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Abstract. Infusing autonomous artificial systems with knowledge about the phys-
ical world they inhabit is of utmost importance and a long-lasting goal in Arti-
ficial Intelligence (AI) research. Training systems with relevant data is a com-
mon approach; yet, it is not always feasible to find the data needed, especially
since a big portion of this knowledge is commonsense. In this paper, we propose
a novel method for extracting and evaluating relations between objects and actions
from knowledge graphs, such as ConceptNet and WordNet. We present a complete
methodology of locating, enriching, evaluating, cleaning and exposing knowledge
from such resources, taking into consideration semantic similarity methods. One
important aspect of our method is the flexibility in deciding how to deal with the
noise that exists in the data. We compare our method with typical approaches found
in the relevant literature, such as methods that exploit the topology or the semantic
information in a knowledge graph, and embeddings. We test the performance of
these methods on the Something-Something Dataset.
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1. Introduction

Humans are able to understand relations between real-world objects and actions relying
not only on observations, but also on their commonsense knowledge. Machines, on the
other hand, need a large quantity of data, in order to learn and reason about object-action
relations, as for instance to correlate the object Knife with the action Cut. Yet, recogniz-
ing such types of associations is crucial for a wide spectrum of applications involving
autonomous entities. Commonsense Knowledge Graphs (KGs), such as ConceptNet [1]
and WordNet [2], contain to some extent knowledge about object-action relations, and
can help construct knowledge bases, which subsequently can be used by machines. How-
ever, inserting knowledge into a knowledge base from crowd-built KGs hides risks, as
these may contain information that is noisy or false. Therefore, evaluation methods are
crucial when exploiting knowledge from such KGs.
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A method that correctly identifies positive and negative object-action associations in
the presence of noise can increase the quality of data that a machine can utilize, which
in turn can improve the performance of autonomous, artificial intelligence (AI) systems.
Driven by this need, in this paper we compare a number of methods of different nature
that are commonly used in practice to extract associations from KGs, organizing them
into topology-based, semantics-based and embeddings-based. We also introduce a novel
semantics-based approach to identify such object-action correlations that can achieve
or improve state-of-the-art performance, while offering flexibility in ironing out noise.
Its main characteristic is the exploitation of patterns of relations, which carry important
information as to which associations to trust and which to dismiss.

Informally, the problem we aim to solve is the following: given a directed KG and a
pair of nodes, one of which refers to a real-world object class and the other to a real-world
action class, we try to infer whether these two nodes are associated or not, and to what
degree, i.e., if the action can be performed by/on that object. This demand is amplified
by the volume of current research in fields, such as robotic manipulation, where object
affordances play a key role in enabling a robot to accomplish tasks (see for instance [3]
for a recent survey of the relevant literature). Of course, the methods described in our
study are not limited to the household domain, but can be applied for the detection of
a broader class of associations; yet, framing our analysis on the given domain helps us
compare more accurately the behaviour of diverse methods.

The main contributions of this paper are (a) a comparative analysis of popular meth-
ods for extracting associations from KGs focusing on a specific domain, that of house-
hold objects, (b) the proposal of a new, enhanced method that lays more emphasis on
the semantic knowledge that exists in the KG, and (c) the generation of a dataset of
positive and negative object-action relations, comprising labels that are commonly used
for benchmarking both research and practical approaches. Our method and dataset are
publicly available2.

The rest of this paper is structured as follows. Section 2 discusses related work. Sec-
tion 3 presents the existing and proposed methods for identifying object-action relations.
Section 4 describes our experimental evaluation, and Section 5 concludes the paper.

