.4 Functional enrichment analysis

Functional enrichment analysis is used to identify functional categories or biological pathways
that are overrepresented in a set of genes or proteins. It provides functional annotation for
gueried proteins or genes that are shortlisted from experimental evidence or by other
systems biology approaches such as network analysis. Functional enrichment analysis plays a

crucial role in associating in silico models with their potential biological significance.

e Algorithm
There are a wide range of analysing tools and platforms for functional enrichment analysis,
which follow similar algorithms. The analysis begins with a list of genes or proteins of interest

(test set), a larger set of genes or proteins to which the test set is compared (reference set or
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“universe”, this is often the entire genome or proteome of reference for the species under
analysis) and by selecting a relevant functional annotation database, which contains
information that link genes or gene products to functional terms such as cellular pathways,
molecular functions and biological processes, in a standardised way. Annotations are curated
through a combination of automated methods (such as text mining) and manual curation of
peer-reviewed publications by domain curators. Within a functional annotation database,
each functional term possesses a “complete” list of entities that were annotated as its
contributors. Statistical methods, such as hypergeometric or Fisher's exact tests, are then
applied to assess overrepresentation, i.e., to evaluate whether the observed number of genes
in a particular functional category in the input set is significantly higher than in the universe.

At last, significant enrichments are further adjusted via multiple testing correction.

e Functional annotation databases

o Gene Ontology (GO)
Gene Ontology (GO) is one of the most widely utilised functional annotation databases
(Consortium et al., 2023). Developed by the Gene Ontology Consortium, GO serves as a
standardized vocabulary that classifies genes into three major categories: biological processes,
molecular functions, and cellular components. This ontology provides a structured and
hierarchical representation of the relationships between these terms, offering a
comprehensive and organized view of the functional landscape of biological systems. The
Biological Process (GO-BP) category encompasses broad biological activities, Molecular
Function (GO-MF) involves specific biochemical activities, and Cellular Component (GO-CC)
describes the locations within the cell where gene products are active. The ontology forms a
directed acyclic graph (DAG), where terms are represented as nodes while the relations
between the terms as edges. Some of the commonly used relations in GO include is a (is a
subtype of); part of; has part; regulates, negatively regulates and positively regulates. The
nodes and edges are organized in a hierarchical manner, reflecting the complicated “ontology
tree”. There are plenty of tools are available for GO enrichment analysis, such as DAVID
(Database for Annotation, Visualization, and Integrated Discovery) (Sherman et al., 2022),

Enrichr (Kuleshov et al., 2016) and g:GOSt from the g:Profiler tool set (Kolberg et al., 2023).
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o Reactome
Reactome offers a freely available, open-source relational database of human-centric cellular
pathways. The core unit of the Reactome data model is the reaction, forming a network of
biological pathways with high density of interaction (Gillespie et al., 2022). The reactions,
pathways and the interactions in-between in Reactome are manually curated from peer-
reviewed literatures. In addition, the tool provides comparative analysis among different
organisms, using human pathways to compute equivalent pathways in 20 other species.
Moreover, Reactome provides users with graphical maps of cellular pathways through its
website, offering an interface to access detailed information. Apart from its website,
Reactome database can be accessed from many other analysing platforms which allows
enrichment analysis on multiple annotation data recourses. It can also be accessed via API
through scripting R package ReactomePA or Python package reactome2py, functioning as part

of bioinformatics analysing pipeline.

e Limitations

The main drawback of functional enrichment analysis comes from the variability in the quality
and depth of annotations across different biological domains. Certain areas of biology are
more extensively and precisely annotated, resulting in a potential bias in the statistical
analysis. For example, well-characterised proteins receive more thorough annotations as
compared to less popular or newly identified proteins. Similarly, some pathways/functions
receive more attention than others with the consequence that their ontology is a larger tree
(i.e. containing a large array of terms) in comparison with less popular pathways/functions.
Additionally, the criteria may vary when a gene or gene product is annotated either by
curators or computational algorithms, which can be another source of bias. Another
limitation of functional enrichment analysis is the complexity of results especially for large
input sets. This is due to the generation of overwhelmingly detailed ontologies with
complicated structure and a large proportion of similar terms. To alleviate this problem, many
tools (such as GOslims) offer simplified version of enrichment analysis which combines
semantically similar terms and assign fine detailed terms to more general parent terms,
making the enrichment results more interpretable. However, due to the variety of simplifying

pipelines, outputs produced by different tools for the same query set may differ.
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1.3. Machine Learning (ML) in bioinformatics

Machine learning (ML) is a subfield of artificial intelligence (Al) that focuses on the
development of algorithms and statistical models that enable computers to perform tasks
without explicit programming (Jordan & Mitchell, 2015). The central idea behind machine
learning is to allow machines to learn from data, recognize patterns, and make decisions or
predictions based on that learning. The sheer volume and complexity of biomedical data,
from the intricate details encoded in DNA sequences to the dynamic interactions within
protein structures, from the comprehensive records encapsulated in electronic health records
and the visual narratives provided by medical imaging, demands sophisticated computational
approaches for analysis and interpretation. This is where ML steps in, offering algorithms and

tools to process, analyse, and derive meaningful patterns from these datasets.

The ML process is a structured sequence involving distinct stages (Alpaydin, 2021). It begins
with data collection, where relevant information is gathered, encompassing examples,
experiences, or observations that serve as the foundation for the machine's learning.
Following this, data preprocessing takes centre stage, involving the meticulous cleaning and
organization of data to render it suitable for training machine learning models. This step
encompasses handling missing values, normalizing data, and converting it into a format
conducive to analysis. Feature extraction then comes into play, focusing on the selection or
transformation of key features (attributes) crucial for the learning task at hand. The heart of
the machine learning process lies in model training, wherein an algorithm is employed to
enable the machine to "learn" from the provided data. During this phase, the model adjusts
its parameters to minimize errors or precisely predict outcomes. Subsequently, the trained
model undergoes evaluation to gauge its performance on new, unseen data, ensuring its
ability to generalize effectively and make accurate predictions. Finally, in model deployment,
the trained model is applied to make predictions on real-world data, completing the iterative
cycle of the machine learning process. In general, ML models can be divided into 2 types:
supervised and unsupervised ML. Both of them are widely used in bioinformatics studies (El

Naga & Murphy, 2015).
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1.3.1 Supervised ML algorithms

Supervised ML involves training algorithms on labelled datasets, where the input data is
paired with corresponding output or target labels (Ghosh & Dasgupta, 2022b). With clear
labels for training data, supervised learning is well-suited for tasks like classification and
regression, making it applicable in various scenarios, especially in disease diagnosis and
prediction. For example, in the context of Parkinson's disease, a prediction model can be
trained on a dataset incorporating PD patients and healthy controls with their demographic
features like age and gender, genetic features like with/without LRRK2 variants and motor &
non-motor clinical features such as tremor severity, motor scores and cognitive scores.
Following meticulous data preprocessing steps, supervised ML algorithms, such as logistic
regression, is employed to train a model capable of discerning the intricate relationship
between these features and the likelihood of an individual having Parkinson's disease and
optimising the set of predictors with the best predicting performance. Rigorous evaluation,
including metrics like accuracy and precision, ensures the model's reliability using a distinct
testing set (Ghosh & Dasgupta, 2022c). Once validated, the logistic regression model is

deployed for predicting the likelihood of PD in new individuals.

1.3.2 Unsupervised ML algorithms

Unsupervised ML algorithms explore and uncover inherent relationships within complex
biological datasets (Jordan & Mitchell, 2015). It is commonly used for clustering analysis in
complex biological networks, where similar entities are grouped together based on shared
characteristics. For example, the above-mentioned module detection algorithms in PPIN and
WGCN are all based on unsupervised ML approaches. In addition, unsupervised ML
algorithms are also widely used for dimensionality reduction, which aids in simplifying while
retaining essential features in high-dimensional data. The commonly used unsupervised ML

algorithms include Principal Component Analysis (PCA), k-means and hierarchical clustering.

1.3.2.1 PCA
PCA is a dimensionality reduction approach widely used in nearly all sorts of high-dimensional
data. For example, in Genome-Wide Association Studies (GWAS), PCA helps in condensing a

range of potential cofounders such as ethnicity, gender, age, etc. into a set of linearly
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uncorrelated variables known as principal components. By including the top principal
components as covariates in the statistical models of association testing, researchers can
effectively control for population stratification and minimise the risk of false-positive
associations due to differences in genetic ancestry (Kurita, 2020). Moreover, in the context of
gene expression studies, variations in sample quality, batch effects, or other sources of
unwanted variability can impact the accuracy of results. In this scenario, PCA can be used as
a valuable tool for sample quality control by capturing the dominant patterns of sample
variability(Macdkiewicz & Ratajczak, 1993) . By visually inspecting the PCA plots or examining
the proportion of variance explained by each principal component, researchers can identify
outliers or clusters of samples with distinct expression patterns. Samples deviating from the
main cluster in the PCA plot may indicate issues with sample quality or batch effects and

thereby need to be re-examined or excluded from subsequent analysis.

1.3.2.2 K-means

K-means clustering is a partitioning algorithm widely used in bioinformatics (Lloyd, 1982). The
algorithm operates by iteratively assigning data points to clusters based on their similarity to
the mean of each cluster. The goal is to minimize the sum of squared distances between data
points and their respective cluster centroids. One crucial aspect in implementing k-means is
defining the optimal number of clusters, often denoted as 'k.' This can be achieved through
techniques like the elbow method or silhouette analysis. The elbow method involves plotting
the cost function (sum of squared distances) against different values of k and choosing the
point where the rate of decrease sharply changes, resembling an elbow (Thorndike, 1953).
Silhouette analysis quantifies how well-separated clusters are, with higher silhouette scores
indicating better-defined clusters (Rousseeuw, 1987). In bioinformatics, k-means clustering is
employed for various tasks, such as classifying gene expression patterns, grouping similar
biological samples, or identifying distinct subtypes within a population. It aids in uncovering
hidden structures within large biological datasets, providing valuable insights into the

underlying biological processes and facilitating further analysis and interpretation.
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1.3.2.3 Hierarchical clustering

Unlike k-means clustering, hierarchical clustering does not require specifying the number of
clusters beforehand (Ghosh & Dasgupta, 2022a). The algorithm works by successively
merging or dividing clusters based on the similarity of data points. The result is a hierarchical
tree-like structure, or dendrogram, illustrating the relationships between data points and
their groupings. There are 2 main types of hierarchical clustering: agglomerative, where each
data point starts as its own cluster and is merged iteratively, and divisive, which begins with
all data points in a single cluster and splits them (Nielsen, 2016). In both of the 2 types,
deciding where to cut the dendrogram to form distinct clusters is a critical step. Similar
approaches used in k-means can be applied in hierarchical models to define the optimal
number of clusters and the “cutting height” for the dendrogram.

In terms of its application, hierarchical clustering finds extensive use in tasks such as
classifying gene expression patterns, categorizing biological samples, and identifying
relationships between different species or genomic features. The dendrogram generated by
hierarchical clustering helps visualize the inherent structure in complex biological datasets,
enabling researchers to explore and interpret the underlying patterns and relationships

within biological systems.

1.3.3 Common issues in ML models

1.3.3.1 Overfitting

One of the main challenges in ML model construction is the risk of overfitting, which occurs
when the model fits too closely to the training dataset but cannot generalize well to testing
datasets (Altman & Krzywinski, 2018). It happens due to several reasons, such as small and
noisy training set or a too complex model that involve an overwhelming number of
parameters. Therefore, to reduce overfitting, one common approach is to use a more
straightforward model with fewer parameters and train the model on a clean dataset with
larger size (Ghosh & Dasgupta, 2022a). In the meantime, some algorithms have been
developed to further decrease the risk of model overfitting, such as k-fold cross-validation, in
which the training set is partitioned into k subsets or folds (R Kohavi 1995). The model is
trained k times, each time using k-1 folds for training and the remaining fold for validation.
This process is repeated k times, with each fold used exactly once as the validation data. The

performance metrics obtained from each run are then averaged to provide a comprehensive
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evaluation of the model's performance. K-fold cross-validation is particularly valuable when
dealing with data of limited sample size, as it maximizes the use of available information for
both training and validation. This approach helps mitigate overfitting and provides a more

reliable estimate of how well a model is likely to perform on testing data.

1.3.3.2 Multicollinearity

Multicollinearity, arises when two or more predictor variables in a regression model are highly
correlated (Dormann et al., 2013). This correlation makes it challenging for the ML model
(especially supervised ML models) to distinguish the individual effects of each variable on the
response variable, leading to instability in estimating regression coefficients. LASSO (Least
Absolute Shrinkage and Selection Operator) is a regularisation technique introduced by
Robert Tibshirani in 1996 aimed to mitigate multicollinearity (Tibshirani, 1996). The key
characteristic of LASSO is its ability to shrink the coefficients of less influential variables all the
way to zero which helps in feature selection by identifying and keeping only the most relevant
predictors, reduce multicollinearity when predictor variables are highly correlated. The
regularization parameter, often denoted as A (lambda), controls the strength of the penalty.
Larger values of A result in more aggressive shrinkage and greater sparsity in the model.
Therefore, the optimisation of A is a crucial step in LASSO algorithm, involving a k-fold cross-
validation process to assess the model performance for different A values. The A value
minimises the Mean Squared Error (MSE) is selected as the optimal regularisation parameter,
and the predictors with shrinked coefficients are excluded from the mode. These predictors

are either highly correlated with each other or lack of predictive capability on the outcome.

1.4 Hypothesis testing

The work in this thesis will try and answer the following questions:

1. Isit possible to categorize the LRRK2 interactome into functional and topological units to
better understand the various functions associated with LRRK2?

2. Do the function and expression of the LRRK2 interactome remain consistent across all
tissues, or is there a tissue-specificity that influences both interacting proteins and

interactions?
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3. Do interactions within the LRRK2 interactome exhibit similar patterns in sporadic and
familial Parkinson's disease, or are there distinct alterations that are indicative of one

disease form over the other?
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Databases, analysing tools and software used in this study

2.1 Online resources

2.1.1. PPl data

2.1.1.1 HIPPIE (v2.3)

HIPPIE (the Human Integrated Protein-Protein Interaction Reference) is a web resource that
provides QC-ed PPIs with context-specific annotation (Alanis-Lobato et al., 2017). The PPI
repository of HIPPIE is extracted and merged from IntAct, MINT, BioGRID, HRPD, DIP, BIND
and MIPS, which is annually updated via the PSICQUIC interface. Afterwards, a confidence
score is computed for each PPl in a semi-computational manner, examining the amount and
the quality of the experimental evidence behind it, as well as the number of non-human
organisms in which a PPI was reproduced, aiming to reduce the number of false positives.
However, since this process involves manual evaluation on the reliability and accuracy of PPI
detection methods, it may induce potential bias since it is difficult to quantify the quality of
different techniques. For example, “gst pull down (MI:0059)” and “peptide array (MI:0081)”
obtain same score in HIPPIE Experiment Based Quality Scoring system. However, in a real
experimental case, the performance of these 2 techniques can be affected to a different
extent by the properties of protein interactors or detecting environment. Therefore, a hard
threshold may not be appropriate while performing QC with HIPPIE PPl scores. Different from
PINOT, HIPPIE provides PPl annotation from multiple aspects using i) tissue-specific mRNA-
level expression data derived from GTEX, ii) gene functions retrieved from Gene Ontology
terms (biological process and cellular compartment) and iii) relatedness to disease extracted
from MeSH ontologies. In addition, HIPPIE also provides predicted and KEGG-curated PPI
directionality, i.e., whether a PPIs is activating or prohibiting the function of protein
interactors. Moreover, HIPPIE integrates third-party-driven disease and functional gene set
enrichment analysis, supported by GS2D(Gene Set to Diseases) (Andrade-Navarro et al.,

2016)and PANTHER. These annotations help in interpreting the output PPl network.
2.1.1.2 MIST (v5.0)

MIST (Molecular Interaction Search Tool) is an online tool that integrate PPl data from curated

public data resources, including BioGrid, IntAct, MINT, DIP, DrolD, mentha, HPRD,
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HumanMAPPK, PomBase and FlyBase, covering 9 prominent model organisms including Mus
musculus and Homo sapiens (Hu et al., 2018). In terms of QC pipeline, MIST uses a similar
algorithm as HIPPIE, which ranks PPIs based on the number of detections approaches and
publications, as well as the comparison to other organisms, though without manually scoring
PPl detection methods. In addition, unlike the quantitative approaches used by HIPPIE, in
MIST, interactions obtain a high ranking when they were reported in multiple references
and/or with diverse approaches. In contrast, interactions falling short of these criteria but
backed by support from various species receive a moderate ranking, while all other PPls are
ranked as low. This categorical classification alleviate bias from PPI scoring system but may
cause false positive in uni-organism PPl research. Moreover, MIST provide searching filters on
evidence type, which helps distinguish direct interactions from indirect or uncertain
interactions based on the detection approaches. The unique feature of MIST is that it supports
cross-species interaction analysis by mapping PPIs of one species to another via the DRSC
Integrative Ortholog Prediction Tool (DIOPT), which largely increase the number of candidate
interactors. However, further experimental validation is especially important for such analysis

due to an expected high false positive rate.

2.1.1.3 PINOT (v1.0)

PINOT (the Protein-Protein Interaction Query Tool) is an online server designed to efficiently
search curated literature and extract the most recent PPl data associated with specific
proteins or genes of interest (Tomkins et al., 2020). The unique feature of PINOT is that human
PPIs are directly downloaded from the PSICQUIC (Proteomics Standard Initiative Common
Query Interface) platform at every query. PSICQUIC is founded by the HUPO Proteomics
Standard Initiative (HUPO-PSI) to standardise the access to multiple molecular interaction
databases programmatically, facilitating the integration of PPl data across various sources
(Aranda et al., 2011). So far PSICQUIC includes a total of 34 members, including the prominent
PPl databases such as IntAct. As compared to the built-in repositories, which most of other
PPI searching tools rely on, retrieving PPIs from PSICQUIC ensures the most up-to-date PPI
output of larger coverage. In addition, PINOT incorporates multiple QC steps, which is mainly
based on counting the number of different methods by which a PPl was detected (the
“method score”) and the number of literatures where a PPl was reported (the “publication

score”). Of note, due to the variety of curation protocols utilised by different databases,
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simply adding up the number of records of detection methods which merged from primary
data sources can be biased. To dilute the bias, PINOT includes a unique and crucial QC step
involving grouping technically similar PPl detection methods based on an in-house dictionary.
For example, “Two Hybrid - MI1:0018”, “Two Hybrid Array - MI:0397” and “Two Hybrid Pooling
Approach - MI:0398” are grouped together into the “Two Hybrid (2Hyb)”. In this way, the
“method score” based on clustered and reassigned method groups is more accurate.
Moreover, users are allowed to choose from 2 different method grouping algorithms
(“Lenient” or “Stringent”) based on the query preference, which slightly change the way how
PINOT group general detection methods such as “biophycial (MI:0013)” and “docking
(MI:0035)”. However, it is worth to mention that PINOT’s method dictionary is not yet

complete, which thereby limits its capability in reducing method redundance bias.

2.1.2 Protein list annotation: g:Profiler

g:Profiler contains a collection of tools covering functional enrichment analysis (g:GOSt),
protein/gene identifier conversion (g:convert and g:Orth) and human SNP-gene mapping
(g:SNPense). In this project, all enrichment analyses were performed via g:GOSt which
performs functional enrichment analysis calculating overrepresentation via a standard
Fisher's one-tailed test (cumulative hypergeometric probability) using the most commonly
annotation tools such as Gene Ontology (molecular function, biological process and cellular
component), KEGG, Reactome and WikiPathways. In terms of multiple testing correction,
g:GOSt provides options for Bonferroni’s correction, Benjamini—Hochberg False Discovery
Rate and g:SCS, which is a specific p-value correction approach developed for functional
enrichment analysis, taking into consideration that functional terms are not completely
independent from each other due to the way functional ontologies are organized with terms
linked in parent/child relationships. By default, the analysing background is set as all
annotated protein-coding genes. The background can be customised by the user, for example,
a set of disease-related genes can be used as background while performing disease
association enrichment analysis. In addition, g:GOSt support multiquery to compare

enrichment results among different protein lists.
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2.1.3 RNA-Seq data

2.1.3.1 GTEx

The Genotype-Tissue Expression (GTEx, https://www.gtexportal.org/) project is aimed at
establishing a comprehensive public resource for molecular assays such as WGS, WES and
RNA-Seq, which gathers samples from 54 tissue sites across nearly 1000 healthy individuals
(Aguet et al., 2020). In addition, GTEx also uses the internal dataset to provide information
regarding expression quantitative trait loci (eQTL) or splicing quantitative trait loci (sQTL) that
were identified from genetic variation that are highly correlated with the expression levels or
alternative splicing. This project utilised RNA-Seq expression data (in read counts) obtained

from GTEx for different brain regions and peripheral tissues.

2.1.3.2 PPMI

The Parkinson's Progression Markers Initiative (PPMI, https://www.ppmi-info.org/) is a multi-
central study that aims at identifying biological markers of Parkinson’s risk, onset and
progression. It provides a comprehensive, standardised, longitudinal dataset that contains
clinical features, bioimaging and genetics data of 3 major cohorts, including “Parkinson’s
disease confirmed cases”, “Prodromal cases”, “Healthy controls”, in which the “Parkinson’s
disease” cohort contains sporadic untreated PD participants and genetic PD participants with
pathogenic mutations in LRRK2, GBA, SNCA, PRKN and PINK1, while the prodromal cohort are
individuals that are at risk of PD based on clinical features (such as imaging), presence of
genetic variants or first-degree family history. This project used whole blood RNA-Seq data
from the PPMl initiative. Of note, access to this initiative is restricted to researchers who have

received permission upon signing a user agreement.

2.2 R packages

2.2.1 UniprotR

UniprotR is an R package that accesses protein-related details by connecting to Uniprot
(https://www.uniprot.org/) and retrieve information like the name or taxonomy details of a
protein (Soudy et al., 2020). In this study, it was used to extract protein family information

for LRRK2 interactors
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2.2.2 GO.db

GO.db is an R package that encompasses a collection of annotation maps providing a
comprehensive description of the entire Gene Ontology. These maps are constructed using
data sourced from the Gene Ontology database. DOI: 10.18129/B9.bioc.GO.db. In this study,
it was used to extract hierarchical relation between Gene Ontology terms enriched for LRRK2

interactors.

2.2.3 Wordcloud
Wordcloud is an R package that helps create word clouds, visualize differences and similarity
between documents, and avoid over-plotting in scatter plots with text. URL:

http://www.fellstat.com/. In this study, it was used to extract and present the key words of

enriched Gene Ontology terms for LRRK2 interactors.

2.2.4 WGCNA

WGCNA is an R package that performs Weighted Correlation Network Analysis (WGCNA) on
high-dimensional data (Langfelder & Horvath, 2008). Includes functions for data cleaning,
construction of correlation networks, module detection, summarisation, and relating
modules to sample traits. In this study, it was used to perform WGCNA on expression data of
LRRK2 interactors in healthy tissues and the whole blood mRNA level of healthy controls vs.

patients with sPD and LRRK2-PD.

2.2.5 DESeq2

DESeq?2 is an R package that estimates variance-mean dependence in read count data from
high-throughput sequencing assays and test for differential expression based on a model
using the negative binomial distribution. It also provides functions for data normalisation and

visualisation. URL: https://github.com/thelovelab/DESeq2. In this study, it was used to

perform differential expression analysis on expression data of LRRK2 interactors in healthy
tissues and the whole blood mRNA level of healthy controls vs. patients with sPD and LRRK2-
PD.
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2.2.6 SKAT

SKAT is an R package that performs kernel-regression-based association tests including
Burden test, SKAT and SKAT-O. These methods aggregate individual SNP score statistics in a
SNP set and efficiently compute SNP-set level p-values. URL: https://cran.r-

project.org/web/packages/SKAT/index.html. In this study, it was used to perform genetic

burden analysis of LRRK2 interactors against sPD and LRRK2-PD

2.3 Software

2.3.1 Cytoscape 3.13.2

Cytoscape is an open-source software platform for visualizing molecular interaction networks
and biological pathways and integrating these networks with annotations, gene expression
profiles and other state data (Shannon et al., 2003). Cytoscape by default provides a basic set
of features for data integration, topological analysis, and network visualization. Additional
features are available as Apps, which aid in a wide range of bioinformatics analysis such as
network and molecular profiling analyses, provide new layouts and support scripting, and
connection with databases. Most of the Apps are freely available from Cytoscape App Store

(https://apps.cytoscape.org/). In this study, it was used to perform topological and clustering

analysis on the PPl network of LRRK2, as well as generate network graphs.

2.3.2 GraphPad Prism 10.1.1
GraphPad Prism combines functions of scientific graphing, comprehensive curve fitting
(nonlinear regression), statistics, and data organization. It was used to perform One-way

ANOVA with post hoc Tukey’s test and data visualisation.

2.3.3 StataSE 15.0

Stata, a versatile statistical software package designed for tasks such as data manipulation,
visualization, statistical analysis, and automated reporting. Researchers across various
disciplines, including biomedicine, economics, epidemiology, and sociology, utilize Stata for
their analytical needs. In this study, it was used to perform data manipulation, t-tests and chi-

square tests.
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2.3.4R4.1.2 & RStudio

RStudio is an integrated development environment tailored for the R programming language,
specializing in statistical computing and graphics. In this study, all systems biology analyses

were based on R and performed via RStudio.
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Chapter 1. Construction and analysis of the LRRK2 protein
interactome

Objectives

e To construct a protein interactome of LRRK2 (LRRK2in:) with peer-reviewed PPl data
e To functionally annotate the LRRK2i,: via functional enrichment analysis

e To investigate the association between the LRRK2i: and neurodegenerative disease

(Alzheimer’s disease, AD) and PD via Gene Set enrichment analysis

Analysis pipeline

Construction of LRRK2 Protein Interactome

PPI Download PINOT (v1.1) HIPPIE (v2.3) MIST (v5.0)

Merged PPI list

 J
Quiality Control

Method score +
ublication score > 22

Lack of replication
(Excluded)

LRRK2 protein interactome

v Y Y v

Annotation Protein family classfication Functional enrichment Disease association (PD, AD)

Note: Figures and text in Chapter 1 are adapted from the following publication: Zhao et al.; “Tissue
specific LRRK2 interactomes reveal a distinct striatal functional unit”; PLoS Comput Biol. 2023 Jan

30;19(1):e1010847. doi: 10.1371/journal.pcbi.1010847.

69



Methods

e Construction of LRRK2 protein interactome (LRRK2int)

PINOT (v1.1), HIPPIE (v2.3) and MIST (v5.0) were queried to download “homo sapiens” PPls

for LRRK2 (UniProt ID: Q5S007, 21 October 2020). To access the broadest possible set of PPI

data, “Lenient” filter level was applied in PINOT; for MIST, “Networks to Search” was set as

“protein-protein interactions” only with “no filer by rank”.

PPIs derived from the 3 web resources were quality-controlled via an in-house pipeline:

1) The identifiers (IDs) of LRRK2 protein interactors derived from the 3 repositories were
converted to HUGO Gene Nomenclature Committee (HGNC) gene symbols. Interactors
marked as “Unreviewed” in UniProtKB were removed;

2) Converted protein lists and the corresponding records of detection methods and
publications were merged after removing duplicates;

3) Interaction detection method IDs were reassigned referring to the PINOT Method
Classification Dictionary (https://www.reading.ac.uk/bioinf/PINOT/FILE2.xlIsx), which
clusters similar detection methods annotated in PSI-MI ontology (e.g. “Enzymatic Study
MI:0415” and “Polymerisation MI:0953” are allocated in the same category: “Enzyme”)
and merged after removing duplications;

4) LRRK2 interactors were then scored (Final Score, FS) by adding the number of reassigned
detection methods (Method Score, MS) and the number of reporting publications
(Publication Score, PS);

5) LRRK2 interactors with FS < 2 were removed from further analysis due to their low
reliability (either were not replicated in multiple experiments or with missing publication

identifier or with missing record of detection method).

e Functional annotation

Protein family classification

Family domains for LRRK2 interactors were extracted from UniProtKB via the R package
“UniprotR”. Retrieved family domains were further classified based on semantic similarity and

biological functions.
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Gene Ontology (GO) Enrichment Analysis
GO Biological Processes (GO-BP) enrichment analysis were performed on the LRRK2i,: via

g:GOSt (https://biit.cs.ut.ee/gprofiler/gost) on 18" March 2023. Query parameters were set

as following: Organism: Homo sapiens (Human); Statistical domain scope: Only annotated
genes (only genes with at least one annotation); Significance threshold: Bonferroni correction.
Of note, for the interactors with multiple Ensembl IDs, only the ID with the most GO
annotations was kept. Of note, GO-BPs with term size (the total number of genes associated
with a given functional term) > 2500 were considered as “general terms” and thereby
removed from further analysis. Enriched GO-BP terms were then grouped based on their
hierarchical relation in the GO ontology tree. Relations among terms (considered only “part
of” and “is a”) were retrieved via R package “GO.db”. Text mining was performed on each
GO-BP group to highlight the most re-occurring key words among the functional terms via the
R package “wordcloud”. Text cleansing was conducted manually to remove general words

nn nn nmn nn

from the key word list ("regulation", "positive", "of", "activity", "pathway", "negative", "to",

"process"”, "cell", "cellular", "in", "factor", "function", "involved", "biological", "molecular",

"cascade", "from", "by", "or", "into", "via",

n n n n

class", "compound", "changes", "mechanism",

nmn nn

"component", "complex", "part"). Additionally, semantically similar key words were manually
combined, e.g., “apoptosis”, “apoptotic” and “programmed cell death” were considered as
the same functional key word “cell death” and the frequencies were thereby combined.
LRRK2 interactors contributing to the same GO-BP functional group were allocated into one
functional unit (FU), and those contribute to all GO-BP groups were defined as the “functional

core” of the LRRK2in:. Moreover, GO Cellular Component (GO-CC) enrichment analysis was

performed on each FU to investigate the intracellular locations of included LRRK2 interactors.

Gene set enrichment analysis (GSEA)

GSEA was performed to examine the association between the functional core of the LRRK2nt

and the 2 most common neurodegenerative diseases, namely Alzheimer’s disease (AD) and

Parkinson’s disease (PD). The pipeline of GSEA was designed as following:

1) AD and PD-related gene lists were downloaded from the Open Target Platform (Ochoa et
al., 2023);

2) The number of overlapping genes between LRRK2ix:’s functional core and the 2 disease-

related gene lists was counted respectively (the “test_intersection”);
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3) 10000 randomly sampled gene lists at same size of the functional core of the LRRK2i,: was
generated from the Ensembl gene annotation (N = 19831 coding genes). The overlap sizes
between each random gene list and the 2 disease-related gene lists were counted (the
“ref_intersection);

4) Asignificant association with AD or PD was defined as when the “test_intersection” > 95%

of the “ref_intersection”.

Results

e The LRRK2int

A total of 1448, 1539 and 1850 human LRRK2 interactors were retrieved from PINOT, HIPPIE
and MIST respectively. The 3 sets of proteins were then merged into a unique list of 1921
interactors using HGNC gene symbols (hereby referred as “the Merged List”, Table S1).
Among the 1921 interactors, 1414 (73.5%) were found in all the 3 databases, 86 (4.4%) were
found in 2 of 3 databases while 421 (21.9%) were found in only 1 database (Figure 3A). The
Merged List was then passed to the QC pipeline, 3 proteins (RPL17-C180rf32, TPTEP2-CSNK1E
and BUB1B-PAK6) were removed due to their “unreviewed” profile in the UniProtKB, and
1500 (78.0%) proteins were removed due to their low reliability (FS < 2), hence generating
the final list of LRRK2 interactors (N =418, the LRRK2int, Figure 3C). Among the 418 interactors,
375 (89.7%) were scored FS < 5; 28 (6.7%) were scored between 6 and 8; 15 (3.6%) were
scored FS > 9. Of note, LRRK2 itself exhibited the highest FS = 52, suggesting that the self-
interactions of LRRK2 have been well-studied. Other robust LRRK2 interactors were
HSP90AAL (FS = 18); MSN, YWHAQ/14-3-3T, YWHAZ/14-3-3Z (FS = 13); HSPAS8 (FS = 12);
CDC37, DNM1L, STUB1, TUBB (FS = 10); followed by GAK, MAP1B, RAB5B, YWHAG and
TUBA1A (FS = 9) (Figure 3B).
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Figure 3. Construction of the LRRK2

A) The Venn graph shows the overlap among the 3 lists of LRRK2 protein interactors downloaded from
PINOT, MIST and HIPPIE; B) The pie graph shows the distribution of final score (FS) of QC-ed LRRK2
interactors (N = 418); C) The network graph shows the LRRK2,.. Both node fill colour and node size
represent the FS: the darker the node colour, the larger the node size, the higher the FS. Of note, LRRK2

itself exhibited the highest FS = 52, which is beyond the colour code range.

e Protein family classification for LRRK2 interactors

Protein family classification showed that a large proportion of LRRK2 interactors are protein
kinases (N = 39, 9.3%), ribosomal proteins (N = 38, 9.0%) and cytoskeleton-related protein
families (N = 36, 8.6%) such as proteins from the actin family (N = 5) and the tubulin family (N
=10). In addition, 12 (2.8%) LRRK2 interactors are from membrane trafficking related ATPase
families. Furthermore, the LRRK2in: contains seven 14-3-3 proteins (YWHAB/14-3-38,
YWHAG/14-3-3y, YWHAZ/14-3-37, YWHAE/14-3-3¢, YWHAH/14-3-3n, SFN/14-3-36,
YWHAQ/e) and 13 Rab GTPases (RAB5B, RAB29, RAB32, RAB8A, RAB10, RAB1A, RAB1B,
RAB7A, RAB11A, RAB11B, RAB11FIP2, RAB38, RABSA).

e Biological processes enriched for LRRK2 interactors
G:GOst returned a total of 504 GO-BP terms that were significantly enriched for the LRRK2jnt,

of which 83 “general terms” with term size > 2500 were excluded from further analysis.
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Hierarchical relations (“part of” or “is a”) were retrieved for the 415 remaining terms (98.6%),
among which 7 major GO-BP groups (contained > 10 terms) were identified, involving a total
of 341 GO-BPs. Among the 7 GO-BP groups, the largest group contained 87 terms (GO-BP
group 1, G1), involving 233/418 (55.7%) LRRK2 interactors (Functional Unit 1, FU1, Table 1).
Text mining identified keywords of G1 as: “response”, “apoptotic”, “mitochondrial”,

n i

autophagy”, “signalling”, and “depolarisation”,

2 n " n u n u

“catabolic”, “stimulus”, “protein”, “stress”,
suggesting that FU1 is involved in response to stimulus and stress, apoptosis, protein catabolic,
autophagy and mitochondrial functions (Figure 4, Table B1). GO-CC analysis on FU1 showed
that these interactors were mainly enriched in intracellular and extracellular vesicle, synapse,

microtubule cytoskeleton and mitochondrion (Table B2).

Table 1. Functional Unit 1 of the LRRK2nt

ACTB PSMD11 AFG3L2 MBP DVL1
ACTR2 PSMD2 AP3B1 SYNJ1 GNA12
AlIFM1 PSMD6 CALM1 PPP2R2A GSK3B
AKT1 RACK1 CNP RGS2 DDX5
APEX2 RPL11 HSPA4 ARPC1B DIS3
ATRX RPL23 HSPA9S EMD HDAC6
AURKB RPS7 MFN2 IQGAP1 LATS1
BAX SQSTM1 OPAl SH3GL2 LRRK2
BRCA2 TRAF2 SLC25A4 RPS15 PSMC6
CCT3 UBXN10 SLC25A5 RPS20 STN1
CCT5 UFD1 SLC25A6 SCEL STUB1
CDC42 VIM CDC37 SCFD1 TAOK3
CDK2 VPS4A DNM1L ANKS4B TK1
CHD1L BAG3 VDAC1 HACD3 TP53
CYREN CASP8 DDIT4 NFATC2 ADRM1
DBF4B DNAJA1 DYRK2 SEC16A AGO1
DDB1 DNAIJB6 SFN STK3 AGO2
DFFA HSPB1 TXNDC12 CLTC BAGS5
FANCM MAPT PYGB GOLGA2 C180RF25
HELLS PRKACA ACTG1 LGALS8 DAPK1
HERC2 STAC ACTR3 RAB1A PRDX3
HSP90AA1 TPR AHCYL1 RAB1B STK24
HSP90AB1 YWHAE AKAP8 RABSA STK25
HSPD1 EEF1D ATP5F1A SNAPIN TPM1
KDM4D FADD CBX3 SPTLC1 TRAP1
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MAP2K4 PIK3R1 CXCL11 AHNAK ECHS1
MAP2K7 PLEC CYFIP1 AP2M1 HMMR
MAPK3 RAB11B DIAPH1 DNM1 CSNK1A1
MMS19 RHBDD1 EPRS1 FCHSD1 CSNK1D
MRGBP APP ESRRG GAK RPL3
MSH2 CDK5 GNAI2 LMNB1 RPS16
MTA1 HIF1A LRP6 LMNB2 STIP1
NPM1 PPP1CA MAP1B RAC1 TRADD
PCNA RO60 MAP2K3 TOR1AIP1 YWHAG
PHB BAG2 MAP2K6 ACIN1 YWHAH
POLD1 CBLB MPC2 ARHGEF7 HSPH1
POLE EEF1A1 MYO1C BAG1 HSPA1A
PPP2R1A EEF1A2 NCL CAMK1D ITCH
PRKDC HSPAS8 PFKP DIDO1 KHSRP
RAD51AP1 LAMP2 PKM ITGB3BP LDHA
RBBP7 MSN PRKCZ PAK6 TUFM
RIF1 RAB7A RAB10 RAI14 RAB29
RPS3 RIPK1 RAB11FIP2 RPS3A MFN1
RUVBL2 SNCA RABSA STK40 NDUFAF7
SAMHD1 VGLL4 RHOA YWHAZ RAB32
SF3B3 ATP2A2 RIPK2 HK1
PLK1 PPP1R8 PRKN RAB38

G2 contained 71 GO-BPs and was associated with 247/418 (59.1%) interactors (Table B3).
Keywords identified in G2 were: “trafficking”, “localisation”, “vesicle”, “protein”,
“microtubule”, “organisation”, “synaptic”, “establishment” and “organelle”, suggesting the
corresponding functional unit of G2 (FU2, Table 2) was related to biological functions of
membrane trafficking, protein localisation, microtubule and organelle organisation. The FU2

was found enriched in cytoskeleton, extracellular vesicle, and cell junction (Table B4).

