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A B S T R A C T

Metric-based methods are one of the most common methods to solve the problem of few-shot image
classification. However, traditional metric-based few-shot methods suffer from overfitting and local feature
misalignment. The recently proposed feature reconstruction-based approach, which reconstructs query image
features from the support set features of a given class and compares the distance between the original query
features and the reconstructed query features as the classification criterion, effectively solves the feature
misalignment problem. However, the issue of overfitting still has not been considered. To this end, we
propose a self-reconstruction metric module for diversifying query features and a restrained cross-entropy loss
for avoiding over-confident predictions. By introducing them, the proposed self-reconstruction network can
effectively alleviate overfitting. Extensive experiments on five benchmark fine-grained datasets demonstrate
that our proposed method achieves state-of-the-art performance on both 5-way 1-shot and 5-way 5-shot
classification tasks. Code is available at https://github.com/liz-lut/SRM-main.
1. Introduction

Deep learning has achieved impressive performance in computer
vision. However, deep networks usually demand numerous labeled data
for training, which is impractical in many tasks where data acquisi-
tion is costly and time-consuming. For this reason, researchers in the
computer vision community turn considerable attention to few-shot
learning in recent years, especially for few-shot classification [1–3].

The goal of few-shot classification is to recognize unseen query
sample with very limited (often less than 10) labeled support sam-
ples. Existing methods usually can be categorized into three classes,
metric-based methods [4], optimization-based methods [5], and trans-
fer learning-based methods [6,7]. Among these methods, metric-based
methods are relatively simple but effective, achieving state-of-the-art
performance in many few-shot tasks. Metric-based methods usually
adopt episodic training strategy to train a feature extractor with a
fixed distance metric or a parameterized distance metric, and then fix
them, i.e., without fine-tuning, to classify unseen novel query samples.
However, early works, e.g., prototypical network [8] and relation net-
work [9], mainly build on global features, which suffer from inaccurate
similarity measure between two samples due to the mismatch of key
information in images. This is particularly detrimental to few-shot fine-
grained image classification, as sub-categories have subtle differences
and the valuable and discriminative information is likely to locate in
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different regions. To address such an issue, some subsequent works start
to focus on learning a metric on local features [10] or aligning local
features [11,12].

Recently, some metric-based approaches introducing new align-
ment [12] or reconstruction [13] techniques have achieved impressive
performance in fine-grained few-shot image classification. However, in
the experiment, we noticed that the state-of-the-art method, feature
reconstruction network (FRN) [13], suffered from overfitting during
episodic training. As shown in Fig. 1, while the loss function of FRN
keeps decreasing on the training set, it increases on the validation set
after 400 epochs. This overfitting phenomenon may occur as, compar-
ing with that of ImageNet, CIFAR, etc., the numbers of images and
classes in fine-grained datasets are relatively small and thus the task
diversity in episodic training is limited.

To alleviate overfitting, we propose a self-reconstruction network
for few-shot fine-grained classification, which introduces a new self-
reconstruction metric module and a restrained cross-entropy loss. The
self-reconstruction metric module not only reconstructs query features
from support features as in FRN, but more importantly, it also recon-
structs query features from themselves. Such self-reconstruction can
effectively augment and diversify query features without introducing
artifacts, and as shown in the experiment, it avoids over-reliance on
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Fig. 1. Motivation of the self-reconstruction network. FRN [13] encounters the overfitting problem as its training loss keeps decreasing but its validation loss starts to increase
after around 400 epochs. In contrast, the validation loss of our method stays stable after 400 epochs, demonstrating its effectiveness in addressing overfitting.
one discriminative feature. After feature reconstruction, both the dis-
tance between the original query features and its support-reconstructed
features and the distance between the support-reconstructed and self-
reconstructed query features are calculated, whose sum is used to
match a query sample and the support class. The self-reconstruction
network is trained according to the classical cross-entropy loss and a
new restrained cross-entropy loss. The latter can prevent the model
from producing over-confident predictions which were due to overfit-
ting the training data. By utilizing self-reconstruction and the restrained
cross-entropy loss, the proposed method can avoid overfitting, as shown
in Fig. 1.

To summarize, the contributions of our work are three-fold:

1. We are the first to propose using self-reconstruction to increase
the diversity of query features, which can effectively expand the
representation capability of the learned query feature space and
mitigate the overfitting problem.

2. We further propose a restrained cross-entropy loss, which can
be easily equipped with existing metric-based few-shot classifi-
cation models.

3. Experiments on five fine-grained datasets demonstrate the supe-
riority of the proposed method, with detailed ablation studies
showing that both self-reconstruction and restrained loss are
effective in alleviating overfitting.

2. Related work

In this section, we first provide a concise review on fine-grained
few-shot learning methods. Next, we review two types of methods
that are most relevant to this work, namely metric-based methods
and alignment-based methods. For a more comprehensive review on
fine-grained few-shot classification, we refer readers to [14].

