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Optimal superpositions for particle detection via quantum phase

Eva Kilian ,1 Marko Toroš ,2 P. F. Barker,1 and Sougato Bose1

1Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
2School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom

(Received 12 October 2023; accepted 29 February 2024; published 9 April 2024)

Exploiting quantum mechanics for sensing offers unprecedented possibilities. State-of-the-art proposals for
novel quantum sensors often rely on the creation of large superpositions and generally detect a field. However,
what is the optimal superposition size for detecting an incident particle from a specific direction? This question
is nontrivial as, in general, this incident particle will scatter off with varied momenta, imparting varied recoils
to the sensor, resulting in decoherence rather than a well-defined measurable phase. By considering scattering
interactions of directional particulate environments with a system in a quantum superposition, we find that there
is an optimal superposition size for measuring particles via a relative phase. As a consequence of the anisotropy
of the environment, we observe a feature in the limiting behavior of the real and imaginary parts of the system’s
density matrix, linking the optimality of the superposition size to the wavelength of the scatterer.
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I. INTRODUCTION

Quantum sensing with matter-wave interferometers has
prompted the development of numerous commercial tech-
nologies, offering highly precise sensors. State-of-the-art
experiments and proposals encompass research in the areas of
metrology [1], gravimetry [2–8], geophysics [9,10], quantum
foundational principles [11–16], and sensing for fundamental
physics [6,17–24]. While larger quantum objects as a sensor,
such as nanoparticles, have typically been prepared in a near-
classical or Gaussian initial state [25–27], the full potential
of quantum mechanics becomes apparent when non-Gaussian
states, such as a state during interferometry, are utilized. Op-
timization of the experimental setup and parameters in such
cases in order to extract exquisitely weak signals is of utmost
importance.

The sensing of potentials, such as the gravitational poten-
tial near earth, often necessitates the realization of quantum
superposition states with large spatial separation δx between
the superposed components, since the accumulated phase �φ

increases with increasing separation. For example, an object
of mass m held in a quantum superposition of localized states
separated vertically by δx for a time interval τ near earth’s
surface acquires the celebrated Colella-Overhauser-Werner
phase of �φ ∼ mgδxτ/h̄ [3,4,28], while the phase due to the
curvature of a proximal mass is proportional to (δx)2 [7]. For
a dynamical monochromatic classical field of wave-number
magnitude k, again, while phase kδx is defined modulo 2π ,
it surely does not harm the coherence of the superposition to
have δx > 1/k [19]. At the other extreme is the detection of
particulate matter interacting with the sensing system via a
coupling term. This is, however, phenomenologically different
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as it cannot be correctly approximated by a classical field.
In the latter regime, the focus has been on detection of the
particulate source via the decoherence of a quantum super-
position, manifested as loss of interference, as the particles
scatter off the sensor mass, typically imparting random mo-
menta [20,21,29]. Thus, the measurement of a coherent phase
is often not associated with the detection of particles. As far
as current understanding goes, the intuition is that if fields are
concerned, δx higher is typically better, while for particles,
decoherence would be the prime signature.

In this work, we show that neither of the above intuitions
is correct for particulate matter incident from a given direc-
tion: We find that there exists an optimal superposition size
for quantum sensing in scattering experiments, depending on
the characteristics of the environmental source. This arises
due to a competition between a coherent phase contribution
and a decoherence contribution. To illustrate this effect, we
consider the blueprint of an incoming particle (the signal)
that scatters from a massive quantum system placed in spatial
superposition (the sensor) as represented in Fig. 1(a). Working
within the framework of open quantum systems, we compute
the effects arising from the interaction of the system with a
directional particulate environment and discuss to what extent
the superposition size impacts the accumulation of the phase.
Contrary to expectations, reading the phase imparted due to
scattering in the presence of decoherence induced by the same
scattering may not be optimized at a trivial point. Aside this
fundamental point, we present an application in single-photon
and -atom detection. We conclude by discussing the implica-
tions of our finding for present-day sensing experiments.