Table 2. Functional Unit 2 of the LRRK2jnt

AHCYL1 HERC2 SMTNL2 TUBB4B ARPC5
AlIFM1 HIF1A TMOD3 TUBB6 ATP2A2
AKAP8 HK1 TPM1 MMS19 CAPZA1
AKT1 HSPO0AA1 TPM2 SRPK1 CAPZA2
AP2M1 HSPO0AB1 TPM3 LARP7 CAPZB
AP3B1 HSPA4 XIRP2 MSH2 CDC42EP3

ARFGAP1 HSPAS8 AURKB TOR1AIP1 CYFIP1
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BAG3 HSPA9 CDK2 KLC2 TUBB2A
BAX HSPB1 CSNK1D MFN1 TUBB3
BRCA2 HSPD1 DYNC1H1 DBF4B TUBB4A

CALM1 KPNB1 E2F4 DDB1 DBN1
CBLB LAMP2 HSPA1A EIFAEBP1 DIAPH1
CCT3 LRRK2 KIF2A PCNA DNAIJB6
CCT5 MAPT MDN1 POLE FCHSD1
CDC37 MFN2 MSN TAOK3 IQGAP1
CDC42 MPC2 PRKDC RIPK1 LATS1
CDK5 MYO1C RPL23A VIM RHOA
CETN3 MYO1D RPL24 DIS3 YWHAG
CLTC NPM1 RPLPO LAS1L RPL11

COPG2 NUP107 RPS14 RBIS RPL23
CSE1L NUP133 RPS15 RPL10A RUVBL2

DNAJA1 NUP160 RPS19 RPL14 SCFD1

DNM1L PIK3R1 RPS23 RPS16 SEC16A
EMD PLK1 RPS27 RPS7 SFN

GOLGA2 PRKACA RPS3 RPS8 SLC25A22
GSK3B PRKCZ RPS5 CFAP20 SNAPIN
HDAC6 PRKN RPSA ENKUR SQSTM1

YWHAH RAB10 TUBB KHSRP STK3

YWHAQ RAB11A DNM1 RGS2 TNPO1

YWHAZ RAB11B SNCA SFXN1 TP53
ACTA2 RAB11FIP2 SYNJ1 CAMK1D TPR
ACTB RAB1A ABCE1 GNAI2 UFD1

ACTBL2 RAB1B APP HMMR VPS4AA
LIMA1 RAB29 CNP APEX2 YWHAB
MPRIP RAB32 DVL1 CDKL3 YWHAE
MYL6 RAB38 GAK CSNK1A1 ACTR3
MYL9 RAB5A JHY HELLS POLDIP3
MYO1B RAB5B LMNB1 ITGB3BP PPP1R12A
MYO1F RAB7A LMNB2 MAP2K6 RANBP1
PLEC RAB8A LRP6 MRGBP SH3GL1
RAC1 RACK1 MAP1B NEK1 SH3GL2

ARPC1B RANBP2 MAPK3 PPP1CA SH3GL3
ARPC2 RAPGEF4 NCBP3 RAD51AP1 SLC25A4
ARPC4 RHBDD1 OPA1l RIF1 SLC25A5
FANCM ABLIM1 CHD1L ARHGEF7 SLC25A6
ACTG1 LARP4 MAP2K7 MARK1 STK25
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ACTR2 PAK6 STN1 SKA3 TUBA1A
TTLL] RO60 NSL1 CKAP5 TUBA1C
RPS15A UBXN10 PPP2R1A ATRX

USP39 ACIN1 TUBG1

G3 contained 62 GO-BPs, associated with 179 LRRK2 interactors (FU3, Table 3). Text analysis
showed the key words of G3 as: “protein”, “phosphorylation”, “metabolic
“catabolic”, “transferase”, “kinase”, “binding” and “modification”, suggesting that FU3 was

related to protein metabolism (Table B5). GO-CC analysis showed that the interactors in FU3

n u

n u

were enriched in cytoskeleton and cell conjunction (Table B6).

Table 3. Functional Unit 3 of the LRRK2nt

7w

, “ubiquitination”,

AKT1 BAX DNAIB6 GOLGA2 AGO1
BAG2 CALM1 DvL1 PPP1CA AGO2
BAGS5 CASP8 HDAC6 SNAPIN AP3B1
CDK5 CDC42 HSPB1 ACIN1 DDX5
DNAJA1 DAPK1 LATS1 BAG3 DIS3
HSPA1A DBF4B LRP6 CBX3 E2F4
RPL11 DVL2 PLEC EIFAEBP1 ESRRG
RPL23 DVL3 PPP1R8 EPRS1 GTF2I
RPS15 EEF1A2 PRDX3 MAGED2 HSPAS8
RPS20 FADD PRKN RPS13 KHSRP
RPS3 GNA12 RGS2 RPS14 LARP7
RPS7 GNA13 SFN SCFD1 MLLT3
SQSTM1 GNAI2 TP53 TCF25 MYO1C
ADRM1 GSK3B YWHAG TPR NCL
AIFM1 HIF1A ACTB TRAP1 NFATC2
APP HSPO0OAA1L CDC37 VDAC1 NKRF
ARHGEF7 HSP90AB1 DNM1L VGLL4 POU5F1
AURKB HSPD1 EEF1A1 YWHAE PRPF6
IQGAP1 RACK1 PIK3R1 YWHAQ RBBP7
LRRK2 RANBP2 CSNK1A1 YWHAZ SF3B1
MAP2K3 RAPGEF4 CSNK1D ZMYM5 SUPT4H1
MAP2K6 RHOA PSMC6 RAB38 TCEA2
MAP2K7 RIPK2 CDK2 AKAP8 YWHAH
MAPK3 RPS2 PRKACA ARFGAP1 ATP2A2
MAPT SNCA DDIT4 EEF1D CYREN
MBP STK3 LRRK1 HACD3 SF3B3
MSH2 STUB1 PPP2R1A HERC2 ACTR3
NPM1 TAOK3 PRKDC PPP2R2A
PCNA TBC1D22B SH3GL2 PSMD2
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PHB TRAF2 ACTR2 PSMD6
PLK1 YWHAB ATRX RANBP1
PPP1R12A ABCE1 CCT3 CAMK1D
PRKCZ CBLB CCT5 STAC
RAB11FIP2 DFFA KDM4D TOR1AIP1
MAP2K4 RUVBL2 RIF1 TPM1
MMS19 STN1 FANCM TRADD
MRGBP RAC1 MTA1 RHBDD1
RAD51AP1 RIPK1 ITCH BRCA2

G4 contained 50 terms, involving 179 LRRK2 interactors (FU4, Table 4), with functional key

”n “" ” “" ”n “" ” “"

words: “organisation”, “microtubule”, “protein”, “actin”, “catabolic” and “polymerisation”,
4 “"

“assembly”, “projection” and “filament”, suggesting that FU4 contributed to cytoskeleton

organisation (Table B7). In addition, FU4 was enriched in cytoskeleton and synapse (Table B8).

Table 4. Functional Unit 4 of the LRRK2nt

ARHGEF7 TMOD3 CASP8 RACK1 FCHSD1
CKAP5 TPM1 CBLB RHBDD1 IQGAP1
CLTC DIAPH1 CSNK1A1 RIF1 LATS1
DYNC1H1 MAPK3 CSNK1D RIPK1 LIMA1
GSK3B NPM1 DAPK1 RIPK2 PIK3R1
HDAC6 ATRX DBF4B RPS2 PRKN
HSPA1A AURKB DDB1 RPS6KB2 CDKL3
MAP1B BAX DvL1 SF3B1 GAK
MAPT CCT3 DvL2 STK3 MARK1
PLK1 CCT5 DVL3 STUB1 MLLT3

RAC1 CDK2 EEF2 TAOKS3 NFATC2

RHOA DNM1L FADD TRAF2 PPP2R1A
RPS3 HIF1A FANCM VGLL4 RAB29
SKA3 MAP2K7 GNA12 VIM SFN
SNCA MSN GOLGA2 BAG5 RBBP7
TPR RAD51AP1 HSP90AA1l EEF1A1 ADRM1
TUBB4A RUVBL2 HSP90AB1 EEF1A2 AlIFM1
ACTG1 SLC25A4 HSPD1 PRKACA AKAP8
ARPC1B SLC25A5 ITCH PSMD2 APP
ARPC2 SYNJ1 LARP4 RPL11 BAG2
ARPC4 TP53 LRRK1 SF3B3 CALM1
ARPC5 VDAC1 MAP2K3 ACTR2 SH3GL3
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CAPZA1 AKT1 MAP2K4 ACTR3 SNAPIN
CAPZA2 LRRK2 MAP2K6 DNAIJB6 STK24
CAPZB OPA1l MBP DNAJBS8 STK25
CDC42 RAB7A MTA1 HSPA8 TUBAIA
CDC42EP3 SCFD1 MYO1C NCLN TUBB
CDK5 SLC25A6 PHB RAB5A YWHAH
CYFIP1 STN1 PKM VPS4A AGO2
DBN1 SQSTM1 POLDIP3 BAG3 HSPB1
RAB1A RPL23 SMTNL2 CFAP20 PPP1R12A
RAB1B RGS2 ACTA2 RAB5B
DIS3 SPTLC1 ATP2A2 CAMK1D
KHSRP ACTB DDIT4 RPS7
E2F4 AHNAK DFFA PRKCZ
PPP1CA AP2M1 YWHAZ PRKDC
RAB11A ARFGAP1 RABSA PSMC6

G5 contained 35 terms and related to 147 LRRK2 interactors (FU5, Table 5), associated with
key words: “apoptotic”, “signalling” “stress”, “response”, “transduction”, “oxidative”,
“programmed”, “intracellular”, “communication”, “intrinsic”, suggesting FU5 was related to
apoptosis and response to stress (Table B9). GO-CC analysis showed that FU5 was enriched

for cytoskeleton and mitochondria (Table B10).

Table 5. Functional Unit 5 of the LRRK2jn:

SH3GL2 HSPAS8 RPS14 AKT1 PHB
ACTR2 KHSRP SCFD1 BAG2 PLK1
ATRX LARP7 TCF25 BAG5 PPP1R12A
CCT3 MLLT3 TPR CDK5 PRKCZ
CCT5 MYO1C TRAP1 DNAJA1 RAB11FIP2
KDM4D NCL VDAC1 HSPA1A RACK1

MAP2K4 NFATC2 VGLL4 RPL11 RANBP2
MMS19 NKRF YWHAE RPL23 RAPGEF4
MRGBP POUSF1 YWHAQ RPS15 RHOA

RAD51AP1 PRPF6 YWHAZ RPS20 RIPK2
RIF1 RBBP7 ZMYM5 RPS3 RPS2

RUVBL2 SF3B1 RAB38 RPS7 SNCA

STN1 SUPT4H1 AKAPS8 SQSTM1 STK3
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RAC1 TCEA2 ARFGAP1 ADRM1 STUB1
RIPK1 YWHAH EEF1D AlIFM1 TAOK3
FANCM ATP2A2 HACD3 APP TBC1D22B
MTA1 GOLGA2 HERC2 ARHGEF7 TRAF2
ITCH PPP1CA PPP2R2A AURKB YWHAB
RHBDD1 SNAPIN PSMD2 BAX ABCE1
BRCA2 ACIN1 PSMD6 CALM1 CBLB
CYREN BAG3 RANBP1 CASP8 DFFA
SF3B3 CBX3 CAMK1D CDC42 DNAIJB6
ACTR3 EIFAEBP1 STAC DAPK1 DVL1
AGO1 EPRS1 TOR1AIP1 DBF4B HDAC6
AGO2 MAGED2 TPM1 DVL2 HSPB1
AP3B1 RPS13 TRADD DVL3 LATS1
DDX5 MAP2K3 MSH2 EEF1A2 LRP6
DIS3 MAP2K6 NPM1 FADD PLEC
E2F4 MAP2K7 PCNA GNA12 PPP1R8
ESRRG MAPK3 CSNK1A1 GNA13 PRDX3
GTF2| MAPT CSNK1D GNAI2 PRKN
LRRK1 MBP PSMC6 GSK3B RGS2

PPP2R1A HSPD1 CDK2 HIF1A SFN
PRKDC IQGAP1 PRKACA HSP90AA1 TP53
DNM1L LRRK2 DDIT4 HSPO0AB1 YWHAG
EEF1A1 PIK3R1 CDC37 ACTB

G6 consisted of 20 GO-BPs, involving 110 interactors (FU6, Table 6) which linked to functional
key words of “morphogenesis”, “projection”, “neuron”, “development”, “growth”,
“bounded”, “membrane”, “lamellipodium”, “plasma” and “organisation”, suggesting FU6
contributed to cell development and membrane organisation (Table B11). In addition, GO-CC
analysis showed that FU6 was enriched for axon, synapse, vesicle and microtubule

cytoskeleton (Table B12).

Table 6. Functional Unit 6 of the LRRK2nt

YWHAG ACTR2 RAB29 CDK5 MAPK3
YWHAH AFG3L2 RABSA CDKL3 NUP133
YWHAZ AlIFM1 RAC1 CYFIP1 SYNJ1

AP3B1 AKT1 RGS2 DBN1 DNM1L

80



ARHGEF7 APP RHOA DVL1 HSPA1A
CAPZB BAGS5 RPL24 GSK3B ITCH
CDC42EP3 BAX SH3GL3 HDAC6 MAP2K4
DIAPH1 CAMK1D SNAPIN HSP90AA1 NPM1
GNA12 CDC42 STK24 HSP90AB1 PHB
GNA13 CNP STK25 IQGAP1 PPP2R1A
LARP4 CSNK1D TAOK3 MAP1B RACK1
LATS1 DDIT4 TP53 MAPT RBBP7
MSN DVL2 TTLL1 PAK6 SFN
MYL12B DVL3 TUBB2A PRKCZ VGLL4

PLEC GAK TUBB3 PRKN CFAP20
PRKDC HIF1A VASH2 SH3GL2 E2F4

SCFD1 LRP6 VIM ACTB JHY
TPM1 LRRK2 YWHAE ACTBL2 LIMA1
ABLIM1 MARK1 BRCA2 MYL9 NEK1
ACTR3 MBP STK3 TMOD3 RAB5A
ARPC2 RAB10 STK40 PDCL RO60
PIK3R1 RAB11A ACTG1 ATRX UBXN10

G7 contained 16 terms and in volved 92 LRRK2 interactors (FU7, Table 7), related to key words:
“transport”, “protein”, “localisation”, “vesicle”, “intracellular”, “establishment”, “nucleus”,
“export” and “nucleocytoplasmic”, suggesting that FU7 contributed to intracellular protein
transport and localisation (Table B13). In addition, FU7 was enriched for intracellular vesicle,

synapse and cell projection (Table B14).

Table 7. Functional Unit 7 of the LRRK2jn:

ACTB CLTC HSPO0OAB1 PPP1R12A RHOA
ACTG1 CXCL11 HSPA1A PRKACA RIPK1
AHCYL1 CYFIP1 HSPAS8 PRKCZ RUVBL2
AHNAK DAPK1 LARP7 PRKN SCFD1

AKT1 DBN1 LATS1 RAB10 SFN
AP2M1 DIAPH1 LRRK2 RAB11A SH3GL3

APP DNAJA1 MAP1B RAB11B SLC25A22
ARFGAP1 DNAJB6 MAP2K6 RAB29 SLC25A4
ARHGEF7 DNM1L MAPK3 RAB38 SLC25A5
ATP2A2 DVL1 MAPT RAB5A SLC25A6
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AURKB DVL3 MDN1 RAB5B SNAPIN
BAG3 DYNC1H1 MPC2 RAB7A SNCA
BAX EMD MSN RAB8A SQSTM1

CALM1 EPRS1 MYO1C RAC1 STAC

CAMK1D GNAI2 NPM1 RACK1 SYNJ1

CCT3 GSK3B PIK3R1 RAPGEF4 TPR
CCT5 HDAC6 PLK1 RGS2 VDAC1

CDC42 HIF1A YWHAE YWHAH VPS4A
CDK5 HSPO0OAA1

Of note, a total of 29 LRRK2 interactors exhibited in all the 7 functional units, thereby forming
the functional core of the LRRK2i:. These interactors were multifunctional and cooperated
with LRRK2 in a range of biological processes (Figure 4C). Of note, the 29 interactors
presented a significantly higher mean FS as compared to the overall average value (6.62 vs.
4.24, t-test p < 0.001), suggesting that the functional core is composed of robust LRRK2

interactors with high reproducibility.

e GSEA

In addition, Gene Set Enrichment Analysis (GSEA) showed that the 29 LRRK2 interactors were
represented in all the 7 functional units significantly associated with PD and Alzheimer’s
disease AD (p < 0.001), in which LRRK2, PRKN, MAPT and GSK3B were related to PD while
MAPK3, CDK5, MAPT, APP, HSPA1A, HDAC6 and GSK3B were related to AD, suggesting that

the functional core of LRRK2int is potentially closely related to neurodegeneration (Figure 4C).
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Figure 4. Functional Enrichment Analysis on the LRRK2int

A) The bar graph shows the number of functional terms in the 7 major GO-BP groups (G1-7, containing
> 10 terms) identified based on hierarchy relations; B) The bar graph shows the number of LRRK2
interactors in the 7 functional unit (FU1-7), i.e., interactors related to the functional terms of each GO-
BP group; C) The network graph shows the functional core of the LRRK2int, i.e., the 29 interactors that
appeared in all the 7 functional units. . Hexagonal nodes represent GO-BP groups G1-7. Word clouds
show the key words identified via text mining for each GO-BP group. The larger the word, the higher
the frequency it shows in term names. Round nodes represent LRRK2 interactors. Round node fill colour
represents the FS of interactors. The darker the round node, the higher the FS. AD and PD-related

interactors identified in GSEA are highlighted with green circles and yellow circles, respectively.

Main findings

1. The LRRK2in: consists of 418 interactors, including protein kinases, ribosomal proteins,

cytoskeletal proteins, RAB GTPases, 14-3-3 proteins and others.
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Self-interaction is the most robust/validated PPl of LRRK2.

3. The LRRK2i,: can be divided into 7 functional units each of them related to different
biological functions (GO:BPs) such as: response to stress, vesicular trafficking, protein
metabolism, cytoskeleton organisation, apoptotic signalling, cell development and
intracellular protein localisation.

4. Functional units of LRRK2 interactors were mainly enriched in cellular components
(GO:CCs) such as: microtubule and actin cytoskeleton, vesicle, synapse, mitochondria and
cell junction.

5. The LRRK2in: has a functional core composed of 29 interactors that participate in multiple

biological processes and is significantly enriched with AD and PD proteins/genes.

Discussion

This section collected a total of 1921 proteins as potential interactors of LRRK2 from peer-
reviewed literatures via 3 online PPl querying tools, PINOT, MIST and HIPPIE, without adding
any type of filtering. These tools extract PPls from multiple manually curated primary PPI
databases using different pipelines. Out of the 1921 interactors, 73.5% were returned by all
the 3 searching tools, 4.4% were returned by 2 tools, while 21.9% were found in only 1 tool.
This suggested that although the 3 tools presented a relatively high overlap (thus were similar
in performance), a combined use of these tools is essential to obtain a comprehensive LRRK2

protein interactome with the maximised literature coverage.

Considering the large dependence of in vitro high-throughput PPI detection techniques (such
as yeast-2-hybrid screening) as well as ex-vivo experiments (such as proteo-arrays) which may
produce false positives, PPls derived from primary databases often require further QC. In this
study, a simple but effective QC pipeline was established (as suggested by the PINOT tool),
involving calculating the “final score” from the “method score” and “publication score”, which
refers to the number of detection methods and independent publications where a PPl was
reported. The obtained final score is therefore a direct reflection of how many times a certain
PPl has been replicated in literature and as such it gives an indication of the
reproducibility/reliability of the information. Compared to the QC systems utilised by other

PPI tools, such as MIST and HIPPIE, which involves ranking different detection methods based
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on “detection strength”, this pipeline avoids potential bias induce by subjective curation of
PPI detection techniques and increases the replicability of the construction of LRRK2
interactome. Of note, regarding the method score, a method reassignment and grouping
approach was adapted from PINOT, which ensures a more accurate calculation system for the
method score by counting only the technically different methods. By applying the QC pipeline,
only the most reliable interactors that have been reported in multiple studies and/or with
technically different detection methods were kept for further analysis, which reduced the size
of LRRK2 interactome from 1921 to 418, with 1503 (78.2%) proteins removed from the list.
This shows that one of the problems faced by LRRK2 PPI research is that most of the PPI data
are not reproduced in literature and thereby not directly reliable. This may result from delays
in literature curation in the primary databases, lack of interest in wet-lab research in
reproducing PPIs that have already been published, or false interactions published in
literature (Type | errors) produced for example by certain PPl detection methods such as

tandem affinity purification (TAP) (Edwards et al., 2002).

Among the 418 proteins, LRRK2 itself exhibited the highest score for interaction (final score =
52), confirming LRRK2 self-interaction as the best known and reproducible PPl of LRRK2. This
replicates previous 2 previous LRRK2 interactome studies (Manzoni et al., 2015; Porras et al.,
2015b). In the cell, LRRK2’s self-interactions occur at a range of sites within different domains
of the protein structure and form dimer-sized structures with high molecular weight, which
has been highly associated with its autophosphorylation activity (Greggio et al., 2008).
Moreover, LRRK2 self-interaction is essential for autophosphorylation and multiple
pathogenic mutations in LRRK2 have been reported to increase autophosphorylation both in
vivo and in vitro and may contribute to the alterations in PPls between LRRK2 and other
proteins such as the 14-3-3 family and with downstream pathways such as endocytosis
(Manschwetus et al., 2020b; Stevers et al., 2017). In addition, similar alterations were
observed in sporadic PD patients too (Sheng et al., 2012). Together with these experimental

data, this study confirms the importance of LRRK2 self-interactions in its protein interactome.

Apart from LRRK2 itself, interactors of LRRK2 belong to a variety of families, among which
there are 7 14-3-3 proteins and 13 Rab GTPases in the interactome. These 2 protein families

are the most widely recognised LRRK2 interactors (Jeong et al., 2018b; Stevers et al., 2017).
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Among the 14-3-3 proteins, YWHAQ, YWHAZ and YWHAG are the mostly reported LRRK2
interactors based on their final score (FS = 13, 13 and 9, respectively), while for the Rab
GTPases, RAB5B (FS = 9) is the protein most robustly associated with LRRK2. It was reported
in 4 publications via 5 types of detection methods (D. H. Ho et al., 2016; Imai et al., 2015; Shin
etal., 2008; Yun et al., 2015). In addition, 36 cytoskeleton proteins were included in the LRRK2
interactome, among which 5 are from the actin family while 10 from the tubulin family.
Previous studies have found that LRRK2 binds directly with actin proteins and affect its
polymerisation and depolymerisation (Meixner et al., 2011; Parisiadou & Cai, 2010; Tombesi
et al.,, 2022). Moreover, LRRK2 has been shown to phosphorylate tubulin and thereby
enhance microtubule stability (Bonet-Ponce et al., 2020; Gillardon, 2009; Law et al., 2014).
PPIs with cytoskeletal proteins form the foundation of LRRK2's role in cytoskeleton
organisation and microtubule dynamics, which is crucial for neuronal morphology, axonal
transport, synaptic formation and maintenance. Impairment or dysregulation of these PPls
may lead to neuronal dysfunction and neuron loss. Additionally, there is a large proportion of
ribosomal proteins in the LRRK2in: (N = 38). Multiple lines of evidence have shown that LRRK2
regulates ribosomal function especially in the neurons (Juli et al., 2016; Martin et al., 2014).
Additionally, ribosomal function impairment and reduced protein synthesis have been found
in striatal and substantia nigral neurons in mouse models of LRRK2-G2019S PD and other non-
genetic PD, as well as in fibroblast cells isolated from sporadic and LRRK2-G2019S PD patients
(Deshpande et al., 2020; J. W. Kim et al., 2020; R. Wallings et al., 2015). Therefore,
understanding LRRK2:Ribosome interaction will bring further insights for PD pathology and
provide novel drug targets for PD therapy. Moreover, the LRRK2int includes a large number of
protein kinases of various types. These proteins might either phosphorylate LRRK2 or function
as LRRK2’s substrate, forming a complex kinase network that maintains the LRRK2-centred

signalling cascade.

A total of 578 GO-BP terms were returned from functional enrichment analysis on the entire
LRRK2int. The large number of enriched terms made the interpretation process complicated,
which is, in fact, a very common problem faced by any large query in functional/pathway
enrichment analysis. In this study, a special dimension reduction pipeline was set-up and
applied to gain a better understanding of the functional enrichment results. GO terms were

firstly filtered by the “term size”. Terms size refers to the number of genes (in the entire
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human genome) that have been annotated with a given GO term. A larger term size normally
indicates a more general term. For example, the GO-BP term “autophagy (GO:0006914)” has
a term size of 571, while another more specific term “chaperone-mediated autophagy
(GO:0061684)” has a term size of 15. In this first part of the study, a hard threshold of 2500
was set to define “general terms” (term size >2500) and “specific terms” (term size <2500),
which was adapted from a previous study. This approach is easy to perform and assists in
downsizing the enrichment results, though with a possibility of information loss, especially
for the terms referring to complex cellular pathways that involve a wide range of proteins.
However, the impact of losing several terms as such is expected to be small in this study since

only 83/504 (16.5%) terms were removed.

The remaining GO-BP terms were grouped based on their hierarchical relation in the GO
ontology tree. Compared to semantic clustering, which is more commonly used, and simpler
to perform, grouping by GO relations keeps the connection between terms, avoid variation
induced by different (and subjective) semantic mappings and thereby increasing the
replicability of the dimension reduction approach. The grouping process resulted in a total of
7 GO-BP groups, among which 3 were related to microtubule dynamics and actin cytoskeleton
organisation (G2, G4, G6), emphasizing a pivotal role of the LRRK2ir: in modulating the
structural dynamics of the cell. The intricate orchestration of these cytoskeletal elements is
crucial for maintaining cellular shape and facilitating intracellular transport. In addition, 2 GO-
BP groups (G1 and G5) were related to response to stress, autophagy, mitochondrial
organisation and apoptotic signalling. These processes highlighted the potential role of LRRK2
signalling in regulating cellular response to stimuli. In addition, there are 2 GO-BP groups
related to protein synthesis, metabolism and modification. These functions play critical roles
in regulating protein function, stability, and interactions and could have downstream effects
on the above-mentioned cellular functions. Functional units contributing to each GO-BP
groups were extracted, in which a total of 29 interactors were found in all of the 7 units. These
proteins include LRRK2 (FS = 52), HSP90AAL (FS = 18), MAPT (FS = 8), ARHGEF7 (FS = 8), SFN
(FS = 7), HSP90OAB1 (FS = 7), CDC42 (FS = 6), DNM1L (FS = 5), RAC1 (FS = 5), AKT1 (FS = 5), DVL1
(FS=5), RGS2 (FS = 4), MAPK3 (FS = 4), RACK1 (FS = 4), RHOA (FS = 4), CDK5 (FS = 4), HDAC6
(FS=4), GSK3B (FS = 4), LATS1 (FS = 3), ACTB (FS = 3), NPM1 (FS = 3), PRKN (FS = 3), PRKCZ (FS
= 3), BAX (FS = 3), HIF1A (FS = 3), PIK3R1 (FS = 3), CAMK1D (FS = 3), APP (FS = 3), HSPA1A (FS
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= 3), forming the functional core of LRRK2 signalling network. In addition, the functional core
was significantly related to PD and AD, thereby linking the LRRK2int with neurodegenerative

diseases.
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Chapter 2. Construction and analysis of the LRRK2 PPl network
(LRRKZnet)

Objectives
e Addthe “2"layer” PPIs among LRRK2 interactors to construct a PPl network (LRRK2net)
e Investigate the topological features of the LRRK2 et

e Detect potential topological clusters in the LRRK2net and perform functional
annotation on these clusters

Analysis pipeline

Construction of LRRK2 PPI Network

Network Construction LRRK2 protein interactome HIPPIE (v2.3)
1st layer PPI 2nd layer PPI
(LRRK2 & direct interactors) (Interactions among LRRK2 interactors)

Excluded

igh confidence score?

Yes

7

LRRK2 protein network

v !
Cluster Detection Topological clusters
Annotation Hub identification Functional enrichment

Note: Some of the figures and text in Chapter 2 are adapted from the following manuscript deposited
in bioRxiv: Zhao et al.; “Transcriptomics analyses of the LRRK2 protein interactome reveal distinct
molecular signatures for sporadic and LRRK2 Parkinson’s Disease”
https://doi.org/10.1101/2023.09.12.557373. Some of the results were further elaborated in a
collaborative project in bioRxiv: Tombeisi et al.; “LRRK2 regulates synaptic function through BDNF
signalling and actin cytoskeleton.” https://doi.org/10.1101/2022.10.31.514622.

Methods

e Construction of the LRRK2 et
PPls between LRRK2 interactors were defined as the “1%t-layer” interactions (downloaded and

QC-ed in Chapter 1), while the “2"-layer” interactions were defined as the PPIs among LRRK2
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interactors (apart from LRRK2 itself). The “2"d-layer” PPIs were downloaded from HIPPIE (v2.3)
on 5" May 2022. In order to keep the most robust PPls and avoid overloading the network,
only non-self-interaction PPIs with high confidence score (= 0.72) in HIPPIE were kept for
further analyses. Of note, the confidence score in HIPPIE was calculated directly by the tool
via a semi-computational manner, examining the number and the quality of the methods by
which a PPl was detected, as well as the number of publications where a PPl was reported, as
well as the number of non-human organisms in which a PPl was reproduced, aiming to reduce
the number of false positives. The PPl network of LRRK2 (LRRK2net) was constructed by
combining the 1%-layer and 2"%-layer PPIs (edges). Degree and betweenness centrality (BC)
were calculated for each node (interactor) to identify “semi-seed” interactors in the LRRK2et,
i.e., the interactors with high degree and/or high BC in the network (i.e., interactors with the

most interactions and/or located on the “bridges” connecting different parts of network).

e Topological cluster detection

The Fast Greedy algorithm was used to identify topological clusters of LRRK2 interactors
based on Edge Betweenness via Cytoscape (v3.9.1). Of note, LRRK2 itself was excluded from
topological clustering to avoid its disturbance on the clustering algorithm due to its high
degree residual of the “1t-layer” construction. Within each topological cluster, nodes with
highest degree and/or highest BC were defined as the “hub proteins” within the cluster. These
proteins may play a central role in mediating and maintaining the connection of the
subnetwork within each cluster. Additionally, the variance of node degree and BC was
compared across the clusters via F-test. In fact, clusters with lower variance on node
betweenness are less centralised and are thereby more stable from a topological perspective

(Valente, 2010).

e Functional annotation of clusters

GO Biological Processes (GO-BP) enrichment analysis were performed via g:GOSt
(https://biit.cs.ut.ee/gprofiler/gost) on the topological clusters For each cluster, the
Enrichment Score (ES) was defined as the total number of GO-BP terms returned from the
enrichment analysis, and the ES was used as proxy to evaluate the biological significance of

each topological cluster. Only clusters with high ES were kept for further analysis.
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Results

e |RRK2pet

A total of 4860 “2"-layer” PPIs were extracted from the HIPPIE database (v2.3), among which
1466 (30.2%) were scored as “high confidence” (HIPPIE confidence score > 0.72), out of which
121 self-interactions were removed from the list, thereby leaving 1345 “2"d-layer” PPIs for
338 LRRK2 interactors. Combined with the “1t-layer” PPIs (N = 417), a final network of 418
nodes and 1762 edges was constructed around LRRK2 and its interactors (LRRK2yet, Figure

5A).

Degree distribution analysis showed that N = 216 interactors (51.7%) had degrees < 4; N =
141 interactors (33.7%) presented degrees between 5 and 14; N = 41 interactors (9.8%)
presented degrees between 15 and 24; N = 24 interactors with degree > 24, suggesting that
the LRRK2,et follows the Power Law distribution (log-log plot R-square = 0.8606) (Figure 5B-C,
Table S2). Interactors with degree > 24 (the top 5% of all) were defined as “sub seed” proteins
in the LRRK2net, with TP53 (degree = 68), CDK2 (degree = 48), HSPAS8 (degree = 46), HSP90AB1
(degree = 44), HSP90AA1 (degree = 43), YWHAZ (degree = 43), LAPR7 (degree = 39), NPM1
(degree = 37), TRAF2 (degree = 32), IQGAP1 (degree = 32), LIMA1 (degree =31), CAPZA2
(degree = 31), PRKN (degree = 28), DBN1 (degree = 28), YWHAQ (degree = 27), RPS8 (degree
= 27), YWHAG (degree = 26), TRADD (degree = 26), RPS3 (degree = 26), AKT1 (degree = 25),
YWHAB (degree = 24), HSPA1A (degree = 24), RPS3A (degree = 24) presenting the highest
degree, suggesting that these proteins may play an essential role in maintaining the local
connectivity of LRRK2net. Among the 25 “sub seed” proteins, 2 were AD-related (DBN1 and
HSPA1A) while 1 was PD-related (PRKN). In terms of BC analysis, a total of 17 interactors
presented high BC (top 5% of all), including TP53 (BC = 0.23), CDK2 (BC = 0.10), YWHAZ (BC =
0.09), HSPAS8 (BC = 0.07), HSP90AB1 (BC = 0.06), HSP90AA1 (BC = 0.05), LRRK1 (BC = 0.05),
PRKN (BC =0.05), TRAF2 (BC=0.04), NPM1 (BC=0.04), TUBA1C (BC=0.04), LIMA1 (BC=0.03),
IQGAP1 (BC = 0.03), VIM (BC = 0.03), YWHAG (BC = 0.03), PPP1CA (BC = 0.03), AKT1 (BC = 0.03)
(Figure 5D). These interactors are potentially mediators responsible for maintaining the
overall connectivity of LRRK2net. These interactors formed the topological backbone of the

LRRK2 (N = 27) (Figure 5E)

91



Num. of nodes

200

150

100

50

® L ]
' ™ . i bt .
‘ ® - > P
*® a e o
L] .. PN ..: - L] =
° . a ®
. « 009 o . L]
MRS T e s o
a o O.o... PO .
. L ]
X i S ".‘ .:. ® ¢+ O
® e ® e @ .
2 . * 0 *® 00 g® % .
. .. . [ ] . . .
e % P .90 5
. I o

o .:.. . v ... ..: ..a..

. "y . ()
® , .0..... .....o... 4
4 ) ° '. e %oy .

o L Pl ° L . 7

- ] ® .0 . *

® ’ .. :. ... °: .... .
. .. s it &
* * °
] . o
. ‘ « ¢
C.
Degree Distribution
=)
=
o
k)
1 1 1
20 40 60 80
Degree

92

Isolated motifs4~ I:|

3

L I B B e B B G B B B B B B B B N BB B RN RN BN BN A BN
® 8 8 9 8 0 5 0 8 S B BB PR
® 0 0 8 9 B OB EEEEEEEEeeEeeD

Degree=1

Power Law Distribution

R? = 0.8606




TUBA1C

; YWHAB
Betweenness Centrality
YWHAG) () ARP7
0.25 1
PRKN
TP53
0.20 TRAF2 LIMA1
YWHAZ 5
HSP90AB1

0.151 NPM1

HSPAIA CAPZA2

YWHA
0.10- i 9
RPS3A HSP90AA1L IQGAP1
0.054 RPS8 VIM PPP1CA
FRADD ) ({HSPAB

RPS3 e PR
CDK2

LRRK1

Nodes with high degree
Nodes with high BC

Figure 5. LRRK2 PPl network

A) The network graph shows the PPl network of LRRK2. Nodes represent interactors (N = 418) while
edges represent PPIs (N = 1762). Node size represents the degree centrality. The larger the node, the
higher the degree. A total of 79 interactors exhibited a degree of 1 (highlighted with rectangular). Two
isolated motifs containing 4 LRRK2 interactors were highlighted as well. These interactors have no
connection with the rest of the network; B) The bar graph shows the distribution of degree of LRRK2
interactors in the network. Interactors with degree > 24 (top 5%) were defined as “sub seed” proteins;
C) The log-log plot shows that LRRK2,.: follows power law, in which X-axis represents log-transformed
degree (logD), while Y-axis represents log-transformed frequency of LRRK2 interactor with a certain
degree level (log(n(D))). Regression analysis shows that the plot fits a linear regression with R-square
=0.8606; D) The scatter plot shows the distribution of betweenness centrality (BC) of LRRK2 interactors.
LRRK2 was excluded from this graph. The rest of LRRK2 interactors with top 5% BC (above the red line)
was selected as “sub seed” protein; E) The network graph shows LRRK2 interactors with highest (top
5% of all interactors) degrees (marked with pink circles) and/or betweenness centrality (marked with

blue circles). These interactors formed the topological core of the LRRK2 pet.

Cluster detection within the LRRK2 et

In order to perform topological clustering on the LRRK2,et, interactors with degree =1 (i.e.
those that only possessed connection with LRRK2 but not with the other members of the
LRRK2 interactome) were discarded (N = 79). In addition, 2 isolated triangle motifs were
identified in the LRRK2yet. Each of them comprised LRRK2 and other 2 interactors with degree

of 2, which only interacted with each other but not with any other interactors in the network
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and were thereby excluded from the clustering analysis as well (Figure 6A). Finally, LRRK2
itself was removed from the network, thereby generating the “trimmed-LRRK2nt”, containing
338 nodes and 1345 edges. The trimmed-LRRK2et Was then subset into 14 topological clusters
via the Fast Greedy algorithm based on Edge Betweenness (Cluster A-N), among which Cluster
L, M, N contained < 5 interactors and were thereby excluded from further analysis (Figure 6A,
Table S3). Node centrality (degree and betweenness) analysis was performed for each
remaining cluster (N = 7) to identify “hub” proteins of top 5% degree or betweenness (Figure
6C-D). In addition, GO-BP enrichment analyses excluded 4 more clusters (Cluster H, |, J, K) due

to their low ES < 10 (i.e., less than 10 terms were returned for the 3 clusters) (Figure 6B).
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Figure 6. Characterisation of topological clusters in the LRRK2 pet
A) The bar graph shows the size of the 14 topological clusters identified in the LRRK2 e+ via the Fast
Greedy algorithm. Cluster L, M, N were excluded due to their small cluster size (N < 5); B) The bar graph

shows the number of GO-BP terms returned from enrichment analyses (Enrichment Score, ES) for the
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remaining 11 clusters. Cluster H, I, J, K were excluded due to their low ES < 10; C, D) The box plots show
the distribution of node degree and betweenness in the remaining 7 clusters. The whiskers represent
95% percentiles. Nodes with degree or betweenness above 95% percentiles within each cluster were
marked as red dots F-test was preformed to compare the variance of node betweenness, in which

Cluster C presented significant low SD as compared to other clusters apart from Cluster E (p < 0.05; *).

