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2	

Summary.	Evidence-based	conservation	can	be	hindered	by	limited	field	data,	but	16	

historical	archives	have	potential	to	provide	unique	insights	into	conservation-relevant	17	

parameters	such	as	distribution	of	suitable	habitat.	The	Manumea	or	Tooth-Billed	18	

Pigeon	(Didunculus	strigirostris)	has	declined	on	Samoa	and	only	a	tiny	remnant	19	

population	still	persists,	and	a	key	first	step	for	conservation	is	to	locate	surviving	birds.	20	

Numerous	Manumea	records	are	available	from	the	nineteenth	century	onwards,	and	21	

we	use	historical	and	modern	records	to	generate	a	series	of	species	distribution	22	

models	to	predict	distribution	of	suitable	habitat	across	Samoa	to	guide	new	field	23	

searches.	Manumea	distribution	is	closely	associated	with	forest	cover	or	its	proxies.	24	

Preferred	Manumea	food	plants	are	suggested	to	be	low-elevation	trees,	but	elevation	25	

provides	relatively	low	percentage	contribution	in	most	models,	thus	not	excluding	the	26	

possibility	that	Manumea	might	occur	at	high	elevations.	There	is	also	little	evidence	for	27	

elevational	change	in	records	over	the	past	century.	Models	based	on	visual	versus	28	

acoustic	records	exhibit	differences	in	predicted	habitat	suitability,	suggesting	that	29	

some	purported	acoustic	records	might	not	actually	represent	Manumea	calls.	Field	30	

searches	should	target	areas	representing	high	habitat	suitability	across	all	models,	31	

notably	the	forested	central	axis	of	Upolu.	32	

	33	
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Introduction	36	

Evidence-based	conservation	planning	can	be	hindered	by	a	lack	of	robust	data	on	key	37	

ecological	parameters,	including	species	distributions	and	environmental	requirements	38	

(Christie	et	al.	2021).	Such	data-gaps	may	constitute	a	particular	problem	for	tropical	39	

island	birds,	which	have	experienced	extensive	extinctions	and	exhibit	high	current-day	40	

risk	(Spatz	et	al.	2017;	Steadman	2006a),	but	are	often	the	focus	of	limited	conservation	41	

research	(de	Lima	et	al.	2011).	Worryingly,	island	taxa	often	represent	global	42	

conservation	priorities	on	the	basis	of	evolutionary	history,	reflecting	their	geographic	43	

isolation	and	adaptation	to	novel	environments	(Jetz	et	al.	2014).	44	

It	is	therefore	important	to	assess	the	information-content	of	alternative	data	types	45	

with	relevance	for	establishing	management	baselines.	One	such	data	source	is	the	46	

historical	record,	which	has	potential	to	provide	unique	insights	into	past	species	47	

distributions	and	ecosystem	composition,	dynamics	and	drivers	of	declines,	and	48	

vulnerability	and	resilience	to	environmental	change	(McClenachan	et	al.	2012;	Turvey	49	

and	Saupe	2019).	For	example,	historical	data	can	be	used	to	generate	predictive	50	

species	distribution	models	(SDMs)	for	threatened	taxa,	based	upon	the	statistical	51	

relationship	between	occurrence	records	and	environmental	variables	(Elith	et	al.	52	

2011).	Historical	baselines	are	particularly	important	for	generating	SDMs	for	species	53	

that	now	survive	only	as	tiny	remnant	populations,	because	understanding	the	54	

ecological	parameters	associated	with	past	distributions	can	indicate	whether	known	55	

populations	persist	in	optimal	environments	or	ecologically	marginal	refugia,	and	can	56	

identify	priority	areas	to	search	for	possible	undetected	populations	(Lees	et	al.	2021;	57	

Lentini	et	al.	2018).	However,	historical	archives	are	limited	and	incomplete,	for	58	

example	in	terms	of	resolution	and	accuracy	of	past	records,	due	to	huge	variation	in	59	

rigour,	standardisation	and	scope	of	pre-modern	recording	effort	(Newbold	2010).	For	60	



 
 

4	

example,	historical	data	typically	represent	presence-only	data,	with	reliable	absences	61	

difficult	to	determine	due	to	non-systematic	recording	effort	(Graham	et	al.	2004).	The	62	

usefulness	of	historical	data	to	establish	conservation	baselines,	provide	predictive	63	

insights	and	resolve	questions	for	particular	threatened	species	is	therefore	uncertain.	64	

The	Manumea	or	Tooth-Billed	Pigeon	(Didunculus	strigirostris)	is	an	evolutionarily	65	

distinct	species	endemic	to	the	Samoan	archipelago.	It	is	historically	recorded	from	the	66	

islands	of	Savai’i	(1820km2),	Upolu	(1110km2),	Nu’utele	(1.2km2)	and	Nu’ulua	(0.2km2)	67	

in	the	Independent	State	of	Samoa	(Collar	2015),	and	is	also	known	from	a	prehistoric	68	

archaeological	assemblage	on	Ofu	Island,	American	Samoa	(Weisler	et	al.	2016).	It	is	the	69	

only	living	representative	of	the	genus	Didunculus	following	prehistoric	extinction	of	the	70	

Tongan	species	D.	placopedetes	(Steadman	2006b)	and	an	unnamed	species	from	71	

Vanuatu	(Worthy	et	al.	2015).	Although	historical	abundance	is	uncertain,	the	Manumea	72	

is	thought	to	have	declined	by	over	90%	since	the	1980s	due	to	invasive	rats	and	cats,	73	

hunting,	and	habitat	loss	from	human	activities	and	cyclones;	it	is	listed	as	Critically	74	

Endangered	by	IUCN,	with	only	a	tiny	remnant	population	likely	to	survive	(Beichle	75	

1987;	BirdLife	International	2024;	Collar	2015;	Serra	et	al.	2017,	2018).	A	series	of	76	

recovery	actions	have	been	proposed	within	two	consecutive	recovery	plans,	including	77	

habitat	conservation	and	management,	reduction	of	hunting,	invasive	species	78	

eradication,	establishment	of	translocated	populations	and/or	an	ex	situ	breeding	79	

programme,	and	increasing	public	awareness	and	local	conservation	capacity	(BirdLife	80	

International	2024;	MNRE	2006;	MNRE	and	SCS	2020).	81	

A	first	step	for	practical	implementation	of	field-based	conservation	actions	is	to	82	

locate	any	surviving	populations	or	individuals.	Several	‘Manumea	Key	Rainforest	83	

Areas’	(MKRAs)	have	been	identified	based	upon	locations	of	relatively	recent	sightings	84	

or	field	call	detections,	including	the	Falealupo	and	Central	Savai’i	KBAs	(Key	85	
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Biodiversity	Areas)	and	the	Tafua	&	Salelologa	rainforest	on	Savai’i,	and	the	Apia	86	

catchments	and	Uafato-Tiavea	KBAs	on	Upolu	(MNRE	and	SCS	2020)	(Figure	1A).	87	

However,	recent	records	generally	derive	from	opportunistic	encounters	or	one-off	88	

surveys	of	specific	sites,	making	it	unclear	whether	MKRAs	represent	optimal	regions	to	89	

locate	surviving	birds.	90	

Incomplete	knowledge	of	Manumea	ecology	also	hinders	assessing	the	distribution	91	

of	suitable	habitat.	Past	observations	indicate	that	Manumea	occur	in	both	primary	and	92	

secondary	tropical	forest	across	a	relatively	wide	elevational	range,	and	are	closely	93	

associated	with	Dysoxylum	trees	for	feeding,	especially	D.	maota	and	D.	samoense	94	

(Beichle	1982,	1987;	Collar	2015;	DuPont	1972).	Samoa’s	three	native	Dysoxylum	95	

species	have	distinct	elevational	ranges,	with	the	two	preferred	food	species	more	96	

widely	distributed	in	lower	elevations	and	replaced	by	the	little-used	D.	huntii	at	higher	97	

elevations	(Whistler	1978,	1980,	1992).	However,	it	is	unclear	whether	Manumea	are	98	

therefore	ecologically	excluded	from	Samoa’s	extensive	upland	areas	above	1000m	99	

elevation	(Collar	2015);	this	region	includes	much	of	the	largest	MKRA,	the	Central	100	

Savai’i	KBA	(MNRE	and	SCS	2020).	Acoustic	surveys	have	also	been	used	in	recent	101	

efforts	to	detect	Manumea,	with	the	species’	inferred	occurrence	in	some	localities	102	

based	upon	interpretation	of	acoustic	data	(Baumann	and	Beichle	2020;	Serra	et	al.	103	

2021).	However,	the	Manumea’s	call	is	similar	to	that	of	the	more	common	sympatric	104	