2. Related Work

Extracting commonsense knowledge from problem-agnostic repositories has been ap-
plied to a diversity of AI-related domains to solve various problems. The authors of [4]
rely upon ConceptNet to identify word similarities, which they then use in order to im-
prove the performance of sentence-based image retrieval algorithms. A more elaborate
use of KGs is presented in [5], where the authors approach the problem of zero-shot la-
bel learning in images by creating KGs based on labels detected visually and on correla-
tions found in external sources. The authors rely on WordNet to populate the graph and
use Wu Palmer similarity3 to specify the properties. In [6], the authors assign labels to
a visual scene using Bayesian logic networks and relying on commonsense knowledge
extracted from WordNet, ConceptNet, and Wikipedia. WordNet is utilized in order to
disambiguate seed words with the aid of their hypernym. ConceptNet properties, such as

2https://github.com/valexande/Semantics-2021
3https://www.nltk.org/howto/wordnet.html
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LocatedAt or UsedFor, which may pinpoint the location of an object, are also retrieved.
With this method, the system can generate a compact semantic knowledge base given
only a small number of objects. Similar methods are used in [7,8,9,10].

The aforementioned studies attempt to integrate knowledge from general-purpose
Web resources in a KG without, however, paying much attention to the validity of the
information extracted from such resources. Moreover, they rely on the rather simplistic
assumption that if two nodes are connected via any edge, then the two nodes are seman-
tically related. We, on the other hand, try to iron out the noise or erroneous information
that might exist in such Web resources before adding new knowledge to a KG.

The representation, as well as identification, of object-action relations has been
the focus of interest of many studies in the field of cognitive robotics. In the projects
KnowRob [11] and RoboSherlock [12], semantic correlation of physical entities is in-
deed captured, yet object-action relations are either learned exclusively through observed
data, or captured in a problem-specific way. In [13], the authors integrate knowledge
from ConceptNet in a KG. Given an object or action label, the authors construct sub-
graphs of ConceptNet with only two properties, in order to train a data-driven model,
which can predict if an object is related with an action. Similar approaches are also used
in RoboCSE [14], which uses embeddings to represent object and action labels and in-
fer object-action relations based on the similarity of their vectors. Our proposed method
exploits both semantically relevant and commonsense information captured in general-
purpose repositories, which can complement and enrich the outcomes of the aforemen-
tioned studies.

The study of Zhou et al. [15] is more closely related to ours. The authors train a Long
Short-Term Memory (LSTM) to predict the path between two nodes of the ConceptNet
graph. They collect, for a set of node pairs, the most quality paths, defining quality as
the most natural set of edges that connects two given nodes. For instance, the path Lead
HasProperty−−−−−−→ Toxic RelatedTo←−−−−→ Lethal RelatedTo←−−−−→ Poison is considered the most natural among
those connecting Lead and Poison. The quality of paths is annotated manually by a group
of volunteers. Similarly, in [16,17] a data-driven model predicts a path between two
nodes of ConceptNet; the quality of a path is hand-coded by the authors. Our method,
on the other hand, aims to determine the importance of a path through training, rather
than through manual annotation. This has two benefits: it takes into account, to a larger
extent, the structural and semantic characteristics of the underlying KG and it is more
adaptive to changes in the KG or the application domain.

3. Methodology

In this section, we formulate the problem and describe the different methods we evalu-
ated. We classify the methods based on the information they utilize into Topology-based,
Semantics-based and Embeddings-based. Topology-based methods exploit the structure
of the graph, while semantics-based methods also take into account the types of rela-
tions connecting the two nodes. Embeddings-based methods use vector representations
of graphs, potentially taking into account the structure of the graph, as well as the se-
mantics of the node labels. Our novel Relation Pattern Method is part of the semantics-
based methods.
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3.1. Problem Formulation

The problem we aim to solve is the following. Given a directed knowledge graph
G = (E,R), where E is the set of nodes, corresponding to entities, and R is set of edges,
corresponding to relations, and a pair of nodes (e1,e2) with e1,e2 ∈ E, where e1 rep-
resents an action and e2 an object (E may contain other types of nodes as well), find
whether e1 and e2 are related. We consider the two nodes, e1 and e2, as related if the
following question yields a positive answer: “Can the action e1 be performed by/on the
object e2?”. For instance, the question “Can the action Fold be performed by the object
Knife?” should yield a negative answer.