Among the remaining 11 clusters, Cluster A comprised N = 45 interactors, among which CDK2
(Degree = 26; Betweenness = 0.75) and RPS8 (Degree = 16; Betweenness = 0.10) were defined
as “hub” proteins, among which 40 contributed to the functional enrichment of 42 GO-BPs
(Figure 7A). A total of 28 GO-BPs were with a term size < 2500, from which GO hierarchy
analysis identified 1 group which was related to translation, involving 40/45 (88.9%)
interactors in the cluster (Figure 7B, Table C1). Of note, a robust ribosomal protein unit of 16
RPs were identified in Cluster A, in which the RPs presented a condense within-unit
connection, accounting for 71/115 (61.7%) edges in Cluster A. Among the 16 RPs, RPS8
exhibited the highest centrality and connected with all other proteins, it also linked to 2
mitochondrial RPs (MRPL19 and MRPL28), suggesting that the RB unit is potentially associated
with mitochondrial function. In addition, the RB unit was connected with the rest of the
cluster by CDK2, thereby suggesting a potentially crucial role of CDK2 as a “hub” in linking

ribosomal biosynthesis and other stages of gene translation.
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Figure 7. Analysis of Cluster A of the LRRK2 pet

A) The network graph shows Cluster A in the LRRK2,e, containing a total of 45 interactors (represented
with round nodes). The “hub” proteins (CDK2 and RPS8) were highlighted with red circles. Node fill
colour represents biological functions that a certain interactor is engaged in based on the GO-BP
enrichment analysis, while node size represents the degree centrality (the larger the node, the higher
the degree). Interactors that were not included in any functions were filled in grey. Of note, a condense
unit of ribosomal proteins (the “RB unit”) was identified in Cluster A (highlighted in blue square),
accounting for 71/115 (61.7%) of all edges. B) The network graph shows the hierarchical groups of GO-
BPs (term size < 2500, represented as rectangular nodes) returned from enrichment analysis for Cluster
A. Only groups with > 3 terms were presented. Node fill colour represents the hierarchical group. Edges
represents hierarchy relations between GO-BP terms in Gene Ontology. Details regarding GO-BPs in

the graph were shown in Table C1.

In comparison, Cluster B contained N = 23 interactors, among which TRAF2 (Degree = 15,
Betweenness = 0.50) was defined as “hub” protein (Figure 8A), though another 2 proteins
TRADD (Degree = 13, Betweenness = 0.23) and RIPK1 (Degree =9, Betweenness = 0.18) also
exhibited high centralities in the cluster. These 3 proteins were responsible for 31/42 (73.8%)
edges in the cluster, indicating their potential central roles in maintaining the connectivity of
the subnetwork. GO-BP enrichment returned a total of 96 GO-BPs with term size < 2500,
within which 3 hierarchical groups were identified: “Cell death”, “Protein metabolism”,
“Response to stress” (Figure 8B, Table C2). These 3 groups involved 17, 14 and 15 interactors,
respectively. Of note, a total of 14 interactors were engaged in all the 3 groups, suggesting

that these 3 cellular pathways were closely connected with each other.
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Figure 8. Analysis of Cluster B in the LRRK2 et

A) The network graph shows Cluster B in the LRRK2 e, containing a total of 23 interactors (represented
with round nodes). The “hub” proteins (TRAF2) was highlighted with a red circle. Node fill colour
represents biological functions that a certain interactor is engaged in based on the GO-BP enrichment
analysis, while node size represents the degree centrality (the larger the node, the higher the degree).
Interactors that were not included in any functions were filled in grey. B) The network graph shows the
hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes) returned from
enrichment analysis for Cluster B. Only groups with > 3 terms were presented. Node fill colour
represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms in Gene

Ontology. Details regarding GO-BPs in the graph were shown in Table C2.

Cluster Cincluded a total of 41 interactors, among which IQGAP1 (Degree = 20; Betweenness
=0.30), CAPZA2 (Degree = 17; Betweenness = 0.12) and LIMA1 (Degree = 16; Betweenness =
0.22) were “hub” proteins (Figure 9A). Of note, pair-wise F-test showed that the variance of
node betweenness in Cluster C was significantly lower than all other clusters apart from
Cluster E (Figure 6D, 1-tailed p-value < 0.05), suggesting that interactors in Cluster C were
well connected and thereby formed a stable PPI unit in the LRRK2net. GO-BP enrichment
analysis returned 64 terms, in which 59 were with term size < 2500, involving 29 interactors.
A total of 3 hierarchical groups of GO-BPs were identified in the 59 terms, related to

cytoskeleton organisation, vesicular transport and translation (Figure 9B, Table C3). A total of
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25, 9 and 4 interactors contributed to the 3 functions, respectively, suggesting that the
dominate role of Cluster C was maintaining cytoskeleton dynamics. Of note, only 1 protein
(ACTB) was shared by the 3 GO-BP groups, suggesting its potentially important role in

connecting the 3 functions together.
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Figure 9. Analysis of Cluster C of the LRRK2 pet

A) The network graph shows Cluster C in the LRRK2,et, containing a total of 45 interactors (represented
with round nodes). The “hub” proteins (IQGAP1, CAPZA2 and DBN1) were highlighted with red circles.
Node fill colour represents biological functions that a certain interactor is engaged in based on the GO-
BP enrichment analysis, while node size represents the degree centrality (the larger the node, the
higher the degree). Interactors that were not included in any functions were filled in grey. B) The
network graph shows the hierarchical groups of GO-BPs (term size < 2500, represented as rectangular
nodes) returned from enrichment analysis for Cluster C. Only groups with > 3 terms were presented.
Node fill colour represents the hierarchical groups. Edges represents hierarchy relations between GO-

BP terms in Gene Ontology. Details regarding GO-BPs in the graph were shown in Table C3.

Cluster D contained 39 LRRK2 interactors, in which NPM1 (Degree = 14; Betweenness = 0.42)
and VIM (Degree = 10; Betweenness = 0.31) were “hub” proteins (Figure 10A). Of note,
Cluster D exhibited a significantly low node betweenness variance as compared to other
clusters apart from Cluster C (F-test 1-tailed p-value < 0.05), thereby revealing another robust

PPI unit in the LRRK2net (Figure 6D). GO-BP enrichment analysis associated Cluster D with 93
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terms, in which 70 were with term size < 2500, among which a total of 4 hierarchical groups
were identified: protein metabolism, protein localisation, translation and cell death, involving
a total of 38, 18, 15 and 17 LRRK2 interactors, respectively (Figure 10B, Table C4). NPM1,

AKT1, and RACK1 contributed to all the functions, thereby probably functioning as mediators

of the 4 cellular processes.
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Figure 10. Analysis of Cluster D of the LRRK2 et

A) The network graph shows Cluster D in the LRRK2,., containing a total of 39 interactors (represented
with round nodes). The “hub” proteins (NPM1 and VIM) were highlighted with red circles. Node fill
colour represents biological functions that a certain interactor is engaged in based on the GO-BP
enrichment analysis, while node size represents the degree centrality (the larger the node, the higher
the degree). Interactors that were not included in any functions were filled in grey. B) The network
graph shows the hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes)
returned from enrichment analysis for Cluster D. Only groups with > 3 terms were presented. Node fill
colour represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms

in Gene Ontology. Details regarding GO-BPs in the graph were shown in Table C4.

Cluster E was composed of a total of 52 interactors, within which TP53 was the “hub” (Degree

= 31; Betweenness = 0.95). Of note, TP53 exhibited dominating centrality, accounting for
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31/65 (47.7%) of all edges in the cluster, suggesting that TP53 plays a crucial role in
maintaining the function of the cluster (Figure 11A). GO-BP enrichment analysis returned a
total of 91 terms for Cluster E, within which 64 were with term size < 2500, involving 77/91
(84.6%) interactors. GO-BP hierarchy clustering identified 4 groups associated with: protein
localisation, cell cycle, protein metabolism and response to stress, contributed by a total of

25, 21, 16 and 5 interactors, respectively (Figure 11B, Table C5).
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Figure 11. Analysis of Cluster E of the LRRK2 pet

A) The network graph shows Cluster E in the LRRK2,.t, containing a total of 52 interactors (represented
with round nodes). The “hub” protein (TP53) was highlighted with a red circle. Node fill colour
represents biological functions that a certain interactor is engaged in based on the GO-BP enrichment
analysis, while node size represents the degree centrality (the larger the node, the higher the degree).
Interactors that were not included in any functions were filled in grey. B) The network graph shows the
hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes) returned from
enrichment analysis for Cluster E. Only groups with > 3 terms were presented. Node fill colour
represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms in Gene

Ontology. Details regarding GO-BPs in the graph were shown in Table C5.

In comparison, Cluster F contained 15 LRRK2 interactors, in which PRKN (Degree = 12;

Betweenness = 0.74) was defined as the “hub” protein (Figure 12A). Topological analysis
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showed that Cluster F was highly centralised, in which the node betweenness variance was
significantly higher than all other clusters (F-test 1-tailed p-value < 0.05), suggesting that the
stability of Cluster F was highly dependent on the normal function of its “hub” PRKN, i.e.,
pathological alterations (e.g., pathogenic mutations or expression level changes) on PRKN
may lead to an overall dysfunction of the cluster (Figure 6D). A total of 26 GO-BPs were
returned by functional enrichment analysis for Cluster F, among which 23 were with term size
< 2500. These terms were related to 1 hierarchy group of Autophagy, involving 6/15, 40%)
interactors (Figure 12B, Table C6).
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Figure 12. Analysis of Cluster F of the LRRK2 et

A) The network graph shows Cluster F in the LRRK2 e, containing a total of 52 interactors (represented
with round nodes). The “hub” protein (PRKN) was highlighted with a red circle. Node fill colour
represents biological functions that a certain interactor is engaged in based on the GO-BP enrichment
analysis, while node size represents the degree centrality (the larger the node, the higher the degree).
Interactors that were not included in any functions were filled in grey. B) The network graph shows the
hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes) returned from
enrichment analysis for Cluster F. Only groups with > 3 terms were presented. Node fill colour
represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms in Gene

Ontology. Details regarding GO-BPs in the graph were shown in Table Cé.

As for Cluster G, a total of 29 interactors were included in the cluster, among which LRRK1
(Degree = 15; Betweenness = 0.54) and HSPA8 (Degree = 16; Betweenness = 0.48) were
defined as “hub” proteins (Figure 13A). The 29 interactors were related to 25 GO-BPs, among
which 23 were with term size < 2500. A total of 2 hierarchical groups were identified from
these functional terms, related to autophagy (involving 7/29 (24.1%) interactors) and protein

metabolism (involving 17/29 (58.6%) interactors) (Figure 13B, Table C7).
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Figure 13. Analysis of Cluster G of the LRRK2 net

A) The network graph shows Cluster G in the LRRK2,e:, containing a total of 29 interactors (represented
with round nodes). The “hub” proteins (HSPA8 and LRRK1) was highlighted with red circles. Node fill
colour represents biological functions that a certain interactor is engaged in based on the GO-BP
enrichment analysis, while node size represents the degree centrality (the larger the node, the higher
the degree). Interactors that were not included in any functions were filled in grey. B) The network
graph shows the hierarchical groups of GO-BPs (term size < 2500, represented as rectangular nodes)
returned from enrichment analysis for Cluster G. Only groups with > 3 terms were presented. Node fill
colour represents the hierarchical groups. Edges represents hierarchy relations between GO-BP terms

in Gene Ontology. Details regarding GO-BPs in the graph were shown in Table C7.

Main findings

1. The topological core of the LRRK2net (defined as the most highly connected interactors
within the LRRK2net) contained 27 proteins, including 14-3-3 proteins, ribosomal proteins,
heat shock proteins and cytoskeleton-related proteins. Together with the functional core
identified in Chapter 1, these proteins formed the fundamental set of proteins interacting
with LRRK2.

2. A total of 11 topological clusters containing N > 5 interactors were identified in the
LRRK2ret, and 7 of them were found with high biological significance, suggesting a good

overlap between topological models of LRRK2 interactors and the real functional modules.
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3. The 7 biological significant clusters re-capitulated the primary functions of LRRK2 in: the
regulation of ribosomal functionality, protein localisation, protein metabolism, protein
transport, cellular response to stress, cell death and autophagy.

4. An interesting ribosomal unit was identified in the LRRK2net, suggesting LRRK2's potential
role in mediating/regulating the process of protein translation (Topological Cluster A).

5. An interesting cytoskeletal unit was identified in the LRRK2net, suggesting LRRK2’s
potential role in mediating/regulating the maintenance of the cellular structure and the
regulation of vesicle dynamics (Topological Cluster C).

6. An interesting mitochondrial unit was identified in the LRRK2net, suggesting LRRK2's
potential role in regulating the maintenance of mitochondrial integrity is association with

other PD related proteins (Topological Cluster F).

Discussion

In this section, PPIs among LRRK2 interactors were retrieved from literature to increase the
connectivity of the simple LRRK2int and effectively construct an interaction network. As
compared to the download pipeline for 15t-layer PPI, which included the combination of 3 PPI
tools (PINOT, HIPPIE and MIST), retrieval of the 2"-layer PPIs was conducted via HIPPIE (v2.3)
solely. This is due to the following reasons: 1) HIPPIE (v2.3) offers time-efficient network
qguery which allows for the construction of a subnetwork from an input query set of proteins,
thereby avoiding the significant amount of time and computing power required by retrieving,
filtering and merging of PPIs for individual LRRK2 interactors, while no such function is
provided in the other 2 PPI tools; 2) As discussed in Chapter 1, the 3 tools share a relatively
large overlap rate especially on the most replicated PPls, suggesting that using 1 PPI tool
solely is able to cover the most robust PPIs among LRRK2 interactors. In addition, with the
score filter provided by HIPPIE (v2.3), the pipeline returns adequate 2"-layer PPIs with high
confidence for LRRK2net construction. The LRRK2net turned out to be a scale-free network that
follows the power law, in which only a few nodes are highly connected while most of the
nodes are characterized by a relatively low degree (i.e., they possess few connections). This
might indicate that there are some “hubs” in the LRRK2’s protein network sustaining the
LRRK2 functions that are exerted via its interactome. These hubs were identified according to
their degree or betweenness centrality via topological analysis. In graph theory, degree of

node represents the number of edges connected to a given nodes, while betweenness
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centrality reflects the number of shortest paths a node lies on, a proxy for the influence a
node has over the flow of information or resources in the network. In scale-free networks,
the degree of a node and its betweenness centrality are often correlated, but they do not
always agree. Therefore, a combination of nodes with high degree or high betweenness
ensures the coverage of the “topological core” with both centralised nodes and bridge nodes
in the network. In this way, a total of 27 interactors were identified as hubs, including TP53,
CDK2, HSPA8, HSP90AB1, HSP90AA1, YWHAZ, LAPR7, NPM1, TRAF2, IQGAP1, LIMA1, CAPZA2,
PRKN, DBN1, YWHAQ, RPS8, YWHAG, TRADD, RPS3, AKT1, YWHAB, HSPA1A, RPS3A, TUBA1C,
RPS2, PPP1CA, LRRK1. Of note, caution should be exercised when interpreting topological
analyses in the context of protein interaction networks since these networks are inherently
incomplete. Consequently, there is a risk of underestimating or overlooking central nodes and
connectivity. Hence, these analyses require periodic repetition every few years to ensure the
continuous incorporation of updated data and gradually enhance the completeness of the
model over time. Among the hub proteins, AKT1, HSP90AB1, HSPA1A, NPM1 also presented
in the functional core identified in Chapter 3, suggesting their central roles in supporting

LRRK2 functionality.

AKT1 is a central protein that participate in signal transduction for cell cycle progression, cell
survival and prevention of apoptosis. Previous studies have found that AKT1 is a direct
substrate of LRRK2 kinase. Phosphorylation of AKT1 negatively regulates apoptosis signalling
molecule and activates some cascades for cell survival. PD-associated LRRK2 mutations,
including LRRK2-R1441C, G2019S, and 12020T, were found to interrupt LRRK2:AKT1
interaction (Ohta et al., 2011). Therefore, neurons with mutated LRRK2 are potentially more
vulnerable to apoptotic stress, which could be a possible mechanism for the

neurodegeneration in the LRRK2-PD.

Heat shock proteins (HSPs) constitute a vital family of cellular components that respond to
various stressors. Functioning as molecular chaperones, HSPs play a fundamental role in the
maintenance of protein structure, preventing misfolding, aggregation, and degradation. In
the meanwhile, heat shock proteins have been highly linked to PD. Previous studies found
lower expression levels in a range of heat shock proteins in PD brains as compared to healthy

control (Zhu et al., 2022). In addition, HSP90AB1 exhibits significantly negative correlation
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with Lewy pathology by inhibiting the aggregation of a-synuclein (Gao et al., 2015). Also,
HSPA1A (a member of HSP70 family) disaggregate complex is responsible for the disassembly
of a-synuclein aggregates (Daturpalli et al., 2013). In this study, heat shock proteins present
high final score (HSP90AA1, HSPA8 (a member of HSP70 family)) in the LRRK2int, high degree
& betweenness centrality (HSP90AB1, HSP90AA1, HSPAS8) in the LRRK2net, and high
engagement in all enriched biological functions in the functional core (HSP90OAB1, HSP90AA1,
HSPA1A), suggesting an essential role of this protein family in LRRK2 signalling pathway. These
findings are in accordance with previous studies which suggested a substantial association
between LRRK2 and HSP90, HSP70 proteins. For example, it has been reported that
pharmacological inhibition of HSP90 rescued cortical neurons in a LRRK2-G2019 mouse model
from axonal growth retardation (Hurtado-Lorenzo & Anand, 2008). This may result from the
fact that LRRK2:HSP90 interaction increase the stability of G2019S LRRK2 protein, while
inhibition of HSP90 increases its proteasomal degradation (L. Wang et al., 2008). Hence,
HSP90 inhibitors may thereby be a potential drug target for LRRK2-PD. However, on the other
hand, some studies suggested that HSP70 overexpression enhanced neuronal survival against
oxidative stress induced by increased LRRK2 kinase activity from pathogenic mutations (Jang
et al., 2018). Therefore, HSP70 induction can also be a potential therapeutic route for LRRK2-
PD. These findings suggest a complicated signalling network between LRRK2 and heat shock
proteins. Future studies can extract functional, topological, transcriptomic and genetics data
of heat shock proteins and establish a LRRK2:HSPs PPl network. By combining the network
with experimental data, the edges can be directed based on inhibition/activation effect of
each LRRK2:HSPs binding, thereby turning the PPl network to a pathway model. The model
can be tested in the health condition as well as in the presence of pathogenic mutations of
LRRK2, which will provide insights in the LRRK2:HSPs signalling system and prioritise “hub”

heat shock proteins as drug target candidates.

NPM1 (Nucleophosmin 1) is an abundant nucleolar protein that plays a crucial role in
ribosome assembly, regulation of cell division, and response to cellular stress. Like HSP90
proteins, NPM1 is also a type of chaperon that regulates protein misfolding and aggregating
process, presenting a neuroprotective role in neurodegeneration process. One previous study
found upregulated NPM1 expression level in Human dopaminergic SH-SY5Y cells under 1-

methyl-4-phenyl-pyridinium ion (MPP+) treatment, which is a commonly used model for
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sporadic PD (Xie et al., 2016). However, not much research has been done in exploring the
functional role of LRRK2:NPM1 interaction, either in healthy or PD cases. Considering the
neuroprotective role of NPM1, it is worth to explore this PPl in further research to evaluate

NPM1’s potential as a novel drug target for PD.

Apart from the topological unit of hub proteins, a total of 14 topological clusters were
identified in the LRRK2 network via Fast Greedy Clustering Algorithm. Fast Greedy is one of
the simplest community detection approaches in topological analysis, involving a hierarchical
clustering based on edge betweenness to detect the mostly connected nodes as the “core”
of a subnetwork. Then the algorithm iteratively selects random edges that improve the
modularity of the subnetwork and adds them in, until the modularity stops improving
(Newman, 2004). One of the primary benefits of Fast Greedy algorithm lies in its high
efficiency and low memory occupancy. Moreover, unlike Partitioning-based community
detection, such as k-means, which is another commonly used clustering method, the Fast
Greedy focus on optimising the local connectivity rather than the global optimum, which fits
the goal of clustering analysis in this study, i.e., to identify dense interaction units within the
LRRK2net. Among the 14 clusters, only half was linked with high biological significance
(enriched for > 10 GO-BPs), suggesting that in-silico models established via bioinformatics

methods should always be interpreted in the biological context.

Among the 7 biological significant topological clusters, Cluster A was highly associated with
translation. It contains a “ribosomal unit” of 16 ribosomal proteins with 71 PPls among them,
which accounting for 35% nodes and 61% edges the whole subnetwork. This is in accordance
with previous findings that LRRK2 plays an important role in regulating ribosomal functions in
neurons. Wild type LRRK2 was found to repress protein synthesis in mouse neurons, while
pharmacological inhibition of LRRK2 kinase or LRRK2 knockout rescued translation
(Deshpande et al., 2020). Similar alterations have been found in fibroblasts from patients with
sporadic PD and G2019S-PD, and LRRK2 inhibition restores normal protein synthesis
(Flinkman et al., 2023). Interestingly, such changes were not observed in fibroblasts from
patients with other neurodegenerative disease such as multiple system atrophy, suggesting
that LRRK2's impact on ribosomal functions is potentially disease-specific. Moreover, the

ribosomal unit is connected to the other part of Cluster A via the hub protein CDK2, indicating
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that CDK2 potentially functions as a mediator of ribosomal function. This is in accordance with
previous findings which suggested that CDK2 positively modulates the assembly of the
transcription initiation complex of ribosomes (Voit & Grummt, 2001).In addition, it has been
suggested that inhibiting CDK2 activity leading to downregulation of rRNA synthesis (ladevaia
et al., 2010; Juli et al., 2016). Therefore, it can be hypothesised that LRRK2 and CDK2 form a
balanced mediating system on ribosomal functions, though the detailed mechanism requires
further research. Using Cluster A as a starting point, future research can focus on linking
LRRK2, CDK2 and the LRRK2 ribosomal unit with other interactors in the cluster, which may

function as signalling transductors in the regulation process.

Cluster C was highly enriched for GO-BP terms related to cytoskeleton organisation and
vesicular transport. It contained cytoskeleton proteins including actin, endophilin, myosin,
tropomyosin, and vesicular transport regulators such as RAB1A and DNM1 (Mukhopadhyay
etal., 2011; Von Spiczak et al., 2017; Zhuang et al., 2010). It also contained signal transductors
such as HSP90AB1. Therefore, Cluster C can be considered as a model for the LRRK2-mediated
regulating cascade for the regulation of cytoskeleton dynamics. There are 3 hub proteins in
this cluster: IQGAP, CAPZA2 and DBN1. IQGAP is a conserved scaffold protein that facilitates
the formation of protein complexes that regulate a range of cellular processes (Hedman et
al., 2015). For example, it has been reported to interact with F-actin and small GTPase and
promote actin polymerisation. In addition, IQGAP also scaffold signal transducing molecules
such as participants of MAPK pathway, which is responsible for response to stimuli. CAPZA2
regulates actin dynamics by capping the barbed ends of actin filaments. The capping of actin
filaments helps control the polymerization and depolymerization of actin, which is essential
for processes such as cell motility, muscle contraction, and maintenance of cell structure.
DBN1 codes for Drebrin, a protein that binds actin and regulates actin cytoskeleton
organisation and dynamics. Drebrin is particularly abundant in the brain, where it is involved
in the regulation of neuronal morphology and synaptic function. To date, not much evidence
has been reported regarding the impacts of LRRK2 interactions on the functions of the 3
proteins. Considering their essential roles in regulating the cytoskeleton dynamics and the
same downstream effectors, it is worth to investigate the connections among these
mediators to obtain a more comprehensive understanding in the mechanism of cytoskeleton

organisation. Of note, the PPIs in Cluster C have been selected and evaluated functionally via
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affinity purification coupled with mass spectrometry (AP-MS/MS) in a collaborative study with
Prof. Elisa Greggio’s group in University of Padova. The results showed that the interactions
between LRRK2 and DBN1, ARPC2, ACTR2 and ACTR3 increased under brain derived
neurotrophic factor (BDNF) stimulation, suggesting a potential role of LRRK2 and its
interactors in Cluster C in regulating actin cytoskeleton dynamics in complementary neuronal
models (Tombesi et al., 2023). Cluster F is highly correlated with mitophagy. It contains one
hub protein PRKN, which is a well-established player in the ubiquitin-proteasome system and
is intricately linked to mitophagy. Through its E3 ubiquitin ligase activity, PRKN targets
damaged or dysfunctional mitochondria for degradation, thereby preventing the
accumulation of compromised organelles and ensuring cellular health. In the meanwhile,
cluster also include SNCA (a-synuclein), which has been reported to influence mitochondrial
dynamics and potentially affecting the initiation of mitophagy. Moreover, RAB8A and RAB10
also presented in Cluster F, which are the primary contributors to vesicular trafficking and
membrane dynamics. Additionally, the presence of MFN1 and MFN2 underscores the
significance of mitochondrial dynamics within this cluster considering their pivotal roles in
mitochondrial fusion. Therefore, considering the complexity of LRRK2-associated mitophagy
pathway, it is worth to analyses these interactions in 1 system, as how they were connected
in Cluster F.. This can be applied to multiple research context: for example, since LRRK2, PRKN
and SCNA are all confirmed familial PD-causing genes, it would be interesting to investigate
how they work together in maintaining normal mitophagy process in the healthy cells. Also,
in the disease scenario, it would be informative to dissect how pathogenic mutations of each
of these PD genes affect the mitophagy network. These will provide valuable insights for PD
pathology and mitophagy-targeted drug development for genetic PD. The remaining 4
topological clusters obtained from the LRRK2..t were associated with a combination of
different biological processes. For example, Cluster B was related to protein metabolism,
response to stress and cell death, while Cluster E was associated with protein metabolism,
protein localisation, response to stress and cell cycle. These clusters may function as bridges
that connect each functional block of the LRRK2net together. In conclusion, the in-silico model
of the LRRK2net and its subnetworks well recapitulated the primary biological functions of
LRRK2 described in literature for PD and LRRK2 with the advantage of showing the actual
component of the LRRK2 interactome that coordinate those functions with LRRK2 and

describing their connectivity and the flux of information sustaining those biological pathways.
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Chapter 3. Tissue-specific expression profiles of LRRK2 protein

interactors

Objectives

Investigate the mRNA expression patterns of LRRK2 interactors in 15 different healthy
human tissues

Compare the LRRK2:interactor co-expression features across the 15 healthy human
tissues

Identify co-expression modules of LRRK2 interactors among the 15 healthy human tissues
Evaluate weighted connectivity of topological clusters of the LRRK2 et detected in Chapter

4 in different tissues

Analysis pipeline

Tissue-specific Expression Profiles of LRRK2 Protein Interactors

Tissue-specific mMRNA levels of
LRRK2 interactors

I
y ' . '

Weighted network analysis on
topological clusters of LRRK2net

Differential expressiion analysis LRRK2 co-expression analysis WGCNA

Clusters of interactors Ca-expression
Clusters of interactors Group of lissues where e Group of tissues where modules of LRRK2
with similar co-

with similar expression LRRK2 interactors show expression with LRRKZ interactors show interactors in the
pattern similar expression profiles P LRRK2 similar expression profiles periphral tissues and
brain regions

Note: Figures and text in Chapter 3 are adapted from the following publication: Zhao et al.; “Tissue
specific LRRK2 interactomes reveal a distinct striatal functional unit”; PLoS Compute Biol. 2023 Jan
30;19(1):e1010847. doi: 10.1371/journal.pcbi.1010847.

Methods

RNA-Seq data download and quality control (QC)

The Genotype-Tissues Expression (GTEx) Portal (GTEx Analysis V8) was queried for mRNA

expression levels (read counts) of LRRK2 interactors in different tissues on 19 August 2021

(https://storage.googleapis.com/gtex analysis v8/rna seq data/GTEx Analysis 2015-06-

05 v8 RNASeQCv1.1.9 gene reads.gct.gz). A total of 15 tissue sites were included in this

section: 11 brain regions: amygdala, anterior cingulate cortex, caudate (basal ganglia),

110


https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2015-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2015-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz

cerebellum/cerebellar hemisphere, cortex/frontal cortex (BA9), hippocampus, hypothalamus,
nuclues accumbens (basal ganglia), putamen (basal ganglia), spinal cord (cervical c-1) and
substantia nigra (basal ganglia); as well as 4 peripheral tissues: whole blood, lung, liver and
kidney(cortex). Of note, in GTEx Portal, “cerebellum/cerebellar hemisphere” and

“cortex/frontal cortex (BA9)” are duplicated pairs (https://www.gtexportal.org/home/faq —

brainCortexAndCerebellum). The sets of “cerebellum” and “cortex” were chosen since they

contain a larger sample size as compared to their duplicates (209 vs. 155; 205 vs. 155).
Expression data were extracted for LRRK2 interactors using their HUGO/HGNC gene symbols.
Samples quality control (QC) was performed via hierarchical clustering for each tissue
expression dataset. Samples that fell outside the major cluster in the dendrogram were
considered as outliers and were thereby excluded from analysis. Interactor-level QC involved
excluding LRRK2 interactors with read counts < 15 in more than 75% of samples within each
tissue. QC-ed tissue expression datasets were then merged into the “Tissue Expression
Matrix”, in which rows were LRRK2 protein interactors while columns were all samples for
the 15 tissues. Read counts normalisation was conducted via the R package “DESeq2”,

obtaining the “Normalised Tissue Expression Matrix”.

e Tissue-specific expression signature of the LRRK2nt
Hierarchical clustering was then performed on the “Normalised Tissue Expression Matrix” to:
1) identify clusters of tissues in which LRRK2 interactors showed similar co-expression
patterns.
2) identify clusters of interactors that presented similar expression profiles with LRRK2
across the 15 tissues (i.e., interactors that presented in the same cluster with LRRK2

in the hierarchical dendrogram, hereby referred as “Exp_Cluster”).

The optimal cutting height (h) for each dendrogram tree was selected by the Elbow method.
The average expression levels of each Exp_Cluster in the 15 tissues were compared via One-
way ANOVA followed by post hoc Tukey’s test.

e Pair-wise Differential Expression Analysis (DEA)

The mRNA expression levels of each LRRK2 interactor in the 15 tissues were compared via
pair-wise DEA using the R package “DESeq2”. Log2 fold change (log2FC) and p-value (adjusted

via the Benjamini-Hochberg procedure) for each comparison were automatically calculated
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by “DESeq2”. Of note, the p-values were further adjusted via the Bonferroni’s method to
minimise the overall type Il error and were utilised to calculate the “Tissue Scores” (TS) for
the 15 tissues via the following approach:
1) for each pair of tissues, if the expression level of interactor / is significantly higher in
Tissue A than in Tissue B (log2FC > 1 and adjusted p-value < 0.05), then TSEA =
TSE, + 1, while TSF remains unchanged, and vice versa;
2) if the comparison between Tissue A and Tissue B is insignificant, both TSf, and TSf;

remain unchanged.

In this way, each tissue was scored multiple times based on the expression levels of each
LRRK2 interactor. The higher the score (TSfT), the higher the interactor / was expressed in
tissue T. If TSET > 12, i.e., the expression level of / in tissue T is significantly higher than 12/15
(80%) of tissues included in this study, / is then defined as a significant tissue-specifically
expressed interactor of LRRK2. These tissue-specific interactors were then annotated via GO-

BP enrichment.

e Tissue-specific LRRK2-Co-expression Analysis (L-CEA) on LRRK2 interactors
Pearson’s Correlation test was performed on the expression level of LRRK2 and each of its
interactor to examine their co-expression behaviours in the 15 tissues, thereby generating
the “LRRK2-cor matrix”. The “LRRK2-cor matrix” was then used to perform hierarchical
clustering on LRRK2 interactors and the 15 tissues in order to:
i. identify tissues where similar LRRK2:interactor co-expression was observed
ii. identify clusters of interactors presented similar co-expression behaviours with LRRK2
in the 15 tissues (Co-ex_Cluster);
In addition, the average LRRK2:interactor co-expression level of each Co-ex_Cluster was
compared across the 15 tissues via One-way ANOVA followed by post-hoc Tukey HSD Test.
Tissues were ranked based on the significant comparison results via the following approach:
1) if the average LRRK2:interactor co-expression levels of Co-ex_Cluster X are
significantly higher in Tissue A than in Tissue B (|log2FC| > 1 and adjusted p-value <
0.05), then TS§ 4, = TS5 4 + 1, while TS ; remains unchanged, and vice versa;
2) if the comparison between Tissue A and Tissue B is insignificant (p-value > 0.05), both

TS5 4 and TS 5 remain unchanged.
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In this way, for a given tissue, the higher the TS%, the higher the LRRK2:interactor co-

expression was observed in the tissue.

e Weighted Gene Co-expression Network Analysis (WGCNA)
WGCNA was performed on the “Tissue-matrix” to construct signed co-expression networks
for the 15 tissues via the R package “WGCNA” through the following steps:
1) Co-expression levels among LRRK2 interactors were calculated via Pearson’s
correlation test (s(; ;)), forming the similarity matrix.

2) The adjacency between each pair of interactors (a(; ;) was calculated as a(; jy =

(—1+Z(i‘j))ﬁ, in which 8 represents the soft thresholding power (0 < 8 < 30). The value of

8 was selected via the “WGCNA” R package, by selecting the minimum 8 that achieves
the largest Scale-free Fit Index and the lowest Mean Connectivity, forming the
adjacency matrix.

3) The Topological Overlap Matrix (TOM) was then calculated based on the adjacency
matrix automatically the “WGCNA” package, thereby forming the weighted co-

expression network of LRRK2 interactors

After the network construction, hierarchical clustering was then performed on the co-
expression network. Co-expression modules of LRRK2 interactors were identified
automatically by cutting the hierarchical dendrogram. Optimal cutting height was
automatically selected via the “WGCNA” package. Detected modules were then labelled with
different colours for identification. Next, module eigengene (ME) was calculated as the first
principal component of the module expression matrix. MEs were then associated with each
tissue via the function “corPvalueStudent” in the same R package. A significant correlation
was defined as with a) | correlation coefficient| > 0.50 and b) p-value < 0.05. Modules with
their MEs significantly correlated with certain tissue(s) were defined as tissue-specific and

were annotated by GO-BP enrichment analysis.

e Weighted network analysis on topological clusters of the LRRK2 et
Subnetwork for each topological cluster identified in Chapter 4 was extracted from the
LRRK2pet. Within the subnetwork in tissue X, interactors were weighted based on the degree

of node (D) and the expression score (ES), which is equal to TSEX (node weight = D; X ES;),
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while edges were weighted based on the edge betweenness (EB; j)) and the co-expression
levels of each pair of connected interactors (C; j))(edge weight = EB; jy X C(; jy). In this
way, each topological cluster was weighted 15 times for the 15 tissues based on the
expression and co-expression behaviours of LRRK2 interactors, thereby forming 15 weighted
subnetworks. Node weights and edge weights were compared across the 15 weighted

subnetworks via Kruskal-Wallis test followed by post hoc Dunn’s test.