Pacific	Imperial-Pigeon	(Ducula	pacifica)	and	is	hard	to	differentiate	in	the	field	even	by	105	

knowledgeable	local	hunters,	leading	to	suggestions	that	at	least	some	purported	106	

acoustic	records	may	be	misidentifications	(Atherton	and	Jefferies	2012;	Baumann	and	107	

Beichle	2020;	Pratt	and	Mittermeier	2016;	Serra	et	al.	2018).	108	

Numerous	historical	Manumea	records	are	available	from	field	observations	and	109	

specimen-collecting	trips	from	the	nineteenth	century	onwards	(Beichle	1982;	Collar	110	
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2015),	but	have	not	been	investigated	within	a	quantitative	spatial	framework	to	111	

understand	the	species’	ecology	and	distribution.	To	strengthen	the	Manumea	112	

conservation	evidence-base,	we	use	historical	and	modern	records	to	generate	a	series	113	

of	SDMs	to	predict	areas	of	suitable	habitat	across	Samoa.	Our	findings	provide	a	new	114	

baseline	to	support	conservation	planning,	identify	environmental	variables	that	115	

influence	Manumea	distribution,	and	assess	previous	assumptions	about	its	ecology	and	116	

the	potential	accuracy	of	acoustic	records	reported	for	the	species.	117	

	118	

Methods	119	

	120	

Presence	data	121	

Manumea	records	were	obtained	by	conducting	a	thorough	survey	of	the	published	122	

literature,	unpublished	grey	literature	(e.g.,	conservation	plans,	survey	reports),	123	

museum	accession	records,	and	online	birding	trip	reports	(ebird.org).	Museum	124	

specimens	were	identified	through	the	literature,	the	Global	Biodiversity	Information	125	

Facility	(gbif.org),	and	requests	through	the	Natural	Sciences	Collections	Association	126	

(NatSCA)	network,	with	associated	locality	data	accessed	from	online	museum	127	

databases	and	email	requests	to	curators.	Presence	records	were	divided	into	128	

visual/physical	observations	and	recent	acoustic-only	detections	for	analysis.	129	

Many	locality	records	lacked	coordinate	data,	so	coordinates	for	these	records	were	130	

calculated	by	georeferencing	locality	descriptions	using	Google	Earth	131	

(earth.google.com),	using	consistent	rules	to	reduce	spatial	bias	(Appendix	S1).	132	

Reported	localities	that	were	too	vague	or	general	(e.g.,	“Samoa”,	“Savai’i”)	were	133	

excluded.	If	multiple	records	were	reported	within	the	same	protected	area	or	KBA	134	

without	further	spatial	information,	records	were	spaced	evenly	across	the	area.	135	

http://www.gbif.org/
http://www.gbif.org/
https://earth.google.com/web/
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	136	

Environmental	and	land	cover	variables	137	

Nineteen	bioclimatic	variables	were	obtained	from	WorldClim	v.2.1	(worldclim.org)	at	138	

30	arc-second	resolution.	Collinearity	and	associated	potential	for	model	overfitting	139	

were	minimised	by	excluding	variables	displaying	high	correlation	(r>0.8;	Elith	et	al.	140	

2006),	preferentially	removing	variables	that	showed	collinearity	with	>1	other	141	

variable,	and	leaving	seven	independent	variables	for	inclusion.	Digital	elevation	data	142	

were	obtained	from	CGIAR-CSI	GeoPortal	v.4	(Jarvis	et	al.	2008)	at	90m	resolution.	A	143	

separate	slope	raster	was	generated	from	the	elevation	data	with	raster	analysis	slope	144	

tool	GDAL	v.3.3.0,	using	default	parameters	(Lundbäck	et	al.	2021).	A	surface	soil	145	

classification	layer	was	obtained	from	PacGeo	(2017)	at	9	arc-second	resolution,	146	

classified	following	Allen	and	Wald	(2009),	with	high	values	representing	hard	rock	and	147	

low	values	representing	soft	soils	(Castellaro	et	al.	2008).	Four	land	cover	layers	(forest,	148	

thicket,	surface	soil,	cropland)	dating	from	March	2015	(1°×1°	cells,	scale	1:50,000)	149	

were	obtained	from	GEOINT	(2015).	150	

	151	

Species	distribution	modelling	152	

Maximum	entropy	modelling	was	conducted	in	MaxEnt	v.3.4.4	(Phillips	et	al.	2016).	153	

This	approach	can	use	presence-only	data	and	has	superior	accuracy	compared	to	other	154	

SDM	methods	when	datasets	contain	<100	unique	values,	and	is	the	primary	method	for	155	

modelling	habitat	suitability	for	species	with	limited	occurrence	data	(van	Proosdij	et	al.	156	

2016;	Wisz	et	al.	2008).	Analyses	were	conducted	in	R	v.1.4.1106	(R	Core	Team	2020).	157	

To	reduce	potential	for	spatial	autocorrelation	and	accommodate	possible	minor	158	

inaccuracies	in	estimating	locations	from	historical	descriptions,	data	were	analysed	at	159	

the	pixel	resolution	of	a	proxy	for	Manumea	home	range.	No	direct	estimates	are	160	

https://www.worldclim.org/
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available	for	Manumea	home	range	or	local/seasonal	movements,	and	home	range	161	

inference	from	closely	related	taxa	is	not	possible	because	the	species	is	162	

phylogenetically	distant	from	other	extant	pigeons	(Jetz	et	al.	2014).	As	home	range	163	

data	are	largely	unavailable	for	other	tropical	Pacific	pigeons,	an	estimate	of	4km2	164	

(2×2km	grid	cell)	was	used	from	the	New	Zealand	kererū	(Hemiphaga	novaeseelandiae),	165	

another	large-bodied	Pacific	pigeon	(Baranyovits	2017).	Presence	records	were	166	

spatially	thinned	in	QGIS	v.3.20.0	(QGIS	Development	Team	2021)	using	the	‘random	167	

selection	within	subsets’	tool	to	randomly	select	one	record	within	each	pixel;	this	168	

method	has	little	effect	on	model	performance	(Verbruggen	et	al.	2013).	Home	range	169	

diameter	(2.257km)	was	not	used,	as	distance-based	thinning	can	discard	important	170	

data	from	regions	with	densely-concentrated	records	(Verbruggen	et	al.	2013).	171	

Environmental	layers	were	resampled	to	this	pixel	size	in	QGIS	using	median	172	

resampling,	to	allow	inclusion	of	records	from	coastal	regions	that	are	excluded	using	173	

nearest-neighbour	resampling.	174	

Coastal	pixels	that	contain	<100%	land	had	reduced	likelihood	of	containing	175	

Manumea	records,	and	were	effectively	sampled	with	lower	effort	than	non-coastal	176	

pixels.	A	bias	file	was	incorporated	that	specified	the	reduced	survey	effort	(due	to	177	

reduced	land	availability)	within	each	coastal	pixel,	expressed	as	the	proportion	of	the	178	

pixel	containing	land.	179	

Four	SDMs	were	generated	to	investigate	whether	different	subsets	of	locality	data	180	

provided	differing	habitat	suitability	predictions,	and	to	enable	comparison	between	181	

data	types:	(1)	‘visual	reduced’,	fitted	with	all	spatially-resolved	visual/physical	182	

presence	records	(historical	and	recent)	and	with	environmental	layers	only	183	

(bioclimatic,	elevation,	slope,	soil	layers);	(2)	‘visual	combined’,	fitted	with	184	

visual/physical	presence	records	from	2000	onwards	and	with	both	environmental	and	185	
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modern	land	cover	layers;	(3)	‘acoustic	reduced’,	fitted	with	acoustic	presence	records	186	

and	environmental	layers;	(4)	‘acoustic	combined’,	fitted	with	acoustic	presence	records	187	

and	with	both	environmental	and	modern	land	cover	layers.	All	acoustic	records	are	188	

recent,	so	a	model	containing	only	recent	visual	data	(visual	combined	model)	was	189	

therefore	included	to	allow	comparison;	these	models	were	fitted	with	land	cover	layers	190	

as	well	as	environmental	layers,	as	they	can	be	assessed	against	modern	land	cover	191	

conditions.	Conversely,	the	visual	reduced	model	contained	all	visual/physical	192	

Manumea	presence	records,	which	include	both	historical	and	recent	records	and	so	193	

cannot	be	assessed	against	modern	land	cover	conditions;	the	acoustic	reduced	model	194	

was	therefore	also	included	to	allow	comparison	with	the	visual	reduced	model	and	195	

investigate	the	effect	of	reduced	explanatory	variables	on	model	performance.	An	196	

alternate	version	of	the	visual	reduced	model	was	also	generated	using	only	records	197	

where	accurate	Manumea	identification	was	supported	by	museum	specimens,	198	

observations	in	peer-reviewed	scientific	papers,	or	eBird	reports	by	experienced	199	

birders.	200	

Two	assessments	of	model	fitness	were	investigated:	the	area	under	the	receiver	201	

operating	characteristic	curve	(AUC)	(Fielding	and	Bell	1997),	and	the	True	Skill	202	

