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1. Introduction

In this paper we prove a spectral quasi-clustering for large eigenvalues of a subclass of 
systems belonging to the class of Semiregular Metric Globally Elliptic Systems (SMGES), 
introduced in [7] (see Definition 2.1 below).

By spectral quasi-clustering we mean the concentration of the spectrum of a positive 
self-adjoint ψdo within the union of certain intervals with centers at a sequence deter-
mined in terms of invariants of the symbol, and diameters decreasing as the centers go 
to infinity.

We speak of “quasi-clustering” when the various intervals in whose union the spectrum 
is lying may intersect (in an at most uniformly finite number) and speak of “clustering” 
when such intervals do not intersect anymore when the centers are sufficiently large.

Determining when such a clustering/quasi-clustering takes place is interesting since it 
actually completes the spectral asymptotic information given by the Weyl asymptotics. 
In fact, it gives quite a precise location of the spectrum for large eigenvalues when the 
centers are in a neighborhood of +∞ on the real line.

Keeping as examples the Jaynes-Cummings model and its generalizations of Section 2 
of [7], we consider SMGES systems whose semiprincipal symbols possess matrix invari-
ants (i.e., the coefficients of the characteristic polynomial of the semiprincipal symbol) 
that are functions of the harmonic oscillator p2,α (see Section 4) and subprincipal of its 
diagonalization (by some unitary symbol e0) which is constant on the bicharacteristics 
of p2 and p2,α.

To start describing more precisely our results, we give some references to problems of 
eigenvalue clustering in various situations, focusing only on those that are most relevant 
to this paper (see, e.g., the reference lists of the quoted ones for more contributions). 
First, we recall that Duistermaat and Guillemin in [1] gave a clustering result for the 
m-th root of a scalar positive elliptic self-adjoint ψdo P of order m > 0 on a compact 
smooth boundaryless manifold under the hypothesis that the bicharacteristics of m

√
p

are all periodic with the same period, where p denotes the principal symbol of P . Con-
versely, they showed that if that clustering occurs then the flow of m

√
p is periodic. Next, 

Weinstein [15] proved also an eigenvalue clustering result for a Schrödinger operator on a 
compact Riemannian manifold, deepening the description of the asymptotic structure of 
the clusters. We will later recall the arguments used in that paper since they are relevant 
to our work. Later, Colin de Verdière [2] gave an even more precise result in the case of 
the square of a first order ψdo with zero subprincipal symbol and 2π-periodic bicharac-
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teristics on a compact smooth manifold. He was also able to recover the multiplicities of 
the eigenvalues in the disjoint intervals. Taking inspiration from the ideas of Weinstein 
and Colin de Verdière, Helffer and Robert [4] studied semiclassical clustering properties 
for an anharmonic oscillator model, and for scalar second order globally elliptic regular
positive self-adjoint ψdos, Helffer [3] obtained a clustering result under the hypothesis 
that the X-ray transform (that is, the average over a period along the bicharacteristics 
of the principal part) of the subprincipal symbol is identically a constant.

Clustering results for certain systems in the semiclassical case where obtained by Ivrii 
[6], and for regular 2 × 2 NCHOs by Parmeggiani [8–10].

In this paper, we generalize the (quasi-)clustering properties to semiregular systems 
by means of an idea introduced by Weinstein in the aforementioned paper [15]. In there, 
he studied ψdos on a compact Riemannian manifold of the form A2 + B with A a 
1st-order self-adjoint, positive, elliptic ψdo, B a self-adjoint ψdo of order 0, and such 
that e2πiA = cI for some constant c. His approach is based on an averaging technique: 
the subprincipal symbol is X-ray transformed on the bicharacteristics of the principal 
symbol by a unitary operator conjugation and the new subprincipal term commutes 
with the principal one. Thus, the spectrum of the sum of the operators corresponding 
to the principal and subprincipal terms can be analyzed by studying that of the two 
terms individually and it gives the sequence at which the intervals are centered. The 
remainder, that is, the difference between the conjugated operator and the operator itself, 
is a compact operator and gives the diameter of the intervals. In fact, the compactness 
of the remainder leads to an energy inequality and the minimax principle completes the 
analysis.

The plan of the paper is the following.
In Section 2 we recall the definition the SMGES class given in [7]. We also describe 

the examples given by the JC-model and of an extension of it by the use of semireg-
ular Non-Commutative Harmonic Oscillators (NCHOs, introduced by Parmeggiani and 
Wakayama in [11–13], see also [8–10]). In Section 3 we show that it is possible for a 
Fredholm operator (with non positive index and parametrix given by its adjoint) to be 
deformed into an isometry by adding a compact operator. This is crucial for applying 
the diagonalization procedure and keep control on the relation between the spectrum 
of the starting operator in terms of that of the diagonalized one. In Section 4 we prove 
that the blockwise diagonalization with scalar semiprincipal blocks of a system in our 
class is equal, modulo a system of order −1, to a system whose principal, semiprincipal, 
and subprincipal terms commute. It is here that we take inspiration from the work by 
Weinstein. In fact, we study the non-compact part of the operator (that is, the oper-
ator obtained by considering only the principal, semiprincipal and subprincipal parts) 
obtaining an explicit expression for its spectrum. Next, we recapture the spectrum of the 
whole operator, thanks to an energy inequality which leads to our estimate by using the 
minimax principle. It is at this point that what we show in Section 3 becomes crucial. 
In fact, the minimax principle alone is not sufficient for obtaining the result. Indeed, we 
need to link the spectrum of the initial operator with that of its conjugation by a suitable 
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diagonalizing operator E. This is achieved by showing that E∗ (when indE ≥ 0), respec-
tively E (when indE < 0), can be made into an isometry, that is EE∗ = I, respectively 
E∗E = I, by adding a smoothing term. When indE ≥ 0 we are in a good position and 
we may carry the spectral information of the diagonalized system onto that of the initial 
operator. When indE ≤ 0, it is not enough that E can be corrected into an isometry by 
addition of a smoothing operator and some further analysis is needed (see Section 4).