Results

e Expression data preparation

RNA-Seq read counts were extracted for 404 out of 418 (97.4%) LRRK2 interactors from GTEx
(for 14 LRRK2 interactors no data was available). Out of 3954 samples, a total of 280 outlier
samples was identified by hierarchical clustering and thereby excluded (Figure S1). In addition,
interactor QC removed 20 proteins with low counts or missing values, including “ACTBL2”,
“ANKS4B”, “AURKB”, “Clorf87”, “CXCL11”, “DNAJB8”, “ESRRG”, “FAMA47B”, “GTSF1”,
“KDM4D”, “PADI4”, “RAB38”, “SCEL”, “SH3GL3”, “SKA3”, “SMTNL2”, “TAS2R60”, “TGIF2LX",
“WTI1-AS” and “XIRP2”. The QC-ed read count matrix was further normalised via the R
package “DESeq2”, generating the “Normalised Tissue Expression Matrix” of 384 LRRK2

interactors for 3674 samples in 15 tissues.

e Expression profile of the LRRK2jnt in different tissues

Expression levels of each LRRK2 interactor in the 15 tissues were calculated and log2-
transformed. Hierarchical clustering was performed on the transformed matrix to identify
clusters of interactors that exhibited similar expression signatures across the 15 tissues. The
Elbow method suggested 4 clusters in the dendrogram (Figure 14A). Therefore, the tree was
cut at the height of 20 (h = 20) to obtain the 4 clusters (Exp_Cluster1-4, containing N = 26,
125, 17 and 217 interactors) (Figure 14B). Of note, LRRK2 presented in the Exp_Cluster2,
suggesting that the 102 interactors in this cluster exhibited similar expression profiles as
LRRK2 across the 15 tissues. One-way ANOVA showed that Exp_Cluster1 and Exp_Cluster3
presented significantly higher expression in the lung and frontal cortex (adjusted p-value <
0.05) (Figure 14C). Upon functional enrichment, no GO-BP term was found associated with

Exp_Clusterl, while Exp_Cluster 3 was related to “negative regulation of calcium ion export
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across plasma membrane” (N = 28/133 GO-BP terms) and “regulation of kinase activity and
protein phosphorylation” (N = 34/133 GO-BP terms), suggesting that Exp_Cluster 3 plays an
important role in maintaining calcium homeostasis and protein modification. In addition,
hierarchical clustering was performed on the 15 tissues based on the similarities of expression
profiles of the LRRK2in: (Figure 14D). The Elbow method suggested a total of 2 tissue groups
in the dendrogram (cutting at h = 36) (Figure 14E). Therefore, the tree was cut at the height
of 36 to obtain the 2 clusters, which contained N = 11 and 4 tissues, respectively. Of note, the
11 brain regions and 4 peripheral tissues were well separated into the 2 groups, suggesting

the LRRK2i: possesses distinct mRNA expression signatures in the CNS and the periphery.
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Figure 14. Expression profiles of the LRRK2n: in the 15 tissues

A) The line graph shows the optimal number of clusters (k) among LRRK2 interactors selected via the
Elbow method. The elbow of the curve situated at k = 4 (marked with red dash lines), suggesting 4
clusters in the dendrogram; B) The dendrogram shows the hierarchical clustering for LRRK2 interactors
based on the MRNA expression patterns in the 15 tissues. The tree was cut at h = 20 to obtain 4 clusters
(Exp_Cluster1-4), in which Exp_Cluster2 contains LRRK2; C) The heatmap shows the comparison of
mean expression levels of each Exp_Cluster among the 15 tissues. Cell colour represent the mean
(log2(rc)) of each Exp_Cluster in a certain tissue. The darker the colour, the higher the expression level.
Significant comparisons were marked with *. D) The line graph shows the optimal number of clusters
(k) among the 15 tissues selected via the Elbow method. The elbow of the curve situated at k = 2
(marked with red dash lines), suggesting 2 clusters in the dendrogram; E) The dendrogram shows the
hierarchical clustering of 15 tissues based on the expression profiles of the LRRK2;n. By cutting the tree
at h = 36, 2 clusters were obtained: 1 contained the 11 brain regions while the other contained 4
peripheral tissues. The 3 striatal regions, namely putamen, nucleus accumbens and caudate was
allocated in 1 subgroup (marked in blue rectangular); Abbreviations: AMYG: amygdala; ACC: anterior
cingulate cortex; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT:

hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1.

e Pair-wise DEA

The mRNA levels of each LRRK2 interactor were compared across the 15 tissues via pair-wise
DEA. Tissues were scored based on the pairwise comparison results of each interactor (Table
S3). The results showed that a total of 197/384 (51.3%) interactors presented significant
tissue-specificity (TSEX > 12), among which 171 (86.8%) interactors exhibited significantly

high expression in only 1/15 tissue; 24 (12.1%) showed high expression in 2/15 tissues while
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2 (1.0%) showed high expression in 3/15 tissues, suggesting that the tissue-specific expression
pattern varies largely among LRRK2 interactors (Figure 15A). A total of 71 and 142 interactors
presented significantly high expression levels in the brain and the periphery, respectively
(hereby referred as the “brain list” and the “periphery list”), with an overlap of 45 interactors
(Figure 15B). Functional enrichment analysis showed that the brain list was associated with
“cell death”, “cell projection” and “intracellular transport”, while the peripheral list was
related to “cell death”, “translation” and “protein metabolism” (Figure 15C,D). In specific,
among the 15 tissues, a largest number of LRRK2 interactors were highly expressed in the
whole blood (TSfblood > 12; N = 142) and cerebellum (TSECR > 12; N = 92), followed by the
frontal cortex and spinal cord c-1 (N = 41 and 39, respectively). A total of 15 and 14 interactors
exhibited significantly high expression in anterior cingulate cortex and hypothalamus,
respectively, while < 10 proteins were highly expressed in the rest of 9 tissues (Figure 15E).
These findings suggest that although the expression level of LRRK2 is lower in the brain, some

of its interactors are highly expressed in certain brain regions.
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Figure 15. LRRK2 interactors with highly tissue-specific expression pattern

A) The bar chart shows the percentages of LRRK2 interactors that presented significantly high
expression levels in i.) 1 tissue, ii) 2 tissues and jii) 3 tissues; B) The Veen graph shows the overlap
between highly-expressed LRRK2 interactors in the 11 brain regions (“brain”, marked in blue) and 4
peripheral tissues (“periphery”, marked in red); C,D) The bubble graphs show the top 20 GO-BP terms
(ordered by adjusted p-values) returned for the highly-expressed LRRK2 interactors in the brain and
the periphery. Bubble size represent the term size (i.e., the number of genes annotated with a certain
functional term), the larger the bubble, the larger the term size. Bubble colour represents the -
log10(adjusted-p), the darker the colour, the lower the adjusted-p and thereby the higher the
significance of enrichment for a certain functional term. E) The bar graph shows the distribution of
LRRK2 interactors with significantly higher expression level (TS, ET >12)in the 15 tissues. Abbreviations:
AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP:
hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: substantia nigra;

SPC: spinal cord c-1.

e Co-expression between LRRK2 and its interactors in 15 tissues

Pearson’s correlation test showed that a total of 201, 180, 154 and 138 interactors presented
high co-expression level (Pearson’s coefficient > 0.7) with LRRK2 in the putamen, frontal
cortex, nucleus accumbens, and caudate, respectively, followed by anterior cingulate cortex
(N = 85), cerebellum (N = 62), hypothalamus (N = 62) and blood (N = 51) (Figure 16A, Table
S4). The lowest LRRK2:interactor co-expression was observed in the substantia nigra,
amygdala, lung, liver and hippocampus (N < 10). Functional enrichment analysis was
performed on the interactors that highly co-expressed with LRRK2 in the brain and the
periphery. There was an overlap of 61 interactors between the 2 query lists (Figure 16B). The
enrichment results showed that interactors presenting high co-expression with LRRK2 in the
brain were associated with autophagy, mitochondrial localisation and negative regulation of
protein metabolism, while the interactors co-expressed with LRRK2 in the periphery were
related to actin cytoskeleton organisation, apoptosis and positive regulation of protein

metabolism (Figure 16C-D).
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Figure 16. Tissue-specific co-expression profiles between LRRK2 and its interactors

A) The bar graph shows the number of interactors with high co-expression level with LRRK2 (Pearson’s
coefficient > 0.7) in the 15 tissues; B) The Veen graph shows the co-expressed interactors queried for
functional enrichment analysis for the brain and the periphery. In order to keep similar query size,
interactors with co-expression coefficients > 0.8 in brain regions and with co-expression coefficients >
0.7 in peripheral tissues were included in the enrichment analysis; C,D) The bubble graphs show the
top 20 GO-BP terms (ordered by adjusted p-values) returned for the highly co-expressed interactors
with LRRK2 in the brain and the periphery. Bubble size represent the term size (i.e., the number of
genes annotated with a certain functional term), the larger the bubble, the larger the term size. Bubble
colour represents the -log10(adjusted-p), the darker the colour, the lower the adjusted-p and thereby
the higher the significance of enrichment for a certain functional term. Abbreviations: AMYG:

amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP:
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hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: substantia nigra;

SPC: spinal cord c-1.

Hierarchical clustering was then performed on the matrix of LRRK2:interactor co-expression
coefficients to identify clusters of interactors that exhibited similar co-expression patterns
with LRRK2 across the 15 tissues. The Elbow method suggested a total of 6 clusters among
the interactors (Figure 17A), therefore, the dendrogram was cut at the height of 1.2 to obtain
Co-ex_ClusterA-F (Figure 17B). For each of the 6 clusters, the average LRRK2:interactor co-
expression levels were compared across the 15 tissues. The result showed that: Co-
ex_ClusterA and B presented higher co-expression level with LRRK2 in blood (TSf‘ blood = 8)
and kidney cortex TSf' kidney = 7/, respectively, while Co-ex_ClusterC-F presented higher co-
expression level in brain regions especially in caudate, frontal cortex, nucleus accumbens and
putamen, suggesting a tissue specific profile of LRRK2:interactor co-expression (Figure 17C).
In addition, hierarchical clustering was performed on the 15 tissues based on the similarity of
LRRK2:interactor co-expression profiles. The Elbow method showed 7 groups of tissues,
therefore the dendrogram was cut at the height of 2.6, obtaining 3 groups of brain regions:
Group 1 comprises of the substantia nigra, hippocampus and amygdala; Group 2 contains the
spinal cord c-1, cerebellum, anterior cingulate cortex and hypothalamus, while Group 3
includes frontal cortex, putamen, caudate and nucleus accumbens (Figure 17D-E). No group

was identified among the 4 peripheral tissues.
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Figure 17. Hierarchical clustering on LRRK2:interactor co-expression feature

A) The line graph shows the optimal number of clusters (k) among LRRK2 interactors selected via the
Elbow method based on the co-expression levels with LRRK2 in 15 different tissues. The elbow of the
curve situated at k = 6 (marked with red dash lines), suggesting 6 clusters in the dendrogram B) The
dendrogram shows the hierarchical clustering for LRRK2 interactors based on their co-expression levels
with LRRK2 in 15 different tissues. The tree was cut at h = 1.2 to obtain 6 clusters (Co-ex_ClusterA-F);
C) The heatmap shows the 15 tissues (rows in the heatmap) were scored based on the comparison of
LRRK2:interactor co-expression levels of each Co-ex_Cluster (columns in the heatmap). Scores were
represented by the numbers in the cells. The higher the score is, the higher the co-expression with
LRRK2 for a given Co-ex_Cluster in a given tissue (adjusted p-value < 0.05); D) The line graph shows
the optimal number of clusters (k) among the 15 tissues selected via the Elbow method based on the
overall LRRK2:interactor co-expression features. The elbow of the curve situated at k = 7 (marked with
red dash lines), suggesting 7 clusters in the dendrogram; E) The dendrogram shows the hierarchical
clustering for 15 tissues based on the overall LRRK2:interactor co-expression features. The tree was cut

at h = 2.6 to obtain 7 clusters, among which 3 clusters contains > 3 tissues (highlighted in rectangles).
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Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC:
frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN:

substantia nigra; SPC: spinal cord c-1.

e Weight Gene Co-expression Network Analysis (WGCNA)

WGCNA was performed on the “Normalised Tissue Matrix” to identify co-expression modules
of LRRK2 interactors across the 15 tissues. A power of B = 28 was selected as the soft-
threshold to ensure a scale-free network (SFT R-square = 0.72) as well as to maintain a low
mean connectivity in the signed co-expression network (mean connectivity = 2.17) (Figure
18A- B). After merging submodules at the height of 0.20, a total of 2 co-expression modules
were identified within LRRK2 interactors (“MBlue”, N = 34; “MTurquoise”, N = 43) (Figure
18C). Module-Trait correlation analysis showed that ME of” MBlue” was highly expressed in
blood (Pearson’s coefficient = 0.69), while ME of “MTurquoise” was highly expressed in lung
(Pearson’s coefficient = 0.53), suggesting that “MBlue” possessed high expression level in
blood while “MTurquoise” showed high expression level in lung (Figure 18D). Functional
enrichment analysis showed that “MBlue” was associated with actin cytoskeleton
organisation and cell morphology, while “MTurquoise” was related to ribosomal function and

gene translation (Figure 18E-F).
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Figure 18. WGCNA on LRRK2n: across the 15 tissues

A,B) The scatter plots show the selection of the proper power 8 for WGCNA. The optimal power 8 = 28
was selected on 1) achieving a high (> 0.7) scale-free topology fit index (showed in A) and low mean
connectivity in the network (showed in B); C) The dendrogram shows hierarchical clustering of LRRK2
interactors based on the dissimilarity matrix generated by WGCNA. A total of 2 modules of interactors
were obtained (“MBlue” and “MTurquoise”) in both preliminary (unmerged) and final (merged)
module detection process; D) The heatmap shows the results of Module-Tissue correlation analysis, in
which module eigengene of MBlue (MEblue) was positively correlated with blood while the module
eigengene of MTurquoise (MEturquoise) was positively correlated with lung; E,F) The bubble graphs
show the top 10 GO-BP terms (ordered by adjusted p-values) returned for the 2 co-expression modules
obtained for WGCNA. Bubble size represent the term size (i.e., the number of genes annotated with a
certain functional term), the larger the bubble, the larger the term size. Bubble colour represents the -
log10(adjusted-p), the darker the colour, the lower the adjusted-p and thereby the higher the

significance of enrichment for a certain functional term.

e Tissue-specific weighted topological clusters of the LRRK2 et

The subnetwork for Topological Cluster A consisted of 45 nodes and 115 edges, which was
mainly enriched for ribosomal biosynthesis (Figure 19A). Node weight analysis found no
significant differences across the 15 tissues apart from the frontal cortex and cerebellum, in
which the median node weight was significantly lower than 4 and 5 of other tissues,
respectively, suggesting that the median expression level of LRRK2 interactors in Cluster 1
was lower in these 2 brain regions (Figure 20A). No significant difference was found in edge
weight comparison among the 15 tissues, suggesting the co-expression levels among the
interactors in this topological cluster were similar in the brain and the periphery (Figure 20C).
Of note, there is a high-density unit of interactors consisting of 16 ribosomal proteins (the
“ribosomal unit”). These proteins also exhibited high co-expressions in all of the tissues
analysed (median Pearson’s coefficient > 0.88). Median node weight of the ribosomal unit is
highest in amygdala and blood, followed by substantia nigra and spinal cord, but lower in
cerebellum and frontal cortex (Figure 20B). These findings suggest that ribosomal function is
maintained by a unit of highly connected and highly co-expressed LRRK2 interactors existing
in both of the brain and the periphery. Of note, the hub protein of Cluster 1 (CDK2) presented
the lowest node weight among all the 45 nodes in 8/15 of the tissues. It presented low co-

expression levels with its first neighbours (average Pearson’s coefficients < 0.5) in 14/15
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tissues apart from liver (average Pearson’s coefficients = 0.6), suggesting that CDK2 may
function as a regulator of ribosomal synthesis in these tissues rather than a direct participator

in the process.
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Figure 19. Expression profiles of Topological Cluster A in the 15 tissues
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The network graphs show the tissue-specific expression and co-expression profiles of interactors in
Cluster A, in which LRRK2 interactors are represented as nodes while PPls were represented as edges.
Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the
node, the higher the degree. Node colour refers to the expression level of each interactor in different
tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels
between each pair of connected proteins. The higher the co-expression level, the thicker the edge. A

high-density unit of 16 ribosomal proteins was found in Cluster 1 (circled).
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Figure 20. Tissue-specific weighted network analysis on Topological Cluster A

A) The box plot shows the pairwise comparison of median node weight of Cluster 1 across the 15 tissues,
in which cerebellum and frontal cortex presented the lowest level, with median node weight
significantly lower than 6 and 4 of other tissues of analysis (adjusted p < 0.05, *). B) The box plot shows
the pairwise comparison of median node weight of the ribosomal unit in Cluster 1 across the 15 tissues,

in which cerebellum and frontal cortex presented the lowest level, while blood, substantia nigra,
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amygdala and spinal cord presented the highest level (adjusted p < 0.05, *). C) The box plot shows the
pairwise comparison of median edge weight between each pair of connected proteins. No significant
difference was found; Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate;
CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens;

PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1.

Topological Cluster B contained 23 interactors and 42 PPls, associated with cell death, protein
metabolism and response to stress (Figure 21). There was no significant difference in terms
of the median node weight or median edge weight among the 15 tissue-specific subnetworks
(apart from putamen vs. liver, adjusted p < 0.05) (Figure 22A,B). Of note, the hub protein
TRAF2 presented high node weight and moderate co-expression levels with its first
neighbours in the networks of cerebellum, caudate, putamen, and nucleus accumbens
(Pearson’s coefficients > 0.55), suggesting a potentially higher activity of TRAF2 in mediating

the function of Cluster 2 in these brain regions.
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Figure 21. Expression profiles of Topological Cluster B in the 15 tissues

The network graphs show the tissue-specific expression and co-expression profiles of interactors in
Cluster B, in which LRRK2 interactors are represented as nodes while PPls were represented as edges.
Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the

node, the higher the degree. Node colour refers to the expression level of each interactor in different
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tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels

between each pair of connected proteins. The higher the co-expression level, the thicker the edge.
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Figure 22. Tissue-specific weighted network analysis on Topological Cluster B

A) The box plot shows the pairwise comparison of median node weight of Cluster B across the 15 tissues.
B) The box plot shows the pairwise comparison of median edge weight between each pair of connected
proteins. Significant comparisons was found between putamen and liver (adjusted p < 0.05);
Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC:
frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN:

substantia nigra; SPC: spinal cord c-1.

Topological Cluster C was associated with vesicular transport, cytoskeleton organisation and
translation, consisting of a total of 41 LRRK2 interactors and 104 PPIs (Figure 23). Weighted
network analysis found no significant difference in median node weight across the 15 tissues.
Lowest median edge weight was found in the subnetwork of blood as compared to all the
other tissues except for liver, suggesting that the connection of the LRRK2 interactors in
Cluster C possess weaker collaboration in the 2 tissues (adjusted p < 0.05, Figure 24A,B).
There are 3 hub proteins in Cluster C: IQGAP1, CAP2A2 and DBN1, among which CAP2A2
exhibited the highest co-expression levels with its first neighbour in the network across the
15 tissues (average Pearson’s coefficient = 0.69, t-test p < 0.05), suggesting it may function as
the primary participator in the cytoskeleton dynamics mediated by Cluster C, while the other

2 hub proteins may function as regulators.
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Figure 23. Expression profiles of Topological Cluster C in the 15 tissues

The network graphs show the tissue-specific expression and co-expression profiles of interactors in
Cluster C, in which LRRK2 interactors are represented as nodes while PPls were represented as edges.
Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the
node, the higher the degree. Node colour refers to the expression level of each interactor in different
tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels

between each pair of connected proteins. The higher the co-expression level, the thicker the edge.
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Figure 24. Tissue-specific weighted network analysis on Topological Cluster C

A) The box plot shows the pairwise comparison of median node weight of Cluster C across the 15
tissues. No significant difference was observed; B) The box plot shows the pairwise comparison of
median edge weight between each pair of connected proteins. Abbreviations: AMYG: amygdala; ACC:
anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT:

hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1.

Topological Cluster D was comprised of 39 LRRK2 interactors connected by 63 PPIs, which was
enriched for protein metabolism, protein localisation and translation (Figure 25). No
significant difference was found in the comparison of average node weight across the 15
tissues, apart from blood vs. caudate (5.60 vs. 2.72, adjusted p < 0.05, Figure 26A). In terms
of the average edge weight, higher values were observed in the subnetworks of putamen,
hypothalamus, substantia nigra and nucleus accumbens as compared to other brain regions
but with no statistical significance (adjusted p > 0.05, Figure 26B). Subnetworks of blood and

liver presented the lowest edge weight as compared to the 4 above-mentioned brain regions
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(adjusted p < 0.05). These findings suggest that although the mean expression level of Cluster
D was similar across brain regions and peripheral tissues, the co-expression behaviours

among these interactors are higher in the brain regions.
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Figure 25. Expression profiles of Topological Cluster D in the 15 tissues

The network graphs show the tissue-specific expression and co-expression profiles of interactors in
Cluster D, in which LRRK2 interactors are represented as nodes while PPIs were represented as edges.
Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the
node, the higher the degree. Node colour refers to the expression level of each interactor in different
tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels

between each pair of connected proteins. The higher the co-expression level, the thicker the edge.
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Figure 26. Tissue-specific weighted network analysis on Topological Cluster D

A) The box plot shows the pairwise comparison of median node weight of Cluster D across the 15
tissues. No significant difference was observed; B) The box plot shows the pairwise comparison of
median edge weight between each pair of connected proteins. No significant difference was observed;
Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC:
frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen,; SN:

substantia nigra; SPC: spinal cord c-1.

Topological Cluster E consisted of 52 interactors and 65 PPIs, which were associated with
protein localisation, cell cycle, protein metabolism and response to stress (Figure 27). No
significant difference was found in node weight analysis or edge weight analysis (Figure
27A,B). The hub protein TP53 presented high node weight and high co-expression levels with
its first neighbours in the subnetwork of lung, liver and kidney, suggesting its potentially

important role in the periphery.
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Figure 27. Expression profiles of Topological Cluster E in the 15 tissues

The network graphs show the tissue-specific expression and co-expression profiles of interactors in

Cluster E, in which LRRK2 interactors are represented as nodes while PPls were represented as edges.

Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the
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node, the higher the degree. Node colour refers to the expression level of each interactor in different
tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels

between each pair of connected proteins. The higher the co-expression level, the thicker the edge.
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Figure 28. Tissue-specific network analysis on Topological Cluster E

A) The box plot shows the pairwise comparison of median node weight of Cluster E across the 15 tissues.
No significant difference was observed; B) The box plot shows the pairwise comparison of median edge
weight between each pair of connected proteins. No significant difference was observed;
Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU: caudate; CR: cerebellum; FC:
frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus Accumbens; PUT: putamen; SN:

substantia nigra; SPC: spinal cord c-1.

Topological Cluster F contained 15 LRRK2 interactors and 20 edges associated with autophagy
(Figure 29). The highest median node weight was observed in the cerebellum and frontal
cortex (adjusted p < 0.05, Figure 30A). No significant difference was found in median edge
weight (Figure 30B). The hub protein PRKN showed low co-expression level with its first
neighbours, while a motif comprised by RAB8A, RAB10, SNCA, VDAC1, HK1, YWHAH, TUBG1
and LMNB2 presented high connection in all brain regions but not in the peripheral tissues.
GO-BP and GO-CC enrichment showed that this motif was highly enriched in transport vesicle

and associated with regulation of neuronal synaptic plasticity.
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Figure 29. Expression profiles of Topological Cluster F in the 15 tissues

The network graphs show the tissue-specific expression and co-expression profiles of interactors in
Cluster F, in which LRRK2 interactors are represented as nodes while PPls were represented as edges.
Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the
node, the higher the degree. Node colour refers to the expression level of each interactor in different
tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels

between each pair of connected proteins. The higher the co-expression level, the thicker the edge.

140



A. Node Weight B. Edge Weight

200+ . 150 -
150 .. 1004 '

o0, ) . . . .t -i ; : '_.'

TITTILTL S

SOtr—T"TTTTT T T T

vcgt?\% v"c?‘«"ei Q-:-N" % %elgo ) & & v‘{:(s* &bcg-qo,i /\e c@ 6Qca elt; S oo%

Figure 30. Tissue-specific weighted network analysis on Topological Cluster F

A) The box plot shows the pairwise comparison of median node weight of Cluster F across the 15 tissues.
Highest values were observed for Cerebellum and frontal cortex (adjusted p < 0.05); B) The box plot
shows the pairwise comparison of median edge weight between each pair of connected proteins. No
significant difference was observed; Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex;
CAU: caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc:

Nucleus Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1.

Topological Cluster G contained 29 interactors and 50 PPls, which were associated with
protein metabolism and autophagy (Figure 31). No significant difference was observed in the
median node weight among the 15 tissues, while subnetwork of blood presented the lowest
median edge weight as compared to other tissues (adjusted p < 0.05, Figure 32A-B). There
were 2 hub proteins in Cluster G, LRRK1 and HSPAS. Both of them presented high node weight
and high co-expression level with its neighbours in frontal cortex, while LRRK1 exhibited these
features in anterior cingulate cortex as well, suggesting that these proteins possessed higher

activity in mediating the functions of Cluster G in these 2 tissues.
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Figure 31. Expression profiles of Topological Cluster G in the 15 tissues

The network graphs show the tissue-specific expression and co-expression profiles of interactors in
Cluster G, in which LRRK2 interactors are represented as nodes while PPls were represented as edges.
Node size refers to degree of nodes, i.e., the number of edges connected to each node. The large the
node, the higher the degree. Node colour refers to the expression level of each interactor in different

tissues. The higher the expression level, the darker the node. Edge width refers to co-expression levels
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between each pair of connected proteins. The higher the co-expression level, the thicker the edge. The

hub proteins LRRK1 and HSPAS8 are marked with red circle;
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Figure 32. Tissue-specific weighted network analysis on Topological Cluster G

A) The box plot shows the pairwise comparison of median node weight of Cluster G across the 15
tissues. No significant difference was observed; B) The box plot shows the pairwise comparison of
median edge weight between each pair of connected proteins, in which lowest value was observed in
blood (adjusted p-value < 0.05); Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU:
caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus

Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1.

Main findings (summarised in Figure 33)

1. The LRRK2in: possesses distinct mRNA expression profiles in the brain regions and
peripheral tissues based both on analysis of DEA and co-expression.

2. Ingeneral, highly expressed interactors in the brain regions are related with cell projection,
cell death and protein transport, while those highly expresses in the peripheral tissues are
associated with apoptosis, protein metabolism and translation.

3. Interactors that are highly co-expressed with LRRK2 in the brain regions are associated
with negative regulation of protein modification and organelle localisation (especially for
mitochondria), while those in peripheral tissues are related to positive regulation of

protein metabolism and response to stimuli.
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4. LRRK2 interactors that associated with calcium membrane transport exhibits particularly
high expression levels in the frontal cortex.

5. LRRK2:interactor co-expression level is higher in the brain regions than the periphery,
especially in the frontal cortex, putamen, caudate and nucleus accumbens.

6. LRKK2 interactors within the putamen, caudate and nucleus accumbens also show similar
differential expression profiles.

7. A total of 2 tissue-specific co-expression modules were identified in the LRRK2int, highly
expressed in the whole blood and lung, respectively. These 2 modules are associated with
cell morphology and protein synthesis, respectively.

8. Topological clusters of the LRRK2,et shows similar connectivity across the 15 tissues,
suggesting that the PPl network of LRRK2 is equally maintained in different healthy tissues
regardless being central or peripheral.

9. The “ribosomal unit” in the LRRK2i: presented significantly higher expression levels in the

amygdala, spinal cord, substantia nigra and whole blood.
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Figure 33. Summary of tissue-specificity of the LRRK2jn:

Discussion

This section investigated the tissue specificity of expression patterns (mRNA level) of LRRK2
interactors by comparing 1) mRNA levels of each interactor, 2) co-expression levels between
LRRK2 and its interactor and 3) co-expression modules of LRRK2 interactors among 11 brain

regions and 4 peripheral tissues of healthy individuals.
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It is worth to mention that the level of LRRK2 was relatively low in the brain; however, the
expression levels of LRRK2 passed the QC test (genes with read counts lower than 15 in > 75%
of all samples) used by the R package DESeq2, which is one of the most commonly used RNA-
Seq analysing pipelines. On the one hand, this very low expression of LRRK2 in the brain might
affect the co-expression analysis due to the mean-correlation relationship in RNA-seq data,
both bulk and single-cell (Y. Wang et al., 2020). The mean-correlation refers to the fact that
the distribution of gene correlations depend on the expression level of the involved genes,
i.e., highly expressed genes are more likely to be highly correlated and vice versa. However,
it is also worth remembering that there is no golden standard for the acceptable range of
expression level for co-expression analysis, therefore it was still worth trying the co-
expression analysis on the LRR2i: to gain an insight into the potential collaboration between
LRRK2 and its interactors in different tissues. On the other hand, it was interesting to notice
that such an important protein in terms of disease involvement had such a low expression.
One possible explanation for this is that the tissues analysed were collected from healthy
individuals who experienced sudden death — it might be that LRRK2 levels are tightly
modulated and elevated only in specific circumstances such as infections and immune system

activation (Herbst & Gutierrez, 2019; R. L. Wallings & Tansey, 2019a).

The results of the hierarchical clustering on mRNA levels showed that a total of 4 clusters
could be identified based on their expression patterns across the 15 tissues, in which 2
presented significant tissue specificity (Exp_Clusterl and Exp_Cluster3). Exp_Clusterl
exhibited significantly high expression level in the lungs. GO-BP enrichment analysis
associated Exp_Clusterl with peptide biosynthesis, apoptotic signalling and cytoskeleton
organisation. Similarly, 1 of the 3 co-expression modules identified in WGCNA (MTurquoise)
was also highly expressed in lung and enriched for ribosomal biogenesis. These are in
accordance with previous studies showing that LRRK2 plays a crucial role in preventing
pulmonary fibrosis (Tian et al., 2021). In addition, an increased LRRK2 level was observed in
lung cancer cells, while disrupting LRRK2 expression induce apoptosis of these cancer cells
and increase the secretion of proinflammatory factors (J. Wu et al., 2023). Moreover, LRRK2
kinase inhibitors have been found to induce abnormal cytoplasmic accumulation of secondary

lysosomes known as lamellar bodies in type Il pneumocytes of the lung in mouse models (Fuji
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et al., 2015). The highly expressed LRRK2 interactors identified in the Exp_Clusterl may help

in understanding the molecular mechanism behind these lung-specific processes.

In comparison, Exp_Cluster3 exhibited significantly high expression in the frontal cortex. This
cluster was related to the regulation of calcium ion export and regulation of protein
phosphorylation. The role of LRRK2 in regulating calcium homeostasis has been revealed in
previous studies and it might be related to the function of LRRK2 in the modulation of cellular
signalling cascade such as the Wnt pathway and the MAPK pathway (Berwick et al., 2017;
Boon et al., 2014; R. L. Wallings & Tansey, 2019b). In addition, LRRK2 knock-out was found to
enhance cellular response to calcium ion by upregulating the expression levels of associated
proteins (Chen et al., 2020). In addition, pathogenic mutations of LRRK2 (including LRRK2-
G2019S and LRRK2-R1441C) perturbed calcium buffering capability of mitochondria in mouse
cortex neurons and increased depolarization-induced mitochondrial calcium uptake (Verma
et al., 2017, 2022). Interactors in Exp_Cluster3 thus provide a shortlist of candidate LRRK2
interaction partners that could be used as a starting point to investigate the LRRK2 signalling

network particularly in the frontal cortex.

The DEA found that a large number of LRRK2 interactors were highly expressed in the whole
blood and the cerebellum as compared to other tissues. High LRRK2 expression has been
widely reported in peripheral blood mononuclear cells (PBMCs), including B cells, monocytes,
and dendritic cells and closely related to immune response pathways (Gardet et al., 2010b;
Hakimi et al., 2011c; Kubo et al., 2010; Thévenet et al., 2011b). In accordance with these
findings, the authors found that highly-expressed LRRK2 interactors in the whole blood were
significantly related to response to cytokine stress, apoptotic signalling, and actin
cytoskeleton organisation. The regulatory role of LRRK2 in peripheral immune response has
been closely linked to the pathology of PD and CD. For example, a positive correlation
between cytokine level and LRRK2 expression was observed in PD patients but not in healthy
controls (Cook et al., 2017d). Taken together, these results suggest a crucial role of LRRK2 and

its interactors in the peripheral immune system.

In comparison, the highly expressed LRRK2 interactors in the cerebellum were related to

intracellular transport of protein and RNA, gene expression and nucleus organisation. The role
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of LRRK2 in cerebellum has not been widely studied since it is regarded as unaffected brain
region in PD progression. Considering the fact that the cerebellum is responsible for motor
control and that the Purkinje neurons are vulnerable to undergo conspicuous degeneration,
it could be worth to pay more attention on this brain region in neurological pathology
(Mandemakers et al., 2012). Indeed, some lines of evidence have shown that LRRK2 may play
an important role in cerebellar Purkinje neurons. For example, overexpression of LRRK2 or
kinase-enhancing LRRK2 mutations (LRRK2-G2019S and /12020T) have been liked to increase
MRNA translation in cerebellum (Friedman et al., 2012b). In addition, accumulation of LRRK2
and increased LRRK2 mRNA level were observed in the autophagy-impaired neurons in
cerebellar nuclei (Plotegher & Civiero, 2012). Together with the highly-expressed LRRK2
interactors identified in this study, LRRK2 interactors may participate in the regulation of

protein synthesis and localisation in the cerebellum (Friedman et al., 2012a).

Finally, functional enrichment analysis was performed on the interactors with either high
expression levels or co-expression with LRRK2 in the brain and the periphery separately. The
results showed that the portion of the LRRK2 interactors with a better expression profile in
the brain were associated with intracellular organisation, organelle localisation, cell
projection and negative regulation of protein modification. In comparison, those with higher
expression level in the peripheral tissues were more related to positive regulation of protein
metabolism, response to stimuli, cytoskeleton organisation and apoptotic signalling
suggesting that it might be indeed possible to differentiate (considering both composition

and functional association) a central or brain-related LRRK2int and a peripheral LRRK2jnt.

Similar results were found when considering the LRRK2i,: expression behaviour. When tissues
were grouped via hierarchical clustering based on the similarity of overall expression profiles,
the 11 brain regions and 4 peripheral tissues were allocated into 2 distinct groups. Similarly,
LRRK2 and its interactors presented distinct co-expression behaviours in the brain and the
periphery, in which the co-expression levels were higher in the brain regions, especially in
frontal cortex, putamen, nucleus accumbens and caudate. These findings suggest the LRRK2int

exhibits distinct functional patterns in the brain in comparison with the periphery.
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Finally, tissue grouping based on mRNA level and LRRK2:interactor co-expression level
suggested that putamen, caudate and nucleus accumbens shares similar transcriptomic
patterns of LRRK2 interactors, indicating that the striatum could be a functional unit for the
LRRK2 interactome, in which LRRK2 interactors presented harmonious expression patterns
and high co-expression levels with LRRK2. Of note, the striatum is the target for the projection
of dopaminergic neurons and one of the most affected brain regions during Parkinson’s
disease (PD) progression. In fact, multiple studies have associated the degeneration of
putamen and caudate with motor and non-motor PD symptoms (Manes et al., 2018; Playford
et al., 1992; J. Wang et al., 2018); while nucleus accumbens, involved in mediating emotional
and motivational processes such as rewarding experiences, impulsive and compulsive
behaviours, might be implicated in the neuropsychiatric symptoms of PD (Barbosa et al., 2019;

Hammes et al., 2019b).
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Chapter 4. LRRK2 protein interactome in the context of PD

Objectives

Compare the expression patterns of LRRK2 interactors and LRRK2:interactor co-
expression features in the sPD and LRRK2-PD cohorts as compared to healthy controls
based on the whole blood mRNA-Seq data.

Identify co-expression modules of LRRK2 interactors among the sPD, LRRK2-PD and
healthy control cohorts.

Evaluate weighted connectivity of topological clusters of the LRRK2 et detected in Chapter
4 in the sPD and LRRK2-PD cases

Identify LRRK2 interactors with SNPs significantly related to the disease status

Construct Machine Learning (ML) classification models on expression levels of LRRK2

interactors and genetic variants
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Analysis pipeline

LRRK2 protein network in the context of PD
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v

Single SNP association analysis

|

ML Model 2 for
differentiating sPD Gene burden analysis
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Note: Some of the figures and text in this chapter are adapted from the following manuscript
deposited in bioRxiv: Zhao et al.; “Transcriptomics analyses of the LRRK2 protein interactome reveal
distinct  molecular  signatures  for  sporadic  and LRRK2  Parkinson’s  Disease”
https://doi.org/10.1101/2023.09.12.557373.

Methods

e mRNA data download and QC

Whole blood mRNA levels (in read counts) at baseline patient screening (time at enrolment)
were extracted for the PPMI cohorts “de novo PD” and “healthy control” on 24t January
2023. The 2 cohorts were firstly examined on the robustness of genetic status record for

each individual via the following criteria:

i.) The genetic status needed to be confirmed by at least 3 out of 6 detection techniques

(WGS, WES, RNA-Seq, GWAS, CLIA, SANGER sequencing);
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ii.) The genetic status needed to be confirmed by at least 1 next generation sequencing
technique (WGS, WES, RNA-Seq) and 1 screening technique (GWAS, CLIA, SANGER

sequencing)

Only individuals with robust genetic status record proceeded to the next QC step, involving
filtering out subjects with non-LRRK2 mutations, including variants in GBA, PINK, Parkin and
SNCA. QC-ed subjects were then allocated into 3 groups: Healthy control, Sporadic PD (with
not known LRRK2 mutations in record, hereby referred to as sPD) and PD patients with
pathogenic LRRK2-G2019S or LRRK2-R1441C/G/H variants (hereby referred to as LRRK2-PD).
Interactor-level QC was performed by excluding transcripts with mRNA read counts < 15 in
more than 75% subjects. QC-ed read counts were then normalised using the R package

“DESeq2”, thereby generating the “PPMI_rc_Matrix”.

e Cohort characterisation

Baseline characteristics of QC-ed subjects in the “PPMI_rc_Matrix” were downloaded on 21
Dec 2022, including gender, age-at-baseline, progression of PD as evaluated by Hoehn and
Yahr Scale (H&Y); PD motor symptoms measured by MDS-Unified Parkinson’s Disease Rating
Scale Ill (MDS-UPDRS lll); depression as evaluated by geriatric depression scale (GDS); state
and trait anxiety as evaluated by State-Trait Anxiety Inventory (STAI); visuospatial function
as evaluated by the 15-item Benton Judgment of Line Orientation Test (BJLOT); repaid eye
movement behaviour disorder as evaluated using the REM Sleep Behaviour Disorder
Screening Questionnaire (RBDSQ); daytime sleepiness as evaluated by the Epworth
Sleepiness Scale (ESS); cognitive functions as evaluated by the 1) Montreal Cognitive
Assessment (MoCA) in general, 2) the Semantic Fluency Test (SFT; total score of animal, fruit
and vegetable) for semantic memory, 3) the Letter-Number Sequencing (LNS) test for
executive function and working memory, 4) the Hopkins Verbal Learning Test (HVLT;

immediate recall and delayed recall) for memory.

e Differential Expression Analysis (DEA)
DEA was performed on the “PPMI_rc_Matrix” to compare the baseline expression levels of
LRRK2 interactors in healthy controls vs. the 2 PD cohorts respectively using the R package

“DESeq2”. Of note, all DEA results were adjusted for gender. Multiple test adjustment was
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automatically conducted by the “DESeq2” package via Benjamini-Hochberg procedure.
Interactors with significant differential expression figures in the 2 PD cohorts as compared to
controls were queried in functional enrichment analysis. Significant changes were defined as

with [log2FC| > 0.1 and adjusted p-value < 0.05 (threshold adapted from (Craig et al., 2021)).

e LRRK2 co-expression analysis

Baseline co-expression levels between LRRK2 and its interactors in the “PPMI_rc_Matrix”
were calculated for the 3 PPMI cohorts via Pearson’s correlation test. Significant co-
expression was defined as with having Pearson’s coefficient > 0.6. Interactors that presented
different co-expression behaviours with LRRK2 in the 2 PD cohorts as compared to the healthy

controls were annotated via functional enrichment analysis.

e Weighted Gene Co-expression Network Analysis (WGCNA)

Weighted Gene Co-expression Network Analyses (WGCNA) was performed on the
“PPMI_rc_Matrix” to identify co-expression modules of LRRK2 interactors in healthy and PD
conditions (healthy vs. sPD and healthy vs. LRRK2-PD). Co-expression levels between LRRK2
interactors were calculated via Pearson’s correlation test. Soft power 3 was selected to
ensure the gene co-expression networks follow the power law, i.e., reaching the largest Scale-
free Fit Index and the lowest Mean Connectivity. Co-expression modules of interactors were
detected automatically by R package “WGCNA”. Eigengene for each module was calculated
as the first principal component of the module’s topological overlap matrix (TOM). The
similarity between modules returned from WGCNA on control vs. sPD cases (M_sPD) and
control vs. LRRK2-PD cases (M_LPD) were compared via permutation test. For each pair of
M_sPD and M_LPD, the number of overlapping proteins (test_intersection) was compared to
the overlap count distribution generated by 1000 pairs of randomly sampled protein lists from
the LRRK2nt at same size of M_sPD and M_LPD (random_intersection). Of note, the
random_intersection distribution curve was considered as normal distributed. A significant
overlap between 2 modules was defined as: 1) test_intersection > 95% of the points in the
random overlap distribution curve and 2) the percentage of overlapped interactors in both of

the 2 modules > 60%.
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e SNP association analysis

In PPMI, genotyping was performed using the lllumina Immunochip and NeuroX arrays, which
produced 3 datasets: PPMI_IMMUNOCHIP_Nov11th2013, PPMI_NEUROX_ Nov11th2013,
and PPMI_Project_107_NeutoX_Genotyping, hereby referred as: “Immuno”, “NeuroX1” and
“NeuroX2”, respectively. The 3 datasets were downloaded on 15t September 2022. SNPs for
LRRK2 interactors were extracted based on gene positions on the chromosomes. These SNPs
went through a QC pipeline as following: 1) Conversion of SNP ID to rsID; 2) removal of non-
coding SNPs (based on the annotation retrieved from Ensembl Variant Effect Predictor,

https://www.ensembl.org/info/docs/tools/vep/index.html); 3) removal of palindromic SNPs;

4) removal of SNPs with low genotyping rate (< 95%); 5) removal of SNPs with significant
missingness in the cohort (Bonferroni adjusted-p < 0.05). Another QC pipeline was applied to
the genotyped subjects: 1) subjects with abnormal heterozygosity rates were exclude (<
Mean-4SD or > Mean+4SD) since an abnormal heterozygosity rate suggests potential DNA
sample contamination or low sample quality; 2) subjects that exhibited high genetic
relatedness (3" relatives or beyond) were calculated to reduce familial biases via PI_HAT; 3)
ethnicities of included PPMI subjects were investigated using cohorts of HapMap3 project as
reference (Altshuler et al., 2010) via PCA. Of note, considering the small amount of available
genotyping data for LRRK2-PD patients, prodromal participants with the LRRK2-G2019S or
LRRK2-R1441C/G/H were also included in this section. Univariate logistic regression was used
to identify LRRK2ir-SNPs that were associated with sPD and PD cases with LRRK2 mutation
(LRRK2-PD + prodromal LRRK2-PD). All univariate logistic regression analyses were adjusted
for gender and significant Principal Components (PCs). Multiple test correction was
performed via Bonferroni’s method. In addition, genetic burden analyses were performed to
determine the contribution of SNPs in each LRRK2 interactor to sPD and LRRK2-PD via the R

package “SKAT”. Multiple test correction was performed via Bonferroni’s method.

e C(lassification model of sPD and LRRK2-PD using transcriptomic and genetic features of
LRRK2 interactors
Whole blood mRNA levels of the LRRK2 interactors which presented significant differential

expression (DE) in the DEA test of the sPD and/or LRRK2-PD cases vs. the healthy controls

were utilised as independent variables in a Least Absolute Shrinkage and Selection Operator
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(LASSO) regression model to classify the 2 types of PD cases (Model 1). To reduce the
dimensionalities, univariate logistic analyses was performed on each DE interactors. Only
interactors with p < 0.05 were included in the model. In addition, the coding SNPs of LRRK2
interactors which showed significant association in univariate logistic regression analyses as
well as the burden of SNPs at gene level which exhibited significant difference between
controls and sPD and/or LRRK2-PD were utilised as independent variables in a second LASSO
regression model (Model 2), with the phenotype (sPD/LRRK2-PD) as outcome. Of note, only
LRRK2-PD and sPD patients were included in Model 2. For the 2 models, the train:test sets
were split as 4:1. The lambdas (A) were tuned by a 10-fold cross-validation (CV) method via
the “cv.glmnet” function of the “glmnet” R package. The refined models were then assessed
on the test cohort. Receiver Operating Characteristic (ROC) curves were generated via the

“roc.glmnet” function of the “glmnet” R package.