Before presenting the methods we evaluated to solve the aforementioned problem,
we first describe how we can create the graph G from a given set of labels L that refer to
real-world objects or actions. We extract the object and action labels from the Something-
Something Dataset4, a dataset that is commonly used by the Machine Vision community
(see Section 4.1 for more details). Note, however, that any set of object and action labels
can be used to create G. For every label li ∈ L, we generate a graph Si, by appending
information relevant to li from ConceptNet [1] and WordNet [2] in two steps. Then, we
construct G by unifying all |L| graphs S1, . . . , S|L|, i.e., every graph Si is a subgraph of G.

Step 1: For each object or action label, we search for a node with the same lem-
matized label in the ConceptNet knowledge graph and extract a subgraph containing a
subset of the properties found in ConceptNet that are considered relevant to the domain
of interest. The subgraphs contain 2-hop paths from the object or action label. The edge
types we consider are:

[RelatedTo,UsedFor,LocatedAt,FormO f , IsA,PartO f ,

HasA,CapableO f ,AtLocation,HasProperty,CreatedBy,

Synonym,LocatedNear,SimilarTo,MadeO f ,ReceivesAction,

Causes,HasSubevent,HasFirstSubevent,HasLastSubevent,

HasPrerequisite,Antonym,De f inedAs,MannerO f ,SimilarTo,

HasContext,EtymologicallyRelatedTo,EtymologicallyDerivedFrom,

DistinctFrom,DerivedFrom,SymbolO f ]

We omit only 3 relations from ConceptNet5: Causes and Desires, which, although
seemingly relevant, their use is human centric and they describe the sentiments that are
caused to humans after an event, and ExternalURL, in order not to append information
from other external resources, except WordNet.

Step 2: The next step is to insert context knowledge into the subgraph. We retrieve
knowledge from WordNet by looking at the super-classes of each node in the subgraph
created in Step 1, and if any super-class of a node falls into a domain-specific category
of super-classes, then we keep the node in the graph, otherwise we delete it. The super-
classes we consider are:

4https://20bn.com/datasets/something-something
5https://github.com/commonsense/conceptnet5/wiki/Relations
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[abstraction, physical entity, thing,attribute,communication,

group,measure,otherworld,set,causal agent,

matter,ob ject, process,substance,change]

We consider this specific set of classes following the findings of [18], which showed
that almost all nodes in the WordNet graph that refer to a real-world object or action have
at least one of these as a super-class. This pruning of nodes based on WordNet super-
classes can give domain-specific concepts, e.g., when interested in household appliances.
Figure 1 shows part of the subgraph for the label Knife. We highlight in red the node that
is pruned in Step 2.

Figure 1. Part of the subgraph for the label Knife. The red node is pruned in Step 2.

After creating a graph for each object and action label, as described in Steps 1 and
2, we end up with a set of graphs {S1, . . . ,Sn}, such that Si = (Ei,Ri) for i = 1, . . . ,n,
where Ei is the set of nodes and Ri the set of edges in Si. Thus, the final graph is defined

as G = (E,R), where E =
n⋃

i=1
Ei, and R =

n⋃
i=1

Ri.

3.2. Topology-based Methods

We apply the two most commonly used methods proposed in the relevant literature [10,9]
that exploit the topology of a graph, in order to infer the extent to which two nodes are
related.

The Connecting Paths Method takes into consideration each sequence of edges that
begins from the object node and reaches the action node after a finite number of steps,
or vice versa. The authors omit paths that contain loops, but do not take into account the
type of edges a path contains. Given two subgraphs S1 and S2, as described in Section
3.1, corresponding to an object node and an action node respectively, the connectPath
metric for S1 and S2 is defined as

connectPath(S1,S2) =
|C1∪C2|
|P1∪P2| (1)
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where C1 is the set of paths that start from the object node and reach the action node, C2
is the set of paths that start from the action node and reach the object node, P1 is the set
of all paths that start from the object node, and P2 the set of all paths that start from the
action node. Since (C1∪C2)⊆ (P1∪P2), it follows that 0≤ connectPath≤ 1.