Notation. For X ∈ Rn × Rn = R2n and 〈X〉 = (1 + |X|2)1/2 the “Japanese bracket 
of X”, let g be the admissible Hörmander metric gX = |dX|2/〈X〉2. We denote the 
(matrix-valued) Hörmander class of symbols S(〈X〉m, g; MN ) related to the admissible 
metric g on Rn × Rn and the g-admissible weight 〈X〉 (where m ∈ R) simply by Sm, 
and denote by Ψm the corresponding class of pseudodifferential operators obtained by 
Weyl-quantization [5]. Finally we denote by Sm

sreg (and by Ψm
sreg the corresponding class 

of ψdos) the class of symbols a ∈ Sm that admit an asymptotic expansion 
∑

j≥0 am−j

where the am−j are C∞ on Ṙ2n := R2n \ {(0, 0)} and positively homogeneous of degree 
m − j, in which am is the principal symbol, am−1 and am−2 are the semiprincipal and 
subprincipal symbols, respectively. We put p2(X) = |X|2/2 and, for α ∈ Rn with αj > 0, 
1 ≤ j ≤ n,

p2,α(X) =
n∑

j=1
αj(x2

j + ξ2
j )/2.

The Hamilton vector field associated with a function f on the phase-space will be denoted 
by

Hf =
n∑

j=1

( ∂f

∂ξj

∂

∂xj
− ∂f

∂xj

∂

∂ξj

)
,

and by (t, X) 	→ exp(tHf )(X) its flow. We finally denote by Bs = Bs(Rn; CN ) the 
Shubin-Sobolev spaces of order s ∈ R (so that, in particular, B2 is the maximal domain 
for the L2 realization of pw

2 (x, D)).

Acknowledgments: We wish to thank the referees for their careful reading and important 
observations.

2. Setting

In this section, we recall the definition of the SMGES class and introduce, as examples 
of that class, the classical JC-model and its extension to systems of an N ≥ 3 energy 
level atom and n = N − 1 cavity-modes of the electromagnetic field.
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2.1. The SMGES class

The class under study, introduced in [7], is given by the systems of order m having 
scalar and elliptic principal symbol whose semiprincipal symbol (that is, the isotropic 
positively homogeneous term of degree m −1 in the asymptotic expansion of the symbol) 
can be blockwise diagonalized in scalar blocks satisfying the condition of eigenvalues 
separation.

Definition 2.1. We say that an MN -valued symbol a ∈ Sm
sreg is a semiregular metric 

globally elliptic system (SMGES for short) of order m, when

a(X) = a(X)∗ = qm(X)IN + am−1(X) + am−2(X) + Sm−3
sreg , X �= 0,

where:

• qm ∈ C∞(Ṙ2n; R) is positively homogeneous of degree m and such that |X|m ≈
qm(X) for all X �= 0;

• am−1 = a∗m−1 is such that there exists r ≥ 1 and e0 ∈ C∞(Ṙ2n; MN ) unitary and 
positively homogeneous of degree 0 such that

e0(X)∗am−1(X)e0(X) = diag(λm−1,j(X)INj
; 1 ≤ j ≤ r), X �= 0

where N = N1+N2+. . .+Nr and λm−1,j ∈ C∞(Ṙ2n; R) are positively homogeneous 
of degree m − 1 and such that

j < k =⇒ λm−1,j(X) < λm−1,k(X), ∀X �= 0.

2.2. JC-model by semiregular NCHOs and generalizations

We give here two examples of semiregular NCHOs in the SMGES class (due to Jaynes 
and Cummings [14]), relevant to Quantum Optics, that serve as a model of the class we 
consider in this work.

It will be convenient to use the following notation. We denote by σj , j = 0, . . . , 3, the 
Pauli-matrices, i.e.

σ0 = I2, σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0
0 −1

]
,

and

σ± = 1(σ1 ± iσ2).
2
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Let 〈·, ·〉 be the canonical Hermitian product in CN , and e1, . . . , eN be the canonical 
basis of CN . Let

Ejk := e∗k ⊗ ej , 1 ≤ j, k ≤ N,

be the basis of MN (C), where Ejk acts on CN as

Ejkw = 〈w, ek〉ej , w ∈ CN .

Hence we have the relation

EjkEhm = δhkEjm.

We also let, for X = (x, ξ) ∈ Rn ×Rn = R2n,

ψj(X) := xj + iξj√
2

, 1 ≤ j ≤ n,

so that ψw
j (x, D) is the annihilation operator and ψw

j (x, D)∗ = (ψ̄j)w(x, D) is the creation 
operator, with respect to the j-th variable. Hence,

n∑
j=1

ψw
j (x,D)∗ψw

j (x,D) = pw
2 (x,D) − n

2 .

2.2.1. The JC-model by semiregular NCHOs
This is the model of a two-level atom in one cavity, given by the 2 × 2 system in one 

real variable x ∈ R

Aw(x,D) = pw
2 (x,D)I2 + α

(
σ+ψ

w(x,D)∗ + σ−ψ
w(x,D)

)
+ γσ3, α, γ ∈ R \ {0},

where the atom levels are given by ±γ.
In this case, for the principal symbol of the diagonalizer e0 we have

e0(X) = 1√
2

[
1 1

ψ(X)/|ψ(X)| −ψ(X)/|ψ(X)|

]
, X �= 0, (2.1)

and for the subprincipal symbol b0 of the diagonalized operator

b0(X) = −1
I2. (2.2)
2
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2.2.2. The JC-model for an N -level atom and n = N − 1 cavity-modes (in the 
Ξ-configuration)

In this case, for α1, . . . αN−1 ∈ R \ {0}, γ1, . . . γN−1 ∈ R with 0 < γ1 < γ2 < . . . <

γN−1, we consider the N ×N system in Rn, n = N − 1, given by

Aw(x,D) = pw
2 (x,D)IN

+
N−1∑
k=1

αk

(
ψw
k (x,D)∗Ek,k+1 + ψw

k (x,D)Ek+1,k

)
+

N−1∑
k=1

γkEk+1,k+1.