Results

e PPMI cohort characterisation

After subject QC a total of 657 individuals with robust genetic status were retained (170
controls, 116 LRRK2-PD cases, 371 sPD cases). Among these individuals, 389 were male
(59.2%). Average baseline age of the control, sPD and LRRK2-PD cohorts were 60.9Y, 61.3Y,
63.1Y, respectively. No significant different were observed in gender and age among the 3
cohorts (chi-square and One-way ANOVA p > 0.05, Table 1). Moreover, 95.1% (N = 625) of the
657 subjects were Caucasian, 2.5% (N = 16) were Africans (removed from the cohort), while
1.6% (N = 10) were Asian (removed from the cohort). Among the 116 LRRK2-PD patients, 102
carry the LRRK2-G2019S mutation while 12 carry the LRRK2-R1441C mutation. Comparisons
on baseline clinical features of the sPD and LRRK2-PD showed that LRRK2-PD patients
presented significantly more daytime sleepiness, depression, trait anxiety and worse
visuospatial function but less REM sleep disorders and better cognitive functions. No
difference was observed between the 2 PD cohort in terms of immediate and delayed

memory, executive function, state anxiety, and motor symptoms.

Table 8. Cohort characterisation

Control sPD LRRK2-PD p-value
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Male (%) 94 (55.3%) 224 (60.4%) 71 (61.2%) 0.875

Age 60.9 (0.8) 61.3 (0.5) 63.1(0.8) 0.987
ESS - 5.8 (0.2) 7.1(0.4) 0.002*
GDS - 2.5(0.1) 3.1(0.3) 0.009*
HVLT recall - 11.1(0.1) 11.1(0.1) 0.762
LNS - 11.2 (0.1) 10.9 (0.2) 0.271
BILOT - 12.6 (0.1) 11.7 (0.3) <0.001*
MoCA - 26.9 (0.1) 26.2(0.2) 0.013*
RBDSQ, - 3.3(0.1) 2.6 (0.2) 0.014*
STAI_state - 47.3(0.3) 46.5 (0.5) 0.151
STAI_trait - 46.1(0.2) 43.9 (0.6) <0.001*
MDS-UPDRS Il - 21.1(0.5) 20.1(0.9) 0.290

Data is reported as Mean (SE). * p-value < 0.05. Abbreviations: ESS: Epworth Sleepiness Scale; GDS:
Geriatric Depression Scale; HVLT: Hopkins Verbal Learning Test; LNS: Letter-Number Sequencing;
BJLOT: 15-item Benton Judgment of Line Orientation Test; MoCA: Montreal Cognitive Assessment;
RBDSQ: REM Sleep Behaviour Disorder Screening Questionnaire; STAI: State-Trait Anxiety Inventory;
NP3: MDS-Unified Parkinson’s Disease Rating Scale IlI.

e PD-associated DEA

Baseline whole blood mRNA read counts were extracted for 416 out of 418 LRRK2 interactors
(no data was available for GTF2Il and CYFIP1). Among these 416 interactors, 38 with missing
or low baseline mRNA levels (with < 15 read counts in > 75% samples) were excluded,
including MAP1B, MAPT, SFN, HSPB1, CHGB, TUBB4A, ACTBL2, ACTG2, ANKS4B, C170rf53,
EEF1A2, EEF1G, PAK6, RAI14, SH3GL2, TK1, AURKB, Clorf87, CXCL11, DNAJB8, ESRRG,
FAMA47B, FAM90A1, KDM4D, POUSF1, RAPGEF4, SCEL, SH3GL3, SMTNL2, STAC, TGIF2LX,
TUBB3, VASH2, VN1R1, WT1-AS, XIRP2, SERF1 and MARK1, thereby leaving 378 interactors
for further analysis. DEA identified 34 interactors with significantly differential expression in
the sPD cohort as compared to healthy controls, in which 13 were up-regulated while 21 were
down-regulated (Figure 26A, Table S5). Functional enrichment analysis showed that the up-
regulated interactors were enriched for protein metabolism, response to stress and negative
regulation of apoptotic signal transduction, while the down-regulated interactors were

associated with translation and ribosomal function (Figure 26B,C).
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Figure 34. Differential expression of LRRK2 interactors in the sPD cohort vs. control

A) The scatter plot shows differential expression profiles of LRRK2 interactors in the sPD cases and
controls at baseline of diagnosis. Scatters located on left side of y-axis were considered as down-
regulated (highlighted in the blue area), i.e., the interactor presented lower expression levels in the
SPD cases as compared to controls; while scatters located on right side were considered as up-
regulated (in the red area), i.e., the interactors presented significantly higher expression levels in the
SPD cases as compared to controls. Scatters in the blue/red highlighted zones (adjusted p < 0.05,
[log2FC| > 0.1) are defined as significant differential expression; B,C) The bubble graphs show the GO-
BP terms associated with significantly up-regulated and down-regulated LRRK2 interactors in the sPD
subjects vs. Controls. Bubble colour represents the enrichment significance, while bubble size

represents the term size.

There were 48 interactors with significantly altered expression levels in the LRRK2-PD cohort

as compared to the controls, in which 20 were upregulated and 28 were down-regulated
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(Figure 27A, Table S5). GO-BP enrichment analysis associated the up-regulated interactors at
BL with synaptic signalling and cell morphogenesis while down-regulated proteins were
related with protein biosynthesis, apoptotic signal transduction, negative regulation of

ubiquitin-dependent protein catabolism (Figure 27B,C).
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C Down-regulated in LRRK2-PD
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Figure 35. Differential expression of LRRK2 interactors in the LRRK2-PD cohort vs. Control

A) The scatter plot shows differential expression profiles of LRRK2 interactors in the LRRK2-PD cases

and controls at baseline of diagnosis. Scatters located on left side of y-axis were considered as down-

regulated (highlighted in the blue area), i.e., the interactor presented lower expression levels in the

LRRK2-PD cases as compared to controls; while scatters located on right side were considered as up-

regulated (in the red area), i.e., the interactors presented significantly higher expression levels in the

LRRK2-PD cases as compared to controls. Scatters in the blue/red highlighted zones (adjusted p < 0.05,

[log2FC| > 0.1) are defined as significant differential expression; B,C) The bubble graphs show the GO-

BP terms associated with significantly up-regulated and down-regulated LRRK2 interactors in the

LRRK2-PD subjects vs. Controls. Bubble colour represents the enrichment significance, while bubble size

represents the term size.
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e LRRK2 co-expression analysis in the 3 cohorts

In general, LRRK2:interactor co-expression was similarly low in the whole blood sample from
the 3 cohorts, with median correlation coefficient < O (Figure 29A, Table S6). Pearson’s
correlation test found a total of 48, 44 and 46 interactors co-expressed with LRRK2
(Correlation Coefficients > 0.5) in the control, sPD and LRRK2-PD subjects, among which 34
presented co-expression with LRRK2 in all the 3 cohorts (Figure 29B). Functional enrichment
analysis associated the 34 interactors with intracellular organisation and cell division (Figure
29C). These findings suggest that LRRK2:interactor co-expression is not altered by LRRK2

pathogenic variants and remain stable at the early stage of PD.
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Figure 36. PD-associated LRRK2 co-expression analysis

A) The box plot shows the distribution of LRRK2:interactor co-expression in the control, sPD and LRRK2-
PD cohorts. One-way ANOVA found no significant difference in the LRRK2:interactor co-expression
among the 3 cohorts; B) The Veen graph shows the intersection of interactors that were co-expressed
with LRRK2 in the LRRK2-PD cases, sPD cases and controls at baseline of diagnosis; C) The bubble graph
shows the GO-BPs enriched for interactors that exhibited co-expression with LRRK2 at BL, in which the
bubble size represents term size: the larger the bubble, the larger the term size, the more genes were
annotated with a given GO-BP term in Gene Ontology,; while bubble colour represents the significance
of enrichment: the darker the bubble, the lower the adjusted p-value, the more significant a GO-BP

terms were associated with the given protein list.
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e PD-associated WGCNA on LRRK2 interactors

Co-expression levels among LRRK2 interactors at baseline were calculated via Pearson’s
correlation test. A signed gene co-expression network was constructed with the soft power 3
= 19, within which a total of 3 co-expression modules were identified: MBrown (N = 36
interactors), MBlue (N = 61 interactors), and MTurquoise (N = 75 interactors) (Figure 30A).
Functional enrichment analysis associated MBrown with nucleus transport and cell cycle;
while MBlue was related with protein biosynthesis, ribosomal functions and negative
regulation of protein ubiquitination; while MTurquoise was enriched for regulation of protein
metabolism (Figure 30B-D). These 3 co-expression modules were conserved in both healthy
and PD status regardless of the presence of LRRK2 pathogenic mutations. Module-Trait
correlation analysis showed that the eigengene of MBlue (MEBlue) was significantly down-
regulated in the LRRK2-PD and sPD cases as compared to control cohort (p < 0.05), while
MEBrown was only down-regulated in the LRRK2-PD cohort, suggesting that these 2
functional units were potentially negatively affected by PD progression and/or LRRK2 variants
(Figure 30E). No significant alteration was observed in METurquoise in the PD cohorts as
compared to controls, suggesting that the functional unit of protein metabolism maintained

stable at the early stage of PD.
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Figure 37. WGCNA on LRRKZ2 interactors across the 3 cohorts

A) The dendrogram shows the co-expression modules identified in LRRK2 interactors among the 3
cohorts at BL. Modules are represented by colours (MBrown, MBlue and MTurquoise). B-D) The bubble
graphs show GO-BPs enriched for MBrown, MBlue and MTurquoise; respectively. Bubble colour
represents the significance of enrichment while bubble size represents term size; E) The heatmap shows
the Module-Trait correlation between the eigengene of the 3 co-expression modules (MEbrown,
MEblue and MEturquoise) and PD phenotype. The numbers in cells and cell colours represent Pearson’s

coefficient. Significant correlation was defined as Pearson’s p-value < 0.05 (marked with *).

e PD-associated edge weight analysis on LRRK2net's topological clusters

Weighted network analysis was performed on the 7 topological clusters identified in Chapter
2. In Cluster A, a total of 72 (62.6%) and 57 (49.5%) edges were down-regulated in the sPD
and LRRK2-PD cohorts, respectively, which were significantly higher than the percentages of
up-regulated and unchanged edges (Figure 31A,B). Of note, the ribosomal unit was highly
affected in the sPD and LRRK2-PD cases, involving decrease in both co-expression and
expression levels among ribosomal proteins. In addition, the expression level of the seed
protein CDK2 significantly increased in these 2 PD conditions as compared to the control
cohort. CDK2 serves as a bridge node connecting the ribosomal unit with the other half of the
network. Therefore, increased CDK2 level may function as a compensation decreased

ribosomal function.
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Figure 38. PD-associated edge weight analysis on Topological Cluster A
The network graphs show how Cluster A was affected by the sPD and LRRK2-PD. Edge width represents
the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected
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proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD
condition as compared to the controls; orange edges represent that 1 of the 2 proteins were
significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that
1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls,
while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD
conditions as compared to the controls. Grey edges means that none of the 2 connected proteins
presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of

edges that were up-regulated and down-regulated in the 2 PD conditions.

In comparison, Cluster B remained stable in the sPD cases, with 35 (83%) edges with
unchanged weight, 6 (14%) with up-regulated weight and 1 (3%) with down-regulated weight
(Figure 32A). In the LRRK2-PD cohort, a total of 24 (57%) edges were up-regulated, while 18
(43%) edges were unchanged (Figure 32B). No edge was down-regulated in the LRRK2-PD
cohort. Of note, the up-regulated edges in the LRRK2-PD condition result from the increased
expression level of hub protein TRADD, suggesting that LRRK2 may function as a mediator of
TRADD expression and the pathogenic variants in the LRRK2 gene can cause dysregulation of

TRADD level in the blood.
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Figure 39. PD-associated edge weight analysis on Topological Cluster B
The network graphs show how Cluster B was affected by the sPD and LRRK2-PD. Edge width represents
the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected
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proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD
condition as compared to the controls; orange edges represent that 1 of the 2 proteins were
significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that
1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls,
while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD
conditions as compared to the controls. Grey edges means that none of the 2 connected proteins
presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of

edges that were up-regulated and down-regulated in the 2 PD conditions.

Similarly, the edge weight of Cluster C remained stable, with a total of 66 (64%) and 75 (72%)
edges unchanged in the 2 PD conditions (Figure 33A,B). In the sPD cases, 37 edges were up-
regulated because of the increased expression of the seed protein IQGAP1, while such
alteration was not observed in the LRRK2-PD condition, suggesting this pathological change
may rely on the normal LRRK2 structure. In addition, there were 10 edges with decreased
weight in the LRRK2-PD cases, which was due to the down-regulation of HSPA4 and HSPOAB]1,
suggesting that the expression level of these 2 proteins may be regulated by the activity of

LRRK2 and can potentially be affected by its pathogenic mutations.
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Figure 40. PD-associated edge weight analysis on Topological Cluster C

The network graphs show how C was affected by the sPD and LRRK2-PD. Edge width represents the
co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected
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proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD
condition as compared to the controls; orange edges represent that 1 of the 2 proteins were
significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that
1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls,
while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD
conditions as compared to the controls. Grey edges means that none of the 2 connected proteins
presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of

edges that were up-regulated and down-regulated in the 2 PD conditions.

In Cluster D, most of edges remained unchanged in the 2 PD conditions (88% in the sPD
condition while 92% in the LRRK2-PD) (Figure 34A,B). Moreover, 7 edges were down-
regulated in the LRRK2-PD condition due to decreased NPM1 expression. Of note, NPM1 is
one of the hub proteins in Cluster D which connect to 8/10 ribosomal proteins in the network.
Therefore, down-regulation of NPM1 may affect its interaction with these proteins and

thereby negatively affect the ribosomal functions.
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Figure 41. PD-associated edge weight analysis on Topological Cluster D

The network graphs show how Cluster D was affected by the sPD and LRRK2-PD. Edge width represents
the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s
correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected
proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD
condition as compared to the controls; orange edges represent that 1 of the 2 proteins were
significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that
1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls,
while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD
conditions as compared to the controls. Grey edges means that none of the 2 connected proteins
presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of

edges that were up-regulated and down-regulated in the 2 PD conditions.

In terms of Cluster E, a total of 50 (77%) and 41 (63%) edges remained unchanged in the 2 PD
conditions (Figure 35). In the sPD cases, a unit formed by TP53, ITCH, SFN, POU5F1, DVL2 and
DVL3 was up-regulated because of a significant increased ITCH expression. GO-BP enrichment
analysis associated this unit with RNA biosynthesis and metabolism, suggesting that RNA
transcription may increase in the early stage of sPD. However, such alteration was not
observed in the LRRK2-PD cases. Instead, a unit of KPNB1, UNP160, UNP170 and TPR was
down-regulated as compared to the controls, which result from the decreased level of
NUP107. This unit presented high co-expression and was associated with intracellular
transport of RNA and protein.These findings suggest that gene translation may be differently

affected by the sPD and LRRK2-PD.
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Figure 42. PD-associated edge weight analysis on Topological Cluster E
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The network graphs show how Cluster E was affected by the sPD and LRRK2-PD. Edge width represents
the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s
correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected
proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD
condition as compared to the controls; orange edges represent that 1 of the 2 proteins were
significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that
1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls,
while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD
conditions as compared to the controls. Grey edges means that none of the 2 connected proteins
presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of

edges that were up-regulated and down-regulated in the 2 PD conditions.

In comparison, edge weight of Cluster F increased significantly in the LRRK2-PD condition,
with 76% of edges up-regulated and 24% unchanged (Figure 36B). The alteration results from
increased expression levels of the hub protein PRKN, TUBG1, RAB8A and RAB10. These
proteins are crucial contributors of autophagy, suggesting that pathogenic mutation is linked
to up-regulated autophagy in the early stage of PD, while this alteration was not observed in

the sPD situation, where 75% (N = 16) of the edges remained unchanged (Figure 36A).
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Figure 43. PD-associated edge weight analysis on Topological Cluster F
The network graphs show how Cluster F was affected by the sPD and LRRK2-PD. Edge width represents
the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s

correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected
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proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD
condition as compared to the controls; orange edges represent that 1 of the 2 proteins were
significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that
1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls,
while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD
conditions as compared to the controls. Grey edges means that none of the 2 connected proteins
presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of

edges that were up-regulated and down-regulated in the 2 PD conditions.

A total of 37 (74%) and 40 (80%) edges in Cluster G remained unchanged in the 2 PD
conditions. However, a unit of BAG1, BAG2, BAG3, STUB1, DNAJB6, HIF1A, LAMP2, RGS2 and
the 2 hub proteins LRRK1, HSPA8 were un-regulated in both sPD and LRRK2-PD conditions,
involving upregulation of 12 (24%) edges and 7 (14%) edges in the network. This unit is
enriched for GO-BPs regarding protein metabolism, suggesting that protein dynamics is

enhanced in the early stage of PD (Figure 37).
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Figure 44. PD-associated edge weight analysis on Topological Cluster G

The network graphs show how Cluster G was affected by the sPD and LRRK2-PD. Edge width represents
the co-expression between 2 proteins. Thicker edges represent significant co-expression (Pearson’s
correlation coefficient > 0.5). Edge colour represents alteration in expression levels of the connected
proteins, in which red edges represent that both of the 2 proteins were significantly up-regulated in PD
condition as compared to the controls; orange edges represent that 1 of the 2 proteins were
significantly up-regulated in PD conditions as compared to the controls; light blue edges represent that
1 of the 2 proteins were significantly down-regulated in PD conditions as compared to the controls,
while dark blue edges represent that both of the 2 proteins were significantly down-regulated in PD
conditions as compared to the controls. Grey edges means that none of the 2 connected proteins
presented differential expression in the PD cases vs. controls. The pie graphs show the percentages of

edges that were up-regulated and down-regulated in the 2 PD conditions.

e Single SNP association analysis

After QC, a total of 136, 3887 and 4047 high-quality, protein-coding SNPs of LRRK2 interactors
remained in the SNP sets of “Immuno”, “NeuroX1” and “NeuroX2”, respectively. Of note,
“Immuno” only contains SNPs for 42 out of 418 (10.3%) LRRK2 interactors and was thereby
discarded, while “NeuroX1” and “NeuroX2” contain SNPs for 323 and 322 LRRK2 interactors,
respectively. “NeuroX1” was used to evaluate the association between SNPs of LRRK2
interactors and sPD (involving 339 sPD patients and 154 controls), while a merged list of
“NeuroX1” and “NeuroX2” (N = 2091 SNPs, involving 49 controls and 41 LRRK2 pathogenic
variant carriers) was used to assess the association between SNPs and LRRK2-PD. After
adjusted by gender and 7 PCs (A = 1.000), the logistic regression on “NeuroX1” set returned
23 SNPs with MAF higher (p < 0.05) in sPD patients as compared to controls, namely
rs151264467, rs8178046, rs3218772, rs6133278, rs79181168, rs2230801, rs116938571,
rs200046311, rs78436829, rs35625617, rs55945045, rs117843818, rs4841, rs35303786,
rs41286651, rs35589976, rs1056719, rs5030752, rs1049951, rs8178017, rs79308175,
rs148283548, rs3194151 (Figure 38, Table 9). Among these SNPs, only rs151264467, which is
located on the TTC27 passed Bonferroni’s correction (adjusted-p = 0.006). Burden analysis

showed a total of 15 genes associated sPD, including TUBB6, TRAF2, PRKDC, TK1, DIDO1,
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KIF2A, RPL11, MFN2, CDKL3, RAB29, DYNC1H1, CYREN, DVL3, TAOK3, STK40. Only 3 GO-BPs

were associated with these genes:

sPD vs. Control

-log10(P)
w
1

Chromosome

Figure 45. Manhattan plot for single SNP association analysis on LRRK2 interactors (sPD vs.
controls)

Line denotes statistical significance (p < 0.05). The results have been adjusted for a genomic control

inflation factor A = 1.000 (sample size = 493).

Table 9. SNPs of LRRK2 interactors associated with sPD

Chr SNP [¢] Adjusted-p
2 rs151264467 <0.001 0.006
8 rs8178046 0.002 0.544
19 rs3218772 0.002 0.651
20 rs6133278 0.002 0.855
2 rs79181168 0.003 0.992
8 rs2230801 0.003 1.000
13 rs116938571 0.007 1.000
17 rs200046311 0.007 1.000
2 rs78436829 0.010 1.000
2 rs35625617 0.013 1.000
6 rs55945045 0.016 1.000
2 rs117843818 0.024 1.000
5 rs4841 0.030 1.000
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12 rs35303786 0.032 1.000
4 rs41286651 0.033 1.000
12 rs35589976 0.034 1.000
9 rs1056719 0.038 1.000
1 rs5030752 0.039 1.000
10 rs1049951 0.040 1.000
8 rs8178017 0.040 1.000
1 rs79308175 0.042 1.000
2 rs148283548 0.047 1.000
16 rs3194151 0.049 1.000

In comparison, the logistic regression on “Neuro_merge” set was adjusted by gender and 13
PCs (A =1.029) and returned 19 SNPs with MAF higher (p < 0.05) in LRRK2 variant carriers as
compared to controls, namely rs5030752, rs8178046, rs7170637, rs142831657, rs4842,
rs62317770, rs79383654, rs16853333, rs299295, rs118103955, rs1049951, rs143662421,
rs2273660, rs79385421, rs9294445, rs34688574, rs34143723, rs2924835, rs114147582
(Figure 39, Table 10). None of these SNPs passed Bonferroni’s correction. Burden analysis
showed a total of 15 genes associated with LRRK2 variants, including ITCH, ANKS4B, RIPK2,
MAP2K3, PRKCZ, NFATC2, CHGB, RPS14, ARHGEF7, TRAF2, HSPSOAB1, LRRK2, MRPL2S,
MAP2K6, AP2M1, CAPZB, GAK. A total of 41 GO-BPs were enriched for these genes, which
were mainly associated with regulation of protein phosphorylation, vesicle transport, MAKP

cascade and cytokine production (Table 11).

LRRK2 variant carriers vs. Control

Chromosome
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Figure 46. Manhattan plot for single SNP association analysis on LRRK2 interactors (LRRK2
variant carriers vs. controls)
Line denotes statistical significance (p < 0.05). The results have been adjusted for a genomic control

inflation factor A = 1.029 (sample size = 90).

Table 10. SNPs of LRRK2 interactors associated with LRRK2 variants

Chr SNP p Adjusted-p
1 rs5030752 <0.001 0.152
8 rs8178046 0.003 1.000

15 rs7170637 0.007 1.000
1 rs142831657 0.008 1.000
21 rs4842 0.010 1.000
4 rs62317770 0.012 1.000
4 rs79383654 0.013 1.000
2 rs16853333 0.014 1.000
5 rs299295 0.016 1.000
20 rs118103955 0.016 1.000
10 rs1049951 0.019 1.000
14 rs143662421 0.027 1.000
2 rs2273660 0.027 1.000
17 rs79385421 0.031 1.000
6 rs9294445 0.035 1.000
17 rs34688574 0.037 1.000
12 rs34143723 0.037 1.000
15 rs2924835 0.037 1.000
2 rs114147582 0.039 1.000

Table 11. GO-BPs enriched for LRRK2 interactors with significant burden on the presence of

LRRK2 pathogenic variants

Term ID Term name Term size Adjusted p-value

positive regulation of nitric-oxide synthase
G0:0051770 16 <0.001
biosynthetic process
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G0:0043408 regulation of MAPK cascade 643 0.001
G0:0051767 nitric-oxide synthase biosynthetic process 19 0.001
regulation of nitric-oxide synthase
G0:0051769 19 0.001
biosynthetic process
G0:0000165 MAPK cascade 745 0.001
G0:0043410 positive regulation of MAPK cascade 461 0.002
G0:0001817 regulation of cytokine production 773 0.002
G0:0001816 cytokine production 779 0.002
G0:0031399 regulation of protein modification process 1229 0.003
G0:0072709 cellular response to sorbitol 4 0.005
G0:0001932 regulation of protein phosphorylation 910 0.005
G0:0006468 protein phosphorylation 1346 0.006
G0:0141124 intracellular signaling cassette 1861 0.006
G0:0001934 positive regulation of protein phosphorylation 603 0.008
G0:0042325 regulation of phosphorylation 966 0.008
G0:0042327 positive regulation of phosphorylation 630 0.010
G0:0042981 regulation of apoptotic process 1463 0.011
G0:0043067 regulation of programmed cell death 1506 0.014
positive regulation of synaptic vesicle
G0:1900244 6 0.014
endocytosis
G0:0072708 response to sorbitol 6 0.014
G0:0007254 IJNK cascade 173 0.014
G0:0051246 regulation of protein metabolic process 2102 0.017
positive regulation of phosphate metabolic
G0:0045937 705 0.018
process
positive regulation of phosphorus metabolic
G0:0010562 705 0.018
process
G0:0044093 positive regulation of molecular function 1097 0.019
G0:0016310 phosphorylation 1579 0.019
G0:0019220 regulation of phosphate metabolic process 1132 0.023
G0:0051174 regulation of phosphorus metabolic process 1133 0.023
stress-activated protein kinase signaling
G0:0031098 62 0.024

cascade
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positive regulation of synaptic vesicle

G0:1903423 8 0.025
recycling

G0:0070534 protein K63-linked ubiquitination 64 0.026

G0:0043085 positive regulation of catalytic activity 773 0.031

positive regulation of protein modification
G0:0031401 787 0.034
process
G0:0048488 synaptic vesicle endocytosis 72 0.037
G0:0140238 presynaptic endocytosis 73 0.039
regulation of CD4-positive, alpha-beta T cell

G0:2000514 75 0.042

activation

positive regulation of protein metabolic

G0:0051247 1253 0.044
process

GO0:0033554 cellular response to stress 1770 0.044

G0:0010647 positive regulation of cell communication 1777 0.046

G0:0023056 positive regulation of signaling 1778 0.046

G0:0065009 regulation of molecular function 1799 0.050

e Transcriptomic features of LRRK2 interactors differentiated the sPD and LRRK2-PD cases

Model 1 was constructed on the mRNA levels (whole blood) of the 100 LRRK2 interactors with
significant differential expression in the sPD and/or LRRK2-PD cohorts (N = 371 and 116,
respectively) as compared to the controls. Univariate logistic analyses found a total of 14
interactors for model construction, including STUB1, DVL1, ACTA2, CDK2, MMS19, PRKN,
TUBB6, TUBG1, BAG3, HSPA1A, LMNB1, SNCA, RPS2 and SLC25A6 (Table 12, Table D1). Model
1 was then trained on a randomly-picked cohort of 296 sPD cases and 92 LRRK2-PD cases
using the read counts of the 14 interactors listed above. A A value of 0.008 (log(A) = -4.869
was chosen to reach the minimum Mean-Squared Error (MSE), leaving a total of 8 interactors
in the model, including STUB1 (coefficient = -1.61), ACTA2 (coefficient = -0.85), PRKN
(coefficient = = -0.38), TUBB6 (coefficient = -1.21), HSPA1A (coefficient = 3.12), LMNB1
(coefficient = 0.55), SNCA (coefficient = -0.46) and SLC25A6 (coefficient =-0.68) (Figure 48A,B).
The cut-off value on the predicted value was optimised as 0.94 to reach the maximum

accuracy in the training set (AC_train = 72.9%, Figure 48C). The refined model was then
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validated on the test set, containing 75 sPD cases and 24 LRRK2-PD cases. ROC curve showed

an AUC = 0.68 (95% Cl: 0.56-0.80) (Figure 48D).

Table 12. Significant LRRK2 interactors selected by univariate analyses for Model 1

95% ClI
Interactor OR — — p-value
Upper Limit Lower Limit

STUB1 0.24 0.06 0.91 0.036
DvL1 0.17 0.04 0.68 0.012
ACTA2 0.31 0.13 0.77 0.012
CDK2 0.22 0.06 0.86 0.029
MMS19 0.23 0.06 0.83 0.025
PRKN 0.18 0.06 0.56 0.003
TUBB6 0.18 0.06 0.49 0.001
TUBG1 0.25 0.07 0.90 0.035
BAG3 0.18 0.05 0.61 0.006
HSPA1A 3.23 1.25 8.34 0.016
LMNB1 2.92 1.14 7.44 0.025
SNCA 0.45 0.21 0.96 0.040
RPS2 0.29 0.10 0.86 0.026
SLC25A6 0.24 0.07 0.84 0.025

Univariate Logistic regression was performed on the expression profile (whole blood mRNA level) of
each LRRK2 interactor in the sPD and LRRK2-PD cases to identify those with significant association with
phenotype (sPD or LRRK2-PD). A total of 12 LRRK2 interactors were selected by this procedure and
were thereby included in further analysis. The complete result for univariate analyses see Table D1.

Abbreviations: OR: Odd Ratio; Cl: Confidence Interval
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Figure 47. Classification Model 1 of sPD and LRRK2-PD based on the transcriptomic levels of
LRRK2 interactors
A) The Logistic regression model with LASSO (Least Absolute Shrinkage and Selection Operator) was

adopted to further reduce the dimensionalities and to select the most significant expression profiles of
LRRK2 interactors to differentiate sPD and LRRK2-PD. A A value of 0.008, with log(A) = -4.869 was
selected according to 10-fold cross-validation; B) LASSO coefficient profiles of 14 LRRK2 interactors are
plotted. The optimal coefficient profile was produced against the selected A (marked as the vertical red
line), comprised of 8 LRRK2 interactors, namely STUB1 (coefficient = -1.61), ACTA2 (coefficient = -0.85),
PRKN (coefficient = = -0.38), TUBB6 (coefficient = -1.21), HSPA1A (coefficient = 3.12), LMNB1
(coefficient = 0.55), SNCA (coefficient = -0.46) and SLC25A6 (coefficient = -0.68). C) A cut-off of 0.94
was selected on the predicted values to reach the highest accuracy of 72.9%. D) ROC of the refined
model returned an AUC of 0.68.
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Model 2 was constructed using the SNP rs151264467 (with adjusted p-value < 0.05 in
univariate logistic regression in SNP association analysis for sPD vs. control), as well as the
SNPs burden of 31 LRRK2 interactors, including ANKS4B, AP2M1, ARHGEF7, CAPZB, CHGB,
GAK, HSP90AB1, ITCH, LRRK2, MAP2K3, MAP2K6, MRPL28, NFATC2, PRKCZ, RIPK2, RPS14,
TRAF2, CDKL3, CYREN, DIDO1, DVL3, DYNC1H1, KIF2A, MFN2, PRKDC, RAB29, RPL11, STK40,
TAOKS3, TK1 and TUBB6 (with p-values < 0.05 in genetic burden analysis in the sPD or LRRK2-
PDvs. controls). These data involved a total of 611 subjects, including 566 sPD cases and only
45 LRRK2-PD cases, which resulted in a high Imbalance Ratio (IR) of 12.5. Therefore, a random
under-sampling process was performed on the sPD cohort to keep the IR < 1:4 (Krawczyk,
2016), in which a total of 180 sPD cases were randomly selected to construct Model 2
together with the 45 LRRK2-PD cases. The model was firstly trained on a randomly-picked set
of 144 sPD cases and 36 LRRK2-PD cases. The result showed that LASSO logistic regression
failed to classify sPD and LRRK2-PD cases as all predictors were dropped from the model
(Figure 48).
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Figure 48. Classification Model 1 of sPD and LRRK2-PD based on the transcriptomic levels of
LRRK2 interactors
A) LASSO logistic regression was adopted to evaluate the classifying performance of the combination

of 1SNP (rs151264467) and 31 LRRK2 interactor genes ANKS4B, AP2M 1, ARHGEF7, CAPZB, CHGB, GAK,
HSP90AB1, ITCH, LRRK2, MAP2K3, MAP2K6, MRPL28, NFATC2, PRKCZ, RIPK2, RPS14, TRAF2, CDKL3,
CYREN, DIDO1, DVL3, DYNC1H1, KIF2A, MFN2, PRKDC, RAB29, RPL11, STK40, TAOK3, TK1 and TUBB6
() on the sPD and LRRK2-PD cohort. A A value of 0.062, with log(A) = -1.209 achieved the least MSE
according to 10-fold cross-validation but left no predictors in the model. B) LASSO coefficient profiles
of the 32 predictors are plotted. No predict remained at the A value selected by cross-validation process

(marked as red line).
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Main findings

1. Early-stage sPD patients and LRRK2-PD patients showed similar motor symptoms analysis
and non-motor symptoms, such as sleeping disorders, depression, cognitive impairment
and anxiety.

2. A total of 53 LRRK2 interactors presented significant differential expression in the sPD
cases as compared to controls. The 29 up-regulated interactors were enriched for
autophagy, negative regulation of apoptotic signalling and positive regulation of protein
metabolism, while the 24 down-regulated interactors were associated with ribosomal
biogenesis.

3. A total of 64 LRRK2 interactors exhibited significant differential expression in the LRRK2-
PD cases as compared to Controls. The 28 up-regulated interactors were enriched for
microtubule cytoskeleton organisation and positive regulation of protein metabolism,
while the 36 down-regulated ones were enriched for apoptotic signalling, protein
ubiquitination and peptise biosynthesis.

4. LRRK2:interactor co-expression levels remained stable across the sPD, LRRK2-PD and
control cohorts.

5. WGCNA identified 3 co-expression modules of LRRK2 interactors, which were associated
with intracellular protein transport, protein biosynthesis and protein metabolism,
respectively. Among these 3 modules, the module that associated with protein
biosynthesis were significantly down-regulated in both sPD and LRRK2-PD cases as
compared to controls, while the module that related to intracellular protein transport was
only down-regulated in the LRRK2-PD condition

6. In accordance with Point 5, Weighted network analysis showed that Topological Cluster
A, which is responsible for ribosomal function was down-regulated in both sPD and LRRK2-
PD cohort vs. controls, while Cluster F, which was responsible for mitophagy, was up-
regulated only in the LRRK2-PD cohort.

7. A total of 23 and 19 SNPs in LRRK2 interactors were associated with sPD and LRRK2-PD

respectively, though only 1 of them pass the multiple testing correction.
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8. The sPD cases and LRRK2-PD cases can be differentiated based on the expression profiles
of 8 LRRK2 interactors, including STUB1, ACTA2, PRKN, TUBB6, HSPA1A, LMNB1, SNCA
and SLC25A6.