Statistic	(TSS)	(Allouche	et	al.	2006),	with	the	10th	percentile	presence	threshold	used	203	

as	the	TSS	threshold	suitability	value	(Escalante	et	al.	2013).	Variables	with	lowest	204	

percentage	contribution	were	removed	in	a	stepwise	fashion	until	the	greatest	TSS	and	205	

AUC	values	were	achieved.	The	best-performing	model	was	selected	from	the	final	206	

variable	set,	and	20	bootstrap	replications	were	run	with	random	seed.	207	

To	fit	models	and	evaluate	model	predictions	in	the	thinned	variable	set	after	208	

exclusion	of	low-contributing	variables,	80%	of	presence	records	were	allocated	as	209	

training	data	and	20%	as	test	data	(Merow	et	al.	2013).	Use	of	20%	as	test	data	was	210	
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selected	because	it	provided	the	highest	training	AUC	with	only	a	small	reduction	in	TSS	211	

compared	to	alternative	85:15%	or	90:10%	data-splits	(after	exclusion	of	low-212	

contributing	variables:	(1)	80:20%,	training	&	test	AUC	=	0.681	&	0.529,	TSS	=	0.155;	213	

(2)	85:15%,	training	&	test	AUC	=	0.650	&	0.688,	TSS	=	0.185;	(3)	90:10%,	training	&	214	

test	AUC	=	0.669	&	0.649,	TSS	=	0.185).	215	

Projections	used	to	represent	final	model	outputs	were	based	upon	average	maps	216	

generated	from	10	replicates,	which	were	then	used	to	generate	average	training	AUC	217	

values.	This	approach	was	followed	to	reduce	bias	that	would	result	from	selecting	only	218	

the	best	map	projections	for	each	model.	Thresholds	for	occupancy	likelihood	in	each	219	

model	output	were	calculated	from	the	sum	of	maximum	training	sensitivity	and	220	

specificity	(Liu	et	al.	2013),	with	cumulative	thresholds	chosen	from	the	first	replication	221	

of	each	output.	222	

Spatial	autocorrelation	in	final	thinned	model	residuals	was	assessed	using	Moran’s	223	

I	statistic	with	the	R-package	‘spdep’	(Bivand	et	al.	2023).	As	residuals	showed	224	

autocorrelation	(Moran	I	statistic	standard	deviate=-0.00769,	p=0.038),	overfitting	was	225	

addressed	by	running	models	twice,	using	differing	regularisation	multiplier	values	of	1	226	

(default)	and	2	(Radosavljevic	and	Anderson	2014).	Performance	of	different	model	227	

outputs	was	assessed	by	comparing	mean	AUCtraining	and	TSS	values	from	best-228	

performing	models.	229	

Between-model	differences	in	habitat	suitability	projections	were	evaluated	230	

through	pairwise	comparisons	in	ENMTools	(Warren	et	al.	2010),	using	two	similarity	231	

measures:	Schoener’s	index	(D;	Schoener	1970)	and	Hellinger	distance	(I;	Warren	et	al.	232	

2008).	Both	metrics	range	from	0	(poor	similarity)	to	1	(high	similarity)	(Warren	et	al.	233	

2010).		234	

	235	
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Results	236	

Our	initial	dataset	contained	282	Manumea	presence	records	(143	museum	records,	237	

139	literature	records)	from	1872	to	2018.	After	excluding	records	without	precise	238	

locality	details,	we	retained	131	records	(28	museum	records,	103	literature	records)	239	

from	1924	to	2018.	The	final	dataset	included	98	physical/visual-only	records,	31	240	

acoustic-only	records,	and	two	combined	visual+acoustic	records	(Figure	1B-D;	241	

Appendix	S2).	After	data-thinning,	the	visual	reduced	model	included	74	records	242	

(Savai’i:	31,	Upolu:	42,	Nu’utele:	1),	the	visual	combined	model	included	62	records	243	

(Savai’i:	22,	Upolu:	39,	Nu’utele:	1),	acoustic	models	included	28	records	(Savai’i:	18,	244	

Upolu:	7,	Nu’utele:	3).	245	

Using	the	default	regularisation	multiplier	value,	our	four	main	models	all	had	246	

average	(>0.7),	good	(>0.8)	or	excellent	(>0.9)	AUC	values,	but	lower	TSS	values	(<0.45).	247	

The	acoustic	combined	model	had	highest	model	fitness	after	removing	seven	variables	248	

(mean	AUCtraining=0.910,	TSS=0.442).	Similar	model	fitness	was	shown	by	the	acoustic	249	

reduced	model	after	removing	five	variables	(mean	AUCtraining=0.832,	TSS=0.359),	and	250	

the	visual	reduced	model	after	removing	four	variables	(mean	AUCtraining=0.881,	251	

TSS=0.354).	The	visual	combined	model	had	lowest	model	fitness	after	removing	four	252	

variables	(mean	AUCtraining=0.718,	TSS=0.193).	Variable	contribution	that	explained	253	

>70%	of	variation	differed	across	the	four	final	models,	with	different	variables	254	

associated	with	probability	of	Manumea	presence	(visual	combined:	BIO12,	BIO17,	255	

slope,	elevation;	visual	reduced:	forest,	slope,	elevation,	soil	hardness,	BIO12;	acoustic	256	

combined:	forest,	BIO2,	soil	hardness,	cropland;	acoustic	reduced:	soil	hardness,	BIO12,	257	

BIO17,	BIO2).	Elevation	explained	≥10%	of	variation	in	three	of	the	four	final	models	258	

(visual	combined,	visual	reduced,	acoustic	reduced).	Probability	of	Manumea	presence	259	

had	≥0.5	probability	close	to	sea	level	in	both	visual	models	and	declined	in	probability	260	
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with	increasing	elevation,	dropping	to	almost	0	probability	around	1000m	asl	in	the	261	

visual	combined	model,	but	with	a	second	peak	of	almost	0.5	probability	at	1770m	asl	in	262	

the	visual	reduced	model.	Conversely,	probability	of	presence	had	a	fairly	constant	263	

relationship	with	elevation	(<0.5	probability)	across	Samoa’s	elevational	profile	in	the	264	

acoustic	reduced	model,	with	slight	probability	peaks	at	lowest	and	highest	elevations	265	

(Table	1;	Appendix	S3).	266	

The	two	visual	models	predict	similar	areas	of	habitat	suitability	on	Upolu,	with	267	

much	of	the	island’s	raised	and	forested	east-west	axis	(including	the	Apia	catchments	268	

and	Uafato-Tiavea	KBAs)	identified	as	having	high	habitat	suitability,	as	well	as	several	269	

small	low-elevation	regions	along	the	southern	coast.	These	models	predict	little	270	

suitable	habitat	in	Savai’i,	with	only	the	Falealupo	KBA,	the	Tafua	&	Salelologa	271	

rainforest,	and	other	small	discrete	northern	and	southern	low-elevation	coastal	areas	272	

identified	as	suitable	by	the	visual	combined	model,	and	far	fewer	areas	identified	by	273	

the	visual	reduced	model.	The	two	acoustic	models	similarly	predict	that	parts	of	the	274	

central	axis	of	Upolu	represent	suitable	habitat,	but	also	predict	higher	habitat	275	

suitability	for	northern	low-elevation	areas	of	Upolu,	and	some	additional	northern	and	276	

western	low-elevation	coastal	regions	of	Savai’i.	The	acoustic	reduced	model	also	277	

predicts	that	a	large	area	of	the	Central	Savai’i	KBA,	including	the	highest-elevation	278	

central	region	of	this	island,	represents	good-quality	habitat;	the	acoustic	combined	279	

model	predicts	some	good-quality	habitat	in	this	region,	although	across	a	smaller	area.	280	

All	models	predict	high	suitability	for	Nu’utele	(Figure	2).	Spatial	congruence	was	281	

highest	between	both	acoustic	models,	and	lowest	between	the	visual	reduced	and	282	

acoustic	combined	models	(Table	2;	Figure	3).	283	

The	best-performing	alternate	visual	reduced	model	based	upon	better-confirmed	284	

records	included	only	25	records	after	data-thinning	(Savai’i:	9,	Upolu:	15,	Nu’utele:	1),	285	
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and	performed	less	well	than	the	full	visual	reduced	model	(mean	AUCtraining=0.786,	286	