In this case, the levels of the atom are given by 0 and the γk.
When N = 3, for the principal symbol of the diagonalizer e0 we have, writing αψ(X) =

(α1ψ1(X), α2ψ2(X)) so that for the relative norm one has |αψ(X)| = p2,α(X)1/2,

e0(X) =

⎡
⎢⎢⎢⎢⎢⎣

α2ψ2(X)
|αψ(X)|

α1ψ1(X)√
2|αψ(X)|

α1ψ1(X)√
2|αψ(X)|

0 − 1√
2

1√
2

−α1ψ1(X)
|αψ(X)|

α2ψ2(X)√
2|αψ(X)|

α2ψ2(X)√
2|αψ(X)|

⎤
⎥⎥⎥⎥⎥⎦ , X �= 0, (2.3)

and for the subprincipal symbol b0 of the diagonalized operator

b0(X) = diag
(−α2

2|ψ2(X)|2 + (γ2 − 1)α2
1|ψ1(X)|2

|αψ(X)| , (2.4)

−α2
1|ψ1(X)|2 + γ1|αψ(X)|2 + (γ2 + 1)α2

2|ψ2(X)|2
2|αψ(X)| I2

)
, X �= 0.

3. The “isometrization”

Definition 3.1. Let H be a (separable) Hilbert space. We say that the linear bounded 
operator U : H −→ H is quasi-unitary if U∗U = I + F1 and UU∗ = I + F2, where the 
F1, F2 : H −→ H are compact and I is the identity operator in H.

We show in Theorem 3.2 below that, given a quasi-unitary pseudodifferential system 
U ∈ Ψ0 (realized as a bounded operator in H = L2), when Fj ∈ Ψ−�j , 
1, 
2 > 0, we 
may perturb U , or its adjoint, by an operator of the same order of F1 or F2, to make it, 
or its adjoint, into an isometry.

Recall that a linear bounded operator A on a Hilbert space into itself is an isometry 
if A∗A = I.

This will be fundamental in Section 4 since in Theorem 4.2 below we will need to 
relate the spectrum of an SMGES to that of its diagonalization. In fact, we will see 
that the conjugation by an isometry changes the point spectrum of a positive ψdo by 
adding, at most, the eigenvalue 0. Hence, the conjugation by an isometry preserves the 
asymptotic properties of the spectrum of an SMGES.
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Theorem 3.2. Let U ∈ Ψ0
sreg and suppose that U∗U = I + F1 and UU∗ = I + F2, where 

Fj ∈ Ψ−�j , 
1, 
2 > 0. Then,

(i) When indU ≤ 0, there is K ∈ Ψ−�1 (i.e. of the same order as F1) such that U + K

is an isometry;
(ii) When indU ≥ 0, the same holds for U∗, that is, there is K ∈ Ψ−�2 (i.e. of the same 

order as F2) such that U∗ + K is an isometry.

Finally, when indU ≤ 0 and F1 is smoothing, resp. indU ≥ 0 and F2 is smoothing, then 
K is also smoothing.

Proof. Fundamental step. We start by considering the case in which U is such that 
U∗U = I + F1 where F1 has order −
1 < 0 and U is injective, that is,

−1 �∈ Spec(F1).

We want to construct a ψdo R such that UR is an isometry, where R = I + K1, with 
K1 a ψdo of the same order as F1. Namely, R must formally be the inverse of a square 
root of I + F1. To give a precise meaning to R as a ψdo we follow the approach by 
Helffer in [3]. It is based on the construction of R as a bounded linear operator L2 → L2

commuting with F . Once R is given, one then shows that it is indeed a ψdo by inverting 
the square root of I + F0, where F0 is the composition of F1 with the projection onto a 
finite-codimensional vector subspace of L2, such that | |F0| |L2→L2 ≤ 1/2.

As F1 is self-adjoint and compact (since it has order −
1 < 0), we may consider 
its eigenvalues μj ∈ R, j ≥ 0, repeated according to multiplicity, and a corresponding 
orthonormal basis (φj)j≥0 of L2 made of eigenfunctions of F1, with φj belonging to μj . 
Observe that, since −1 �∈ Spec(F1), we have that I + F1 = U∗U > 0, whence we define 
the linear and bounded operator R = (I + F1)−1/2 : L2 −→ L2 by

Rφj = (1 + μj)−1/2φj , j ≥ 0.

If now cj is the j-th coefficient in the Taylor series of (1 + t)−1/2 at t = 0, we consider 
a ψdo G such that

G−
k∑

j=0
cjF

j
1 ∈ Ψ−�1(k+1), ∀k ≥ 0. (3.1)

We wish to prove that G −R is smoothing, because that then yields R is a ψdo. To do 
that, we need to invert 

∑
j≥0 cjF

j
1 , and the problem is given by the possible eigenvalues 

μj of F1 with |μj | ≥ 1. We therefore deform F1 to the linear and bounded operator F0

defined on the basis (φj)j≥0 by
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F0φj :=
{

0, if |μj | > 1/2,
F1φj , if |μj | ≤ 1/2.