Example 1 Let Skni f e be the subgraph for the object node knife and S f old be the sub-
graph for the action node fold and let Skni f e have two paths that start from the node knife,

namely Knife UsedFor−−−−→ Butter and Knife LocatedAt−−−−−→ Kitchen, and S f old have only one path,

Fold HasContext−−−−−−→ Cooking UsedFor←−−−→ Butter. Then, the connectPath metric will return

connectPath(Skni f e,S f old) =
|Ckni f e∪Cf old |
|Pkni f e∪Pf old | =

1+1
2+1

= 0.666

Some recent studies that apply this method, as is or with small variations, are [16,4,
5,15]. In fact, they also focus on inferring object-action relations ([16,5]) and on object
identification ([4,15]).

The Common Nodes Method divides the number of common nodes by the number
of total nodes in two given graphs. Two nodes are considered common when they refer
to the same entity in ConceptNet, i.e., the nodes have the same label. Duplicate nodes are
cleared, allowing only one occurrence of each node. The commonNodes metric between
two subgraphs S1 and S2 is defined as

commonNodes(S1,S2) =
|E1∩E2|
|E1∪E2| (2)

where Ei is the set of nodes in Si. Essentially, the commonNodes metric between two
graphs is the Jaccard similarity of the sets of nodes in these graphs. Example 2 shows
how the commonNodes metric works.

Example 2 Let Skni f e and S f old be the subgraphs from Example 1, for the nodes knife
and fold, respectively. These two subgraphs have one common node, Butter, and 5 dis-
tinct nodes in total.

commonNodes(Skni f e,S f old) =
|Ekni f e∩E f old |
|Ekni f e∪E f old | =

|{Kni f e,Butter,Kitchen}∩{Fold,Cooking,Butter}|
|{Kni f e,Butter,Kitchen}∪{Fold,Cooking,Butter}| =

1
5
= 0.2

where Ekni f e is the set of nodes in the Skni f e subgraph, and E f old is the set of nodes in the
S f old subgraph. Recent studies that apply this method, as is or with small variations, are
[4,19,20]. The focus is on object identification and on finding the similarity of two nodes
in a knowledge graph.

3.3. Semantics-based Methods

As a semantics-based method, we consider the very popular WUP similarity, and we also
present a novel Related Pattern Method, which exploits the pattern of connections in a
KG to infer whether two nodes are semantically related.
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The Wu Palmer Similarity (WUP) uses the acyclic graph of WordNet to calculate
relatedness by considering the depth of two nodes in the WordNet taxonomies, along with
the depth of their LCS (Least Common Subsumer). Given two nodes from the WordNet
acyclic graph, the LCS of these nodes is their most specific common ancestor. The score
can never be zero because the depth of the LCS is never zero (the depth of the root of the
taxonomy is one). This metric calculates the similarity based on how close the nodes are
to each other in the WordNet acyclic graph. The WUP similarity between an object node
(no) and an action node (na) is defined as

WUP(no,na) = 2∗ depth(LCS(no,na))
depth(no) + depth(na)

, (3)

where depth(·) is the depth of an entity in the WordNet graph.

Example 3 The WUP similarity for the object knife and the action fold is

WUP(kni f e, f old) = 2∗ depth(LCS(kni f e, f old))
depth(kni f e) + depth( f old)

= 2∗ depth(physical entity)
depth(kni f e)+depth( f old)

= 2∗ 2
12+6

= 0.222

Many studies use the WUP similarity in a wide spectrum of domains. Recent studies,
such as [5,18], use WUP scores to infer object-action relations and object identification.

Our proposed method, the Relation Pattern Method, is based on the assumption
that some of the paths connecting two nodes carry more semantically relevant informa-

tion than others. For instance, the path object node
Synonym←−−−→ node0 ReceivesAction←−−−−−−−→ action

node may appear more often in object-action pairs compared to paths composed of other
relations. To verify this assumption, we selected a domain-specific subset

[RelatedTo, UsedFor, ReceivesAction, CapableO f , Synonym]

of the ConceptNet relations that we considered more relevant to the problem at hand; yet,
this subset can change according to the context of the problem. An important aspect of
our proposed method is the flexibility in deciding how to deal with the noise that exists
in the data.