TSS=0.302).	This	model	mainly	predicted	low-elevation	coastal	areas	as	having	high	287	

habitat	suitability,	along	with	central	Upolu	(Appendix	S4).	Models	generated	with	the	288	

increased	regularisation	multiplier	(value=2)	also	performed	less	well,	with	lower	AUC	289	

values	that	were	only	average	(>0.7)	or	good	(>0.8),	and	lower	(<0.4)	TSS	values.	The	290	

acoustic	combined	model	had	highest	fitness	after	removing	eight	variables	(mean	291	

AUCtraining=0.823,	TSS=0.377),	closely	followed	by	the	visual	combined	model	after	292	

removing	eight	variables	(mean	AUCtraining=0.810,	TSS=0.221).	The	two	reduced	models	293	

showed	lower	fitness	(acoustic	reduced:	mean	AUCtraining=0.765,	TSS=0.153;	visual	294	

reduced:	mean	AUCtraining=0.726,	TSS=0.122).	Final	model	outputs	contained	differing	295	

variables	that	together	explained	>70%	of	variation	(acoustic	combined:	BIO6,	BIO17,	296	

slope,	cropland,	soil	surface,	woodland;	acoustic	reduced:	BIO2,	BIO6,	BIO17,	slope,	soil	297	

hardness;	visual	combined:	BIO6,	BIO17,	slope,	elevation,	cropland,	woodland;	visual	298	

reduced:	BIO12,	BIO14,	BIO17,	slope,	soil	hardness).	Slope	and	BIO17	were	retained	in	299	

all	four	final	models,	explaining	≥8%	and	≥7%	of	variation	respectively,	whereas	300	

elevation	remained	in	only	one	of	the	final	models	(visual	combined),	explaining	>19%	301	

of	variation	(Appendix	S5).		302	

	303	

Discussion	304	

In	this	study,	we	explore	the	potential	for	pre-modern	records	of	the	Critically	305	

Endangered	Manumea	to	provide	new	insights	into	the	ecology	and	possible	current	306	

distribution	of	this	extremely	threatened	bird,	and	compare	spatial	and	habitat	307	

predictions	and	information-content	of	different	available	record	types.	As	is	308	

unfortunately	the	case	with	many	long-term	baselines	for	threatened	species	(Newbold	309	

2010),	many	older	records	lack	sufficiently	detailed	or	precise	locality	information	and	310	
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could	not	be	incorporated	into	SDMs.	We	had	to	exclude	116	of	136	available	museum	311	

records	and	could	only	utilise	records	from	four	out	of	27	museums	that	contained	312	

Manumea	specimens	(Appendix	S2),	and	an	alternate	visual	reduced	model	that	only	313	

used	better-supported	data	was	limited	to	25	records	and	had	lower	support.	Similar	314	

data	limitations	may	also	exist	with	museum	specimens	for	other	insular	taxa,	for	which	315	

older	accession	records	may	only	report	their	island	of	origin	rather	than	specific	316	

geographic	information	needed	for	environmental	analysis	(Collar	et	al.	2004).	317	

However,	we	were	still	able	to	utilise	spatially	well-resolved	records	spanning	much	of	318	

the	twentieth	century,	representing	a	unique	data	source	that	can	test	and	challenge	319	

assumptions	about	Manumea	ecology	and	distribution,	and	with	important	implications	320	

for	conservation.	321	

MaxEnt	performed	relatively	well	in	predicting	habitat	suitability	for	all	models	322	

based	on	AUC	values	(all	>0.7),	but	the	relative	contributions	made	by	different	323	

explanatory	variables	varied	between	models.	Here	we	only	discuss	outputs	from	324	

models	generated	with	the	default	regularisation	multiplier	value,	as	these	models	325	

performed	better	than	those	generated	using	a	higher	value,	although	we	note	the	326	

additional	differences	in	explanatory	variable	contribution	between	these	model	sets.	327	

Forest	cover	provided	a	high	percentage	contribution	(>30%)	in	models	within	328	

which	recent	land	cover	data	could	be	included	(visual	combined	and	acoustic	329	

combined),	as	expected	for	a	species	known	to	be	associated	with	forest,	with	this	330	

strong	relationship	thus	reducing	the	relative	contribution	made	by	other	variables.	331	

Correlation	with	cropland	and	surface	soil	(inverse	relationships	in	response	curves)	332	

provided	a	further	>20%	percentage	contribution	in	the	acoustic	combined	model	and	333	

>10%	in	the	visual	combined	model,	providing	additional	support	for	the	importance	of	334	

forest	cover	in	predicting	Manumea	distribution	compared	to	other	variables.	The	335	
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higher	contribution	of	bioclimatic	variables	within	both	reduced	models,	notably	annual	336	

precipitation	and	precipitation	of	driest	quarter,	also	likely	represents	a	proxy	for	forest	337	

cover,	since	these	variables	are	associated	with	regulating	tropical	rainforest	338	

distribution	(Corlett	and	Primack	2011).	339	

A	positive	relationship	with	increasing	soil	hardness	provided	a	high	percentage	340	

contribution	(33.4%)	within	the	acoustic	reduced	model.	Soil	conditions	might	341	

represent	a	further	proxy	for	forest	cover,	explaining	the	high	contribution	of	the	342	

variable	to	this	reduced	model	where	land	cover	is	not	included.	Alternatively,	this	343	

correlation	might	indicate	a	more	specific	Manumea	habitat	preference.	Harder	soils	344	

within	tropical	forests	can	be	associated	with	higher-elevation	sloped	regions	(Hattori	345	

et	al.	2005).	Conversely,	a	negative	relationship	is	seen	between	elevation	and	346	

likelihood	of	occurrence	in	both	visual	models,	consistent	with	the	suggestion	that	347	

Manumea	are	less	likely	to	occur	at	higher	elevations	where	preferred	Dysoxylum	food	348	

species	are	replaced	by	D.	huntii.	However,	soil	hardness,	elevation	and	slope	provide	349	

relatively	low	percentage	contributions	in	most	models	(<15%),	indicating	they	are	350	

generally	poor	predictors	of	Manumea	distribution,	and	thus	not	excluding	the	351	

possibility	that	Manumea	might	occur	at	high	elevations	across	Savai’i	and	Upolu.	352	

Indeed,	elevation	remained	in	only	one	of	the	final	models	generated	with	the	higher	353	

regularisation	multiplier	value,	although	slope	was	retained	in	all	these	models.	354	

Our	SDMs	predict	different	spatial	patterns	of	habitat	suitability	across	Samoa,	with	355	

practical	implications	for	understanding	Manumea	ecology	and	where	to	focus	spatial	356	

search	effort	for	surviving	individuals.	Threatened	species	often	become	restricted	to	357	

ecologically	marginal	high-elevation	refugia	as	populations	decline	(Fisher	2011;	358	

Turvey	et	al.	2015),	raising	the	possibility	that	models	which	only	include	recent	359	

Manumea	records	might	show	more	restricted	niche	predictions	compared	to	models	360	
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also	containing	older	records.	Indeed,	Steadman	(2006b)	suggested	that	Didunculus	361	

survived	on	Samoa	but	died	out	on	Tonga	because	Savai’i	and	Upolu	are	larger,	higher	362	

and	steeper	islands.	However,	this	possibility	is	contradicted	by	the	relatively	high	363	

spatial	congruence	between	our	visual	reduced	model	(historical	and	recent	visual	364	

records)	and	our	visual	combined	model	(recent-only	visual	records),	and	the	negative	365	

correlation	and	low	percentage	contribution	of	elevation	across	our	models,	providing	366	

little	evidence	for	elevational	change	in	Manumea	records	over	the	past	century.	If	367	

Manumea	were	already	rare	by	the	nineteenth	century,	as	suggested	by	several	368	

contemporary	observers	(Collar	2015;	Layard	1876;	Ramsay	1864;	Stair	1897),	it	is	369	

possible	that	niche	contraction	caused	by	anthropogenic	pressures	might	have	already	370	

occurred	before	the	period	represented	by	our	historical	dataset.	However,	although	371	

there	has	not	been	extensive	recent	search	effort	in	remote	high-elevation	landscapes,	372	

some	of	the	few	recent	verified	Manumea	sightings	are	from	very	low	elevations	(MNRE	373	

and	SCS	2020),	and	these	areas	are	highlighted	as	suitable	in	the	alternate	visual	374	

reduced	model	based	only	upon	better-supported	records.	A	similar	pattern	of	minimal	375	

range	change	as	populations	decline	toward	extinction	is	also	observed	in	some	other	376	

extremely	rare	species,	possibly	associated	with	across-landscape	movements	tracking	377	

spatially	fluctuating	resource	availability	(Turvey	et	al.	2010).	If	Manumea	do	persist	378	

across	broadly	the	same	environmental	range,	this	might	be	associated	with	379	

unpredictable	fruiting	periodicity	and	spatiotemporal	resource	patchiness	in	Dysoxylum	380	