Hence, in particular, | |F0| |L2→L2 ≤ 1/2. Note also that there are only finitely many js 
such that |μj | > 1/2. We have that F0 is a ψdo. In fact, for all φ ∈ L2,

(F1 − F0)φ =
∑

j≥0; |μj |>1/2

μj(φ, φj)0φj , (3.2)

which shows that it is smoothing, as for its Schwartz-kernel we have

R2n � (x, y) 	−→ KF1−F0(x, y) =
∑

j≥0; |μj |>1/2

μjφj(x)tφj(y) ∈ S (R2n; MN ).

The same of course applies to F j
1 − F j

0 for all j ≥ 1 (it just suffices to substitute the 
eigenvalue in (3.2) by its j-th power). Now, define

R0 :=
∑
j≥0

cjF
j
0 ,

which is therefore a bounded operator R0 : L2 −→ L2, because | |F0| |L2→L2 ≤ 1/2. In 
addition, as

(R−R0)φ =
∑

j≥0; |μj |>1/2

(1 + μj)−1/2(φ, φj)0φj , ∀φ ∈ L2,

it has Schwartz kernel

R2n � (x, y) 	−→ KR−R0(x, y) =
∑

j≥0; |μj |>1/2

(1 + μj)−1/2φj(x)tφj(y) ∈ S (R2n; MN ),

whence it is smoothing too.
We next write for any given k ≥ 0

G−R0 = Ak + Bk − Ck,

where

Ak := G−
2k∑
j=0

cjF
j
1 , Bk :=

2k∑
j=0

cj(F j
1 − F j

0 ), Ck := R0 −
2k∑
j=0

cjF
j
0 .

We have that Ak, Bk, Ck : L2 −→ L2 are all bounded. Moreover, Ak ∈ Ψ−�1(2k+1) by 
(3.1) and Bk is smoothing for all k. We hence only need to study Ck. We have
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Ck = F k+1
0

( ∑
j≥2k+1

cjF
j−(2k+1)
0

)
F k

0 ,

which shows that Ck : B−�1k(Rn; CN ) −→ B�1(k+1)(Rn; CN ) is bounded for all k, be-
cause the operator 

∑
j≥2k+1 cjF

j−(2k+1)
0 : L2 −→ L2 is bounded and F j

0 ∈ Ψ−�1j for all 
j. This shows that G −R0 is smoothing and therefore that R is a ψdo.

To complete the proof in this case, let U1 = UR. Then U∗
1U1 = R∗U∗UR = (I +

F1)R2 = I since R and I + F1 commute because their eigenspaces coincide. Observe 
that R = I + K1 where K1 ∈ Ψ−�1 (i.e. it has the same order of F1). Therefore U1 =
U(I+K1) = U+K with K ∈ Ψ−�1 . Note that when F1 is smoothing then K is smoothing 
too. This concludes the proof in the case −1 �∈ Spec(F1).

Case (i). Consider now the case when U is not injective (i.e., when −1 ∈ Spec(F1); 
otherwise we are already done by the previous construction). We show how to modify U
through a smoothing operator Q so that U1 := U + Q is injective (so as to be able to 
apply the previous construction). Consider the set

Z1 := {j; μj = −1}.

Then Z1 is a finite set, by the compactness of F1. Consider next an orthonormal system 
(ψj)j≥0 ⊂ S of L2 made of eigenfunctions of F2 (which is also compact), and denote by 
μ′
j the eigenvalues of F2 (repeated according to multiplicity). Let also

Z2 := {j; μ′
j = −1}.

As before, also Z2 is a finite set, since F2 is compact. We then have

KerU = {φ ∈ L2; U∗Uφ = 0} = Span{φj ; j ∈ Z1},

and, likewise,

KerU∗ = {ψ ∈ L2; UU∗ψ = 0} = Span{ψj ; j ∈ Z2}.

We hence construct Q : L2 −→ L2 as an injective operator that does not vanish on 
KerU \{0} with range in KerU∗. As indU ≤ 0, we have that cardZ1 ≤ cardZ2, whence 
we have an injective map f : Z1 −→ Z2. Define then

Qφ :=
∑
j∈Z1

(φ, φj)0ψf(j), φ ∈ L2.

Therefore Q is smoothing, since

R2n � (x, y) 	−→ KQ(x, y) =
∑

ψf(j)(x)tφj(y) ∈ S (R2n; MN ),

j∈Z1
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and U + Q is injective, for

(U + Q)φ = 0 ⇐⇒ Uφ︸︷︷︸
∈Range(U)

= −Qφ︸ ︷︷ ︸
∈KerU∗

,

which in turn, since Range(U) = (KerU∗)⊥, yields

Uφ = −Qφ ∈ (KerU∗)⊥ ∩ KerU∗ = {0},

and hence φ = 0 because KerQ ∩ KerU = {0} by construction. By the fundamental 
step we hence have the existence of the desired K, which is also smoothing when F1 is 
smoothing. This concludes the proof of the case (i).

Case (ii). It immediately follows from the previous constructions applied to U∗.
This concludes the proof. �

Remark 3.3. If in Theorem 3.2 one has indU = 0 then the function f in the proof of 
case (i) is bijective, whence U + Q is onto. In fact,

(U + Q)∗φ = 0 ⇐⇒ U∗φ︸︷︷︸
∈Range(U∗)

= −Q∗φ︸ ︷︷ ︸
∈KerU

,

and therefore

U∗φ = −Q∗φ ∈ (KerU)⊥ ∩ KerU = {0},

which means φ = 0 since KerQ∗∩KerU∗ = {0} by the bijectivity of f . Since R∗U∗
1U1R =

I with R invertible, U1R is unitary. In fact, it is invertible (U1 and R are invertible) and 
the left inverse is unique.