A relation pattern is any connecting path that is composed of at least one of the
aforementioned relations, except from paths that only contain the relation Synonym. The
latter are omitted, to avoid connecting an object and an action node having similar labels.
In the end, 155 different relation patterns were produced; whenever a relation pattern is
found between an object and an action node in the KG, we consider it as an indication
that the two nodes are associated. If P = {pattern1, . . . , pattern155} is the set of all
relation patterns, then, for each patterni ∈P , the goal is to assign a weight of importance
Wpatterni , in order to specify how confident we are that the given pattern produces correct
associations. For instance, in the next section, we assign the weights based on how well
each pattern performs in our training data. Of course, other heuristics can be used instead.

Since it is reasonable to consider more than one patterns before reaching a conclu-
sion about the relation between two labels, one can group together patterns, based on
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their performance, their domain-specific relevance, or other criteria. For quantifying the
performance of a cluster WC, one can consider, for instance, the weighted sum of the
weights of each individual pattern, the max or min of these weights, or other heuristics-
based metrics. In our evaluation, we adopt an even simpler approach as the baseline case,
namely to treat all patterns with weight above a given threshold as equally relevant.

3.4. Embeddings-based Methods

Recently, there has been a surge of interest in the field of KG embeddings for the task
of link prediction [21]. Studies following this methodology represent nodes of a KG as
vectors in a latent space, which are generated by taking into account both the textual
and structural features of those nodes. The textual features are considered by acquiring
the word and sentence embeddings of node labels, from word embeddings that have
been pre-trained on large document corpora, such as Wikipedia. The structural features
consider, typically in an iterative way, the node embeddings of each node’s neighbors in
a KG.

For example, AllenAI-CommonSense [22], which constitutes the state of the art for
link prediction in ConceptNet, employs a pre-trained BERT [23] model that is fine-tuned
on ConceptNet, using Graph Convolutional Networks (GCN) [24] for embedding the
ConceptNet graph. This model returns a list of possible relations between a given pair of
ConceptNet nodes, ranked in descending order of likelihood (aka confidence score).

We can use the results of this system in two different ways for our purposes: a)
we can either consider the confidence score returned by AllenAI-CommonSense for a
specific relation (e.g., ReceivesAction), given two query nodes from our graph G, or b)
we can consider that the answer to the problem formulated in Section 3.1 is positive for
two query nodes, when the relation “ReceivesAction” is within the top answers for those
query nodes.

4. Evaluation

In this section, we first describe how we created the ground truth from the Something-
Something Dataset6 and then we discuss the experimental setup and the results that each
method achieved.

4.1. Data Collection

Rather than using a random set of action and object labels, aiming to achieve an adequate
coverage of entities for the household domain, we decided to extract the set of labels for
our evaluation from the Something-Something Dataset. Something-Something consists
of a large collection of short video clips (more than 220k) containing actions performed
on and with common household objects. The actions involve either one type of object
(e.g., opening a bottle) or two distinct types of objects (e.g., putting coins inside a box).
Due to its vast number of sample videos, the Something-Something Dataset has become
a de-facto benchmark for the assessment of systems addressing the task of action recog-

6https://20bn.com/datasets/something-something
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nition. The dataset provides for each clip a small description that contains action and
object(s) labels.

Ground Truth Creation: From Something-Something we initially extracted 247
object labels and 35 action labels, which produced 8,645 object-action pairs. We replaced
all object labels in plural form with their singular form, for example notes was replaced
with note. Then, we removed certain object and action labels that we did not consider
context related7. Next, for the remaining action and object labels, we issued a query to
the ConceptNet KG using the ConceptNet Web API8, in order to identify which labels
are indeed part of the graph. We ended up with 148 object labels and 25 action labels.
Since some actions have the same label with some objects (3 in total), we renamed these
labels as follows: (a) pile → pileO and pile → vpile, (b) stack → stackO and stack →
vstack, and (c) cover → coverO and cover → vcover, to refer to the object and action
label, respectively.