2.1. Fine-grained few-shot classification

Fine-grained few-shot classification faces the dual challenges of
scarce labeled data and the subtle distinctions between different sub-
categories, e.g., distinguishing between beagle and pug within the
category of dog. Global features, which capture image-level concepts,
are insufficient to discriminate between fine-grained categories. There-
fore, a line of research focus on local features. DN4 [10], a notable
method for fine-grained classification, first utilized intermediate lev-
els of CNN as local features and performed classification according
to the aggregated distances calculated over local features and its 𝑘-
nearest neighbors. As an improvement of DN4, LSANet [15] allowed
for different scales of local patches to better capture the structure
information and assigned different weights to query patches to suppress
the background and highlight the targets. MCL-Katz [16] aggregated
local features into global features using weights set as the stationary
distribution of local features. AGPF-FSFG [17] constructed multi-scale
2

features and reweighted them via multi-level attention. Our method
also makes use of local features to build the support set or query set,
which are then used to generate support-reconstructed query features
and self-reconstructed query features.

In addition, our method shares the idea of data augmentation.
Methods such as Hallucinator [18] and FOT [19] assume that variations
in illumination, backgrounds or poses can be shared across classes
and thus can be utilized to diversify the limited support samples. In
contrast, our work focuses on diversifying the query samples, and we
employ the ridge regression technique for efficient self-reconstruction,
eliminating the necessity to model intra-class variations.

2.2. Metric-based methods

Metric-based methods constitute one mainstream approach in few
shot learning. These methods learn a transferable feature embedding
network such that queries can be classified according to the similarity
between query features and support features. The similarity can be pre-
defined such as by using cosine similarity [20] or learned via a neural
network [9]. A pioneering metric-based method is the prototypical
network [8], which first constructs prototypes as the average of support
features and then compares queries with these class representations.
To adapt to fine-grained classification, LMPNet [21] used multiple
prototypes per class and constructed prototypes as weighted averages
of feature embeddings with learnable weights. COMET [22] learned
multiple embedding functions, one for each image segment or concept,
and accordingly constructed multiple concept prototypes. PHR [23]
learned feature embeddings at local, global, and semantic levels and
updated prototypes according to novel data. SAPENet [24] obtained
more representative prototypes by emphasizing discriminative local
features and channels using self-attention and the proposed intra-class
attention, respectively.

Another direction of development in metric-based methods is on
the distance measure itself. To list a few, Deep BDC [25] proposed
the Brownian distance covariance metric to exploit the joint distri-
butions between support and query features. BSNet [26] combined
cosine similarity and relation score for learning more discriminative
features in fine-grained images. Temperature Network [27], despite
using a single similarity measure, gradually tuned the temperature
scaling parameter in the measure, which acts similarly to enforcing a
large-margin metric. Different from these methods, our method com-
bines two Euclidean distances — one is between the original query
and the support-reconstructed query, and the other is between the
self-reconstructed query and the same set of support-reconstructed
query.
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2.3. Alignment-based methods

One issue with metric-based methods is that position information of
the embedded features of labeled samples may not correspond to that
of unseen samples and therefore the distance calculated directly over
these features can be very large, even for samples from the same cat-
egory. To this end, alignment-based methods have been proposed [12,
13,28]. LRPABN [28] trained a position transformation matrix to re-
arrange the position of support local features to match the query
ones. DeepEMD [12] addressed the spatial inconsistency by adopting
the earth mover’s distance, which can be interpreted as the optimal
matching cost of aligning two sets of local features extracted from a
support and a query image. FRN [13] reconstructed query features from
support features based on ridge regression, which avoids introducing
many parameters as in aforementioned methods and admits a closed-
form solution. Building on FRN, LCCRN [29] improved the features
by utilizing information from neighborhood pixels. The resulting fea-
tures were used to construct four cross-reconstruction tasks, whose
reconstruction errors were combined using learnable weights. Besides
spatial alignment, channel alignment has also been considered [30–
32]. TDM [30] performed channel alignment, which used attention on
the support set to highlight class-wise discriminative channels and on
a query instance to highlight object-relevant channels. SaberNet [31]
adopted Swin Transformer as the feature extractor to capture spatial
long-range dependencies between local features and aligned query
features and refined prototype features at both spatial and channel
levels.

In this work, we perform feature reconstruction in a similar manner
to FRN [13] by adopting the ridge regression. However, our method
self-reconstructs the query features from themselves, which diversifies
the query features without introducing artifacts. Consequently, the rep-
resentation capability of the learned query feature space is expanded,
thus alleviating overfitting and leading to better generalization.

3. Self-reconstruction network

3.1. Problem definition

The few-shot classification problem usually divides a given dataset
into three sub-datasets according to different stages. 𝐷𝑡𝑟𝑎𝑖𝑛 is used for
model training, 𝐷𝑣𝑎𝑙 is used for model evaluation in the training stage,
and 𝐷𝑡𝑒𝑠𝑡 is used for the final test of the trained model. The three
sub-datasets contain different image categories.