4. Spectral quasi-clustering theorem

In this section, we prove a quasi-clustering theorem, Theorem 4.2 below, for a class 
of SMGES for which:

• The principal part is the scalar harmonic oscillator p2;
• The semiprincipal part has eigenvalues λ1,h (h = 1, . . . , r, where r is the number of 

blocks of b1, the diagonalization of a1) of the form

λ1,h(X) = p
(h)
1/2(p2,α(X)), X �= 0, 1 ≤ h ≤ r,

where p1/2 is smooth and positively homogeneous of degree 1/2 (off a compact set);
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• The subprincipal part b0 of the diagonalized system is constant on the bicharacter-
istics of p2 and p2,α.

This class contains the Jaynes-Cummings model and its generalizations as of Section 
2 of [7] (with βj = β for all j in the notation of [7]).

The use of Theorem 3.2 and Remark 3.3 will be crucial in the proof of the quasi-
clustering theorem.

It will be convenient, given a semiregular symbol a ∈ Sμ
sreg, to write A : D(A) = {u ∈

L2; aw(x, D)u ∈ L2} ⊂ L2 −→ L2 for the L2 maximal realization of aw(x, D). When aμ
is elliptic, we have D(A) = Bμ.

We will be using the blockwise diagonalization theorem proved in [7] (where r denotes 
the number of blocks), valid for the class SMGES. We hence may find e0 ∈ C∞(Ṙ2n; MN )
such that e0e

∗
0 = e∗0e0 = IN and for which e∗0a1e0 = b1 is blockwise diagonal, with r

blocks Nj × Nj , N1 + . . . + Nr = N , that is b1 = diag(λ1,hINh
; 1 ≤ h ≤ r). In this 

case the subprincipal term b0 of the blockwise-diagonalized operator has the form (see 
Corollary 6.5 in [7])

b0 = diag(b0,h; 1 ≤ j ≤ r), where b0,h = πh

(
e∗0a0e0 − i{e∗0, a2}e0

)
π∗
h,

πh being the orthogonal projector from CN onto the h-th block CNh .
Now, when for the diagonalizer E we have indE ≥ 0 we are in a good position 

and we may carry the spectral information of the diagonalized system onto that of the 
initial operator. When we have indE ≤ 0, it is not enough that E can be corrected into 
an isometry by addition of a smoothing operator. We need to add a suitable N × N

system to our given one, and extend it to a blockwise diagonal 2N × 2N system, whose 
diagonalizator is of the blockwise diagonal form diag(E, E∗). Since the latter has now 
index 0, we may correct it into an isometry by addition of a smoothing operator. Such an 
extension is chosen so that its only contribution is adding some explicitly known centers 
of intervals occurring in the quasi-clustering.

We next prove a lemma that gives our result when the decoupling operator has a 
nonnegative index.

Lemma 4.1. Let a = a∗ ∼
∑

j≥0 a2−j ∈ S2
sreg be a 2nd-order SMGES with principal 

symbol a2 = p2IN , such that the corresponding unbounded operator A > 0 (this is no 
restriction, in view of the Sharp-Gårding inequality; see [9], Thm. 3.3.22). Suppose that 
the coefficients of the characteristic polynomial λ 	→ det(λ − a1(X)) of the semiprincipal 
term a1 are functions of p2,α and that b0, the subprincipal symbol of the blockwise diago-
nalization of A, is constant on the bicharacteristics of p2 and p2,α. In addition, suppose 
there are m1, . . . , mn ∈ Z+ \ {0} coprime such that

m1 = . . . = mn =: q, (4.1)

α1 αn
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and that for the operator E0, associated with the principal symbol of the diagonalizer 
e0 of A, we have indE0 ≥ 0. Then, with b0 = diag(b0,h; 1 ≤ h ≤ r), the eigenspaces 
of P2 are invariant for P2,α and the eigenspaces of (P2 + P2,α) ⊗ INh

are invariant for 
B0,h, for all h = 1, . . . , r. Moreover, for each h = 1, . . . , r, there is an orthonormal basis 
{φ(h)

γ,j}γ∈Zn
+,1≤j≤Nh

⊂ S (Rn; CNh) of L2(Rn; CNh) such that Ker
(
P2 ⊗ INh

− (k+ n
2 )
)
=

Span{φ(h)
γ,j ; |γ| = k, 1 ≤ j ≤ Nh}, for all k ∈ Z+ and

B0,hφ
(h)
γ,j = μ

(h)
γ,jφ

(h)
γ,j , with |μ(h)

γ,j | ≤ ‖B0,h‖L2→L2 , ∀γ, ∀j = 1, . . . , Nh,

and smooth functions p(h)
1/2 : R+ −→ R, positively homogeneous of degree 1/2, such that 

λ1,h = p
(h)
1/2(p2,α), 1 ≤ h ≤ r, and finally a constant M > 0 such that

Spec(A) ⊂
r⋃

h=1

Sh(A), (4.2)

where, for each h = 1, . . . , r,

Sh(A) :=
⋃
k≥0

⋃
γ∈Zn

+
|γ|=k

Nh⋃
j=1

(
k + n

2 + p
(h)
1/2(α(γ + 1/2)) + μ

(h)
γ,j

)
+

[
− M√

k + n/2
,

M√
k + n/2

]
,

(4.3)

with α(γ + 1/2) :=
n∑

j=1
αj(γj + 1/2).

Proof. The proof takes inspiration from the approach by Weinstein [15] which we adapt 
to semiregular systems of ψdos. The main idea is to investigate the spectrum of A by 
studying the spectrum of the part of its blockwise diagonalization B which has nonneg-
ative order as a ψdo (the difference being a compact operator). Of course, it will suffice 
to work for a single block of B, which is parametrized by h = 1, . . . , r. Hence, we may 
suppose that r = 1 and that b2 and b1 are scalar operators.