(e.g.,	mast	fruiting),	with	birds	potentially	exhibiting	nomadic	behaviour	in	following	381	

food	resources.	This	spatial	behaviour	is	seen	widely	in	nectarivorous	and	frugivorous	382	

tropical	Pacific	birds	(Brown	and	Hopkins	1996;	Smetzer	et	al.	2021).	383	

Conversely,	our	visual	and	acoustic	models	exhibit	reduced	congruence	in	pairwise	384	

comparisons,	with	distinct	spatial	differences	in	predicted	habitat	suitability	across	385	
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Samoa.	This	variation	might	reflect	differences	in	the	distribution	of	valid	Manumea	386	

source	data	used	for	each	pair	of	models.	Non-congruent	model	predictions	can	result	387	

from	spatial	unevenness	and	bias	between	datasets,	typically	when	data	represent	388	

opportunistic	detections	rather	than	systematic	region-wide	survey	effort.	This	can	lead	389	

to	variation	in	statistical	associations	between	records	from	different	landscapes	and	390	

locally-specific	environmental	parameters	(Turvey	et	al.	2020).	For	example,	visual	391	

records	may	be	spatially	skewed	toward	sites	where	observations	can	be	made	across	392	

wide	areas	(e.g.	forest	sites	with	viewing	platforms).	Conversely,	predicted	habitat	393	

suitability	at	higher	elevations	of	central	Savai’i	shown	by	the	acoustic	models	likely	394	

reflects	the	recent	focus	of	acoustic	survey	effort	and	associated	clustering	of	acoustic	395	

detections	within	this	region	(MNRE	and	SCS	2020).	In	contrast,	a	three-week	survey	of	396	

this	region	in	2012	produced	only	one	uncorroborated	visual	record	(Atherton	and	397	

Jefferies	2012).	However,	this	partial	mismatch	between	predictions	from	visual	versus	398	

acoustic	models	is	also	consistent	with	the	suggestion	that	at	least	some	acoustic	399	

records	might	not	actually	represent	Manumea	calls,	and	we	cannot	discount	this	400	

concerning	possibility.	Indeed,	the	Pacific	Imperial-Pigeon	is	distributed	widely	across	401	

upland	regions	of	Savai’i	(Atherton	and	Jefferies	2012;	Reed	1980),	consistent	with	the	402	

suggestion	that	this	species	is	an	alternative	candidate	for	this	region’s	acoustic	records.	403	

Further	investigation	of	all	purported	acoustic	records	using	spectrographic	analysis	is	404	

therefore	essential	before	using	them	for	further	planning	(Baumann	and	Beichle	2020;	405	

Serra	et	al.	2021).	406	

Given	these	considerations	about	model	congruence	and	potential	data	accuracy,	407	

we	suggest	that	initial	field-based	searches	for	Manumea	should	target	areas	that	408	

represent	high	habitat	suitability	across	all	models.	This	approach	would	prioritise	409	

surveys	across	the	forested	central	axis	of	Upolu	(also	highlighted	by	the	alternate	410	
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visual	reduced	model),	and	including	the	Uafato-Tiavea	KBA	to	the	east,	which	together	411	

constitute	the	largest	continuous	or	semi-continuous	region	of	predicted	suitable	412	

habitat	in	all	models.	We	also	recommend	surveys	in	discrete	low-elevation	coastal	413	

forest	regions	identified	as	suitable	habitat.	These	regions	include	the	Falealupo	KBA	414	

and	the	Tafua	&	Salelologa	rainforest	on	Savai’i,	and	Nu’utele	island,	which	may	all	415	

represent	more	accessible	survey	sites	compared	to	the	high-elevation	interior	of	both	416	

main	islands.	We	do	not	exclude	the	importance	of	also	surveying	the	Central	Savai’i	417	

KBA,	but	varying	SDM	evidence	for	extensive	suitable	habitat	in	this	remote	region	418	

suggests	that	limited	conservation	resources	should	possibly	be	prioritised	elsewhere	419	

to	begin	with.	We	note	that	these	areas	of	high	predicted	habitat	suitability	derived	420	

from	our	models	are	spatially	congruent	with	some	MKRAs	that	are	based	upon	recent	421	

Manumea	detections,	but	also	highlight	other	landscapes	not	currently	prioritised	as	422	

MKRAs	(MNRE	and	SCS	2020).	It	is	also	important	to	recognise	that	SDMs	are	only	able	423	

to	generate	predictions	about	distribution	of	inferred	habitat	suitability	based	upon	424	

available	environmental	parameters	(Franklin	2009).	This	does	not	necessarily	indicate	425	

continued	survival	of	target	species	(Loiselle	et	al.	2003),	and	it	is	unfortunately	likely	426	

that	Manumea	have	been	extirpated	from	most	areas	of	good-quality	habitat,	reflecting	427	

an	example	of	‘empty	forest’	syndrome	(Wilkie	et	al.	2011).	428	

Due	to	limited	availability	of	high-resolution	environmental	layers	for	Samoa,	our	429	

spatial	analyses	could	only	include	a	single	forest	layer	for	investigating	land	cover.	We	430	

encourage	additional	research	into	the	relationship	between	Manumea	records	and	431	

variation	in	forest	structure	and	quality	to	further	determine	habitat	factors	that	might	432	

regulate	the	species’	distribution,	to	help	address	the	recognised	need	to	understand	its	433	

ecology	(MNRE	and	SCS	2020).	In	particular,	we	recommend	quantitative	mapping	of	434	

cyclone	damage	to	Samoa’s	forests	(BirdLife	International	2024;	Collar	2015),	and	more	435	
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detailed	analysis	of	Manumea	occurrence	in	relation	to	different	primary/secondary	436	

and	lowland/upland	forest	types	across	Samoa	(Whistler	1978,	1980,	1992).	437	

Specifically,	such	analysis	should	assess	Manumea	occurrence	in	relation	to	the	438	

elevational	ranges,	distributions,	and	specific	ecological	requirements	of	preferred	food	439	

trees	(Dysoxylum	maota	and	D.	samoense).	Such	investigations	would	provide	a	better	440	

understanding	of	whether	Manumea	distribution	is	regulated	by	specific	local-scale	441	

environmental	factors	that	could	not	be	incorporated	within	our	region-wide	models.	442	

Further	insights	into	Manumea	ecological	tolerances	could	also	potentially	be	obtained	443	

through	assessment	of	past	environmental	parameters	associated	with	prehistoric	444	

Didunculus	remains.	445	

However,	the	habitat	suitability	projections	established	in	this	study	represent	a	446	

new	baseline	to	support	existing	conservation	planning	for	Samoa’s	national	bird.	They	447	

can	contribute	toward	the	priority	objectives	defined	in	the	2020-2029	Manumea	448	

recovery	plan,	notably	by	helping	to	define	proposed	MKRA	boundaries	(objective	2.1),	449	

and	to	understand	relevant	aspects	of	Manumea	ecology	(objective	5.5)	(MNRE	and	SCS	450	

2020).	Although	the	development	of	effective	standardised	methods	for	detecting	451	

Manumea	in	the	field	is	recognised	as	a	top	priority,	our	model	outputs	can	be	used	to	452	

help	guide	searches	for	surviving	birds	once	appropriate	survey	methods	are	identified,	453	

notably	through	highlighting	new	landscapes	as	potential	priority	areas	alongside	454	

recognised	MKRAs.	We	hope	that	our	research	can	thus	contribute	toward	efforts	to	455	

prevent	the	possible	imminent	extinction	of	this	remarkable	species.	We	also	456	

recommend	further	use	of	ecological	data	associated	with	past	records	to	inform	457	

decision-making	for	other	poorly-known	threatened	species	in	urgent	need	of	evidence-458	

based	conservation.	459	

	460	



 
 

20	

Acknowledgements.	We	thank	Imperial	College	London	and	Research	England	for	461	

financial	support.	We	thank	Nigel	Collar	for	access	to	literature,	and	Rhian	Rowson	462	

(Bristol	Museum	&	Art	Gallery)	and	the	Natural	Sciences	Collections	Association	463	

network	for	providing	information	on	museum	collections.	464	

	465	

Competing	interests.	The	authors	declare	none.	466	

	467	

References	468	

Allen	T.I.	and	Wald	D.J.	(2009)	On	the	use	of	high-resolution	topographic	data	as	a	469	

proxy	for	seismic	site	conditions	(VS30).	Bulletin	of	the	Seismological	Society	of	470	

America	99,	935-943.	https://doi.org/10.1785/0120080255	471	

Allouche	O.,	Tsoar	A.	and	Kadmon	R.	(2006)	Assessing	the	accuracy	of	species	472	

distribution	models:	prevalence,	kappa	and	the	true	skill	statistic	(TSS).	Journal	of	473	