Eventually, 3,700 object-action relations were kept in total. Those pairs that existed
in the description of at least one video in the Something-Something Dataset were au-
tomatically characterized as positive pairs. The remaining were manually annotated, in
order to determine if they are negative or if they are positive but it so happens that no clip
in the dataset refered to them. At the end, 1,965 positive and 1,735 negative object-action
relations were produced, forming our ground truth9.

4.2. Experimental Setup

The evaluation of the methods described in Section 3 was performed using 10-fold cross
validation over the 3,700 positive and negative relations described in Section 4.1. We
used Sklearn10 to split our data into 10 folds. Each fold contained 370 relations, 52% of
which were positive and 48% negative, which reflects the distribution of the relations in
the original dataset.

Each iteration of the 10-fold cross-validation process was used, in order to train
the different models. Specifically, for the Connecting Path Method, the WUP, and the
Common Node Method, the training folds helped specify the optimal threshold for each
method that maximizes the F1 score. For the Relation Pattern Method, the training phase
helped compute the weights of importance Wpatterni of each relation pattern patterni ∈
P , as described in Section 3.3. During testing, we measured the performance of each
method with the given thresholds and weights. Patterns that performed poorly during
training were omitted completely.

We characterize the results as True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) according to the following definitions:

• TP is when a pair of object-action nodes (no,na) is related in the ground truth
and also achieves a score above the threshold (for the threshold-based methods)
or the pattern under consideration connects node no with na (for the pattern-based
methods)

7The reader can find all the labels that were removed or replaced in our documentation: https://github.
com/valexande/Semantics-2021

8https://pypi.org/project/ConceptNet/
9The dataset of positive and negative object action relations can be found in our documentation: https:

//github.com/valexande/Semantics-2021
10https://scikit-learn.org/stable/modules/cross\_validation.html
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• FP is when a pair of object-action nodes (no,na) is not related in the ground truth,
but achieves a score above the threshold (for the threshold-based methods) or the
pattern under consideration connects node no with na (for the pattern-based meth-
ods)

• TN is when a pair of object-action nodes (no,na) is not related in the ground truth
and also achieves a score below the threshold (for the threshold-based methods) or
the pattern under consideration does not connect node no with na (for the pattern-
based methods)

• FN is when a pair of object-action nodes (no,na) is related in the ground truth,
but achieves a score below the threshold (for the threshold-based methods) or the
pattern under consideration does not connect node no with na (for the pattern-
based methods)

Finally, note that we define the weight of importance Wpatterni for patterni as the
harmonic mean between precision P and recall R (Equation 4).

Wpatterni = 2∗ P∗R
P+R

(4)

Example 4 Consider the relation pattern
(

RelatedTo−−−−−→,
UsedFor−−−−→

)
and the set of subgraphs

{Skni f e,Scut ,Sstab,S f old}, which represent the nodes knife, cut, stab, and fold, respec-
tively. For this example, let the knowledge graph G be composed only from the subgraphs
{Skni f e,Scut ,Sstab,S f old}. The knife is related with cut and stab, but not with fold, ac-
cording to the ground truth. For each such pair of object-action nodes, we search for a
relation path

(
RelatedTo−−−−−→,

UsedFor−−−−→
)

connecting the two nodes (see Section 3.2). Using this
information, we get the following scores.

P =
T P

T P+FP
=

2
2+1

= 0.666 and R =
T P

T P+FN
=

2
2+0

= 1

Wpattern( RelatedTo−−−−−→,
UsedFor−−−−→

) =
4
5
= 0.8

TP is 2 because the pairs knife-cut and knife-stab are related in the ground truth and the
relation path

(
RelatedTo−−−−−→,

UsedFor−−−−→
)

is a connecting path in both. FP is 1 because the pair

knife-fold are not related in the ground truth and the relation path
(

RelatedTo−−−−−→,
UsedFor−−−−→

)
is a connecting path. FN is 0 because we do not have a pair that is related in our ground
truth and does not not have

(
RelatedTo−−−−−→,

UsedFor−−−−→
)

as a connecting path. The final score of
Example 4 shows that the weight of importance Wpattern( RelatedTo−−−−−→,

UsedFor−−−−→
) can predict

80% of the positive and negative object action relations. In other words, it shows the pro-
portion of object-action pairs that can be classified correctly (i.e., related or not related),
by this relation pattern.