Let P be the self-adjoint maximal L2 realization of pw := pw
2 + p1/2(pw

α,2) + bw0 with 
D(P ) = D(P2) = B2(Rn; CN ). Recall that for the semiprincipal term b1 of B we have 
b1(X) = (p1/2 ◦ p2,α)(X) for X �= 0 with p1/2 smooth and positively homogeneous of 
degree 1/2 (by virtue of the hypothesis that the characteristic polynomial of a1 have 
coefficients which are smooth functions of p2,α).

The first step in the proof is to show that

bw − pw = kw
1 ∈ Ψ−1

sreg.

Since

bw = pw
2 + (p1/2 ◦ p2,α)w + bw0 + Ψ−1

sreg,
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and since, by Theorem 1.11.2 in [3],

(p1/2 ◦ p2,α)w − p1/2(pw
2,α) ∈ Ψ−1

sreg,

we get indeed that k1 ∈ S−1
sreg.

For a later purpose, it is convenient to notice that e±i2πqP2,α = id, where 2πq is the 
period of the bicharacteristics of p2,α. In fact, for φ ∈ S ,

e±i2πqP2,αφ =
n⊗

k=1

e±i2πqαkP2,kφ =
n⊗

k=1

e±i2πmkP2,k︸ ︷︷ ︸
=id

φ = φ,

since the P2,k commute over S (Rn; CN ). The fact that 2πq is an integer multiple of the 
period of the bicharacteristics of p2,α follows form the fact that, being

Hp2,α =
n∑

j=1
αj

(
ξj∂xj

− xj∂ξj

)
,

the bicharacteristic flow is for all t ∈ R and X ∈ Rn
x ×Rn

ξ given by

exp(tHp2,α)(X) =
n∑

j=1
(cos(αjt)xj + sin(αjt)ξj) +

n∑
j=1

(− sin(αjt)xj + cos(αjt)ξj)

=
n∑

j=1
exp(αjtHp

(j)
2

)(Xj), where Xj = (xj , ξj), p
(j)
2 (Xj) = |Xj |2/2.

We now want to show that 2πq is indeed the period of the bicharacteristics of P2,α. 
Suppose by contradiction that there is 0 < q′ < q such that 2πq = 2πq′m′ with 0 <
m′ ∈ Z+ and exp(±2πq′Hp2,α) = id, then we must have exp(±2πq′αjHp

(j)
2

) = id for all 
j = 1, . . . , n. Therefore 2πq′αj ∈ 2πZ which implies that m′ divides mj for all j, which 
is impossible. Therefore 2πq is the period of the bicharacteristics of p2,α.

We next show that the commutator [pw
2,α, b

w
0 ] = 0. Since [pw

2,α, b
w
0 ]
∣∣
S

= [P2,α, B0]
∣∣
S

and since [pw
2,α, b

w
0 ] ∈ Ψ0, it follows that we may extend [P2,α, B0]

∣∣
S

as a bounded 
linear operator [P2,α, B0] : L2 −→ L2. Hence, if we show that [pw

2,α, b
w
0 ] = 0 then also 

[P2,α, B0] = 0.
Now, b0 ◦ exp(tHp2,α) = b0 for all t by hypothesis. Hence

b0 = Rα(b0) := (2πq)−1
2πq∫
0

b0 ◦ exp(tHp2,α) dt

(the X-ray transform of b0 with respect to the bicharacteristics of p2,α), and on S

[pw
2,α, b

w
0 ] = [pw

2,α,Rα(b0)w]



M. Malagutti, A. Parmeggiani / Bull. Sci. math. 193 (2024) 103423 15
= −i

2πq

2πq∫
0

∂t(eitP2,αbw0 e
−itP2,α) dt = −i

2πq [eitP2,αbw0 e
−itP2,α ]2πq0 = 0.

In addition, also b0 ◦ exp(tHp2) = b0 for all t by hypothesis. Hence, we have also that 
on S (R(b0) being the X-ray transform of b0 with respect to the bicharacteristics of p2)

[pw
2 , b

w
0 ] = [pw

2 ,R(b0)w] = −i

2πq

2πq∫
0

∂t(eitP2bw0 e
−itP2) dt = −i

2πq [eitP2bw0 e
−itP2 ]2πq0 = 0.

Recall that the eigenspaces of P2, made of Hermite functions, are invariant for P2,α
and vice versa. Therefore, the eigenspaces of P2 + P2,α are invariant for B0. We may 
hence choose an orthonormal system {φγ,j ; γ ∈ Zn

+, 1 ≤ j ≤ N} ⊂ S (Rn; CN ) of 
L2(Rn; CN ), made of eigenfunctions of both P and P2, that also diagonalizes B0

∣∣
Wk

on each space Wk := SpanC{φγ,j ; |γ| = k, 1 ≤ j ≤ N}, k ∈ Z+. It follows that the 
eigenvalue of P associated with the eigenfunctions φγ,j , for |γ| = k and 1 ≤ j ≤ N is

k + n

2 + p1/2(α(γ + 1/2)) + μγ,j , 1 ≤ j ≤ N,

where μγ,j ∈ R is such that B0φγ,j = μγ,jφγ,j , and α(γ + 1/2) =
∑n

h=1 αh(γh + 1/2).
Hence,

Spec(P ) =
⋃
k≥0

Ck,

where

Ck :=
{
k + n

2 + p1/2(α(γ + 1/2)) + μγ,j ; γ ∈ Zn
+, |γ| = k, 1 ≤ j ≤ N

}
.