Applied	Ecology	43,	1223-1232.	https://doi.org/10.1111/j.1365-474	

2664.2006.01214.x	475	

Atherton	J.	and	Jefferies	B.	(eds.)	(2012)	Rapid	Biodiversity	Assessment	of	Upland	476	

Savai’i,	Samoa.	Apia,	Samoa:	Secretariat	of	the	Pacific	Regional	Environment	477	

Programme.	478	

Baranyovits	A.E.	(2017)	Urban	Ecology	of	an	Endemic	Pigeon,	the	Kererū.	PhD	479	

dissertation,	School	of	Biological	Sciences,	University	of	Auckland.	480	

Baumann	S.	and	Beichle	U.	(2020)	Acoustical	identification	of	Didunculus	strigirostris,	481	

critically	endangered	tooth-billed	pigeon	of	Samoa.	Journal	of	Ornithology	161,	439-482	

446.	https://doi.org/10.1007/s10336-019-01742-y	483	



 
 

21	

Beichle	U.	(1982)	Untersuchungen	zur	Biologie	und	Systematik	der	Zahntaube,	484	

Didunculus	strigirostris	(Jardine,	1845).	PhD	dissertation,	Faculty	of	Mathematics	485	

and	Natural	Sciences,	University	of	Kiel.	486	

Beichle	U.	(1987)	Lebensraum,	Bestand	und	Nahrungsaufnahme	der	Zahntaube,	487	

Didunculus	strigirostris.	Journal	of	Ornithology	128,	75-89.	488	

https://doi.org/10.1007/BF01644791	489	

BirdLife	International	(2024)	Species	factsheet:	Didunculus	strigirostris.	Available	at:	490	

https://datazone.birdlife.org/species/factsheet/tooth-billed-pigeon-didunculus-491	

strigirostris	(accessed	14	April	2024)	492	

Bivand	R.,	Altman	M.,	Anselin	L.,	Assunção	R.,	Berke	O.,	Blanchet	F.G.,	Carvalho	M.,	493	

Christensen	B.,	Chun	Y.,	Dormann	C.,	Dray	S.,	Dunnington	D.,	Gómez-Rubio	V.,	494	

Krainski	E.,	Legendre	P.,	Lewin-Koh	N.,	Li	A.,	Millo	G.,	Mueller	W.,	Ono	H.,	Parry	495	

J.,	Peres-Neto	P.,	Piras	G.,	Reder	M.,	Sauer	J.,	Tiefelsdorf	M.,	Westerholt	R.,	Wolf	496	

L.	and	Yu	D.	(2023)	spdep:	spatial	dependence:	weighting	schemes,	statistics	(1.3-497	

1).	Available	at:	https://cran.r-project.org/web/packages/spdep/index.html	498	

(accessed	14	April	2024)	499	

Brown	E.D.	and	Hopkins	M.J.G.	(1996)	How	New	Guinea	rainforest	flower	resources	500	

vary	in	time	and	space:	implications	for	nectarivorous	birds.	Australian	Journal	of	501	

Ecology	21,	363-378.	https://doi.org/10.1111/j.1442-9993.1996.tb00623.x	502	

Castellaro	S.,	Mulargia	F.	and	Rossi	P.L.	(2008)	VS30:	proxy	for	seismic	amplification?	503	

Seismological	Research	Letters	79,	540-543.	https://doi.org/10.1785/gssrl.79.4.540	504	

Christie	A.P.,	Amano	T.,	Martin	P.A.,	Petrovan	S.O.,	Shackelford	G.E.,	Simmons	B.I.,	505	

Smith	R.K.,	Williams	D.R.,	Wordley	C.F.R.	and	Sutherland	W.J.	(2021)	The	506	

challenge	of	biased	evidence	in	conservation.	Conservation	Biology	35,	249-262.	507	

https://doi.org/10.1111/cobi.13577	508	

https://datazone.birdlife.org/species/factsheet/tooth-billed-pigeon-didunculus-strigirostris
https://datazone.birdlife.org/species/factsheet/tooth-billed-pigeon-didunculus-strigirostris
https://cran.r-project.org/web/packages/spdep/index.html


 
 

22	

Collar	N.J.,	Fisher	C.T.	and	Feare	C.J.	(eds.)	(2004)	Why	museums	matter:	avian	509	

archives	in	an	age	of	extinction.	Bulletin	of	the	British	Ornithologists’	Club	123A	510	

(Suppl.),	1-360.	511	

Collar	N.J.	(2015)	Natural	history	and	conservation	biology	of	the	tooth-billed	pigeon	512	

(Didunculus	strigirostris):	a	review.	Pacific	Conservation	Biology	21,	186-199.	513	

https://doi.org/10.1071/PC14923	514	

Corlett	R.	and	Primack	R.	(2011)	Tropical	Rain	Forests:	An	Ecological	and	515	

Biogeographical	Comparison.	Second	edition.	Oxford:	Wiley-Blackwell.	516	

de	Lima	R.F.,	Bird	J.P.	and	Barlow	J.	(2011)	Research	effort	allocation	and	the	517	

conservation	of	restricted-range	island	bird	species.	Biological	Conservation	144,	518	

627-632.	https://doi.org/10.1016/j.biocon.2010.10.021	519	

duPont	J.E.	(1972)	Notes	from	Western	Samoa,	including	the	description	of	a	new	520	

parrot-finch	(Erythrura).	Wilson	Bulletin	84,	375-376.	521	

Elith	J.	et	al.	(2006).	Novel	methods	improve	prediction	of	species’	distributions	from	522	

occurrence	data.	Ecography	29,	129-151.	https://doi.org/10.1111/j.2006.0906-523	

7590.04596.x	524	

Elith	J.,	Phillips	S.J.,	Hastie	T.,	Dudík	M.,	Chee	Y.E.	and	Yates	C.J.	(2011)	A	statistical	525	

explanation	of	MaxEnt	for	ecologists.	Diversity	and	Distributions	17,	43-57.	526	

https://doi.org/10.1111/j.1472-4642.2010.00725.x	527	

Escalante	T.,	Rodríguez-Tapia	G.,	Linaje	M.,	Illoldi-Rangel	P.	and	González-López	R.	528	

(2013)	Identification	of	areas	of	endemism	from	species	distribution	models:	529	

threshold	selection	and	Nearctic	mammals.	TIP	Revista	Especializada	en	Ciencias	530	

Químico-Biológicas	16,	5-17.	https://doi.org/10.1016/S1405-888X(13)72073-4	531	



 
 

23	

Fielding	A.H.	and	Bell	J.F.	(1997)	A	review	of	methods	for	the	assessment	of	prediction	532	

errors	in	conservation	presence/absence	models.	Environmental	Conservation	24,	533	

38-49.	https://doi.org/10.1017/S0376892997000088	534	

Fisher	D.O.	(2011)	Trajectories	from	extinction:	where	are	missing	mammals	535	

rediscovered?	Global	Ecology	and	Biogeography	20,	415-425.	536	

https://doi.org/10.1111/j.1466-8238.2010.00624.x	537	

Franklin	J.	(2009)	Mapping	Species	Distributions:	Spatial	Inference	and	Predictions.	New	538	

York:	Cambridge	University	Press.	539	

GEOINT	(2015)	GEOINT	New	Zealand	Data	Service	(GDS).	Available	at:	540	

https://geodata.nzdf.mil.nz/	(accessed	14	April	2024)	541	

Graham	C.H.,	Ferrier	S.,	Huettman	F.,	Moritz	C.	and	Peterson	A.T.	(2004)	New	542	

developments	in	museum-based	informatics	and	applications	in	biodiversity	543	

analysis.	Trends	in	Ecology	and	Evolution	19,	497-503.	544	

https://doi.org/10.1016/j.tree.2004.07.006	545	

Hattori	D.,	Sabang	J.,	Tanaka	S.,	Kendawang	J.J.,	Ninomiya	I.	and	Sakurai	K.	(2005)	546	

Soil	characteristics	under	three	vegetation	types	associated	with	shifting	cultivation	547	

in	a	mixed	dipterocarp	forest	in	Sarawak,	Malaysia.	Soil	Science	and	Plant	Nutrition	548	

51,	231-241.	https://doi.org/10.1111/j.1747-0765.2005.tb00027.x	549	

Jarvis	A.,	Reuter	H.I.,	Nelson	A.	and	Guevara	E.	(2008)	Hole-filled	seamless	SRTM	550	

data.	Version	4.	Palmira,	Colombia:	International	Centre	for	Tropical	Agriculture.	551	

Available	at:	https://srtm.csi.cgiar.org	(accessed	14	April	2024)	552	

Jetz	W.,	Thomas	G.H.,	Joy	J.B.,	Redding	D.W.,	Hartmann	K.	and	Mooers	A.O.	(2014)	553	

Global	distribution	and	conservation	of	evolutionary	distinctness	in	birds.	Current	554	