II. SCATTERING MASTER EQUATION

The interaction of a superposed quantum object with
gaseous particles and photons can be described using the
formalism of open quantum systems. Following the seminal
work of Joos and Zeh [30], the mathematical model has been
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FIG. 1. (a) A particle (pink) scattering from a quantum object (purple spheres) in a Stern-Gerlach-type interferometer, where the sensor’s
spin-state-dependent evolution is exploited to split and recombine the motional wave packet (purple lines). The incoming particle is sensed
through its momentum transfer to the quantum object, which manifests in the appearance of a relative phase between superposed components.
(b) Short-wavelength (SW) and long-wavelength (LW) regimes of quantum state evolution for Thompson scattering. Regions shaded indicate
the LW regime (blue), the intermediate region (white), and a region that includes the SW regime (green). The quantity λ is the particle’s
wavelength, δx is the superposition size, and real and imaginary parts indicate the localization rate’s contribution to the off-diagonal elements
of the system’s density matrix. The real part (blue line) is typically used to quantify decoherence. The imaginary part (orange) vanishes in an
isotropic situation, where particles are coming randomly from all directions. For a directed source however, the imaginary part can be used
to sense particles through relative phases, particularly in regimes where the decoherence contribution is suppressed. The Goldilocks zone for
optimal sensing is in the white-shaded region.

extended [31] under the assumption that the scattering of the
environment does not significantly disturb the sensor.

Concretely, the reduced density matrix of a system inter-
acting with a particulate environment through scattering [31]
is governed by the master equation [32,33]

dρS (x, x′)
dt

= 1

ih̄
〈x|[ĤS, ρ̂S]|x′〉 − F (x − x′)ρS (x, x′), (1)

where ĤS is the Hamiltonian describing the unitary evolution
of the sensor, ρS is its density matrix, and

F (x − x′) =
∫

dq n(q)v(q)
∫

d	 d	′

4π
p(	,	′)

× (1 − ei(q−q′ )(x−x′ ) )| f (q, q′)|2. (2)

The function p(	,	′) is a normalized probability density
with incoming (outgoing) scattering angle 	 (	′), where
p(	,	′) = 1 is the typical scenario where scatterers impart
momentum from all directions. The quantities n(q) and v(q)
refer to the number density and speed of particles with wave
number q, which is related to their wavelength λ = 2π

q and
momentum p = h̄q, q being the wave vector. The scattering
amplitude of an interaction process is denoted by f (q, q′),
with q and q′ labeling incoming and outgoing wave vectors,
respectively. Here F (x − x′) is known as the localization rate.
If it is real valued, the sensing system exhibits a loss of co-
herence over time, while an imaginary contribution manifests
in the appearance of a phase ei(q−q′ )(x−x′ ). As such, F (x − x′)
should not be simplistically attributed to decoherence as it can
contain also a unitary contribution, as we will see. Differences
in the phases arising at x and x′ can be measured and exploited
in quantum sensing.

For an incoming particle of wavelength λ, it is useful to
investigate two regimes of interest in order to describe the be-
havior of the sensing system. In the long-wavelength regime,

where λ � δx, with δx = |x − x′|, the phase term in Eq. (2)
becomes small enough to warrant an approximate treatment of
the exponential function by Taylor expanding the argument.
Calculating up to second order, a quadratic dependence of
the localization rate on the superposition size F (x − x′) ∝
1
2 q2(n̂ − n̂′) · (x − x′)2 is revealed. Assuming isotropy of the
environment, the linear term averages to zero following inte-
gration over terms involving the product of an even and odd
function in directions n̂ and n̂′.

Master equations of the form (1) can be mapped to equa-
tions of the Lindblad type in position representation and for
L̂k corresponding to the physical observable L̂k = x̂, the equa-
tion that governs the evolution of the system becomes

dρS (x, x′, t )

dt
= −κ

2
(x − x′)2ρS (x, x′, t ), (3)

assuming the individual sensing system’s evolution is negligi-
ble. The quantity κ incorporates information contained in the
localization rate F (x − x′) as written in Eq. (2).