We next wish to show that there is M > 0 such that

Spec(A) ⊂
⋃
k≥0

(
Ck +

[
− M√

k + n/2
,

M√
k + n/2

])
, (4.4)

where, for two sets I, I ′ ⊂ R, we write I + I ′ = {a + b; a ∈ I, b ∈ I ′}.
For that, we have to consider the diagonalizer ew (and hence its L2 bounded extension 

E) of aw (see Theorem 3.1.3 in [7]). Then, indE = indE0 ≥ 0 by hypothesis since the 
index of an operator is invariant under compact perturbations. Thus, by the quasi-
isometrization Theorem 3.2, we may assume that E∗ : L2 → L2 is an isometry (that is, 
EE∗ = I). Letting

r̃w := (ew)∗ awew − pw =
(
(ew)∗ awew − bw

)
+ (bw − pw) ∈ Ψ−1

sreg,

and noting that (pw
2 )1/4 ∈ Ψ1/2

sreg with principal symbol p1/4
2 , we have that
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(pw
2 )1/4r̃w(pw

2 )1/4 ∈ Ψ0
sreg

can be extended to a bounded operator in L2(Rn; CN ). Hence, there is M > 0 such that 
for all ψ ∈ S (Rn; CN )

−M ||ψ||20 ≤
(
(pw

2 )1/4r̃w(pw
2 )1/4ψ,ψ

)
0 ≤ M ||ψ||20, (4.5)

that we rewrite in terms of the L2 realizations of the ψdos involved as

−M ||ψ||20 ≤
(
P

1/4
2 R̃P

1/4
2 ψ,ψ

)
0 ≤ M ||ψ||20. (4.6)

Now, recalling that P 1/4
2 : D(P 1/4

2 ) ⊂ L2 −→ L2 is the self-adjoint unbounded L2 real-
ization of (pw

2 )1/4, which is elliptic, we have that D(P 1/4
2 ) = B1/2(Rn; CN ) (dense in L2) 

and P 1/4
2 is invertible with bounded inverse P−1/4

2 : L2 → B1/2 ↪→ L2. Therefore, by 
substituting P−1/4

2 φ for ψ in (4.6), we get that for all φ ∈ S

−M(P−1/2
2 φ, φ)0 ≤ (R̃φ, φ)0 ≤ M(P−1/2

2 φ, φ)0.

Hence, for all φ ∈ B2,((
P −MP

−1/2
2

)
φ, φ

)
0
≤

(
P + R̃︸ ︷︷ ︸
=E∗AE

φ, φ
)
0

≤
(
(P + MP

−1/2
2 )φ, φ

)
0,

which leads to (4.4) for E∗AE by the minimax principle. But we also have that

Spec(E∗AE) \ {0} = Spec(A).

In fact,

Spec(A) ⊂ Spec(E∗AE),

since

Aφλ = λφλ, φλ �= 0,

implies

(E∗AE)E∗φλ = λE∗φλ, E
∗φλ �= 0.

Moreover,

Spec(E∗AE) \ {0} ⊂ Spec(A),
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since

E∗AEψζ = ζψζ , ψζ �= 0 (4.7)

implies

AEψζ = ζEψζ .

Now, when ψζ /∈ ker E then ζ ∈ Spec(A). When ψζ ∈ ker E then ζ = 0 by (4.7) while 
0 /∈ Spec(A) since A > 0.

This concludes the proof of the lemma. �
We next generalize the previous result by removing the hypothesis on the non-

negativity of the decoupling operator index.

Theorem 4.2. Let a = a∗ ∼
∑

j≥0 a2−j ∈ S2
sreg be a 2nd-order SMGES with principal 

symbol a2 = p2IN , such that the corresponding unbounded operator A > 0 (this is no 
restriction). Suppose that the coefficients of the characteristic polynomial λ 	→ det(λ −
a1(X)) of the semiprincipal term a1 are smooth functions of p2,α and that there is a 
unitary diagonalizer e0 of the semiprincipal symbol such that for the subprincipal symbol 
b0 = diag(b0,h; 1 ≤ h ≤ r) of the resulting blockwise diagonalization of A we have

b0 ◦ exp(tHp2) = b0, b0 ◦ exp(tHp2,α) = b0, ∀t ∈ R. (4.8)

In addition, suppose there are m1, . . . , mn ∈ Z+ \ {0} coprime such that

m1

α1
= . . . = mn

αn
=: q. (4.9)

Then the eigenspaces of P2 are invariant for P2,α and the eigenspaces of (P2+P2,α) ⊗INh

are invariant for B0,h, for all h = 1, . . . , r. Moreover, for each h = 1, . . . , r, there is an 
orthonormal basis {φ(h)

γ,j}γ∈Zn
+,1≤j≤Nh

⊂ S (Rn; CNh) of L2(Rn; CNh) such that for all 
k ∈ Z+ we have Ker

(
P2 ⊗ INh

− (k + n
2 )
)
= Span{φ(h)

γ,j ; |γ| = k, 1 ≤ j ≤ Nh}, and

B0,hφγ,j,h = μ
(h)
γ,jφ

(h)
γ,j , with |μ(h)

γ,j | ≤ ||B0,h||L2→L2 , ∀γ ∈ Zn
+, ∀j = 1, . . . , Nh,

and smooth function p(1)
1/2, . . . , p

(r)
1/2 : R+ −→ R, positively homogeneous of degree 1/2, 

such that λ1,h = p
(h)
1/2(p2,α), 1 ≤ h ≤ r, and, finally, constants M, c > 0 such that

Spec(A) ⊂
r+1⋃
h=1

Sh(A), (4.10)

where, for each h = 1, . . . , r + 1,
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Sh(A) :=
⋃
k≥0

⋃
γ∈Zn

+
|γ|=k

Nh⋃
j=1

(
k + n

2 + p
(h)
1/2(α(γ + 1

2)) + μ
(h)
γ,j

)
+

[
− M√

k + n/2
,

M√
k + n/2

]
,

(4.11)
with

α(γ + 1/2) :=
n∑

j=1
αj(γj + 1/2), Nr+1 := N, p

(r+1)
1/2 := 0, μ

(r+1)
γ,j := c,

for all γ and j.