Biology	24,	919-930.	https://doi.org/10.1016/j.cub.2014.03.011	555	

https://geodata.nzdf.mil.nz/
https://srtm.csi.cgiar.org/


 
 

24	

Layard	E.L.	(1876)	Notes	on	the	birds	of	the	Navigators’	and	Friendly	Islands.	556	

Proceedings	of	the	Zoological	Society	of	London	44,	490-506.	557	

https://doi.org/10.1111/j.1096-3642.1876.tb02591.x	558	

Lees	A.C.,	Devenish	C.,	Areta	J.I.,	de	Araújo	C.B.,	Keller	C.,	Phalan	B.	and	Silveira	L.F.	559	

(2021)	Assessing	the	extinction	probability	of	the	purple-winged	ground	dove,	an	560	

enigmatic	bamboo	specialist.	Frontiers	in	Ecology	and	Evolution	9,	624959.	561	

https://doi.org/10.3389/fevo.2021.624959	562	

Lentini	P.E.,	Stirnemann	I.A.,	Stojanovic	D.,	Worthy	T.H.	and	Stein	J.A.	(2018)	Using	563	

fossil	records	to	inform	reintroduction	of	the	kakapo	as	a	refugee	species.	Biological	564	

Conservation	217,	157-165.	https://doi.org/10.1016/j.biocon.2017.10.027	565	

Liu	C.,	White	M.	and	Newell	G.	(2013)	Selecting	thresholds	for	the	prediction	of	species	566	

occurrence	with	presence-only	data.	Journal	of	Biogeography	40,	778-789.	567	

https://doi.org/10.1111/jbi.12058	568	

Loiselle	B.A.,	Howell	C.A.,	Graham	C.H.,	Goerck	J.M.,	Brooks	T.,	Smith	K.G.	and	569	

Williams	P.H.	(2003)	Avoiding	pitfalls	of	using	species	distribution	models	in	570	

conservation	planning.	Conservation	Biology	17,	1591-1600.	571	

https://doi.org/10.1111/j.1523-1739.2003.00233.x	572	

Lundbäck	M.,	Persson	H.,	Häggström	C.	and	Nordfjell	T.	(2021)	Global	analysis	of	the	573	

slope	of	forest	land.	Forestry	94,	54-69.	https://doi.org/10.1093/forestry/cpaa021	574	

McClenachan	L.,	Ferretti	F.	and	Baum	J.K.	(2012)	From	archives	to	conservation:	why	575	

historical	data	are	needed	to	set	baselines	for	marine	animals	and	ecosystems.	576	

Conservation	Letters	5,	349-359.	https://doi.org/10.1111/j.1755-577	

263X.2012.00253.x	578	



 
 

25	

Merow	C.,	Smith	M.J.	and	Silander	J.A.	(2013)	A	practical	guide	to	MaxEnt	for	579	

modeling	species’	distributions:	what	it	does,	and	why	inputs	and	settings	matter.	580	

Ecography	36,	1058-1069.	https://doi.org/10.1111/j.1600-0587.2013.07872.x	581	

MNRE	(2006)	Recovery	Plan	for	the	Manumea	or	Tooth-Billed	Pigeon	(Didunculus	582	

strigirostris)	2006-2016.	Apia,	Samoa:	Ministry	of	Natural	Resources	&	Environment,	583	

Government	of	Samoa.	584	

MNRE	and	SCS	(2020)	Recovery	Plan	for	the	Manumea	or	Tooth-Billed	Pigeon	585	

(Didunculus	strigirostris)	2020-2029.	Apia,	Samoa:	Ministry	of	Natural	Resources	&	586	

Environment,	Government	of	Samoa	and	Samoa	Conservation	Society.	587	

Newbold	T.	(2010)	Applications	and	limitations	of	museum	data	for	conservation	and	588	

ecology,	with	particular	attention	to	species	distribution	models.	Progress	in	589	

Physical	Geography	34,	3-22.	https://doi.org/10.1177/0309133309355630	590	

PacGeo	(2017)	Surface	soil	classification	data.	Available	at:	591	

http://www.pacgeo.org/layers/geonode:ws_soils_vs30	(accessed	14	April	2024)	592	

Phillips	S.J.,	Dudík	M.	and	Schapire	R.E.	(2016)	Maxent	software	for	modeling	species	593	

niches	and	distributions.	Version	3.4.4.	Available	at:	594	

http://biodiversityinformatics.amnh.org/open_source/maxent/	(accessed	14	April	595	

2024)	596	

Pratt	H.D.	and	Mittermeier	J.C.	(2016)	Notes	on	the	natural	history,	taxonomy,	and	597	

conservation	of	the	endemic	avifauna	of	the	Samoan	archipelago.	The	Wilson	Journal	598	

of	Ornithology	128,	217-241.	https://doi.org/10.1676/wils-128-02-217-241.1	599	

Radosavljevic	A.	and	Anderson	R.P.	(2014)	Making	better	Maxent	models	of	species	600	

distributions:	complexity,	overfitting	and	evaluation.	Journal	of	Biogeography	41,	601	

629-643.	https://doi.org/10.1111/jbi.12227	602	

http://www.pacgeo.org/layers/geonode:ws_soils_vs30#more
http://biodiversityinformatics.amnh.org/open_source/maxent/


 
 

26	

QGIS	Development	Team	(2021)	QGIS	Geographic	Information	System,	Open	Source	603	

Geospatial	Foundation	Project.	Version	3.20.0.	Available	at:	www.qgis.org	(accessed	604	

14	April	2024)	605	

R	Core	Team	(2020)	R:	A	Language	and	Environment	for	Statistical	Computing.	Vienna:	606	

R	Foundation	for	Statistical	Computing.	607	

Ramsay	E.P.	(1864)	On	the	Didunculus	strigirostris,	or	tooth-billed	pigeon	from	Upolu.	608	

Ibis	6,	98-100.	609	

Reed	S.	(1980)	The	birds	of	Savai’i,	Western	Samoa.	Notornis	27,	151-159.	610	

Schoener	T.W.	(1970)	Nonsynchronous	spatial	overlap	of	lizards	in	patchy	habitats.	611	

Ecology	51,	408-418.	https://doi.org/10.2307/1935376	612	

Serra	G.	(2017)	Review	of	Implementation	of	Manumea	Recovery	Plan	2006-2016.	Apia,	613	

Samoa:	Ministry	of	Natural	Resources	and	Environment	of	Samoa.	614	

Serra	G.,	Sherley	G.,	Failagi	S.A.,	Foliga	S.T.,	Uili	M.,	Enoka	F.	and	Suaesi	T.	(2018)	615	

Traditional	ecological	knowledge	of	the	Critically	Endangered	tooth-billed	pigeon	616	

Didunculus	strigirostris,	endemic	to	Samoa.	Bird	Conservation	International	28,	620-617	

642.	https://doi.org/10.1017/S0959270917000259	618	

Serra	G.,	Wood	G.R.,	Faiilagi	S.A.,	Foliga	S.T.,	Uili	M.	and	Enoka	F.	(2021)	Using	619	

Samoan	traditional	ecological	knowledge	to	identify	calls	of	the	critically	620	

endangered	endemic	tooth-billed	pigeon	(Didunculus	strigirostris).	Pacific	621	

Conservation	Biology	27,	275-283.	https://doi.org/10.1071/PC20052	622	

Smetzer	J.R.,	Paxton	K.L.	and	Paxton	E.H.	(2021)	Individual	and	seasonal	variation	in	623	

the	movement	behavior	of	two	tropical	nectarivorous	birds.	Movement	Ecology	9,	624	

36.	https://doi.org/10.1186/s40462-021-00275-5	625	

Spatz	D.A.,	Zilliacus	K.M.,	Holmes	N.D.,	Butchart	S.H.M.,	Genovesi	P.,	Ceballos	G.,	626	

Tershy	B.R.	and	Croll	D.A.	(2017)	Globally	threatened	vertebrates	on	islands	with	627	

http://www.qgis.org/


 
 

27	

invasive	species.	Science	Advances	3,	e1603080.	628	

https://doi.org/10.1126/sciadv.1603080	629	

Stair	J.B.	(1897)	A	romance	of	Samoan	natural	history;	or	records	relating	to	the	manu	630	

mea,	or	red	bird	of	Samoa,	now	nearly,	if	not	quite,	extinct.	Transactions	and	631	

Proceedings	of	the	New	Zealand	Institute	30,	293-303.	632	

Steadman	D.W.	(2006a)	Extinction	and	Biogeography	of	Tropical	Pacific	Birds.	Chicago:	633	

University	of	Chicago	Press.	634	

Steadman	D.W.	(2006b)	An	extinct	species	of	tooth-billed	pigeon	(Didunculus)	from	the	635	