9. Atotal of 15 LRRK2 interactors showed a significant burden of variants (in the sPD scenario)
while a different set of 15 LRRK2 interactors showed a significant burden of variants (in

the LRRK2-PD scenario)

sPD LRRK2-PD
Down-regulated ribosomal function
=S l
Wys0*°

Apoptosis signalling

Up-regulated mitophagy

Protein metabolism

Figure 49. Summary of PD association of the LRRK2nt

Discussion

In this section, the whole blood mRNA levels of LRRK2 interactors, the LRRK2:interactor co-
expression and co-expression modules withing the LRRK2net were compared between
healthy controls and patients with sPD or LRRK2-PD. DEA identified a total of 29 LRRK2 up-
regulated interactors in the sPD cohort as compared to controls. These interactors were
related to autophagy, MAPK cascade, negative regulation of apoptotic signalling, regulation
of protein metabolism and regulation of response to stress, which might suggest the early-
stage sPD to be characterized by: 1) increase in cellular stress and activation of apoptosis; 2)
self-adjustment mechanisms to down-regulate the apoptotic signalling to avoid excessive cell
death; 3) waste disposal processes such as autophagy activated to digest or recycle damaged

proteins or organelles to avoid protein aggregation and maintain cellular homeostasis.
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In comparison, DEA identified a total of 28 LRRK2 up-regulated interactors in the LRRK2-PD
cohort as compared to controls. LRRK2 interactors up-regulated in LRRK2-PD showed
enrichment for cellular morphogenesis, unfolded protein response (UPR), microtubule
cytoskeleton organisation, response to stimulus and vesicle transport suggesting that in the
presence of pathogenic LRRK2 variants, although stress-initiated cellular response is probably
still present, recovering microtubule-mediated intracellular transport might become a cell
priority. The implication might be that the main impact of mutated LRRK2 could be in
perturbing vesicle trafficking and cytoskeleton dynamics (at least in while blood cells since
the analyses were run with whole blood mRNA data). Moreover, the down-regulated
interactors in the LRRK2-PD cases were also enriched for negative regulation of protein
ubiquitination, suggesting that in the LRRK2-PD cases, as the pathological stress accumulates,
cells might increase misfolded protein clearance by removing negative control over protein

ubiquitination.

The difference in the identity and the functions of the LRRK2 interactors differentially
expressed in sPD vs controls and those in LRRK2-PD vs controls suggested a potentially
different molecular mechanism between these 2 conditions. Albeit the disease being the
same from a clinical perspective, the disease might be able to induce changes in a different
set of LRRK2 interactors depending on whether a mutation in LRRK2 was present (LRRK2-PD)

or not (sPD).

It is worth noticing that in both sPD and LRRK2-PD a small set of interactors responsible for
protein synthesis were down-regulated is a similar fashion in comparison with controls. This
was in accordance with the results from WGCNA and weighted network analysis (see Chapter
6), showing the ribosomal-function-related co-expression module was equally down-
regulated in both sPD and LRRK2-PD as compared to the controls, and the “ribosomal unit” in
Topological Cluster A presented a similar pattern of alterations. This suggests that despite the
molecular differences discussed above, PD might be able to induce alterations in protein
synthesis exerted via the LRRK2 interactomes in both the sporadic and the familial disease

scenario.
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The expression levels and genetic profiles of LRRK2 interactors were used to differentiate the
sporadic and the LRRK2-PD scenarios (Model 1). The results showed that using whole blood
MRNA levels of 8 interactors were able to differentiate the 2 types of PD, suggesting that sPD
and LRRK2-PD shared distinct molecular pathologies. However, SNPs and genetic burden of
LRRK2 interactors were not able to classify the 2 types of PD (Model 2). However, it is worth
noting that Model 2 was trained on a smaller sample size, involving only 36 LRRK2-PD cases
and 144 sPD cases due to the limited availability of genotyping data in PPMI dataset.
Therefore, the differences between sPD and LRRK2-PD pathogenesis (defined via genetic

analyses) requires future investigation on larger sample size cohorts.

Conclusion

This project is focused on understanding the role of LRRK2 in the physiological and disease
(PD) scenarios utilizing systems biology approaches. First of all, a protein interactome
consisting of 418 robust LRRK2 interactors was constructed based on peer-reviewed data
derived from multiple online resources. This is by far the most comprehensive protein
interactome of LRRK2, involving a range of protein families such as ribosomal proteins, Rab
GTPases, 14-3-3 proteins, heat shock proteins, cytoskeleton proteins and multiple types of
protein kinases, which was in accordance with the previous 2 interactome study of LRRK2
(Manzoni et al., 2015; Porras et al., 2015b). The LRRK2 interactome was enriched for an array
of diverse functions which was also expected given the fact that even the LRRK2 protein in
isolation has always been associated with multiple cellular activities. Functional enrichment
analysis found a “functional core” of the LRRK2 interactome, which included LRRK2 interactor
that contributed to all categories of enriched biological processes. These proteins may
function as the basis of LRRK2 functional network. In the meanwhile, it was possible to
identify specific groups of interactors that were involved in selected LRRK2 functions (the

functional units).

Next, PPIs across the LRRK2 interactors were retrieved to construct a scale-free PPl network
around LRRK2, in which LRRK2 interactors were represented as nodes, while the interactions

among these proteins were represented as edges. A topological core of LRRK2 PPIN was
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identified, which included the mostly connected LRRK2 interactors (network hubs). These
proteins form the fundamentals of LRRK2 PPIN and may function as pivotal elements able to
mediate the physiological functions of LRRK2 by sustaining the flux of information within the
LRRK2 network. In addition, clustering analysis was performed on the whole network and a
total of 7 clusters of densely connected LRRK2 interactors (on the local scale) and associated

with biological significance were identified.

These 7 clusters were all associated with different biological processes such as ribosomal
function, cytoskeleton organisation, protein metabolism, autophagy, cellular response to
stress and apoptotic signal transduction, which represented the mostly-reported biological
functions of LRRK2 in previous studies (Albanese et al., 2019; Jiang et al., 2019; Martin et al.,
2014; Parisiadou et al., 2009). These clusters of LRRK2 interactors are therefore likely to
represent the local units within the networks that are specialized in helping LRRK2 sustaining
very specific functions. The network model and detected clusters were then merged with i)
transcriptomics data of brain regions and peripheral tissues from healthy individuals to
investigate tissue-specific expression and co-expression patterns of LRRK2 interactors, and ii)
transcriptomics data of whole blood from patients with sporadic PD and LRRK2-related PD to
investigate impact of the disease scenario on the LRRK2 PPl network. The main new findings

obtained after the work in this thesis can be recapitulated as such:

1. LRRK2 interactors enriched for ribosomal function were highly expressed in lung, and
their expression levels (whole blood) were significantly down-regulated in both sPD and
LRRK2-PD patients as compared to controls

A total of 38 ribosomal proteins presented in the LRRK2 interactome. These proteins

exhibited similar expression patterns and showed the highest mRNA levels in the lung of

healthy individuals. In the meantime, they were also found in the same co-expression
modules whose eigengene was highly correlated with the lung. In addition, 16 of them
presented high PPl connection across each other and therefore were allocated into 1 unique
topological cluster (Cluster A). This cluster showed significantly decreased connectivity in

both sPD and LRRK2-PD cases when compared with controls. These findings suggested a

robust “ribosomal unit” is present in the LRRK2 interactome, through which LRRK2 might

control ribosomal function and protein expression. This functional unit may play an important
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role especially for the biology of the lung and it probably participates in the cellular response
to stress induced by disease. Also, pathogenic LRRK2 mutations seems to have little to no
impact on the function of this cluster as alteration of this ribosomal cluster during disease

was similar in sPD and LRRK2-PD.

2. LRRK2 interactors related to cytoskeleton dynamics were expressed in both brain and
in the peripheral tissues, and were only down-regulated in the LRRK2-PD but not in the
sPD cases when compared with controls.

Atotal of 36 cytoskeleton proteins presented in the LRRK2 interactome, mainly including actin

proteins and tubulin proteins (the basic unit of microtubule). Actin filament and microtubule

are both essential elements of the cytoskeleton, in which the former contributes to
maintaining cell morphology while the latter is responsible for intracellular vesicle trafficking.

Transcriptomic analysis on healthy data showed that microtubule-associated proteins

exhibited high expression levels and co-expression behaviours with LRRK2 in the brain, while

actin-related proteins showed these features in the periphery. This was also confirmed by the
identification of a co-expression module of LRRK2 interactors enriched for actin filament
organisation that was found via WGCNA run with transcriptomics data from healthy
individuals, and showed significantly high expression in the whole blood. A similar co-
expression module was identified when WGCNA was run on expression data of PD patients.

The eigengene of this module showed significantly lower expression level among the LRRK2-

PD cases as compared to the healthy controls but not when sPD cases were compared with

controls. These findings may suggest that LRRK2 and its interactors play an important role in

the regulation of the cytoskeletal dynamics, with a dichotomy between the brain and the
periphery where the actin cytoskeleton organisation seems a more relevant function for the

peripheral tissues while microtubules dynamics (and therefore cellular trafficking) might be a

specific function sustained by the LRRK2 interactome in the brain regions. Additionally, these

results might suggest that one specific mechanism through which LRRK2 mutations can
induce alterations correlated with disease might be via alterations of cytoskeletal dynamics,

while this is probably not a molecular pathway for the sporadic disease.

3. The mitophagy-related topological cluster was up-regulated in the LRRK2-PD but not in

the sPD cases when compared with healthy controls.
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A topological cluster (Cluster F) made of 16 interactors was detected in the LRRK2 network,
which was strongly associated with mitophagy and contained other PD genes related to
mitophagy (PRKN, VDAC1, RAB8A, MFN1, MFN2). This cluster presented significantly higher
connectivity in the LRRK2-PD cases as compared to the controls and this finding was not
recapitulated in the sporadic scenario. A mitochondrial role for LRRK2 has been reported,
these new findings may suggest that this role might not be altered in the disease scenario
unless in the presence of LRRK2 mutations. In other words, one specific mechanism through
which LRRK2 mutations could induce alterations correlated with disease might be via
alterations of mitophagy, while this is probably not a molecular pathway for the sporadic

disease.

4. There was a dichotomy between the LRRK2 interactome in the brain vs the peripheral
tissues.
From an expression behaviour point of view, it was possible to distinguish between a “central”

III

and a “peripheral” LRRK2 interactome. This was confirmed also when functional enrichment
was taken into consideration, showing overlapping but also distinct biological functions of the
LRRK2 interactors between the brain and the peripheral tissues. This might suggest that
LRRK2, a protein that is indeed implicated in many different functions, might not hold the
same relevance in all tissues. This might have implications for the modelling of the LRRK2

activity in physiological and disease conditions with cellular models since responses might be

indeed tissue specific.

5. There was a dichotomy between the expression behaviour of the LRRK2jn: in the sPD
cases vs LRRK2-PD cases.
A total of 53 and 64 LRRK2 interactors presented differential expression in the sPD and LRRK2-
PD cases as compared to controls, respectively. Among these interactors, 100/117 (85.5%)
presented distinct alterations in the sPD and LRRK2-PD cases, suggesting that sPD and LRRK2-
PD shares heterogeneous molecular signature of the LRRK2ir:. In addition, the topological
cluster of mitophagy (Cluster F) was significantly up-regulated in the LRRK2-PD cases but not
in the sPD cases, suggesting that mitophagy is vulnerable to the pathogenic mutations of
LRRK2. On the other hand, the “ribosomal unit” of the LRRK2,et was down-regulated in both

LRRK2-PD and sPD cases, suggesting that ribosomal function is universally affected by the 2
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types of PD regardless the presence of LRRK2 variants. In addition, LASSO logistic regression
model based on transcriptomic profiles of LRRK2 interactors was able to classify sPD and
LRRK2-PD cases with an accuracy of 68%. This accuracy is not sufficient in a diagnostic
scenario; however, it provides the proof of principle for differences in molecular mechanisms
underlying the 2 types of PD (at least when using classifiers from the whole blood). Future
studies can focus on exploring the expression patterns of LRRK2 interactors in other tissues
especially for the brain regions. In addition, longitudinal expression alterations of LRRK2

interactors are also worth exploring considering the long-term disease progression.

Limitations and future directions

Limitations of different types of analysis have been discussed after each chapter. Here is the

summary of the main points:

1. The LRRK2 interactome and PPl network model established in this study is comprehensive
but not complete, due to the nature of systems biology, which is largely dependent on
the available data. It is possible that some proteins exist with strong interactions with
LRRK2 that were missed by this study because they are not know or recorded yet.
However, this is an inevitable disadvantage of nearly all types of interactome analysis.
Therefore, it is necessary to repeat the protocol established within this thesis in the future
to keep the findings updated with the PPI literature.

2. The expression data included in transcriptomic analysis were obtained from the whole
blood sample from PD patients and healthy controls, which may not perfectly reflect the
alterations in the brain regions. In addition, it would be helpful to analyse longitudinal
changes of the expression profile of LRRK2 interactors to investigate the continuity of
alterations observed in this study alongside PD progression. Therefore, future work
should be focused on exploring tissue-specific gene expression patterns in relevant brain
regions to better capture the intricacies of Parkinson's disease pathology. Additionally,
incorporating longitudinal analyses of LRRK2 interactors' expression profiles over
different stages of PD could provide a more comprehensive understanding of the
molecular changes associated with disease progression.

3. Considering the biased ethnicity distribution of participant cohort included in this study,
in which Caucasian account for 95% of the population, alterations observed in this study

may not be applicable to other populations due to genetic variation. Future studies can
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address this limitation by incorporating more diverse and representative participant
cohorts that encompass a broader range of ethnic backgrounds.

Alterations of expression and co-expression level may not reflect the true changes in the
PPIs, which may affect the accuracy of weighted network analysis in this study. Future
studies should employ structural analyses, such as molecular modelling and PPI
simulations, to precisely elucidate the impact of pathogenic LRRK2 variants on the
structural dynamics of the LRRK2 protein and its interactions within the PPl network.
Additionally, integrating experimental techniques like co-immunoprecipitation and
proximity-dependent labelling assays can offer experimental validation of the predicted

changes in PPIs
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Appendix A: Supplementary Figures: QC on GTEx samples
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Figure A1. Subject QC on GTEx mRNA dataset

0e+00
L

Hierarchical Clustering was performed to identify outlier samples in expression dataset of each of the
15 tissue included in Chapter 2. Outliers are marked in red rectangular and were discarded in the
following expression analysis. Abbreviations: AMYG: amygdala; ACC: anterior cingulate cortex; CAU:
caudate; CR: cerebellum; FC: frontal cortex; HP: hippocampus; HYPT: hypothalamus; NAc: Nucleus

Accumbens; PUT: putamen; SN: substantia nigra; SPC: spinal cord c-1.
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Appendix B: GO terms enriched for LRRK2 interactors

Table B1. GO-BP terms enriched for Functional Unit 1 of the LRRK2int

Term ID Term Name Term Size Adjusted p-value
G0:0006259 | DNA metabolic process 1054 <0.001
G0:0044265 | cellular macromolecule catabolic process | 1030 <0.001
G0:0009266 | response to temperature stimulus 184 <0.001
G0:0071214 | cellular response to abiotic stimulus 336 0.011
G0:0009314 | response to radiation 449 0.031

cellular response to environmental
GO:0104004 | cimulus 336 0.011
G0:0030163 | protein catabolic process 1031 <0.001
G0:0034599 | cellular response to oxidative stress 275 <0.001

' organonitrogen compound catabolic

G0:1301565 process 1386 <0.001
G0:0006281 | DNA repair 591 0.006
G0:0007006 | mitochondrial membrane organization 116 <0.001
G0:0000723 | telomere maintenance 158 0.011
G0:0061726 | mitochondrion disassembly 94 0.009
G0:0097193 | intrinsic apoptotic signalling pathway 299 <0.001
G0:0009057 | macromolecule catabolic process 1391 <0.001
G0:0071310 | cellular response to organic substance 1993 <0.001
GO-0035966 respo‘nse to topologically incorrect

protein 161 <0.001
G0:0034097 | response to cytokine 914 <0.001
G0:0010243 | response to organonitrogen compound 1034 0.001
G0:0009725 | response to hormone 861 0.003
G0:0014070 | response to organic cyclic compound 933 0.003

' cellular response to reactive oxygen

G0:0034614 species 142 0.003
G0:1901653 | cellular response to peptide 363 0.010
G0:0071495 | cellular response to endogenous stimulus | 1445 <0.001
G0:0072331 | signal transduction by p53 class mediator | 175 <0.001
G0:0009628 | response to abiotic stimulus 1141 <0.001
G0:0009719 | response to endogenous stimulus 1692 <0.001
G0:0033554 | cellular response to stress 1941 <0.001
G0:0034605 | cellular response to heat 63 <0.001
G0:0062197 | cellular response to chemical stress 332 <0.001
G0:0006974 | cellular response to DNA damage stimulus | 881 0.001
G0:0034976 | response to endoplasmic reticulum stress | 259 0.001
G0O:0031098 stress-activated protein kinase signalling

cascade 246 0.001
GO:0035967 Fellular respons_e to topologically

incorrect protein 119 0.002
G0:0098780 | response to mitochondrial depolarisation | 21 0.010
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modification-dependent macromolecule

60:0043632 catabolic process 713 0.005
G0:0006914 | autophagy 562 <0.001
G0:0016236 | macroautophagy 321 <0.001
G0:0061684 | chaperone-mediated autophagy 16 <0.001
G0:0061912 | selective autophagy 89 <0.001
G0:0000422 | autophagy of mitochondrion 94 0.009
G0:0061919 | process utilizing autophagic mechanism 562 <0.001
G0:0043161 proteasome-med_iated ubiquitin-

dependent protein catabolic process 455 0.001
G0:0061024 | membrane organization 886 <0.001
G0:0009411 | response to UV 148 0.001
G0:0034644 | cellular response to UV 88 0.036
G0:0070266 | necroptotic process 39 0.042
GO:0051603 proteolysis involved in protein catabolic

process 799 0.001
G0:0019941 modification-dependent protein catabolic

process 701 0.003
G0:0051403 | stress-activated MAPK cascade 239 0.004
G0:0000423 | mitophagy 37 <0.001

ubiquitin-dependent protein catabolic
G0:0006511 process 691 0.002

) positive regulation of mitophagy in

G0:0098779 response to mitochondrial depolarization | 10 0.003

parkin-mediated stimulation of mitophagy
G0:0061734 | in response to mitochondrial

depolarization 6 0.010
G0:0044248 | cellular catabolic process 2138 <0.001
G0:0012501 | programmed cell death 1948 <0.001
G0:1901575 | organic substance catabolic process 2148 <0.001
G0:0007254 | JNK cascade 176 0.039
G0:0006915 | apoptotic process 1894 <0.001
G0:0097300 | programmed necrotic cell death 46 0.001
G0:1901700 | response to oxygen-containing compound | 1665 <0.001
G0:1901698 | response to nitrogen compound 1123 <0.001
G0:0009408 | response to heat 110 <0.001
G0:0006979 | response to oxidative stress 420 0.003
G0:0071345 | cellular response to cytokine stimulus 823 <0.001

regulation of autophagy of mitochondrion
G0:1904923 | in response to mitochondrial

depolarization 15 0.034
G0:0097190 | apoptotic signalling pathway 597 <0.001
G0:0000302 | response to reactive oxygen species 194 0.005
G0:0008637 | apoptotic mitochondrial changes 105 0.001
G0:0032870 | cellular response to hormone stimulus 598 0.001
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cellular response to organic cyclic

G0:0071407 compound 579 0.004
' cellular response to organonitrogen
G0:0071417 compound 642 0.032
G0:0009416 | response to light stimulus 319 0.018
G0:0006986 | response to unfolded protein 139 <0.001
positive regulation of autophagy of
G0:1904925 | mitochondrion in response to
mitochondrial depolarization 14 0.023
G0O:1901701 cellular response to oxygen-containing
compound 1191 <0.001
G0:1901699 | cellular response to nitrogen compound 698 <0.001
G0:0010498 | proteasomal protein catabolic process 526 0.001
G0:0008219 | cell death 2113 <0.001
G0:0070997 | neuron death 367 <0.001
G0:0036473 | cell death in response to oxidative stress | 91 0.001
G0:0070265 | necrotic cell death 62 0.013
intrinsic apoptotic signalling pathway in
: 1 .
G0:000863 response to oxidative stress 45 0.010
intrinsic apoptotic signalling pathway in
:007 . .
G0:0070059 response to endoplasmic reticulum stress | 64 0.017
G0O:0072332 intrinsic apopt‘otlc signalling pathway by
p53 class mediator 82 0.019
G0:0034620 | cellular response to unfolded protein 99 0.015
G0:0007005 | mitochondrion organization 539 <0.001

Table B2. GO-CC terms enriched for Functional Unit 1 of the LRRK2nt

Term ID Term Name Term size Adjusted p-value
G0:0070062 | extracellular exosome 2109 <0.001
G0:1903561 | extracellular vesicle 2133 <0.001
G0:0043230 | extracellular organelle 2134 <0.001
extracellular membrane-bounded
G0:0065010 | organelle 2134 <0.001
G0:0005856 | cytoskeleton 2407 <0.001
G0:0005925 | focal adhesion 421 <0.001
G0:0030055 | cell-substrate junction 431 <0.001
G0:0030054 | cell junction 2214 <0.001
G0:0015630 | microtubule cytoskeleton 1388 <0.001
G0:0070161 | anchoring junction 903 <0.001
G0:0045202 | synapse 1451 <0.001
G0:1902494 | catalytic complex 1781 <0.001
G0:0005739 | mitochondrion 1672 <0.001
G0:0048471 | perinuclear region of cytoplasm 733 <0.001
G0:0042995 | cell projection 2329 <0.001
G0:0031410 | cytoplasmic vesicle 2476 <0.001
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G0:0097708 | intracellular vesicle 2481 <0.001
G0:0099080 | supramolecular complex 1404 <0.001
G0:0044297 | cell body 567 <0.001
G0:0099512 | supramolecular fibre 1034 <0.001
G0:0016234 | inclusion body 74 <0.001
G0:0099081 | supramolecular polymer 1042 <0.001
plasma membrane bounded cell
G0:0120025 | projection 2217 <0.001
G0:0005819 | spindle 431 <0.001
G0:0101031 | protein folding chaperone complex 41 <0.001
G0:0048770 | pigment granule 111 <0.001
G0:0042470 | melanosome 111 <0.001
G0:0099513 | polymeric cytoskeletal fibre 793 <0.001
G0:0043005 | neuron projection 1299 <0.001
G0:0036477 | somatodendritic compartment 849 <0.001
G0:0140535 | intracellular protein-containing complex 951 <0.001
G0:0030424 | axon 641 <0.001
G0:0098687 | chromosomal region 399 <0.001
G0:0031967 | organelle envelope 1293 <0.001
G0:0031975 | envelope 1293 <0.001
G0:0030425 | dendrite 621 <0.001
G0:0097447 | dendritic tree 623 <0.001
G0:0043025 | neuronal cell body 500 <0.001
G0:0098978 | glutamatergic synapse 426 <0.001
G0:0098562 | cytoplasmic side of membrane 213 <0.001
G0:0005874 | microtubule 474 <0.001
G0:0005815 | microtubule organizing center 855 <0.001
G0:0000781 | chromosome, telomeric region 170 <0.001
G0:0098794 | postsynapse 644 <0.001
GO0:0098793 | presynapse 561 <0.001
G0:0005938 | cell cortex 314 <0.001
G0:0031968 | organelle outer membrane 249 <0.001
G0:0101002 | ficolin-1-rich granule 184 <0.001
G0:0019867 | outer membrane 251 <0.001
G0:0031966 | mitochondrial membrane 771 <0.001
G0:0005741 | mitochondrial outer membrane 220 <0.001
G0:0005768 | endosome 1047 <0.001
G0:0022626 | cytosolic ribosome 110 <0.001
G0:0035861 | site of double-strand break 86 <0.001
G0:0098588 | bounding membrane of organelle 2160 <0.001
G0:0031252 | cell leading edge 424 <0.001
G0:0045335 | phagocytic vesicle 141 <0.001
G0:0150034 | distal axon 277 <0.001
G0:0005740 | mitochondrial envelope 820 <0.001
G0:0090734 | site of DNA damage 117 <0.001
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G0:0099503 | secretory vesicle 1039 <0.001
G0:0098857 | membrane microdomain 286 <0.001
G0:0005813 | centrosome 647 <0.001
G0:0030139 | endocytic vesicle 342 <0.001
G0:0022627 | cytosolic small ribosomal subunit 44 <0.001
G0:0045121 | membrane raft 285 <0.001
mitochondrial permeability transition
G0:0005757 | pore complex 7 <0.001
G0:0120111 | neuron projection cytoplasm 90 <0.001
G0:0030141 | secretory granule 871 <0.001
G0:0034399 | nuclear periphery 151 <0.001
G0:1904813 | ficolin-1-rich granule lumen 124 <0.001
G0:0031264 | death-inducing signalling complex 9 0.001
G0:0030670 | phagocytic vesicle membrane 78 0.001
G0:0015935 | small ribosomal subunit 79 0.001
G0:0016235 | aggresome 36 0.001
G0:0030426 | growth cone 170 0.001
G0:0043197 | dendritic spine 171 0.001
G0:0098796 | membrane protein complex 1357 0.001
GO0:0044309 | neuron spine 175 0.001
G0:0030427 | site of polarized growth 175 0.001
G0:1990234 | transferase complex 892 0.001
G0:0005838 | proteasome regulatory particle 22 0.001
G0:0001726 | ruffle 181 0.001
G0:1904115 | axon cytoplasm 63 0.002
eukaryotic translation elongation factor 1
G0:0005853 | complex 4 0.002
G0:0005694 | chromosome 1942 0.002
G0:0044391 | ribosomal subunit 189 0.002
G0:0022624 | proteasome accessory complex 25 0.002
G0:0012506 | vesicle membrane 1230 0.002
G0:0015629 | actin cytoskeleton 501 0.002
G0:0030666 | endocytic vesicle membrane 194 0.003
G0:0043209 | myelin sheath 45 0.003
G0:1990909 | Wnt signalosome 13 0.003
G0:0019866 | organelle inner membrane 566 0.004
G0:1902554 | serine/threonine protein kinase complex | 136 0.005
G0:0009898 | cytoplasmic side of plasma membrane 175 0.007
G0:0097342 | ripoptosome 6 0.009
G0:0005903 | brush border 111 0.009
G0:0043679 | axon terminus 112 0.009
G0:0030659 | cytoplasmic vesicle membrane 1213 0.012
G0:0043204 | perikaryon 155 0.015
G0:0051233 | spindle midzone 37 0.016
G0:0000793 | condensed chromosome 278 0.016
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G0:1902911 | protein kinase complex 156 0.016
transferase complex, transferring
G0:0061695 | phosphorus-containing groups 325 0.017
G0:0005769 | early endosome 428 0.020
G0:1905368 | peptidase complex 125 0.021
G0:0044306 | neuron projection terminus 127 0.023
G0:0030496 | midbody 206 0.026
G0:0000502 | proteasome complex 67 0.028
G0:0000922 | spindle pole 172 0.034
G0:0032587 | ruffle membrane 100 0.035
G0:0044294 | dendritic growth cone 9 0.035
G0:0000775 | chromosome, centromeric region 258 0.037
G0:0043195 | terminal bouton 45 0.041
G0:1990565 | HSP90-CDC37 chaperone complex 2 0.042
G0:0030135 | coated vesicle 310 0.044
G0:0031256 | leading edge membrane 179 0.046

Table B3. GO-BP enriched for Functional Unit 2 of the LRRK2nt

Term ID Term name Term size Adjusted p-value
G0:0045184 | establishment of protein localization 1898 <0.001
G0:0030029 | actin filament-based process 813 <0.001
GO0:0015031 | protein transport 1788 <0.001
establishment of protein localization to | 664
G0:0072594 | organelle <0.001
non-membrane-bounded organelle | 386
G0:0140694 | assembly <0.001
G0:0097479 | synaptic vesicle localization 53 0.036
G0:0051649 | establishment of localization in cell 2340 <0.001
G0:0046907 | intracellular transport 1806 <0.001
G0:0036465 | synaptic vesicle recycling 80 <0.001
G0:0051650 | establishment of vesicle localization 194 <0.001
G0:0099504 | synaptic vesicle cycle 196 <0.001
G0:0140238 | presynaptic endocytosis 67 <0.001
G0:0051261 | protein depolymerization 123 <0.001
G0:0098813 | nuclear chromosome segregation 340 0.003
G0:0006886 | intracellular protein transport 1095 <0.001
G0:0051169 | nuclear transport 330 <0.001
cytoskeleton-dependent intracellular | 205
G0:0030705 | transport <0.001
G0:0072384 | organelle transport along microtubule 88 0.001
G0:0000226 | microtubule cytoskeleton organization 652 <0.001
G0:0030036 | actin cytoskeleton organization 727 <0.001
G0:0007059 | chromosome segregation 434 <0.001
G0:0033365 | protein localization to organelle 1144 <0.001
G0:0034504 | protein localization to nucleus 309 <0.001
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GO0:0070585 | protein localization to mitochondrion 128 <0.001
G0:0007052 | mitotic spindle organization 135 0.010
GO0:0051640 | organelle localization 577 <0.001
G0:0048488 | synaptic vesicle endocytosis 67 <0.001
G0:0006913 | nucleocytoplasmic transport 330 <0.001
G0:0051168 | nuclear export 165 <0.001
G0:0051170 | import into nucleus 170 <0.001
G0:1903047 | mitotic cell cycle process 773 <0.001
G0:0097435 | supramolecular fibre organization 814 <0.001
G0:0008088 | axo-dendritic transport 76 0.009
G0:0042254 | ribosome biogenesis 311 0.001
G0:0042274 | ribosomal small subunit biogenesis 77 0.001
G0:0000819 | sister chromatid segregation 252 0.038
G0:0007017 | microtubule-based process 939 <0.001
G0:0007018 | microtubule-based movement 419 0.001
G0:0042255 | ribosome assembly 59 <0.001
G0:0051225 | spindle assembly 129 0.006
G0:0010970 | transport along microtubule 167 0.001
G0:0099518 | vesicle cytoskeletal trafficking 70 0.037
G0:0051656 | establishment of organelle localization 443 <0.001
G0:0007051 | spindle organization 199 <0.001
microtubule polymerization or | 126
G0:0031109 | depolymerization <0.001
G0:0051648 | vesicle localization 211 <0.001
G0:0071705 | nitrogen compound transport 2252 <0.001
G0:0051646 | mitochondrion localization 50 <0.001
nucleobase-containing compound | 227
GO0:0015931 | transport 0.009
G0:0072319 | vesicle uncoating 9 <0.001
G0:0072318 | clathrin coat disassembly 8 <0.001
actin polymerization or | 202
G0:0008154 | depolymerization 0.002
G0:0099111 | microtubule-based transport 208 0.001
G0:0000028 | ribosomal small subunit assembly 17 <0.001
G0:0048489 | synaptic vesicle transport 40 0.004
G0:0016192 | vesicle-mediated transport 1638 0.015
G0:0007015 | actin filament organization 452 <0.001
establishment of protein localization to | 122
G0:0072655 | mitochondrion <0.001
G0:0046785 | microtubule polymerization 85 <0.001
G0:0051258 | protein polymerization 284 <0.001
G0:0030041 | actin filament polymerization 172 0.001
G0:0006611 | protein export from nucleus 59 <0.001
G0:0006606 | protein import into nucleus 165 <0.001
G0:0007049 | cell cycle 1818 <0.001
G0:0099003 | vesicle-mediated transport in synapse 217 <0.001
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G0:0007010 | cytoskeleton organization 1507 <0.001
G0:0070925 | organelle assembly 944 <0.001
G0:0000278 | mitotic cell cycle 929 <0.001
G0:0022402 | cell cycle process 1270 <0.001
G0:0051276 | chromosome organization 635 <0.001
G0:0016191 | synaptic vesicle uncoating 7 <0.001

Table B4. GO-CC enriched for Functional Unit 2 of the LRRK2n:

Term ID Term Name Term Size Adjusted p-value
G0:0005856 | cytoskeleton 2407 <0.001
GO0:0070062 | extracellular exosome 2109 <0.001
G0:1903561 | extracellular vesicle 2133 <0.001
G0:0043230 | extracellular organelle 2134 <0.001
extracellular membrane-bounded
G0:0065010 | organelle 2134 <0.001
G0:0015630 | microtubule cytoskeleton 1388 <0.001
G0:0099080 | supramolecular complex 1404 <0.001
G0:0005925 | focal adhesion 421 <0.001
G0:0030054 | cell junction 2214 <0.001
G0:0030055 | cell-substrate junction 431 <0.001
G0:0099512 | supramolecular fibre 1034 <0.001
G0:0099081 | supramolecular polymer 1042 <0.001
G0:0099513 | polymeric cytoskeletal fibre 793 <0.001
G0:0070161 | anchoring junction 903 <0.001
G0:0045202 | synapse 1451 <0.001
G0:0015629 | actin cytoskeleton 501 <0.001
G0:0005874 | microtubule 474 <0.001
G0:0022626 | cytosolic ribosome 110 <0.001
G0:0042995 | cell projection 2329 <0.001
G0:0005819 | spindle 431 <0.001
plasma membrane bounded cell
GO0:0120025 | projection 2217 <0.001
G0:0005815 | microtubule organizing centre 855 <0.001
G0:0022627 | cytosolic small ribosomal subunit 44 <0.001
G0:0044391 | ribosomal subunit 189 <0.001
G0:0031410 | cytoplasmic vesicle 2476 <0.001
G0:0097708 | intracellular vesicle 2481 <0.001
G0:0015935 | small ribosomal subunit 79 <0.001
G0:0031252 | cell leading edge 424 <0.001
G0:0098794 | postsynapse 644 <0.001
G0:0005813 | centrosome 647 <0.001
G0:0048471 | perinuclear region of cytoplasm 733 <0.001
G0:0048770 | pigment granule 111 <0.001
G0:0042470 | melanosome 111 <0.001
G0:0043005 | neuron projection 1299 <0.001
G0:0098687 | chromosomal region 399 <0.001
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G0:0030424 | axon 641 <0.001
G0:0044297 | cell body 567 <0.001
G0:0098978 | glutamatergic synapse 426 <0.001
G0:0072686 | mitotic spindle 184 <0.001
G0:0005768 | endosome 1047 <0.001
G0:0000793 | condensed chromosome 278 <0.001
G0:0031975 | envelope 1293 <0.001
G0:0031967 | organelle envelope 1293 <0.001
G0:0036477 | somatodendritic compartment 849 <0.001
G0:0098793 | presynapse 561 <0.001
G0:0150034 | distal axon 277 <0.001
G0:0030425 | dendrite 621 <0.001
GO0:0097447 | dendritic tree 623 <0.001
G0:0005885 | Arp2/3 protein complex 11 <0.001
G0:0043025 | neuronal cell body 500 <0.001
G0:0005938 | cell cortex 314 <0.001
G0:0030684 | preribosome 108 <0.001
G0:0005903 | brush border 111 <0.001
G0:0045335 | phagocytic vesicle 141 <0.001
G0:0030426 | growth cone 170 <0.001
G0:0032040 | small-subunit processome 73 <0.001
G0:0005739 | mitochondrion 1672 <0.001
G0:0016234 | inclusion body 74 <0.001
G0:0030427 | site of polarized growth 175 <0.001
condensed chromosome, centromeric
G0:0000779 | region 178 <0.001
G0:0042641 | actomyosin 77 <0.001
G0:0034399 | nuclear periphery 151 <0.001
G0:0043292 | contractile fiber 245 <0.001
G0:0099503 | secretory vesicle 1039 <0.001
G0:0005840 | ribosome 524 <0.001
G0:0000775 | chromosome, centromeric region 258 <0.001
G0:0035861 | site of double-strand break 86 <0.001
G0:0000776 | kinetochore 167 <0.001
G0:0030139 | endocytic vesicle 342 <0.001
G0:0030027 | lamellipodium 201 <0.001
G0:0030016 | myofibril 236 <0.001
G0:0098588 | bounding membrane of organelle 2160 <0.001
G0:0000922 | spindle pole 172 <0.001
G0:0001725 | stress fibre 70 <0.001
G0:0097517 | contractile actin filament bundle 70 <0.001
GO0:0030017 | sarcomere 215 <0.001
G0:0030141 | secretory granule 871 <0.001
G0:0098984 | neuron to neuron synapse 371 <0.001
G0:0032432 | actin filament bundle 78 <0.001
G0:0005635 | nuclear envelope 502 <0.001
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G0:0032279 | asymmetric synapse 339 <0.001
G0:0101031 | protein folding chaperone complex 41 <0.001
G0:0012506 | vesicle membrane 1230 <0.001
G0:0005876 | spindle microtubule 83 <0.001
G0:0098862 | cluster of actin-based cell projections | 167 <0.001
G0:1904115 | axon cytoplasm 63 <0.001
G0:0099572 | postsynaptic specialization 352 <0.001
G0:0005884 | actin filament 113 <0.001
G0:0043209 | myelin sheath 45 <0.001
G0:0030659 | cytoplasmic vesicle membrane 1213 <0.001
G0:0120111 | neuron projection cytoplasm 90 <0.001
G0:0014069 | postsynaptic density 323 <0.001
G0:0090734 | site of DNA damage 117 <0.001
G0:0005929 | cilium 747 <0.001
G0:0005844 | polysome 73 0.001
G0:0005643 | nuclear pore 99 0.001
G0:0005694 | chromosome 1942 0.001
G0:0022625 | cytosolic large ribosomal subunit 54 0.001
G0:0030670 | phagocytic vesicle membrane 78 0.001
G0:0000781 | chromosome, telomeric region 170 0.001
G0:0043197 | dendritic spine 171 0.001
G0:0098857 | membrane microdomain 286 0.002
G0:0044309 | neuron spine 175 0.002
G0:0031968 | organelle outer membrane 249 0.002
G0:0099568 | cytoplasmic region 290 0.002
G0:0019867 | outer membrane 251 0.002
G0:0005862 | muscle thin filament tropomyosin 4 0.002
plasma membrane bounded cell
G0:0032838 | projection cytoplasm 252 0.002
cytoplasmic ribonucleoprotein
G0:0036464 | granule 255 0.002
G0:0001726 | ruffle 181 0.003
G0:0030133 | transport vesicle 427 0.003
G0:0005769 | early endosome 428 0.003
G0:0005741 | mitochondrial outer membrane 220 0.003
G0:0101002 | ficolin-1-rich granule 184 0.003
G0:1990909 | Wnt signalosome 13 0.004
G0:0030666 | endocytic vesicle membrane 194 0.005
G0:0035770 | ribonucleoprotein granule 272 0.005
G0:0055037 | recycling endosome 201 0.007
G0:0031966 | mitochondrial membrane 771 0.008
G0:0045121 | membrane raft 285 0.008
G0:0030175 | filopodium 107 0.011
G0:0005802 | trans-Golgi network 257 0.014
G0:0098858 | actin-based cell projection 219 0.015
G0:0043679 | axon terminus 112 0.015
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G0:0016459 | myosin complex 57 0.016
G0:0015934 | large ribosomal subunit 114 0.017
mitochondrial permeability transition
G0:0005757 | pore complex 7 0.019
G0:0016235 | aggresome 36 0.019
G0:0030135 | coated vesicle 310 0.019
G0:0005740 | mitochondrial envelope 820 0.020
G0:0010008 | endosome membrane 551 0.020
G0:0000940 | outer kinetochore 19 0.021
G0:0070382 | exocytic vesicle 228 0.021
G0:0051233 | spindle midzone 37 0.022
G0:0098590 | plasma membrane region 1304 0.023
G0:0043204 | perikaryon 155 0.025
G0:0005865 | striated muscle thin filament 20 0.025
intracellular protein-containing
G0:0140535 | complex 951 0.026
G0:0005814 | centriole 156 0.026
G0:1902911 | protein kinase complex 156 0.026
G0:0008290 | F-actin capping protein complex 8 0.030
G0:0044306 | neuron projection terminus 127 0.037
G0:0098791 | Golgi apparatus subcompartment 377 0.037
G0:0016363 | nuclear matrix 128 0.039
G0:0044294 | dendritic growth cone 9 0.044
G0:0016461 | unconventional myosin complex 9 0.044
G0:0030496 | midbody 206 0.045
G0:1990565 | HSP90-CDC37 chaperone complex 2 0.050