In the short-wavelength regime, the exponential function in
Eq. (2) oscillates rapidly and hence quickly averages out upon
integration. Equation (2), expressed in the form of Eq. (3),
tends to

dρS (x, x′, t )

dt
= −�

2
(1 − δx,x′ )ρS (x, x′, t ), (4)

where, for a qualitative understanding, we have taken a dis-
crete set of x values and δx,x′ is a Kronecker delta. Information
contained in F (x − x′) is incorporated in �. If a given envi-
ronment is not isotropic and the scattering particles are instead
impinging from a specific direction, the limiting behaviors
reveal the emergence of an optimal superposition size where
the detection of the particle is also from the phase imparted. To
demonstrate this effect, we resort to a combination of analytic
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TABLE I. Limiting behavior of the sensing system’s off-diagonal
density-matrix elements. The real-part behavior follows the theoret-
ically predicted trends as observed in random uniform scattering.
For a nonuniform environment, the imaginary part [O(2)] behaves
drastically differently and is nonvanishing.

Limit Real part Imaginary part

Long wavelength ∝δx2 ∝δx
Short wavelength � = const →0

approximations and exact numerics of the reduced system
density matrix for explicit examples.

III. EMERGENCE OF AN OPTIMAL SUPERPOSITION
SIZE FOR PARTICLE DETECTION

To illustrate the emergence of an optimal superposition size
we focus on two cases [31], with differential cross sections

| f (q, q′)|2 = gq j 1

2

(
1 +

∣∣∣∣qq′

q2

∣∣∣∣
2)

. (5)

For the expansion order j = 0 and g = r2
e with re the square

of the classical electron radius, we recover a differential cross
section for Thompson scattering, while values of j = 4 and
g = a6| ε−1

ε+1 |2 with a as the scatterer’s radius and ε the dielec-
tric constant describe Rayleigh scattering.

Let us assume the particles travel along the z axis
and the superposition is oriented along z. In the long-
wavelength limit, we expand the exponent in Eq. (2) in
orders of δx and choose p(	,	′) = δ(θ )δ(φ)/sin θ for a
spherical coordinate system. Further, we select the co-
ordinates of our wave vectors to be q = q(0, 0, 1) and
q′ = q(cos ϕ′ sin θ ′, sin ϕ′ sin θ ′, cos θ ′), notably keeping the
magnitude unchanged, which is a valid approximation for
negligible momentum transfers. If j = 0, Taylor expansion to
second order in δx and subsequent angular integration result
in

F (x − x′) =
∫

dq n(q)v(q)g

[
−2

3
iqδx

+ 7

15
q2δx2 + O(δx3)

]
. (6)

Similarly, we obtain a barely modified equation for j = 4.
For both cases, we observe the emergence of an imaginary
linear (Hamiltonian) term in the master equation [34,35] (see
Table I), showing the possibility of detecting particles by a
phase. Importantly, this behavior appears to be independent
of the exact form of the differential scattering cross section,
surfacing merely due to directional momentum impartment.

The limit of small wavelengths is difficult to treat an-
alytically due to the oscillatory behavior of the integrand.
The complexity of the problem can however be reduced by
assuming the geometry described in this section. Using the
Jacobi-Anger expansion, the trigonometric function in our
exponential is expressed in the basis of its cylindrical harmon-
ics via the relation eiz cos θ = J0 + 2

∑∞
n=1 inJn(z) cos nθ . This

enables numerical evaluation of the real and imaginary parts
of F (x − x′) and the signals in various phase measurements.

In what follows we assume a very narrow distribution
of incoming momenta and hence wave-number magnitude
δ(q − q0). Figure 1(b) displays the trend of the real and
imaginary parts for multiple values of δx

λ
, where the factor

g = r2
e has been neglected. In the small- δx

λ
limit, the full nu-

merics match with the polynomially increasing behavior of
the imaginary (linear) and real (quadratic) parts as given by
Eq. (6). Moreover, the visible decay of the imaginary phase
contribution to zero and the saturation of the real part confirm
the expected limiting behavior for large values of δx

λ
in the

short-wavelength limit. However, how these limits are reached
differs drastically from the case of random uniform scattering,
where the exponential contribution habitually averages out
(standard setting of decoherence due to scatterers [30,31]).