Kingdom	of	Tonga,	and	the	concept	of	endemism	in	insular	landbirds.	Journal	of	636	

Zoology	268,	233-241.	https://doi.org/10.1111/j.1469-7998.2005.00010.x	637	

Turvey	S.T.,	Barrett	L.A.,	Hart	T.,	Collen	B.,	Hao	Y.,	Zhang	L.,	Zhang	X.,	Wang	X.,	638	

Huang	Y.,	Zhou	K.	and	Wang	D.	(2010)	Spatial	and	temporal	extinction	dynamics	639	

in	a	freshwater	cetacean.	Proceedings	of	the	Royal	Society	B	277,	3139-3147.	640	

https://doi.org/10.1098/rspb.2010.0584	641	

Turvey	S.T.,	Crees	J.J.	and	Di	Fonzo	M.M.I.	(2015)	Historical	data	as	a	baseline	for	642	

conservation:	reconstructing	long-term	faunal	extinction	dynamics	in	Late	Imperial-643	

modern	China.	Proceedings	of	the	Royal	Society	B	282,	20151299.	644	

https://doi.org/10.1098/rspb.2015.1299	645	

Turvey	S.T.,	Kennerley	R.J.,	Hudson	M.A.,	Nuñez-Miño	J.M.	and	Young	R.P.	(2020)	646	

Assessing	congruence	of	opportunistic	records	and	systematic	surveys	for	647	

predicting	Hispaniolan	mammal	species	distributions.	Ecology	and	Evolution	10,	648	

5056-5068.	https://doi.org/10.1002/ece3.6258	649	

Turvey	S.T.	and	Saupe	E.E.	(2019)	Insights	from	the	past:	unique	opportunity	or	650	

foreign	country?	Philosophical	Transactions	of	the	Royal	Society	B	374,	20190208.	651	

https://doi.org/10.1098/rstb.2019.0208	652	



 
 

28	

van	Proosdij	A.S.J.,	Sosef	M.S.M.,	Wieringa	J.J.	and	Raes	N.	(2016)	Minimum	required	653	

number	of	specimen	records	to	develop	accurate	species	distribution	models.	654	

Ecography	39,	542-552.	https://doi.org/10.1111/ecog.01509	655	

Verbruggen	H.,	Tyberghein	L.,	Belton	G.S.,	Mineur	F.,	Jueterbock	A.,	Hoarau	G.,	656	

Gurgel	C.F.D.	and	De	Clerck	O.	(2013)	Improving	transferability	of	introduced	657	

species’	distribution	models:	new	tools	to	forecast	the	spread	of	a	highly	invasive	658	

seaweed.	PLoS	ONE	8,	e68337.	https://doi.org/10.1371/journal.pone.0068337	659	

Warren	D.L.,	Glor	R.E.	and	Turelli	M.	(2008)	Environmental	niche	equivalency	versus	660	

conservatism:	quantitative	approaches	to	niche	evolution.	Evolution	62,	2868-2883.	661	

https://doi.org/10.1111/j.1558-5646.2008.00482.x	662	

Warren	D.L.,	Glor	R.E.	and	Turelli	M.	(2010)	ENMTools:	a	toolbox	for	comparative	663	

studies	of	environmental	niche	models.	Ecography	33,	607-611.	664	

https://doi.org/10.1111/j.1600-0587.2009.06142.x	665	

Weisler	M.I.,	Lambrides	A.B.J.,	Quintus	S.,	Clark	J.	and	Worthy	T.H.	(2016)	666	

Colonisation	and	Late	Period	faunal	assemblages	from	Ofu	Island,	American	Samoa.	667	

Journal	of	Pacific	Archaeology	7,	1-19.	668	

Whistler	W.A.	(1978)	Vegetation	of	the	montane	region	of	Savai’i,	Western	Samoa.	669	

Pacific	Science	32,	79-94.	670	

Whistler	W.A.	(1980)	The	vegetation	of	eastern	Samoa.	Allertonia	2,	45-190.	671	

Whistler	W.A.	(1992)	Vegetation	of	Samoa	and	Tonga.	Pacific	Science	46,	159-178.	672	

Wilkie	D.S.,	Bennett	E.L.,	Peres	C.A.	and	Cunningham	A.A.	(2011)	The	empty	forest	673	

revisited.	Annals	of	the	New	York	Academy	of	Sciences	1223,	120-128.	674	

https://doi.org/10.1111/j.1749-6632.2010.05908.x	675	



 
 

29	

Wisz	M.S.,	Hijmans	R.J.,	Li	J.,	Peterson	A.T.,	Graham	C.H.	and	Guisan	A.	(2008)	676	

Effects	of	sample	size	on	the	performance	of	species	distribution	models.	Diversity	677	

and	Distributions	14,	763-773.	https://doi.org/10.1111/j.1472-4642.2008.00482.x	678	

Worthy	T.H.,	Hawkins	S.,	Bedford	S.	and	Spriggs	M.	(2015)	Avifauna	from	the	679	

Teouma	Lapita	Site,	Efate	Island,	Vanuatu,	including	a	new	genus	and	species	of	680	

megapode.	Pacific	Science	69,	205-254.	https://doi.org/10.2984/69.2.6  681	



 
 

30	

Table	1.	Percentage	contribution	of	variables	to	final	models.	VR,	visual	reduced	model;	682	
VC,	visual	combined	model;	AR,	acoustic	reduced	model;	AC,	acoustic	combined	model.	683	
Variables	removed	from	final	models	indicated	by	dashes.	Positive	correlations	shown	684	
in	bold,	negative	correlations	shown	in	italics.	685	

	686	

Variables	 VR	 VC	 AR	 AC	
Bioclimatic:	 	 	 	 	
			Mean	diurnal	range	(BIO2)	 —	 —	 16.4	 15	
			Isothermality	(BIO3)	 10.8	 6.1	 —	 —	
			Min	temperature	of	coldest	month	(BIO6)	 —	 5.4	 —	 3.5	
			Mean	temperature	of	wettest	quarter	(BIO8)	 —	 —	 —	 —	
			Annual	precipitation	(BIO12)	 25.1	 7.2	 17.4	 7.2	
			Precipitation	of	driest	month	(BIO14)	 6.0	 —	 —	 —	
			Precipitation	of	driest	quarter	(BIO17)	 21.6	 —	 16.9	 6.8	
Elevation	 14.5	 10	 15.9	 —	
Slope	 11.3	 10.2	 —	 —	
Soil	hardness	 10.7	 8.9	 33.4	 14.7	
Land	cover:	 	 	 	 	
			Forest	 	 35.8	 	 31.8	
			Thicket	 	 6.2	 	 —	
			Surface	soil	 	 3.2	 	 9.9	
			Cropland	 	 7	 	 11.1	
	 	687	
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Table	2.	Pairwise	comparisons	of	models,	compared	using	Schoener’s	index	(D)	and	688	
Hellinger	distance	(I).	VR,	visual	reduced	model;	VC,	visual	combined	model;	AR,	689	
acoustic	reduced	model;	AC,	acoustic	combined	model.	690	

	691	

Model	pairwise	comparison	 D	 I	
VR	–	VC	 0.712	 0.925	
VR	–	AR	 0.724	 0.941	
VR	–	AC	 0.663	 0.906	
VC	–	AR	 0.699	 0.915	
VC	–	AC	 0.717	 0.922	
AR	–	AC	 0.763	 0.943	

	 	692	
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Figure	1.	A,	Map	of	Samoa,	showing	the	four	islands	on	which	Manumea	are	recorded,	693	

and	locations	of	Manumea	Key	Rainforest	Areas:	1,	Falealupo	KBA;	2,	Central	Savai’i	694	

KBA;	3,	Tafua	&	Salelologa	rainforest;	4,	Apia	catchments	KBA;	5,	Uafato-Tiavea	KBA.	B,	695	

Distribution	of	reported	acoustic	records.	C,	Distribution	of	pre-2000	sightings	or	696	

historical	specimen	collection	localities.	D,	Distribution	of	post-2000	sightings.	697	

	698	

Figure	2.	Manumea	species	distribution	models:	A,	visual	reduced	model	(threshold:	699	

37.894);	B,	visual	combined	model	(threshold:	53.459);	C,	acoustic	reduced	model	700	

(threshold:	48.671);	D,	acoustic	combined	model	(threshold:	34.258).	See	main	text	for	701	

method	used	to	determine	occupancy	likelihood	thresholds.	702	

	703	

Figure	3.	Pairwise	comparisons	between	models:	A,	visual	reduced–visual	combined;	B,	704	

visual	combined–acoustic	combined;	C,	visual	reduced–acoustic	combined;	D,	visual	705	

combined–acoustic	reduced;	E,	visual	reduced–acoustic	reduced;	F,	acoustic	reduced–706	

acoustic	combined.	707	