Table B5. GO-BP

enriched for Functional Unit 3 of the LRRK2n:

Term ID Term name Term size Adjusted p-value

negative regulation of protein 96
G0:1903321 | modification by small protein

conjugation or removal <0.001
G0:0043085 | positive regulation of catalytic activity 1181 <0.001
G0:0043086 | negative regulation of catalytic activity 768 <0.001
G0:0051338 | regulation of transferase activity 908 <0.001
G0:0051336 | regulation of hydrolase activity 1007 0.003
G0:0051348 | negative regulation of transferase activity | 271 <0.001
G0:0043549 | regulation of kinase activity 775 <0.001
GO:0051438 regulation of ul_:>iguitin-protein 59

transferase activity <0.001
G0:1903052 Positive r.egulatio.n of prote:'olysis 138

involved in protein catabolic process 0.013
G0:0051347 | positive regulation of transferase activity | 584 <0.001
G0:0010952 | positive regulation of peptidase activity 189 0.019
GO:2000058 regul:?tion of ul?iquitin—dependent 173

protein catabolic process <0.001
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i i 196
GO:0061136 regulatl.on of proteasomal protein
catabolic process <0.001
) regulation of proteasomal ubiquitin- 142
60:0032434 dependent protein catabolic process <0.001
G0:0042326 | negative regulation of phosphorylation 363 <0.001
e - ; 299
G0-0051054 positive regulation of DNA metabolic
process <0.001
G0:0042327 | positive regulation of phosphorylation 822 <0.001
G0:0031396 | regulation of protein ubiquitination 210 <0.001
. ; ) 23
GO:0031397 ne.gat!v'e re'gulatlon of protein
ubiquitination <0.001
G0:0030162 | regulation of proteolysis 737 <0.001
_ regulation of protein serine/threonine 386
60:0071900 kinase activity 0.002
iti i 119
G0:1901800 posmye regulatilon of proteasomal
protein catabolic process 0.002
G0:0051052 | regulation of DNA metabolic process 535 <0.001
iti i - 2051
G0O:0045935 p05|tlyg regulation of nucleoba‘se
containing compound metabolic process <0.001
regulation of ubiquitin protein ligase 27
11904
60:1904666 activity <0.001
G0:0032069 | regulation of nuclease activity 22 0.001
positive regulation of proteasomal 95
G0:0032436 | ubiquitin-dependent protein catabolic
process 0.010
G0:0032075 | positive regulation of nuclease activity 7 0.023
. ; . . 13
GO:1904667 r?egatlve _re_gulatlon of ubiquitin protein
ligase activity <0.001
. ; —— - 3
G0:0051444 negative regula_t|.on of ubiquitin-protein
transferase activity 0.001
G0:0033673 | negative regulation of kinase activity 228 0.002
G0:0043393 | regulation of protein binding 202 <0.001
G0:0032091 | negative regulation of protein binding 95 <0.001
G0:0032092 | positive regulation of protein binding 89 0.039
i i i 2244
G0:0031324 negative regulation of cellular metabolic
process <0.001
i i 1400
G0:0019220 regulation of phosphate metabolic
process <0.001
G0:0042325 | regulation of phosphorylation 1244 <0.001
i i 419
GO:0045936 negatlve. regulation of phosphate
metabolic process <0.001
iti i 907
G0:0045937 positive .regulatlon of phosphate
metabolic process <0.001
i i 1401
G0:0051174 regulation of phosphorus metabolic
process <0.001
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i i 420
GO:0010563 negatlve. regulation of phosphorus
metabolic process <0.001
iti i 907
G0:0010562 positive regulatlon of phosphorus
metabolic process <0.001
- - P 1540
G0:0031399 regulation of protein modification
process <0.001
i i i 493
G0:0031400 nega.tl.ve regulatlon of protein
modification process <0.001
- - ot 252
G0:1903320 regulation gf prot.em I'T.'IOdI ication by
small protein conjugation or removal <0.001
G0:0001932 | regulation of protein phosphorylation 1101 <0.001
iti i i 1005
G0:0031401 p05|t.|\./e r.egulatlon of protein
modification process <0.001
_ positive regulation of protein 227
G0:0071902 serine/threonine kinase activity 0.041
G0:0045859 | regulation of protein kinase activity 661 <0.001
> - - 745
G0:0001934 positive regul.atlon of protein
phosphorylation <0.001
G0:0045862 | positive regulation of proteolysis 369 <0.001
- — - 231
GO:1903050 regule.ltlon of pr.oteoly5|s involved in
protein catabolic process <0.001
G0:0033674 | positive regulation of kinase activity 494 0.017
G0:0051100 | negative regulation of binding 162 0.015
positive regulation of endopeptidase 169
:001
G0:0010950 activity 0.024
G0:0050790 | regulation of catalytic activity 2356 <0.001
G0:0051098 | regulation of binding 372 <0.001
G0:0044093 | positive regulation of molecular function | 1580 <0.001
G0:0032070 | regulation of deoxyribonuclease activity | 10 0.003
G0:0044092 | negative regulation of molecular function | 1115 <0.001
G0:0051345 | positive regulation of hydrolase activity 582 <0.001
i i i 320
G0:0001933 negative regu_latlon of protein
phosphorylation <0.001

Table B6. GO-CC enriched for Functional Unit 3 of the LRRK2int

Term ID Term Name Term size Adjusted p-value
G0:0005925 | focal adhesion 421 <0.001
G0:0005856 | cytoskeleton 2407 <0.001
GO0:0030055 | cell-substrate junction 431 <0.001
G0:0016234 | inclusion body 74 <0.001
G0:0030054 | cell junction 2214 <0.001
G0:0015630 | microtubule cytoskeleton 1388 <0.001
G0:1902494 | catalytic complex 1781 <0.001
G0:0070062 | extracellular exosome 2109 <0.001
GO0:1903561 | extracellular vesicle 2133 <0.001
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extracellular membrane-bounded

G0:0065010 | organelle 2134 <0.001
G0:0043230 | extracellular organelle 2134 <0.001
G0:0070161 | anchoring junction 903 <0.001
G0:0045202 | synapse 1451 <0.001
G0:0044297 | cell body 567 <0.001
G0:0101031 | protein folding chaperone complex 41 <0.001
G0:0098687 | chromosomal region 399 <0.001
G0:0022626 | cytosolic ribosome 110 <0.001
G0:0098562 | cytoplasmic side of membrane 213 <0.001
G0:0140535 | intracellular protein-containing complex | 951 <0.001
G0:0042995 | cell projection 2329 <0.001
G0:0022627 | cytosolic small ribosomal subunit 44 <0.001
G0:0043005 | neuron projection 1299 <0.001
G0:0036477 | somatodendritic compartment 849 <0.001
G0:0005815 | microtubule organizing centre 855 <0.001
G0:0048471 | perinuclear region of cytoplasm 733 <0.001
G0:0005694 | chromosome 1942 <0.001
plasma membrane bounded cell
G0:0120025 | projection 2217 <0.001
G0:0030424 | axon 641 <0.001
G0:0005739 | mitochondrion 1672 <0.001
G0:0000781 | chromosome, telomeric region 170 <0.001
G0:0015935 | small ribosomal subunit 79 <0.001
G0:0005813 | centrosome 647 <0.001
G0:0098978 | glutamatergic synapse 426 <0.001
G0:0043025 | neuronal cell body 500 <0.001
G0:0030425 | dendrite 621 <0.001
G0:0097447 | dendritic tree 623 <0.001
G0:0099080 | supramolecular complex 1404 <0.001
G0:0098794 | postsynapse 644 <0.001
G0:0044391 | ribosomal subunit 189 <0.001
G0:0005819 | spindle 431 <0.001
G0:0016235 | aggresome 36 <0.001
G0:0031410 | cytoplasmic vesicle 2476 <0.001
G0:0097708 | intracellular vesicle 2481 <0.001
G0:0031264 | death-inducing signalling complex 9 <0.001
G0:0120111 | neuron projection cytoplasm 90 <0.001
G0:0099512 | supramolecular fibre 1034 <0.001
G0:0099081 | supramolecular polymer 1042 <0.001
G0:0009898 | cytoplasmic side of plasma membrane 175 <0.001
G0:1902554 | serine/threonine protein kinase complex | 136 <0.001
eukaryotic translation elongation factor 1

G0:0005853 | complex 4 0.001

G0:0000793 | condensed chromosome 278 0.001

G0:1990909 | Wnt signalosome 13 0.001
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G0:0005903 | brush border 111 0.001
G0:0048770 | pigment granule 111 0.001
G0:0042470 | melanosome 111 0.001
G0:0090734 | site of DNA damage 117 0.001
G0:1902911 | protein kinase complex 156 0.001
G0:0035861 | site of double-strand break 86 0.002
G0:1904813 | ficolin-1-rich granule lumen 124 0.002
G0:0031252 | cell leading edge 424 0.002
G0:0005938 | cell cortex 314 0.002
G0:0030426 | growth cone 170 0.002
GO0:0097342 | ripoptosome 6 0.003
G0:1904115 | axon cytoplasm 63 0.003
G0:0030427 | site of polarized growth 175 0.003
G0:0150034 | distal axon 277 0.004
G0:0101002 | ficolin-1-rich granule 184 0.005
G0:0045121 | membrane raft 285 0.005
G0:0098857 | membrane microdomain 286 0.005
G0:0032993 | protein-DNA complex 1435 0.006
G0:0016328 | lateral plasma membrane 72 0.006
G0:0005838 | proteasome regulatory particle 22 0.007
G0:0005874 | microtubule 474 0.007
G0:1990234 | transferase complex 892 0.007
G0:0034399 | nuclear periphery 151 0.008
G0:0031975 | envelope 1293 0.008
G0:0031967 | organelle envelope 1293 0.008
G0:0000775 | chromosome, centromeric region 258 0.011
G0:0022624 | proteasome accessory complex 25 0.012
G0:0098862 | cluster of actin-based cell projections 167 0.016
G0:0099513 | polymeric cytoskeletal fibre 793 0.016
G0:0030141 | secretory granule 871 0.017
G0:1990565 | HSP90-CDC37 chaperone complex 2 0.018
G0:0098552 | side of membrane 656 0.019
G0:0000785 | chromatin 1366 0.020
G0:0099503 | secretory vesicle 1039 0.021
G0:0016604 | nuclear body 888 0.022
condensed chromosome, centromeric
G0:0000779 | region 178 0.025
G0:0042405 | nuclear inclusion body 12 0.028
G0:0099568 | cytoplasmic region 290 0.030
G0:0070603 | SWI/SNF superfamily-type complex 96 0.032
G0:0016607 | nuclear speck 418 0.035
G0:0098793 | presynapse 561 0.043
G0:0098574 | cytoplasmic side of lysosomal membrane | 14 0.047

Table B7. GO-BP terms enriched for Functional Unit 4 of the LRRK2int
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Term ID Term name Term size Adjusted p-value
i i 158
GO:0070507 regula.tlor'\ of microtubule cytoskeleton
organization <0.001
G0:0032956 regula.tior.\ of actin cytoskeleton 364
organization 0.003
iti i 194
GO-0051495 p05|tlye rggulatlon of cytoskeleton
organization 0.026
G0:0051493 | regulation of cytoskeleton organization 541 <0.001
iti lati f I 507
G0:0010638 posm\./e rfegu ation of organelle
organization <0.001
i i 367
G0:0010639 negat{ve regulat|on of organelle
organization <0.001
G0:0010821 | regulation of mitochondrion organization | 151 <0.001
G0:0051247 positive regulation of protein metabolic 1499
process <0.001
G0:0042176 | regulation of protein catabolic process 366 <0.001
i in fi 142
G0:0030833 regulatlgn of actin filament
polymerization 0.003
G0:0031113 | regulation of microtubule polymerization | 54 0.004
regulation of autophagy of 37
:190314
60:1903146 mitochondrion 0.002
- - - 92
G0O:0032273 positive .regl.JIatlon of protein
polymerization 0.007
G0:0044087 rggulatior\ of cellular component 955
biogenesis <0.001
G0:0016241 | regulation of macroautophagy 160 0.002
i 2365
GO:0051128 regula'tlor) of cellular component
organization <0.001
G0:0033043 | regulation of organelle organization 1189 <0.001
- -~ — 209
G0:0043254 regulation of protein-containing complex
assembly <0.001
iti i 1056
GO-0051130 p05|t|\./e rfegulatlon of cellular component
organization <0.001
i i 702
G0:0051129 negative regulatlo.n of cellular
component organization <0.001
lati f lecular fi 381
G0:1902903 regu a. |or.1 of supramolecular fibre
organization <0.001
- - - 39
G0:0031110 regulation of rmc.rotubule polymerization
or depolymerization 0.005
G0:0031344 | regulation of cell projection organization | 656 <0.001
G0:0001558 | regulation of cell growth 429 0.047
i 640
GO:0120035 regulatllon gf pIasma.me.mbrane bounded
cell projection organization <0.001
G0:0110053 | regulation of actin filament organization | 276 <0.001
G0:0010506 | regulation of autophagy 348 <0.001
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— - - 220
G0O:0031331 positive regulation of cellular catabolic
process <0.001
G0:1902743 | regulation of lamellipodium organization | 53 0.003
regulation of neuron projection 447
GO:0010975 | ° prol
development 0.009
- ; T 161
G0-0008064 regulation .Of a.ctm polymerization or
depolymerization 0.002
G0:0032535 | regulation of cellular component size 373 <0.001
G0:0030832 | regulation of actin filament length 164 0.003
G0:0032886 | regulation of microtubule-based process | 259 0.001
i in fi - 404
G0:0032970 regulation of actin filament-based
process 0.001
G0:0032271 | regulation of protein polymerization 203 <0.001
ositive regulation of autophagy of 13
GO:1903599 | POS!tVe reguiati utophagy
mitochondrion 0.015
- - -~ — 193
G0O-0031334 positive regulation of protein-containing
complex assembly <0.001
e - T 37
GO:1902745 p05|t|\./e rfegulatlon of lamellipodium
organization 0.002
> - T 29
G0:0010592 positive regulation of lamellipodium
assembly 0.005
G0:0009896 | positive regulation of catabolic process 521 <0.001
G0:0010591 | regulation of lamellipodium assembly 41 0.005
G0:0009894 | regulation of catabolic process 992 <0.001
G0:0031329 | regulation of cellular catabolic process 790 <0.001
G0:0090066 | regulation of anatomical structure size 511 <0.001
iti i 502
GO:0044089 p93|t|ve r'egulatlon of cellular component
biogenesis <0.001
- - - - =3
G0:0010823 negat{ve regulat|on of mitochondrion
organization 0.003
- - . 353
GO:0031346 p05|t|Ye rfagulatlon of cell projection
organization 0.007
iti i 175
G0O:1902905 903|t|ve reg_ulajclon of supramolecular
fibre organization 0.036
- : ; ; 212
GO:0045732 positive regulation of protein catabolic
process <0.001
Table B8. GO-CC enriched for Functional Unit 4 of the LRRK2jnt
Term ID Term name Term size Adjusted p-value
G0:0005856 cytoskeleton 2407 <0.001
G0:0070062 extracellular exosome 2109 <0.001
G0:1903561 extracellular vesicle 2133 <0.001
G0:0043230 extracellular organelle 2134 <0.001
extracellular membrane-bounded
G0:0065010 organelle 2134 <0.001
G0:0005925 focal adhesion 421 <0.001
G0:0030055 cell-substrate junction 431 <0.001
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G0:0030054 cell junction 2214 <0.001
G0:0015630 microtubule cytoskeleton 1388 <0.001
G0:0005739 mitochondrion 1672 <0.001
G0:0070161 anchoring junction 903 <0.001
G0:0016234 inclusion body 74 <0.001
G0:0045202 synapse 1451 <0.001
G0:0044297 cell body 567 <0.001
G0:0042995 cell projection 2329 <0.001
plasma membrane bounded cell
G0:0120025 projection 2217 <0.001
G0:1902494 catalytic complex 1781 <0.001
G0:0005819 spindle 431 <0.001
G0:0043005 neuron projection 1299 <0.001
G0:0098794 postsynapse 644 <0.001
G0:0036477 somatodendritic compartment 849 <0.001
G0:0043025 neuronal cell body 500 <0.001
G0:0098687 chromosomal region 399 <0.001
G0:0098562 cytoplasmic side of membrane 213 <0.001
G0:0005815 microtubule organizing centre 855 <0.001
G0:0005938 cell cortex 314 <0.001
G0:0048471 perinuclear region of cytoplasm 733 <0.001
G0:0030425 dendrite 621 <0.001
G0:0097447 dendritic tree 623 <0.001
G0:0030424 axon 641 <0.001
G0:0005813 centrosome 647 <0.001
G0:0022627 cytosolic small ribosomal subunit 44 <0.001
G0:0022626 cytosolic ribosome 110 <0.001
G0:0015935 small ribosomal subunit 79 <0.001
mitochondrial permeability transition
G0:0005757 pore complex 7 <0.001
G0:0031967 organelle envelope 1293 <0.001
G0:0031975 envelope 1293 <0.001
G0:0016235 aggresome 36 <0.001
G0:0120111 neuron projection cytoplasm 90 <0.001
G0:0031252 cell leading edge 424 <0.001
G0:0098978 glutamatergic synapse 426 <0.001
G0:0031410 cytoplasmic vesicle 2476 <0.001
G0:0097708 intracellular vesicle 2481 <0.001
G0:0031966 mitochondrial membrane 771 <0.001
G0:0030426 growth cone 170 <0.001
G0:0031264 death-inducing signaling complex 9 <0.001
G0:0098796 membrane protein complex 1357 <0.001
G0:0009898 cytoplasmic side of plasma membrane 175 <0.001
G0:0030427 site of polarized growth 175 <0.001
G0:0150034 distal axon 277 <0.001
G0:0099512 supramolecular fibre 1034 <0.001
G0:0099081 supramolecular polymer 1042 <0.001
G0:0045121 membrane raft 285 <0.001
G0:0098857 membrane microdomain 286 <0.001
G0:0099080 supramolecular complex 1404 <0.001
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G0:0005740 mitochondrial envelope 820 <0.001
G0:0044391 ribosomal subunit 189 <0.001
G0:0048770 pigment granule 111 <0.001
G0:0042470 melanosome 111 <0.001
G0:1990909 Whnt signalosome 13 <0.001
G0:0035861 site of double-strand break 86 0.001
G0:1990234 transferase complex 892 0.001
G0:0000781 chromosome, telomeric region 170 0.001
G0:0043197 dendritic spine 171 0.001
G0:0044309 neuron spine 175 0.001
G0:0005694 chromosome 1942 0.001
GO0:1904115 axon cytoplasm 63 0.001
G0:0051233 spindle midzone 37 0.002
G0:0140535 intracellular protein-containing complex 951 0.002
G0:0097342 ripoptosome 6 0.002
G0:0031968 organelle outer membrane 249 0.003
G0:0019867 outer membrane 251 0.003
G0:0101031 protein folding chaperone complex 41 0.003
G0:0016328 lateral plasma membrane 72 0.003
G0:0030496 midbody 206 0.004
G0:0090734 site of DNA damage 117 0.005
G0:0005741 mitochondrial outer membrane 220 0.007
G0:0000922 spindle pole 172 0.008
G0:0044294 dendritic growth cone 9 0.009
G0:0046930 pore complex 26 0.010
G0:0099568 cytoplasmic region 290 0.010
G0:0097225 sperm midpiece 54 0.011
G0:1902554 serine/threonine protein kinase complex | 136 0.014
G0:1990565 HSP90-CDC37 chaperone complex 2 0.017
plasma membrane bounded cell
G0:0032838 projection cytoplasm 252 0.019
G0:0030027 lamellipodium 201 0.023
G0:0005768 endosome 1047 0.026
G0:0034399 nuclear periphery 151 0.026
G0:0099513 polymeric cytoskeletal fibre 793 0.030
G0:0005874 microtubule 474 0.031
G0:0043204 perikaryon 155 0.031
G0:1902911 protein kinase complex 156 0.032
G0:0044292 dendrite terminus 14 0.038
G0:0005903 brush border 111 0.038
G0:0019866 organelle inner membrane 566 0.041
G0:0031616 spindle pole centrosome 15 0.047
G0:0099073 mitochondrion-derived vesicle 3 0.050
G0:0000322 storage vacuole 3 0.050

Table B9. GO-BP enriched for Functional Unit 5 of the LRRK2in:

Term ID

Term name

Term size

Adjusted p-value

G0:1902531

regulation of intracellular signal 1725

transduction

<0.001
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i i 1353
GO-0010648 negative .regf,llatlon of cell
communication 0.005
- P - 168
G0:2001242 r(.agula.tlon of intrinsic apoptotic
signalling pathway <0.001
- - - 995
G0:1902533 p.osmve regulatl.on of intracellular
signal transduction <0.001
iti i 2267
G0:0048584 p95|t|ve regulation of response to
stimulus <0.001
G0:0023056 | positive regulation of signalling 1727 <0.001
i i i 105
GO-1901796 regulation of s'|gnal transduction by
p53 class mediator 0.001
- - — 100
G0:2001243 negatlve. re.gulatl'on of intrinsic
apoptotic signalling pathway 0.002
negative regulation of intracellular 514
:1902532
60:190253 signal transduction 0.011
positive regulation of signal 1528
: 7
G0:000996 transduction 0.002
) negative regulation of signal 1248
G0:0009968 transduction 0.002
negative regulation of oxidative 19
G0:1902176 | stress-induced intrinsic apoptotic
signalling pathway 0.005
i 711
GO:0080135 regulation of cellular response to
stress <0.001
i 82
G0:1900407 regula.tlon of cellular response to
oxidative stress 0.019
G0:0080134 | regulation of response to stress 1441 <0.001
i i 1611
GO:0048585 ne.gatlve regulation of response to
stimulus 0.040
negative regulation of oxidative 47
: 202
60:190320 stress-induced cell death 0.014
i i i 231
G0:2001234 n.egatlye regulation of apoptotic
signalling pathway 0.001
G0:0010942 | positive regulation of cell death 588 <0.001
iti i 1729
GO:0010647 positive r.egLJ.Iatlon of cell
communication <0.001
G0:0010941 | regulation of cell death 1638 <0.001
GO0:0043067 | regulation of programmed cell death | 1483 <0.001
G0:0060548 | negative regulation of cell death 1001 <0.001
G0:1901214 | regulation of neuron death 324 <0.001
5 o - 71
60:1903201 _regulatlon of oxidative stress
induced cell death 0.005
: o 91
G0:1902882 regulation of response to oxidative
stress 0.048
G0:0042981 | regulation of apoptotic process 1454 <0.001
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— - 522
G0:0043068 positive regulation of programmed
cell death <0.001
i i 900
G0:0043069 negative regulation of programmed
cell death <0.001
G0:0023057 | negative regulation of signalling 1353 0.005
i i i 881
GO-0043066 negative regulation of apoptotic
process <0.001
- - - 509
GO-0043065 positive regulation of apoptotic
process <0.001
- — - 366
G0:2001233 regulation of apoptotic signalling
pathway <0.001
- - - 130
G0O:2001235 p.osmv'e regulation of apoptotic
signalling pathway 0.006
G0:1901216 | positive regulation of neuron death 93 <0.001

Table B10. GO-CC enriched for Functional Unit 5 of the LRRK2nt

Term iD Term name Term size Adjusted p-value
G0:0005856 | cytoskeleton 2407 <0.001
G0:0070062 | extracellular exosome 2109 <0.001
G0:1903561 | extracellular vesicle 2133 <0.001
G0:0043230 | extracellular organelle 2134 <0.001
extracellular membrane-bounded
G0:0065010 | organelle 2134 <0.001
G0:0005925 | focal adhesion 421 <0.001
GO0:0030055 | cell-substrate junction 431 <0.001
G0:0030054 | cell junction 2214 <0.001
G0:0015630 | microtubule cytoskeleton 1388 <0.001
G0:0005739 | mitochondrion 1672 <0.001
G0:0070161 | anchoring junction 903 <0.001
G0:0016234 | inclusion body 74 <0.001
G0:0045202 | synapse 1451 <0.001
G0:0044297 | cell body 567 <0.001
G0:0042995 | cell projection 2329 <0.001
plasma membrane bounded cell
G0:0120025 | projection 2217 <0.001
G0:1902494 | catalytic complex 1781 <0.001
G0:0005819 | spindle 431 <0.001
G0:0043005 | neuron projection 1299 <0.001
GO0:0098794 | postsynapse 644 <0.001
G0:0036477 | somatodendritic compartment 849 <0.001
G0:0043025 | neuronal cell body 500 <0.001
G0:0098687 | chromosomal region 399 <0.001
G0:0098562 | cytoplasmic side of membrane 213 <0.001
G0:0005815 | microtubule organizing center 855 <0.001
G0:0005938 | cell cortex 314 <0.001
G0:0048471 | perinuclear region of cytoplasm 733 <0.001
G0:0030425 | dendrite 621 <0.001
G0:0097447 | dendritic tree 623 <0.001
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G0:0030424 | axon 641 <0.001
G0:0005813 | centrosome 647 <0.001
G0:0022627 | cytosolic small ribosomal subunit 44 <0.001
G0:0022626 | cytosolic ribosome 110 <0.001
G0:0015935 | small ribosomal subunit 79 <0.001
mitochondrial permeability transition
G0:0005757 | pore complex 7 <0.001
G0:0031967 | organelle envelope 1293 <0.001
G0:0031975 | envelope 1293 <0.001
G0:0016235 | aggresome 36 <0.001
G0:0120111 | neuron projection cytoplasm 90 <0.001
G0:0031252 | cell leading edge 424 <0.001
G0:0098978 | glutamatergic synapse 426 <0.001
G0:0031410 | cytoplasmic vesicle 2476 <0.001
G0:0097708 | intracellular vesicle 2481 <0.001
G0:0031966 | mitochondrial membrane 771 <0.001
G0:0030426 | growth cone 170 <0.001
G0:0031264 | death-inducing signalling complex 9 <0.001
G0:0098796 | membrane protein complex 1357 <0.001
G0:0009898 | cytoplasmic side of plasma membrane 175 <0.001
G0:0030427 | site of polarized growth 175 <0.001
G0:0150034 | distal axon 277 <0.001
G0:0099512 | supramolecular fibre 1034 <0.001
G0:0099081 | supramolecular polymer 1042 <0.001
G0:0045121 | membrane raft 285 <0.001
G0:0098857 | membrane microdomain 286 <0.001
G0:0099080 | supramolecular complex 1404 <0.001
G0:0005740 | mitochondrial envelope 820 <0.001
G0:0044391 | ribosomal subunit 189 <0.001
G0:0048770 | pigment granule 111 <0.001
G0:0042470 | melanosome 111 <0.001
G0:1990909 | Wnt signalosome 13 <0.001
G0:0035861 | site of double-strand break 86 0.001
G0:1990234 | transferase complex 892 0.001
G0:0000781 | chromosome, telomeric region 170 0.001
G0:0043197 | dendritic spine 171 0.001
G0:0044309 | neuron spine 175 0.001
G0:0005694 | chromosome 1942 0.001
G0:1904115 | axon cytoplasm 63 0.001
G0:0051233 | spindle midzone 37 0.002
G0:0140535 | intracellular protein-containing complex | 951 0.002
G0:0097342 | ripoptosome 6 0.002
G0:0031968 | organelle outer membrane 249 0.003
G0:0019867 | outer membrane 251 0.003
G0:0101031 | protein folding chaperone complex 41 0.003
G0:0016328 | lateral plasma membrane 72 0.003
G0:0030496 | midbody 206 0.004
G0:0090734 | site of DNA damage 117 0.005
G0:0005741 | mitochondrial outer membrane 220 0.007
G0:0000922 | spindle pole 172 0.008
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G0:0044294 | dendritic growth cone 9 0.009
G0:0046930 | pore complex 26 0.010
G0:0099568 | cytoplasmic region 290 0.010
G0:0097225 | sperm midpiece 54 0.011
serine/threonine protein kinase
G0:1902554 | complex 136 0.014
plasma membrane bounded cell
G0:0032838 | projection cytoplasm 252 0.019
G0:0030027 | lamellipodium 201 0.023
G0:0005768 | endosome 1047 0.026
G0:0034399 | nuclear periphery 151 0.026
G0:0099513 | polymeric cytoskeletal fibre 793 0.030
G0:0005874 | microtubule 474 0.031
G0:0043204 | perikaryon 155 0.031
G0:1902911 | protein kinase complex 156 0.032
G0:0044292 | dendrite terminus 14 0.038
G0:0005903 | brush border 111 0.038
G0:0019866 | organelle inner membrane 566 0.041
G0:0031616 | spindle pole centrosome 15 0.047
Table B11. GO-BP enriched for Functional Unit 6 of the LRRK2jnt
Term ID Term name Term size Adjusted p-value
developmental growth involved in | 238
G0:0060560 | morphogenesis 0.018
G0:0030030 | cell projection organization 1556 <0.001
G0:0032989 | cellular component morphogenesis | 778 <0.001
G0:0097581 | lamellipodium organization 91 0.048
G0:0040007 | growth 933 0.008
plasma membrane bounded cell | 651
G0:0120039 | projection morphogenesis <0.001
G0:0031175 | neuron projection development 976 <0.001
plasma membrane bounded cell | 1518
G0:0120036 | projection organization <0.001
G0:0048588 | developmental cell growth 224 <0.001
G0:0016049 | cell growth 497 <0.001
G0:0048666 | neuron development 1130 <0.001
G0:0032990 | cell part morphogenesis 675 <0.001
G0:0048812 | neuron projection morphogenesis | 635 <0.001
G0:0030182 | neuron differentiation 1401 <0.001
G0:0022008 | neurogenesis 1688 <0.001
G0:0030032 | lamellipodium assembly 73 0.006
G0:0048858 | cell projection morphogenesis 656 <0.001
G0:0000902 | cell morphogenesis 965 <0.001
G0:0048699 | generation of neurons 1473 <0.001
G0:1990138 | neuron projection extension 175 0.001

Table B12. GO-CC enriched for Functional Unit 6 of the LRRK2jn;
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Term ID Term name Termsize Adjusted p-value
G0:0005856 | cytoskeleton 2407 <0.001
G0:0042995 | cell projection 2329 <0.001
G0:0030054 | cell junction 2214 <0.001
plasma membrane bounded cell
G0:0120025 | projection 2217 <0.001
G0:0005925 | focal adhesion 421 <0.001
G0:0030055 | cell-substrate junction 431 <0.001
G0:0045202 | synapse 1451 <0.001
G0:0070161 | anchoring junction 903 <0.001
GO0:0043005 | neuron projection 1299 <0.001
G0:0070062 | extracellular exosome 2109 <0.001
G0:1903561 | extracellular vesicle 2133 <0.001
extracellular membrane-bounded
GO0:0065010 | organelle 2134 <0.001
G0:0043230 | extracellular organelle 2134 <0.001
G0:0030424 | axon 641 <0.001
G0:0031252 | cell leading edge 424 <0.001
G0:0036477 | somatodendritic compartment 849 <0.001
G0:0043025 | neuronal cell body 500 <0.001
G0:0015630 | microtubule cytoskeleton 1388 <0.001
G0:0098978 | glutamatergic synapse 426 <0.001
G0:0030425 | dendrite 621 <0.001
G0:0097447 | dendritic tree 623 <0.001
G0:0044297 | cell body 567 <0.001
GO0:0098794 | postsynapse 644 <0.001
G0:0048471 | perinuclear region of cytoplasm 733 <0.001
G0:0150034 | distal axon 277 <0.001
G0:0031410 | cytoplasmic vesicle 2476 <0.001
G0:0097708 | intracellular vesicle 2481 <0.001
G0:0015629 | actin cytoskeleton 501 <0.001
G0:0099080 | supramolecular complex 1404 <0.001
G0:0099512 | supramolecular fiber 1034 <0.001
G0:0099081 | supramolecular polymer 1042 <0.001
G0:0030426 | growth cone 170 <0.001
G0:0030427 | site of polarized growth 175 <0.001
G0:0005903 | brush border 111 <0.001
G0:0099513 | polymeric cytoskeletal fiber 793 <0.001
GO0:0098793 | presynapse 561 <0.001
G0:0030027 | lamellipodium 201 <0.001
G0:0005938 | cell cortex 314 <0.001
G0:0048770 | pigment granule 111 <0.001
G0:0042470 | melanosome 111 <0.001
G0:0098862 | cluster of actin-based cell projections | 167 <0.001
G0:0005874 | microtubule 474 <0.001
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G0:0005815 | microtubule organizing center 855 <0.001
G0:0005911 | cell-cell junction 517 <0.001
G0:0016234 | inclusion body 74 <0.001
G0:0098590 | plasma membrane region 1304 <0.001
G0:0042641 | actomyosin 77 <0.001
G0:0043197 | dendritic spine 171 <0.001
G0:0031253 | cell projection membrane 354 <0.001
G0:0044309 | neuron spine 175 <0.001
G0:0001726 | ruffle 181 <0.001
G0:0120111 | neuron projection cytoplasm 20 <0.001
G0:1990909 | Wnt signalosome 13 <0.001
G0:0099503 | secretory vesicle 1039 <0.001
G0:0005768 | endosome 1047 <0.001
G0:0032279 | asymmetric synapse 339 <0.001
G0:0097517 | contractile actin filament bundle 70 <0.001
G0:0001725 | stress fiber 70 <0.001
G0:0005739 | mitochondrion 1672 0.001
GO0:0098984 | neuron to neuron synapse 371 0.001
G0:0032432 | actin filament bundle 78 0.001
G0:0043209 | myelin sheath 45 0.001
G0:0014069 | postsynaptic density 323 0.002
G0:0045335 | phagocytic vesicle 141 0.002
G0:0030139 | endocytic vesicle 342 0.003
G0:0044294 | dendritic growth cone 9 0.003
G0:0005819 | spindle 431 0.004
G0:0099572 | postsynaptic specialization 352 0.004
G0:0098562 | cytoplasmic side of membrane 213 0.004
G0:0043204 | perikaryon 155 0.004
G0:0099568 | cytoplasmic region 290 0.005
G0:1904115 | axon cytoplasm 63 0.005
G0:0005885 | Arp2/3 protein complex 11 0.007
G0:0005929 | cilium 747 0.007
G0:0043679 | axon terminus 112 0.007
G0:0030141 | secretory granule 871 0.009
G0:0016328 | lateral plasma membrane 72 0.010
G0:0016235 | aggresome 36 0.010
G0:0101002 | ficolin-1-rich granule 184 0.013
plasma membrane bounded cell
G0:0032838 | projection cytoplasm 252 0.013
G0:0005794 | Golgi apparatus 1613 0.014
G0:0044292 | dendrite terminus 14 0.014
G0:0098845 | postsynaptic endosome 14 0.014
G0:0044306 | neuron projection terminus 127 0.014
G0:0005769 | early endosome 428 0.019
G0:0000322 | storage vacuole 3 0.025
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G0:0099073 | mitochondrion-derived vesicle 3 0.025
G0:0043195 | terminal bouton 45 0.025
G0:0005813 | centrosome 647 0.031
G0:0031143 | pseudopodium 18 0.032
G0:0098858 | actin-based cell projection 219 0.039
G0:0012506 | vesicle membrane 1230 0.041
G0:0098685 | Schaffer collateral - CA1 synapse 97 0.043
G0:0098588 | bounding membrane of organelle 2160 0.045

Table B13. GO-BP enriched for Functional Unit 7 of the LRRK2jnt

Term ID Term name Term size Adjusted p-value
positive regulation of protein export from | 18

G0:0046827 | nucleus <0.001

G0:0046825 | regulation of protein export from nucleus | 32 0.001

G0:0032386 | regulation of intracellular transport 335 <0.001

G0:0017157 | regulation of exocytosis 215 0.020

G0:1903421 | regulation of synaptic vesicle recycling 20 0.008
regulation of nucleocytoplasmic | 110

G0:0046822 | transport 0.007
regulation of establishment of protein | 523

G0:0070201 | localization 0.002
positive regulation of nucleocytoplasmic | 61

G0:0046824 | transport 0.011

G0:0060627 | regulation of vesicle-mediated transport | 538 <0.001
positive regulation of establishment of | 315

G0:1904951 | protein localization 0.015

G0:0051050 | positive regulation of transport 905 0.004
positive regulation of intracellular | 199

G0:0032388 | transport 0.001

G0:0032880 | regulation of protein localization 854 <0.001

G0:0051049 | regulation of transport 1754 <0.001

G0:0060341 | regulation of cellular localization 963 <0.001

G0:0032879 | regulation of localization 2101 <0.001

Table B14. GO-CC enriched for Functional Unit 7 of the LRRK2jn:

Term ID Term name Term size Adjusted p-value
G0:0005856 cytoskeleton 2407 <0.001
G0:0030054 cell junction 2214 <0.001
G0:0045202 synhapse 1451 <0.001
G0:0015630 microtubule cytoskeleton 1388 <0.001
G0:0070062 extracellular exosome 2109 <0.001
G0:1903561 extracellular vesicle 2133 <0.001
extracellular membrane-bounded
G0:0065010 organelle 2134 <0.001
G0:0043230 extracellular organelle 2134 <0.001
G0:0098794 postsynapse 644 <0.001
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G0:0043005 neuron projection 1299 <0.001
plasma membrane bounded cell
G0:0120025 projection 2217 <0.001
G0:0031410 cytoplasmic vesicle 2476 <0.001
G0:0097708 intracellular vesicle 2481 <0.001
G0:0048471 perinuclear region of cytoplasm 733 <0.001
G0:0042995 cell projection 2329 <0.001
G0:0098978 glutamatergic synapse 426 <0.001
G0:0098793 presynapse 561 <0.001
G0:0044297 cell body 567 <0.001
G0:0030424 axon 641 <0.001
G0:0150034 distal axon 277 <0.001
G0:0036477 somatodendritic compartment 849 <0.001
G0:0099512 supramolecular fiber 1034 <0.001
G0:0099081 supramolecular polymer 1042 <0.001
G0:0030425 dendrite 621 <0.001
G0:0097447 dendritic tree 623 <0.001
G0:0099080 supramolecular complex 1404 <0.001
G0:0005815 microtubule organizing centre 855 <0.001
G0:0042470 melanosome 111 <0.001
G0:0048770 pigment granule 111 <0.001
G0:0005925 focal adhesion 421 <0.001
G0:0070161 anchoring junction 9203 <0.001
G0:0030055 cell-substrate junction 431 <0.001
G0:0099503 secretory vesicle 1039 <0.001
G0:0005813 centrosome 647 <0.001
G0:0016234 inclusion body 74 <0.001
G0:0043025 neuronal cell body 500 <0.001
G0:0005819 spindle 431 <0.001
G0:0005768 endosome 1047 <0.001
G0:0099513 polymeric cytoskeletal fibre 793 <0.001
G0:0005874 microtubule 474 <0.001
G0:0030426 growth cone 170 <0.001
G0:0030139 endocytic vesicle 342 <0.001
G0:0030427 site of polarized growth 175 <0.001
G0:0045335 phagocytic vesicle 141 <0.001
G0:0005739 mitochondrion 1672 <0.001
G0:0012506 | vesicle membrane 1230 <0.001
G0:0098588 bounding membrane of organelle 2160 <0.001
G0:0031252 cell leading edge 424 <0.001
G0:0043197 dendritic spine 171 <0.001
G0:0030141 secretory granule 871 <0.001
G0:0070382 exocytic vesicle 228 <0.001
G0:0044309 neuron spine 175 <0.001
G0:0030659 cytoplasmic vesicle membrane 1213 <0.001
G0:0005938 cell cortex 314 <0.001
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mitochondrial permeability transition

G0:0005757 pore complex 7 <0.001
G0:0098590 plasma membrane region 1304 <0.001
G0:0101031 protein folding chaperone complex 41 <0.001
G0:0008021 synaptic vesicle 212 <0.001
G0:0043679 axon terminus 112 <0.001
G0:0030133 transport vesicle 427 <0.001
G0:0000922 spindle pole 172 <0.001
G0:0044306 neuron projection terminus 127 <0.001
G0:0015629 actin cytoskeleton 501 <0.001
G0:0030496 midbody 206 <0.001
G0:0005911 cell-cell junction 517 <0.001
G0:0098562 cytoplasmic side of membrane 213 <0.001
G0:0045121 membrane raft 285 <0.001
G0:0098857 membrane microdomain 286 <0.001
G0:0005773 vacuole 838 <0.001
G0:0016235 aggresome 36 <0.001
G0:0098984 neuron to neuron synapse 371 <0.001
G0:0010008 endosome membrane 551 <0.001
G0:0030670 phagocytic vesicle membrane 78 <0.001
G0:0030672 synaptic vesicle membrane 127 <0.001
G0:0099501 exocytic vesicle membrane 127 <0.001
G0:0043195 terminal bouton 45 <0.001
G0:0005802 trans-Golgi network 257 <0.001
G0:0032279 asymmetric synapse 339 <0.001
G0:0030666 endocytic vesicle membrane 194 <0.001
G0:0120111 neuron projection cytoplasm 90 0.001
G0:0099572 postsynaptic specialization 352 0.001
G0:0098791 Golgi apparatus subcompartment 377 0.001
G0:0046930 pore complex 26 0.001
G0:0030658 transport vesicle membrane 232 0.002
G0:0044294 dendritic growth cone 9 0.002
G0:1904115 axon cytoplasm 63 0.002
G0:0014069 postsynaptic density 323 0.002
G0:0098796 membrane protein complex 1357 0.003
G0:0001726 ruffle 181 0.003
G0:0031984 organelle subcompartment 1505 0.003
G0:0072686 mitotic spindle 184 0.004
G0:0101002 ficolin-1-rich granule 184 0.004
G0:0005764 lysosome 745 0.004
G0:0000323 lytic vacuole 745 0.004
G0:0005905 clathrin-coated pit 75 0.005
G0:0051233 spindle midzone 37 0.005
G0:1990909 Wnt signalosome 13 0.006
G0:0030027 lamellipodium 201 0.006
G0:0055037 recycling endosome 201 0.006
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G0:0031975 envelope 1293 0.006
G0:0031967 organelle envelope 1293 0.006
G0:0044292 dendrite terminus 14 0.007
G0:0098845 postsynaptic endosome 14 0.007
G0:0005876 spindle microtubule 83 0.007
G0:0099568 cytoplasmic region 290 0.008
G0:0005794 Golgi apparatus 1613 0.009
G0:0031616 spindle pole centrosome 15 0.009
G0:1902494 catalytic complex 1781 0.010
G0:0098858 actin-based cell projection 219 0.011
G0:0005770 late endosome 305 0.012
G0:0043204 perikaryon 155 0.014
G0:0005798 Golgi-associated vesicle 96 0.015
G0:0030016 myofibril 236 0.017
G0:0030132 clathrin coat of coated pit 19 0.019
G0:0055038 recycling endosome membrane 103 0.021
G0:0043292 contractile fibre 245 0.022
G0:0099522 cytosolic region 20 0.022
G0:0097225 sperm midpiece 54 0.022
G0:0030175 filopodium 107 0.025
plasma membrane bounded cell
G0:0032838 projection cytoplasm 252 0.026
G0:0031256 leading edge membrane 179 0.030
G0:0031253 cell projection membrane 354 0.034
intracellular protein-containing
G0:0140535 complex 951 0.045
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Appendix C: GO-BPs enriched for topological clusters of the LRRK2 et

Table C1. GO-BP enriched for topological cluster A of the LRRK2pet

apoptotic process

<0.001

Term ID Term Name Term size | Adjusted p-value | Term Group
G0:0006412 | translation 743 <0.001 translation
G0:0002181 | cytoplasmic translation 159 <0.001 translation
G0:0043043 | peptide biosynthetic 772 translation

process <0.001
G0:0043604 | amide biosynthetic process 905 <0.001 translation
G0:0006518 | peptide metabolic process 926 <0.001 translation
G0:0034645 | cellular macromolecule 1208 translation
biosynthetic process <0.001
G0:0006260 | DNA replication 285 <0.001 translation
G0:0043603 | amide metabolic process 1204 <0.001 translation
G0:1901566 | organonitrogen compound 1805 translation
biosynthetic process <0.001
G0:0140694 | non-membrane-bounded 386 translation
organelle assembly <0.001
G0:0042255 | ribosome assembly 59 <0.001 translation
G0:0042274 | ribosomal small subunit 77 translation
biogenesis <0.001
G0:0000028 | ribosomal small subunit 17 translation
assembly <0.001
G0:0030490 | maturation of SSU-rRNA 54 <0.001 translation
G0:0070925 | organelle assembly 944 <0.001 translation
G0:0042254 | ribosome biogenesis 311 0.001 translation
G0:0006364 | rRNA processing 229 0.002 translation
G0:0045005 | DNA-templated DNA 56 translation
replication maintenance of
fidelity 0.004
G0:0045004 | DNA replication 2 translation
proofreading 0.006
G0:0006261 | DNA-templated DNA 162 translation
replication 0.007
G0:0000462 | maturation of SSU-rRNA 38 translation
from tricistronic rRNA
transcript (SSU-rRNA, 5.8S
rRNA, LSU-rRNA) 0.009
G0:0016072 | rRNA metabolic process 268 0.010 translation
GO:0006281 | DNA repair 591 0.013 translation
Table C2. GO-BP enriched for Topological Cluster B of the LRRKZ2pet

Term ID Term Name Term size Adjusted p-value | Term Group

G0:0043065 | positive regulation of 509 cell death
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G0:2001235 | positive regulation of 130 cell death
apoptotic signalling
pathway 0.020

G0:0043068 | positive regulation of 522 cell death
programmed cell death <0.001

G0:0062100 | positive regulation of 7 cell death
programmed necrotic cell
death 0.042

G0:0010942 | positive regulation of cell 588 cell death
death <0.001

G0:0097190 | apoptotic signalling 597 cell death
pathway <0.001

G0:0097191 | extrinsic apoptotic 224 cell death
signalling pathway <0.001

G0:0097193 | intrinsic apoptotic signalling 299 cell death
pathway 0.027

G0:0042981 | regulation of apoptotic 1454 cell death
process <0.001

G0:2001233 | regulation of apoptotic 366 cell death
signalling pathway <0.001

G0:0043067 | regulation of programmed 1483 cell death
cell death <0.001

G0:0062098 | regulation of programmed 28 cell death
necrotic cell death <0.001

G0:0043069 | negative regulation of 900 cell death
programmed cell death 0.005

G0:0097300 | programmed necrotic cell 46 cell death
death <0.001

G0:0070266 | necroptotic process 39 <0.001 cell death

G0:0010941 | regulation of cell death 1638 <0.001 cell death

G0:0010939 | regulation of necrotic cell 42 cell death
death <0.001

G0:0060548 | negative regulation of cell 1001 cell death
death 0.011

G0:0070265 | necrotic cell death 62 <0.001 cell death

GO0:0006915 | apoptotic process 1894 <0.001 cell death

G0:0060544 | regulation of necroptotic 25 cell death
process <0.001

G0:0060546 | negative regulation of 16 cell death
necroptotic process 0.001

G0:0060545 | positive regulation of 6 cell death
necroptotic process 0.030

G0:0012501 | programmed cell death 1948 <0.001 cell death

G0:0062099 | negative regulation of 17 cell death
programmed necrotic cell
death 0.001
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G0:0008219

cell death

2113

<0.001

cell death

G0:2001236

regulation of extrinsic
apoptotic signalling
pathway

153

0.037

cell death

G0:0060547

negative regulation of
necrotic cell death

22

0.003

cell death

G0:2001238

positive regulation of
extrinsic apoptotic
signalling pathway

50

0.038

cell death

G0:0043122

regulation of I-kappaB
kinase/NF-kappaB signalling

254

<0.001

cell death

G0:0043123

positive regulation of I-
kappaB kinase/NF-kappaB
signalling

191

<0.001

cell death

G0:0043124

negative regulation of |-
kappaB kinase/NF-kappaB
signalling

46

0.029

cell death

G0:0001959

regulation of cytokine-
mediated signalling
pathway

152

0.001

cell death

G0:1902531

regulation of intracellular
signal transduction

1725

0.001

cell death

G0:0009967

positive regulation of signal
transduction

1528

0.003

cell death

G0:0009968

negative regulation of signal
transduction

1248

0.006

cell death

G0:1902533

positive regulation of
intracellular signal
transduction

995

0.011

cell death

G0:1902532

negative regulation of
intracellular signal
transduction

514

0.025

cell death

G0:0023056

positive regulation of
signalling

1727

0.010

cell death

G0:0023057

negative regulation of
signalling

1353

0.011

cell death

G0:0010647

positive regulation of cell
communication

1729

0.010

cell death

G0:0010648

negative regulation of cell
communication

1353

0.011

cell death

G0:0010803

regulation of tumor necrosis
factor-mediated signalling
pathway

54

0.001

cell death

G0:1903265

positive regulation of tumor
necrosis factor-mediated
signalling pathway

12

<0.001

cell death
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G0:0001961 | positive regulation of 57 cell death
cytokine-mediated
signalling pathway 0.001

G0:0060760 | positive regulation of 64 cell death
response to cytokine
stimulus 0.001

G0:0060759 | regulation of response to 163 cell death
cytokine stimulus 0.001

G0:0048585 | negative regulation of 1611 cell death
response to stimulus 0.005

G0:0044093 | positive regulation of 1580 protein
molecular function <0.001 metabolism

G0:0043085 | positive regulation of 1181 protein
catalytic activity <0.001 metabolism

G0:0051091 | positive regulation of DNA- 268 protein
binding transcription factor metabolism
activity 0.016

G0:0050790 | regulation of catalytic 2356 protein
activity 0.022 metabolism

G0:0045862 | positive regulation of 369 protein
proteolysis <0.001 metabolism

G0:0010952 | positive regulation of 189 protein
peptidase activity 0.003 metabolism

G0:0051345 | positive regulation of 582 protein
hydrolase activity 0.003 metabolism

G0:2001056 | positive regulation of 143 protein
cysteine-type metabolism
endopeptidase activity 0.001

G0:0043280 | positive regulation of 124 protein
cysteine-type metabolism
endopeptidase activity
involved in apoptotic
process 0.016

G0:0030162 | regulation of proteolysis 737 protein

0.016 metabolism

G0:0010950 | positive regulation of 169 protein
endopeptidase activity 0.002 metabolism

G0:0032075 | positive regulation of 7 protein
nuclease activity 0.042 metabolism

G0:2000116 | regulation of cysteine-type 234 protein
endopeptidase activity 0.008 metabolism

G0:0051092 | positive regulation of NF- 157 protein
kappaB transcription factor metabolism
activity 0.001

G0:0034976 | response to endoplasmic 259 response to
reticulum stress 0.013 stress
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G0:0071345 | cellular response to 823 response to
cytokine stimulus <0.001 stress
G0:0071356 | cellular response to tumor 225 response to
necrosis factor <0.001 stress
G0:0019221 | cytokine-mediated 480 response to
signalling pathway 0.017 stress
G0:0033209 | tumor necrosis factor- 105 response to
mediated signalling stress
pathway <0.001
G0:0034612 | response to tumor necrosis 245 response to
factor <0.001 stress
G0:0034097 | response to cytokine 914 response to
<0.001 stress
G0:0031098 | stress-activated protein 246 response to
kinase signalling cascade 0.010 stress
G0:0062197 | cellular response to 332 response to
chemical stress 0.002 stress
G0:0034599 | cellular response to 275 response to
oxidative stress 0.018 stress
G0:0033554 | cellular response to stress 1941 response to
0.003 stress
G0:0071310 | cellular response to organic 1993 response to
substance 0.004 stress
Table C3. GO-BP enriched for Topological Cluster C of the LRRK2 et
Term ID Term Name Term size | Adjusted p-value | Term Group
G0:0006897 | endocytosis 660 Vesicular
0.045 transport
G0:2000781 | POsitive regulationof 8 Translation
double-strand break repair 0.034
regulation of double-strand 73
G0:0010569 | break repair via Translation
homologous recombination 0.018
positive regulation of 39
G0:1905168 | double-strand break repair Translation
via homologous
recombination 0.001
G0:0045911 positive. reg.ulation of DNA & Translation
recombination 0.016
G0:0099003 Yesicle-mediated transport 217 Vesicular
in synapse 0.005 transport
G0:0099504 | synaptic vesicle cycle 196 Vesicular
0.003 transport
. . 67 Vesicular
G0:0140238 | presynaptic endocytosis <0.001 transport
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67

Vesicular

G0:0048488 | synaptic vesicle endocytosis
<0.001 transport
80 Vesicular
: 4 i icl li
G0:0036465 | synaptic vesicle recycling <0.001 transport
plasma membrane bounded 651 Cvtoskeleton
G0:0120039 | cell projection yrosteler
. organisation
morphogenesis 0.041
jecti 175
G0:1990138 neuror? projection Cytosk.elefcon
extension 0.032 organisation
jecti 635
G0:0048812 neuron prOJec'tlon Cytosk'elejcon
morphogenesis 0.034 organisation
965
G0:0000902 | cell morphogenesis Cytosk'elejcon
0.015 organisation
jecti 656
G0:0048858 cell prOJectlon. Cytosk.elefcon
morphogenesis 0.044 organisation
58
G0:0031529 | ruffle organization Cytosk'elejcon
0.007 organisation
1518
G0:0120036 plasma_membrane bf)un_ded Cytosk.elefcon
cell projection organization 0.004 organisation
1556
G0:0030030 | cell projection organization Cytosk.elefcon
0.005 organisation
positive regulation of 112
Cytoskeleton
G0:0120034 | plasma membrane bounded Y o
N organisation
cell projection assembly 0.004
; T 53
G0O:1902743 regula'tlorlm of lamellipodium Cytosk.elejcon
organization <0.001 organisation
i i 511
G0:0090066 regulation pf anatomical Cytosk.elejcon
structure size <0.001 organisation
73 Cytoskeleton
G0:0030032 | lamellipodium assembly yroskele
<0.001 organisation
91 Cytoskeleton
G0:0097581 | lamellipodium organization y .
<0.001 organisation
. T an
G0:0010591 regulation of lamellipodium Cytosk.elejcon
assembly <0.001 organisation
i 955
G0:0044087 regulation of .ceIIuIar. Cytosk.elejcon
component biogenesis <0.001 organisation
regulation of protein- 409 Cvtoskeleton
G0:0043254 | containing complex Y ..
organisation
assembly 0.001
i 2365
G0O:0051128 regulation of ceIIu_Iar _ Cytosk.elefcon
component organization <0.001 organisation
"> . 79
G0:0010592 p05|t|\{e re_gulahon of Cytosk.elefcon
lamellipodium assembly <0.001 organisation
> . 37
G0O:1902745 p05|t|\{e re_gulahon of _ Cytosk'elejcon
lamellipodium organization <0.001 organisation
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i i 203
G0O:0032271 regulatlgn of protein Cytosk.elefcon
polymerization <0.001 organisation
284 kel
G0:0051258 | protein polymerization Cytos .e efcon
<0.001 organisation
- i 47
G0:0034314 Ar92/3 comp.lex mediated Cytosk.elefcon
actin nucleation <0.001 organisation
i 373
GO:0032535 regulation of.ceIIuIar Cytosk.elejcon
component size <0.001 organisation
GO:0030833 regulatign o_f actin filament 142 Cytosk.elefcon
polymerization <0.001 organisation
i 1189
G0:0033043 regula_tlor_1 of organelle Cytoslfelefcon
organization <0.001 organisation
regulation of 381
G0:1902903 | supramolecular fiber Cytosk.elefcon
o organisation
organization <0.001
i in fi - 404
G0:0032970 regulation of actin filament Cytoslfelejcon
based process <0.001 organisation
in fi 172
G0:0030041 actin flla'mer]t Cytoslfelejcon
polymerization <0.001 organisation
regulation of actin 161 Cvtoskeleton
G0:0008064 | polymerization or yroskele
o organisation
depolymerization <0.001
i in fi 164
G0:0030832 regulation of actin filament Cytosk.elejcon
length <0.001 organisation
i in fi 276
G0:0110053 regula.tlorj of actin filament Cytosk.elejcon
organization <0.001 organisation
i i 364
GO:0032956 regulation of actin o Cytosk.elejcon
cytoskeleton organization <0.001 organisation
lati f kel 541 kel
GO:0051493 regu a.tlor_w of cytoskeleton Cytos .e ejcon
organization <0.001 organisation
i kel 12 kel
G0:0099188 postsy./nap.)tlc cytoskeleton Cytos .e ejcon
organization 0.002 organisation
1507 kel
GO0:0007010 | cytoskeleton organization Cytos .e ejcon
<0.001 organisation
i 814
GO:0097435 supramol_ecularflber Cytosk.elefcon
organization <0.001 organisation
i i 10
G0:0098974 postsynaptic actin o Cytosk.elejcon
cytoskeleton organization 0.001 organisation
i 727
G0:0030036 actin c.yto.skeleton Cytosk.elejcon
organization <0.001 organisation
in fil - 813 kel
G0:0030029 actin filament-based Cytos .e ejcon
process <0.001 organisation
62 kel
G0:0045010 | actin nucleation Cytos .e ejcon
<0.001 organisation
i izati 202
G0:0008154 actin polyn?erl.zatlon or Cytosk.elejcon
depolymerization <0.001 organisation
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452 kel
G0:0007015 | actin filament organization Cytos .e efcon
<0.001 organisation
Table C4. GO-BP enriched for Topological Cluster D of the LRRK2 et
Term ID Term Name Term size Adjusted Term Group
p-value
G0:0008219 | cell death 2113 0.003 Cell death
G0:0006915 | apoptotic process 1894 0.005 Cell death
G0:0012501 | programmed cell death 1948 0.001 Cell death
iti i 588
G0:0010942 positive regulation of cell Cell death
death 0.002
G0:0010941 | regulation of cell death 1638 0.001 Cell death
iti i 509
G0:0043065 | POSitive regulation of Cell death
apoptotic process 0.006
i i 1454
G0:0042081 | Fe8ulation of apoptotic Cell death
process 0.002
iti i 522
G0:0043068 | POSitive regulation of Cell death
programmed cell death 0.001
i 1483
G0:0043067 regulation of programmed Cell death
cell death <0.001
i 2252 i
GO:0071705 nitrogen compound Protgln .
transport 0.040 localisation
- . 459 .
G0:1903829 p05|t|ye regu.latl.on of Prott.aln .
protein localization 0.033 localisation
1788 [
G0:0015031 | protein transport Protc.em .
0.017 localisation
i i 1898 i
G0:0045184 estal?llshment of protein Protgln .
localization 0.032 localisation
positive regulation of 60 .
. o Protein
G0:1903078 | protein localization to .
localisation
plasma membrane 0.009
positive regulation of 68 )
. o Protein
G0:1904377 | protein localization to cell .
. localisation
periphery 0.014
i i 125 i
G0:1904375 regu!atlc?n of protein . Protc.em .
localization to cell periphery 0.006 localisation
i i 1095 i
GO:0006886 intracellular protein Prot<.e|n ‘
transport 0.005 localisation
1806 Protei
G0:0046907 | intracellular transport o <.e|n .
0.003 localisation
i izati 2340 i
GO:0051649 fastabllshment of localization Protc.em .
in cell 0.002 localisation
170 P i
G0:0051170 | import into nucleus rotc.em .
0.027 localisation
330 i
G0:0006913 | nucleocytoplasmic transport Protc.am .
<0.001 localisation
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330 P i
G0:0051169 | nuclear transport rotc.em .
<0.001 localisation
165 P i
GO0:0006606 | protein import into nucleus rot<.em .
0.024 localisation
. L 309 .
G0:0034504 protein localization to Protc.em .
nucleus <0.001 localisation
1204 P i
G0:0043603 | amide metabolic process rotein .
<0.001 Metabolism
i i 2356 i
G0:0050790 reg.ul.atlon of catalytic Protein .
activity 0.013 Metabolism
. negative regulation of 768 Protein
G0:0043086 catalytic activity 0.014 Metabolism
i i 1115 i
G0:0044092 negative regulat.lon of Protein .
molecular function 0.006 Metabolism
. s 661 .
G0:0045859 reg.ul.atlon of protein kinase Protein .
activity 0.004 Metabolism
- : 745 .
G0:0001934 posmye regulation of. Protein .
protein phosphorylation 0.001 Metabolism
> . 322 .
G0:0042327 positive regul.atlon of Protein .
phosphorylation 0.003 Metabolism
negative regulation of 420 ]
G0:0010563 | phosphorus metabolic Protein
' Metabolism
process 0.018
positive regulation of 907 .
G0:0010562 | phosphorus metabolic Protein
' Metabolism
process 0.007
i 1401 i
G0:0051174 regulatlc?n of phosphorus Protein .
metabolic process <0.001 Metabolism
negative regulation of 419 .
G0:0045936 | phosphate metabolic Protein
' Metabolism
process 0.018
positive regulation of 907 ]
G0:0045937 | phosphate metabolic Protein
' Metabolism
process 0.007
regulation of 1244 Protein
: 232 . .
60:0042325 phosphorylation <0.001 Metabolism
i 1400 i
G0:0019220 regulatlgn of phosphate Protein .
metabolic process <0.001 Metabolism
775 P i
GO0:0043549 | regulation of kinase activity rotein .
0.002 Metabolism
i i 271 i
G0:0051348 negative regula.tl.on of Protein .
transferase activity 0.001 Metabolism
i 908 i
GO:0051338 reg.ul.atlon of transferase Protein .
activity <0.001 Metabolism
iti i 1005 i
G0:0031401 posmye regl{létlo!ﬂ of Protein .
protein modification process 0.017 Metabolism
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i i 1101 i
G0:0001932 regulation of .protem Protein .
phosphorylation <0.001 Metabolism
i i 1540 i
G0:0031399 regu!a.tlor.\ of protein Protein .
modification process <0.001 Metabolism
i i 320 i
G0:0001933 negatilve regulation of Protein .
protein phosphorylation 0.045 Metabolism
i i 493 i
G0-0031400 negatilve regy!atlgn of Protein .
protein modification process <0.001 Metabolism
G0:0006518 | peptide metabolic process 926 <0.001 Translation
i i 76
G0:0042273 | 'Posomal large subunit Translation
biogenesis 0.022
G0:0042255 | ribosome assembly 59 0.008 Translation
G0:0042254 | ribosome biogenesis 311 0.038 Translation
i 1805
G0:1901566 | OTBaNCnitrogen compound Translation
biosynthetic process <0.001
1208
G0:0034645 | cellular macromolecule Translation
biosynthetic process <0.001
G0:0043043 | peptide biosynthetic process | 772 <0.001 Translation
G0:0043604 | amide biosynthetic process | 905 <0.001 Translation
G0:0002181 | cytoplasmic translation 159 <0.001 Translation
G0:0006412 | translation 743 <0.001 Translation
Table C5. GO-BP enriched for Topological Cluster E of the LRRK2 et
Term ID Term Name Term size Adjusted Term Group
p-value
i 720
G0-0010564 regulation of cell cycle Cell cycle
process 0.020
G0:0051726 | regulation of cell cycle 1124 0.033 Cell cycle
i 652
G0:0000226 | Microtubule cytoskeleton Cell cycle
organization 0.009
G0:0007017 | microtubule-based process 939 0.005 Cell cycle
G0:1903047 | mitotic cell cycle process 773 0.038 Cell cycle
G0:0007051 | spindle organization 199 0.022 Cell cycle
G0:0000278 | mitotic cell cycle 929 0.031 Cell cycle
G0:0022402 | cell cycle process 1270 0.004 Cell cycle
G0:0007049 | cell cycle 1818 <0.001 Cell cycle
1788 Protei
G0:0015031 | protein transport rc.)ten.'l
0.040 localisation
170 Protei
G0:0051170 | import into nucleus rg EI.n
0.009 localisation
330 Protein
G0:0006913 | nucleocytoplasmic transport . I.
<0.001 localisation
. L 117 .
G0:0034502 protein localization to Prc.)ten.w
chromosome 0.024 localisation
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GO:0033365 protein localization to 1144 Prc.)tei.n
organelle <0.001 localisation
GO-0006886 intracellular protein 1095 Prgtein:m
transport 0.001 localisation
330 Protein
GO0:0051169 | nuclear transport -
<0.001 localisation
GO:0051649 fastablishment of localization 2340 Prc.)tei.n
in cell <0.001 localisation
. 1806 Protein
G0:0046907 | intracellular transport ..
<0.001 localisation
i i 1898 i
G0:0045184 esta?llshment of protein Prgtelp
localization 0.001 localisation
L. . 165 Protein
GO0:0006606 | protein import into nucleus -
0.007 localisation
G0:0034504 protein localization to 309 Prc.)tei.n
nucleus <0.001 localisation
GO:0051338 reg.u I.ation of transferase 908 Protei.n
activity 0.025 metabolism
GO:0051603 proteF)Iysis invqlved in 799 Protei!'\
protein catabolic process 0.007 metabolism
modification-dependent 713 .
. Protein
G0:0043632 | macromolecule catabolic .
metabolism
process 0.002
T 701 .
G0:0019941 modlflcat|on de.pendent Protel'n
protein catabolic process 0.002 metabolism
P . 691 .
GO:0006511 ublqum'n dependent protein Protel'n
catabolic process 0.002 metabolism
proteasome-mediated 455 .
L . Protein
G0:0043161 | ubiquitin-dependent protein .
A metabolism
catabolic process <0.001
roteasomal protein 526 Protein
G0:001049g | Proteasomal protel !
catabolic process 0.001 metabolism
' 1787 Protei
GO0:0006508 | proteolysis ro el.n
0.040 metabolism
lul lecul 1030 P i
GO:0044265 cellu ar-macromo ecule FOtEI!’l
catabolic process 0.002 metabolism
GO:0051438 regulétion of ubiquitin-. . 59 Proteir\
protein transferase activity 0.032 metabolism
lati f lish 57 R
60:0090175 | "€8Y ation o e.stab ishment esponse to
of planar polarity 0.028 stress
1941 Response to
G0:0033554 | cellular response to stress P
0.024 stress
intrinsic apoptotic signallin 108
.p PEGHIE SISNATING Response to
G0:0008630 | pathway in response to DNA stress
damage 0.016
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cellular response to DNA

881

Response to

G0:0006974 .
damage stimulus 0.019 stress
planar cell polarity pathway 12
R
G0:0090179 | involved in neural tube esponse to
stress
closure 0.007
regulation of establishment 13 Response to
G0:0090178 | of planar polarity involved in P
stress
neural tube closure 0.009
i i 53
G0:0060071 Whnt signalling pf':lthway, Response to
planar cell polarity pathway 0.021 stress
i X . . 67
GO-0035567 non-canonical Wnt signalling Response to
pathway 0.002 stress
intrinsic apoptotic signalling 82
R
G0:0072332 | pathway by p53 class esponse to
. stress
mediator 0.004
i i 175
G0O:0072331 signal trar?sductlon by p53 Response to
class mediator 0.001 stress
Table C6. GO-BP enriched for Topological Cluster F of the LRRK2 pet
Term ID Term Name Term size Adjusted Term Group
p-value
G0:0000423 | Autophagy 37 0.003 Autophagy
G0:0061912 | selective autophagy 89 0.044 Autophagy
G0:0006914 | autophagy 562 0.043 Autophagy
o . 562
G0:0061919 process .utlllzmg autophagic Autophagy
mechanism 0.043
G0:0007005 | mitochondrion organization 539 0.035 Autophagy
to mitochondrial 21
G0:0098780 | < POnse tomitochondria Autophagy
depolarisation 0.001
regulation of autophagy of 15
och .
G0:1904923 mnto_c ondrlon_ in response Autophagy
to mitochondrial
depolarization <0.001
positive regulation of 14
autophagy of
G0:1904925 | mitochondrion in response Autophagy
to mitochondrial
depolarization <0.001
G0:0008053 | mitochondrial fusion 29 0.001 Autophagy
G0:0048284 | organelle fusion 154 <0.001 Autophagy
parkin-mediated 6
G0:0061734 stimulation of Autophagy in Autophagy
response to mitochondrial
depolarization <0.001
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positive regulation of 10
G0:0098779 Atftophagy |.n response to Autophagy
mitochondrial
depolarization <0.001
Table C7. GO-BP enriched for Topological Cluster G
Term ID Term Name Term size Adjusted Term Group
p-value
o X 562
G0:0061919 process utlllzmg.autophaglc Autophagy
mechanism 0.011
i i I 4
G0:0071211 prqtem targfatmg to vacuole Autophagy
involved in autophagy 0.017
G0:0006914 autophagy 562 0.011 Autophagy
protein targeting to 3
lysosome involved in
G0:0061740 chaperone-mediated Autophagy
autophagy 0.008
h -mediated 16
G0:0061684 chaperone-mediate Autophagy
autophagy <0.001
1 1 _ . 36 N
G0-0051084 de novo pqst trar?slatlonal Prote|'n
protein folding 0.024 metabolism
idyl- i 379 i
G0-0018108 peptidyl tyros.me Protel'n
phosphorylation 0.014 metabolism
idyl- i 381 i
G0:0018212 peptld\.ll.tyr'osme Prote|'n
modification 0.015 metabolism
e . 571 .
GO:0009896 positive rfegulatlon of Protel'n
catabolic process <0.001 metabolism
i i 992 i
G0:0009894 regulation of catabolic Protel'n
process 0.005 metabolism
chaperone cofactor- 31 Protein
: 1
G0:0051085 dependent protein refolding 0.015 metabolism
i i 210 i
GO-0031396 regula.tlo'n.of protem Protel'n
ubiquitination 0.013 metabolism
regulation of protein 252 .
e . Protein
G0:1903320 | modification by small protein )
. . metabolism
conjugation or removal 0.001
40 Protei
G0:0006458 'de novo' protein folding rotelp
0.033 metabolism
i . . 70 .
GO:0061077 chaperone me(.:llated protein Protelp
folding 0.004 metabolism
219 P i
G0:0006457 protein folding rotelp
<0.001 metabolism
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Appendix D: Univariate Logistic analyses on the association between
MRNA levels of LRRK2 interactors and cohort phenotype (sPD/LRRK2-
PD)

Table D1. Univariate logistic analyses on LRRK2 interactor expression levels and cohort
phenotype

95% Cl
Interactor OR — — p-value
Upper Limit Lower Limit
TUBB6 0.18 0.06 0.49 0.001
PRKN 0.18 0.06 0.56 0.003
BAG3 0.18 0.05 0.61 0.006
ACTA2 0.31 0.13 0.77 0.012
DVL1 0.17 0.04 0.68 0.012
HSPA1A 3.23 1.25 8.34 0.016
SLC25A6 0.24 0.07 0.84 0.025
MMS19 0.23 0.06 0.83 0.025
LMNB1 2.92 1.14 7.44 0.025
RPS2 0.29 0.10 0.86 0.026
CDK2 0.22 0.06 0.86 0.029
TUBG1 0.25 0.07 0.90 0.035
STUB1 0.24 0.06 0.91 0.036
SNCA 0.45 0.21 0.96 0.040
SPATS2 0.28 0.07 1.11 0.071
LRRK2 2.24 0.91 5.55 0.080
PSMC6 2.36 0.87 6.44 0.093
TRADD 0.34 0.10 1.21 0.097
RAB5B 0.36 0.11 1.24 0.106
RPS27 1.59 0.88 2.89 0.125
RACK1 0.42 0.13 1.29 0.127
RPLPO 0.47 0.18 1.25 0.131
BAX 0.40 0.11 1.43 0.158
RPL11 1.70 0.79 3.65 0.172
TUBALC 0.42 0.12 1.46 0.172
RPL23 1.54 0.82 2.87 0.178
RPL13 0.51 0.19 1.40 0.193
RPL34 1.50 0.80 2.83 0.207
EEF2 0.48 0.15 1.52 0.210
CYREN 0.43 0.11 1.64 0.218
ACTG1 0.50 0.16 1.55 0.231
CFAP20 0.47 0.14 1.65 0.239
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RPS15A 1.52 0.75 3.07 0.243
HSPA4 1.87 0.64 5.43 0.251
DNM1 0.68 0.34 1.33 0.258
KPNB1 1.94 0.60 6.30 0.272
USP39 0.50 0.14 1.84 0.297
YWHAB 1.78 0.60 5.30 0.302
EPRS1 1.69 0.62 4.61 0.304
RABS8A 0.52 0.14 1.89 0.320
MAPK3 0.57 0.18 1.74 0.320
RBIS 1.57 0.62 3.95 0.337
RIF1 1.63 0.59 4.52 0.344
RPL9 1.33 0.72 2.48 0.364
RPS3A 1.30 0.73 2.31 0.377
HS71B 0.63 0.23 1.76 0.381
BAG5 1.62 0.53 4.95 0.398
ZFANDS5S 1.58 0.54 4.58 0.403
RPL30 1.39 0.64 3.03 0.407
HSP90AB1 1.62 0.51 5.12 0.409
OPA1l 1.52 0.56 4.10 0.410
ITGB3BP 1.49 0.57 3.93 0.417
PRKCZ 0.56 0.13 2.33 0.421
RPS13 1.43 0.59 3.48 0.426
TUBA1A 0.63 0.20 1.98 0.434
RAC1 0.62 0.19 2.03 0.434
RPL23A 1.42 0.56 3.62 0.458
FADD 0.63 0.19 2.15 0.464
HIF1A 1.48 0.52 4.27 0.465
MAP2K4 1.47 0.51 4.23 0.470
RAB5A 1.48 0.48 4.54 0.493
ITCH 1.46 0.48 4.46 0.504
CCDC43 1.43 0.50 4.05 0.505
RGS2 1.33 0.57 3.10 0.506
FANCM 1.40 0.49 3.98 0.527
MBP 0.69 0.21 2.27 0.544
LARP4 1.40 0.46 4.26 0.550
EEF1A1 1.28 0.55 2.95 0.567
PADI4 0.77 0.32 1.88 0.569
CMAS 1.35 0.48 3.83 0.571
RPS5 0.76 0.29 1.99 0.576
RAB1A 1.34 0.47 3.84 0.583
RPS7 1.20 0.62 2.35 0.587
PRKDC 0.74 0.24 231 0.600
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NUP107 1.30 0.46 3.73 0.620
SKA3 0.82 0.36 1.84 0.625
LAMP2 1.27 0.46 3.53 0.640
FAM192A 0.78 0.23 2.67 0.694
IQGAP1 1.23 0.43 3.54 0.700
ARPC2 1.26 0.39 4.03 0.702
RPL19 0.83 0.30 2.32 0.727
AFG3L2 1.25 0.35 4.42 0.728
RPL10A 0.85 0.34 2.14 0.729
RPS11 1.18 0.46 2.99 0.731
TMPO 1.19 0.43 3.24 0.738
SRPK1 1.20 0.40 3.55 0.745
RPS18 1.12 0.53 2.38 0.769
RHBDD1 0.84 0.24 2.90 0.779
RPS14 1.12 0.47 2.66 0.791
DNAIJB6 1.17 0.35 3.88 0.803
TAOK3 1.16 0.34 3.90 0.815
DNM1L 1.12 0.37 3.38 0.841
RPSA 1.08 0.44 2.66 0.873
SSR4 1.07 0.34 3.42 0.906
RPS8 1.05 0.43 2.53 0.921
TMOD3 1.06 0.32 3.50 0.930
RPL36A 1.04 0.31 3.48 0.949
TOR1AIP1 0.97 0.31 3.00 0.954
ATP5MG 0.99 0.36 2.75 0.992
GSK3B 1.00 0.30 3.38 1.000

Abbreviations: OR: Odd Ratio; Cl: Confidence Interval
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