The second example for j = 4 reveals a similar trend,
though the localization function is scaled by a factor q4 and
the coupling g is changed. Employing previous calculational
methods will nonetheless lead to the same qualitative obser-
vation, the emergence of an optimal “Goldilocks zone” for
the accumulation of phase as depicted in Fig. 1, where the
zone is shaded in white and the phase imparted is optimal for
δx ∼ 0.2λ.

IV. EXPERIMENTAL SIGNATURE

The field of matter-wave interferometry offers a catalog of
schemes enabling the extraction of the phase contribution due
to scattering. A popular approach is founded in the Stern-
Gerlach interferometry of spin-mechanical systems [11,36]
[see Fig. 1(a)], where the magnetic manipulation of a test
mass with an embedded spin is used. After initialization of
the sensing system in a center-of-mass motional state |c〉 and
a superposition of spin states 1√

2
(|+1〉 + |−1〉), the system is

allowed to evolve. This evolution leads to a spatial splitting
of the center of mass, resulting in the quantum state |ψ (t )〉 =

1√
2
[|cs=+1(t )〉|+1〉 + |cs=−1(t )〉|−1〉]. The difference φ in dis-

tinct phases arising between superposed components can be
measured upon completion of the interferometer purely from
the spin states. In the ideal case of no decoherence, it be-
comes 1√

2
(|+1〉 + eiφ|−1〉). In presence of a decoherence

term A ∼ e−�t , the density matrix of the spin at the end of the
interferometry becomes

ρ = 1

2

(
a Aeiφ

Ae−iφ b

)
. (7)

As the elements of the density matrix will be estimated from
probabilities of various measurements, the exponentially de-
caying decoherence term A is less good as an estimator than
Ae±iφ when A ∼ 1. Thus, the phase effect found here from a
directional source of particles presents an important method to
detect them in comparison to the decoherence they produce.
A method of extracting phase differences between the off-
diagonal components is to apply π/2-phase (S) and Hadamard
(H) gate transformations to the quantum state, resulting in
a projection of the phases onto the diagonal elements of the
density matrix ρ f = HSρS†H ,

ρ f = 1

4

(
a + b + 2A sin φ a − b + 2iA cos φ

a − b − 2iA cos φ a + b − 2A sin φ

)
. (8)
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FIG. 2. (a) Quantum efficiency η for Rayleigh scattering of single photons with λ = 1064 nm on a 0.1-µm-diam sphere for different
spatial photon profiles Ap, assuming an estimated flux of 106 photons per area Ap per second. (b) Measurable signal (depth coloration) for
varying ratios of δx

λ
over a time interval t = [0, 5] s, illustrated for Thompson-type scattering with the exponentiation index j = 0 in Eq. (5)

when taking the momentum distribution to be a δ function (i.e., around q = q0 = 2π/λ) and setting the incident particle flux to be such
that

∫
gn(q)v(q)dq ≈ 1. The orange colored region indicates the maximization of the phase signature in the long-wavelength limit for the

lower island, which is also indicated by the nonvanishing first-order contribution in Eq. (6). Depending on the narrowness of the momentum
distribution, the behavior of the signal should exhibit similar features for atom scattering.

Subtracting the probabilities ρ f ,11 − ρ f ,22 = A sin φ relates to
the sine of the accumulated phase. This experimental signa-
ture is plotted in Fig. 2(b) for the normalized initial state
where ρ11 = ρ22 = ρ12 = ρ21 = 1

2 and evolved final states
with varying values φ = 2πδx/λ, at times t = [0, 5] s. Con-
centrating on qualitative aspects of the core issue, i.e., the
results of angular averaging over outgoing momenta, we have
not chosen a specific distribution for the number density
and speed of the particles and taken the momentum dis-
tribution to be a δ function (definite wave number around
q = q0) and set the incident flux of the particles to be such
that

∫
gn(q)v(q)dq ≈ 1, effectively plotting the contributions

from F (x − x′) resulting from the angular integrations. Spe-
cific values for these quantities and subsequent integration
over the wave numbers will lead to a shifted optimal range
for the relative superposition size δx

λ
. Although we do not

strictly define optimality, relative superposition sizes lead-
ing to a phase contribution of O(1) are considered as such.
Benchmarking the range of suitable values for δx

λ
to, say,

sin φ = 0.95 is one possible way of defining the window of
optimality. For larger or smaller fluxes, the time needed for
O(1) will be appropriately scaled.