Proof. The proof follows by an argument based on the construction of a system Ã
associated with A, having a decoupling operator ẽ0 with a nonnegative index. In fact, 
consider the blockwise diagonal system with two N ×N blocks

Ã :=
[

A 0N
0N P2IN + P0

]
,

where p2 is the harmonic oscillator and

p0 := −e∗0(e−2e
∗
0p2 + p2e0e

∗
−2 −

i

2 (e0 {p2, e
∗
0} + {e0, p2e

∗
0}) + e−1p2e

∗
−1)e0 + cIN ,

where c > 0 is a real constant such that P0 > 0 (so that also P2IN + P0 > 0). Hence,

Ẽ∗ÃẼ =
[
B + Ψ−∞ 0N

0N (P2 + c)IN + R
,

]

where ẽ :=
[

e 0N
0N e∗

]
(e and e∗ are the total symbols of E and E∗, respectively) and 

R ∈ Ψ−1
sreg since by Proposition 6.1 in [7] (or by a straightforward computation, using the 

composition formula for matrix-valued ψdos) the subprincipal symbol of E(P2IN+P0)E∗

is cIN by the definition of p0.
Now, Ã satisfies the hypotheses of Lemma 4.1. In fact, Ã > 0, ind Ẽ = indE+indE∗ =

0 and by Corollary 6.5 in [7] one has the subprincipal blocks

b0,h = πh(e∗0a0e0 − i{e∗0, p2}e0)π∗
h.

By hypothesis b0 ◦ exp(tHp2,α) = b0 and b0 ◦ exp(tHp2) = b0 for all t. Now, Lemma 4.1
yields (4.2) for Ã, that is,

Spec(Ã) ⊂
r+1⋃

Sh(A),

h=1
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where, for each h = 1, . . . , r + 1,

Sh(A) :=
⋃
k≥0

⋃
γ∈Zn

+
|γ|=k

Nh⋃
j=1

(
k + n

2 + p
(h)
1/2(α(γ + 1

2)) + μ
(h)
γ,j

)
+

[
− M√

k + n/2
,

M√
k + n/2

]

with Nr+1 := N , p(r+1)
1/2 := 0 and μ(r+1)

γ,j := c for all γ and j. Moreover, since Ã is 
blockwise diagonal, we have Spec(Ã) = Spec (A) ∪ Spec (P2IN + P0). Hence,

Spec(A) ⊂
r+1⋃
h=1

Sh(A),

which completes the proof. �
Remark 4.3. A condition on e0 granting that (4.8) be satisfied is that there exist smooth 
functions R × Ṙ2n

X � (t, X) 	−→ (ft(X), gt(X)) ∈ MN × MN, positively homogeneous of 
degree 1, such that

{p2, ft} = 0, e0 ◦ exp(tHp2,α) = fte0, a0 = f∗
t

(
a0 ◦ exp(tHp2,α)

)
ft, (4.12)

{p2, gt} = 0, e0 ◦ exp(tHp2) = gte0, a0 = g∗t

(
a0 ◦ exp(tHp2)

)
gt. (4.13)

This happens, e.g., for the 2 × 2 JC model. It fails, though, for the 3 × 3 JC model (in 
the Ξ-configuration; n = 2) for which, however, the subprincipal b0 satisfies (4.8).

In fact, for the 2 × 2 JC model we have, using p2,α = αp2 and (2.1),

e0 ◦ exp(tHp2) =
[

1 0
0 e−it

]
︸ ︷︷ ︸

=gt

e0,

e0 ◦ exp(tHp2,α) =
[

1 0
0 e−iαt

]
︸ ︷︷ ︸

=ft

e0,

and (since we are dealing with diagonal matrices, for a0 = diag(γ, −γ))

a0 ◦ exp(tHp2) = g∗t a0gt, a0 ◦ exp(tHp2,α) = f∗
t a0ft.

In addition, by (2.2), b0 is constant on the bicharacteristics of p2 and p2,α.
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In case of the 3 × 3 JC model, we instead have, using (2.3),

e0 ◦ exp(tHp2) =

⎡
⎢⎣ eit 0 0

0 1 0
0 0 e−it

⎤
⎥⎦

︸ ︷︷ ︸
=gt

e0,

while

e0 ◦ exp(tHp2,α) =

⎡
⎢⎢⎢⎢⎢⎣
eitα2 α2

2|ψ2|2
|αψ|2 + eitα1 α2

1|ψ1|2
|αψ|2 0 (eitα1 − eitα2) ψ1ψ2

|αψ|2

0 1 0

(e−itα2 − e−itα1) ψ1ψ2
|αψ|2 0 e−itα1 α2

1|ψ1|2
|αψ|2 + e−itα2 α2

2|ψ2|2
|αψ|2

⎤
⎥⎥⎥⎥⎥⎦ ,

so that if α1 �= α2 we cannot factor a matrix ft. However, by (2.4) and the fact that

ψj ◦ exp(tHp2,α) = e−iαjtψj , j = 1, 2,

we have that the subprincipal symbol of the diagonalized operator is clearly constant on 
the bicharacteristics of p2 and p2,α.

As a closing observation, we wish to remark that it is exactly when the index of the 
diagonalizer is negative that we have to throw in the spectrum the points given by the 
supplementary N ×N auxiliary system P2IN + P0. However, those points are explicitly 
known and they give a small perturbation to the quasi-clustering of the system A we are 
interested in.
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