Additionally, we evaluated the embeddings-based method AllenAI-Common Sense
(top-k) over all ground truth object-action pairs, both positive and negative, by testing
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whether the relation “ReceivesAction” was within the top-k results for each pair, for k ∈
{1,3,5}. If “ReceivesAction” is within the top-k results, we consider this as a predicted
positive pair, otherwise, a predicted negative, and follow the same conventions (TP, FP,
TN, FN) as described above.

We note that another variation of this approach would have been to restrict the pre-
dicted results to those having a confidence score above a predefined threshold. However,
our experiments showed that this method performs best when such minimum confidence
threshold is 0 (confidence scores are extremely low in too many cases), so we do not
report numbers for this variation.

4.3. Results

Table 1 summarizes the overall performance measures for each method. Although the
differences among the first three popular approaches are small, the WUP similarity seems
to achieve higher scores both in terms of accuracy (.555) and of F1 score (.696). We
also see that there are patterns that achieve similar or better scores in the one or the
other measure, but not in both (the weight of importance coincides with the F1 score).
Due to the plurality of relation patterns, we display only the Top-20 relation patterns.
The AllenAI-CommonSense (top-k) methods, despite their high accuracy, underperform
in F1 scores, compared to the other methods. This is due to a considerable difference
noticed in the accuracy for positive pairs (.19) with respect to that for negative pairs
(.854).

An investigation of the figures for the Relation Pattern method reveals some interest-
ing insights, not easily detectable with the other methods. First of all, we can see that at
least one occurrence of the relation RelatedTo exists in almost all relation patterns. This
is because, although not explicitly stated in the ConceptNet documentation11, RelatedTo
plays the role of a super-property, i.e., it subsumes the other relations. While one would
expect that less abstract relations among nodes, such as UsedFor, would produce better
results, this is not the case. This conclusion reflects, to some extent, the quality of data
in ConceptNet and provides hints as to where there exists room for data cleaning.

We also observe that certain longer paths, such as
(

RelatedTo←−−−−→,
RelatedTo←−−−−→,

RelatedTo←−−−−→
,

RelatedTo←−−−−→
)

, achieve better performance than shorter paths involving the same type of

relations, e.g.,
(

RelatedTo←−−−−→,
RelatedTo←−−−−→

)
. This might seem odd at first, as one would expect

that the closer two nodes are in the graph, the more semantically tightly related they
would be. This finding is probably owed to the nature of our problem. In contrast to
entity resolution for instance, the nodes whose association we try to find are of different
type, namely object and action.

Of course, such similar paths obtain practical meaning if considered as a group,
rather than as individuals. For this reason, Table 1 also reports indicatively the perfor-
mance of two clusters of patterns, one that is composed only of RelatedTo and Synonym
relations, and one composed of UsedFor and Synonym relations. We adopt a simplistic
approach in deciding what the answer of a cluster is: any pattern above a threshold is
considered relevant. As such, even if a single pattern is found in the graph, the corre-
sponding object-action pair is considered related. As we only wish to measure a baseline

11https://github.com/commonsense/conceptnet5/wiki/Relations
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Table 1. Overall scores.