A. Single-photon detection

As an example of experimental applicability, we analyze
the potential benefit of this effect for the detection of spatially
shaped single photons, such as those emitted from a quantum-
dot source [37,38]. Aiming to operate our sensor as a click
detector, we introduce the detection efficiency

η = 〈−|ρin(τ )|−〉 = 1
2 {1 − [ρ12(τ ) + ρ21(τ )]}. (9)

The efficiency η, where τ = 1 s, quantifies the distinguisha-
bility of a system initially prepared in a superposition state
ρin = |+〉〈+| from its final state. If the scattering of a pho-
ton produces a π phase shift, η approaches its maximum.

Figure 2(a) shows the crucial dependence of η on the ratio
δx
λ

for different magnitudes of spatial photon profiles Ap. The
single-photon transverse area corresponds to the inverse of
n(q)v(q)τ and n(q)v(q)τ ∼ 106/Ap. Whereas certain choices
of the superposition size will be suitable for operating our
sensor as a single-photon detector, others will result in phase
shifts that render the system insensitive to the signal, implying
that the superposition size can be used for wavelength selec-
tion. As seen in Fig. 2(a), sensing will be possible within the
peaked regions of relatively broad bands.

B. Detection of single atomic ions

Rutherford scattering of an atomic ion on a nanoparticle of
radius 1 µm is described via the differential cross section

| f (q, q′)|2 = m2

h̄4q4

(ZZ ′e2)2

(4πε0)2

(
1 +

∣∣∣∣qq′

q2

∣∣∣∣
2)

, (10)

where Ze and Z ′e are the charges of the atom and nanoparticle,
m = 10−25 kg is the mass of a heavy atom, and ε0 is the
vacuum permittivity. We assume an atomic momentum deter-
mined via kBT/2 = h̄2q2/2m, at a temperature T = 100 K.
Inserting into Eq. (10) yields

| f (q, q′)|2 = 10−14Z ′2
(

1 +
∣∣∣∣qq′

q2

∣∣∣∣
2)

, (11)

where the atom’s charge number Z = 1 is assumed. We hence
propose that a 1-µm-diam nanoparticle is able to detect about
one atomic ion per second if the atom has a wave-function
cross section of 104 nm2 for small values of Z ′ and the atomic
flux is approximately 10−4 s−1 nm−2.

V. SUMMARY

Our observations are of critical relevance to experiments
where a particle stream scattering from a superposition has
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a unique direction and the environment cannot be treated in
the fashion of an isotropic bath. Conversely, we expect that a
similar observation can be made for a superposed object that
propagates with a given velocity with respect to the environ-
ment, such as a crystal with horizontal velocity in a motional
superposition state moving through a gas of particles in the
laboratory frame.

Considering two limiting regimes for the wavelength of a
scatterer interacting with a quantum sensor, we numerically
showed that the imaginary contribution arising due to the in-
teraction is, in specific scenarios, nonvanishing and provided
a strong argument that the behavior is likely universal. The
described relative phase may be used for the detection of weak
environmental signatures.

Moreover, we observed the emergence of an optimal pa-
rameter choice for the superposition size δx when it comes
to measuring special particulate environments and identified a
Goldilocks zone. We also showed that the superposition sen-
sor is capable of detecting single photons and single charged
atoms with appropriate settings.

Our findings will doubtlessly result in improvements of
state-of-the-art quantum sensors and may be utilized to en-
hance signals which are typically difficult to capture. Several
emergent experiments [3,6,21,39] rely on the acceleration of
the quantum sensor. Any such setup will be influenced by
nonisotropic sources. We therefore emphasize the importance
of the choice of the superposition size in relation to phase
contributions arising through directional effects.
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