Method Accuracy Recall Precision F1 Score

Connecting Path 0.534 0.752 0.552 0.625

WUP 0.555 0.951 0.551 0.696

Common Node 0.551 0.956 0.548 0.695

AllenAI-Commonsense (top-1) 0.502 0.191 0.596 0.289

AllenAI-Commonsense (top-3) 0.582 0.599 0.608 0.603

AllenAI-Commonsense (top-5) 0.596 0.748 0.595 0.663

Relation Pattern Accuracy Recall Precision
F1 Score
(Wpattern)

RelatedTo←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ 0.551 0.964 0.548 0.697
RelatedTo←−−−−→ RelatedTo←−−−−→ 0.539 0.985 0.536 0.695
RelatedTo←−−−−→ Synonym←−−−−→ 0.558 0.906 0.557 0.688
RelatedTo←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ 0.561 0.891 0.56 0.686
RelatedTo←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ Synonym←−−−−→ 0.561 0.835 0.564 0.67
RelatedTo←−−−−→ Synonym←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ 0.552 0.84 0.556 0.667
Synonym←−−−−→ RelatedTo←−−−−→ 0.528 0.611 0.556 0.579
Synonym←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ 0.517 0.642 0.532 0.567
RelatedTo←−−−−→ Synonym←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ 0.525 0.543 0.561 0.549
RelatedTo←−−−−→ Synonym←−−−−→ RelatedTo←−−−−→ Synonym←−−−−→ 0.537 0.497 0.58 0.531
UsedFor←−−−→ UsedFor←−−−→ 0.528 0.484 0.569 0.521
Synonym←−−−−→ Synonym←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ 0.488 0.338 0.606 0.394
RelatedTo←−−−−→ Synonym←−−−−→ RelatedTo←−−−−→ 0.509 0.275 0.593 0.37
Synonym←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ 0.518 0.28 0.612 0.361
RelatedTo←−−−−→ RelatedTo←−−−−→ Synonym←−−−−→ 0.518 0.253 0.584 0.346
Synonym←−−−−→ RelatedTo←−−−−→ UsedFor←−−−→ RelatedTo←−−−−→ 0.507 0.228 0.595 0.315
Synonym←−−−−→ RelatedTo←−−−−→ RelatedTo←−−−−→ Synonym←−−−−→ 0.509 0.213 0.588 0.301
RelatedTo←−−−−→ Synonym←−−−−→ UsedFor←−−−→ RelatedTo←−−−−→ 0.488 0.192 0.575 0.283
RelatedTo←−−−−→ RelatedTo←−−−−→ Synonym←−−−−→ Synonym←−−−−→ 0.487 0.176 0.567 0.264
Synonym←−−−−→ RelatedTo←−−−−→ Synonym←−−−−→ RelatedTo←−−−−→ 0.494 0.162 0.613 0.248

Cluster Relation Pattern Accuracy Recall Precision
F1 Score

(WC)
RelatedTo-Synonym 0.539 0.985 0.546 0.702

UsedFor-Synonym 0.582 0.636 0.569 0.597

case, we set a rather generous threshold for including patterns in the cluster, namely any
pattern with weight above 0.1.

More elaborate methods can of course be implemented, e.g., by taking into con-
sideration the weight of importance among the patterns of each cluster or by utilizing
domain-specific criteria. Yet, even with this baseline, we notice that clustering paths can
produce improved state-of-the-art F1 scores (.702). By ignoring the relative importance
of each individual pattern though, we end up introducing noise, as shown in the preci-
sion scores if compared to the best performing patterns, an aspect that a more advanced
method could eliminate.
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Overall, probably the most important advantage of our proposed method, beyond
its prominent performance, is the flexibility in deciding how to deal with noise in the
data. By carefully choosing which patterns to trust, one can decide where to focus when
importing new data. Such an adaptive behavior is not offered by the other methods, such
as data-driven models, which are more vulnerable to noisy data, due to the domain-
agnostic way of treating the KG.

5. Conclusion

In this paper, we present a novel method for extracting and evaluating relations between
objects and actions from KGs, such as ConceptNet and WordNet. We compared our
method with popular approaches proposed in relevant literature, such as methods that
exploit the topology or the semantic information in a KG, and embeddings. Our method
can improve state-of-the art performance in terms of F1 scores. But its most important
advantage, beyond its very good performance, is the flexibility in finding and adapting
to the noise in the data. In the future, we plan to integrate knowledge from other com-
monsense knowledge graphs, such as ATOMIC [25,26], and to evaluate our methods on
other types of relations, such as those between an object and a state, and causal relations
(i.e., in which states can the object be before and after we perform an action on it).
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