𝑁-way 𝐾-shot is a common setting for few-shot classification, which
means that a classification task consists of 𝑁 classes and each class
has 𝐾 labeled samples. At different stages, each sub-dataset (𝐷𝑡𝑟𝑎𝑖𝑛,
𝐷𝑣𝑎𝑙 and 𝐷𝑡𝑒𝑠𝑡) is used to construct a series of tasks and each task
ontains a support set  =

{(

𝑥𝑖, 𝑦𝑖
)}𝑛

𝑖=1 (𝑛 = 𝑁 × 𝐾) and a query set
=

{(

𝑥𝑞 , 𝑦𝑞
)}𝑚

𝑞=1 (𝑚 = 𝑁 × 𝑀), where 𝑥 denotes the image and 𝑦
enotes the class label. The support set is formed by first randomly
electing 𝑁 classes and then randomly selecting 𝐾 images for each
f these 𝑁 classes. The query set is formed by randomly selecting 𝑀

images for the same 𝑁 classes. Features and/or metrics are learned
from the labeled support set and used to perform classification on the
unlabeled query set.

3.2. Feature reconstruction by ridge regression

Ridge regression is one of the most widely-used penalized regres-
sion methods for analyzing multivariate data with multicollinearity.
FRN [13] adopted this technique to reconstruct the features to solve the
few-shot image classification task and achieved state-of-the-art results.
For this reason, we also propose our model based on the strategy of
3

ridge regression.
Ridge regression shrinks the coefficient estimates by adding a
penalty on squared coefficient values, i.e., by minimizing the following
penalized residual sum of squares:

𝜷̂ridge = argmin
𝜷

{‖𝐲 − 𝐗𝜷‖2 + 𝜆‖𝜷‖2}, (1)

where 𝐲 is the response vector, 𝐗 is the design matrix, 𝜷 is the
coefficient vector, and 𝜆 is a parameter controlling the magnitude of
the penalty.

In the case of feature-map reconstruction here, the response is a
matrix. Therefore, the coefficient should also be a matrix and, following
the idea of ridge regression, the objective function is revised as follows:

𝐀̂ = argmin
𝐀

{‖𝐘 − 𝐀𝐗‖2𝐹 + 𝜆‖𝐀‖2𝐹 }, (2)

here 𝐘 denotes the response matrix, 𝐀 denotes the coefficient matrix,
nd ‖ ⋅ ‖𝐹 denotes the Frobenius norm. The optimal solution is given
y

̂ (𝜆) = 𝐘𝐗⊤ (

𝐗𝐗⊤ + 𝜆𝐈
)−1 . (3)

The most expensive cost in calculating Eq. (3) is the inverse oper-
ation, which is (𝑞3) for an 𝑞 × 𝑝 matrix 𝐗. When 𝑝 < 𝑞, it is compu-
tationally more efficient to calculate the following equivalent solution,
which is obtained by applying the Woodbury matrix identity [33]:

𝐀̂(𝜆) = 𝐘
(

𝐗⊤𝐗 + 𝜆𝐈
)−1 𝐗⊤. (4)

The computational cost of Eq. (4) is (𝑝3), which is smaller than that
of Eq. (3) when 𝑝 < 𝑞.

3.3. Architecture overview

Our network structure, as shown in Fig. 2, mainly consists of three
modules. The first module is the feature extraction module, which maps
the original image to the embedding feature. The second is the self-
reconstruction metric module (SRM), which feeds the support features
and a query feature into the feature reconstruction modules (RMs) to
obtain two types of reconstructed query features, one reconstructed
by the support features and the other self-reconstructed by the query
feature. Then the distance between the support-reconstructed query
features and the original feature and the distance between the support-
reconstructed query features and the self-reconstructed query feature
are measured separately. The third is a joint loss module based on
the output distances. In the training phase, the network is optimized
according to the joint loss, which includes the proposed restrained
cross-entropy loss 𝐿𝑅𝐶𝐸 and the standard cross-entropy loss 𝐿𝐶𝐸 . The
pseudo algorithm of our method is provided in Algorithm 1.

3.4. Self-reconstruction metric module (SRM)

In this paper, we propose a self-reconstruction metric module,
which reconstructs query features from both support features and
from the query features themselves while enabling both sides to be
metricized. Reconstructing query features from support features could
achieve spatial alignment between query and support, and reconstruct-
ing query features from themselves could augment query features and
increase task diversity.

In the 𝑁-way 𝐾-shot setting, the feature extraction module outputs
feature maps 𝑐 and 𝐐𝑞 , where 𝑐 contains features from 𝐾 support
samples of class 𝑐 ∈ 𝐶 and 𝐐𝑞 (𝑞 = 1,… , 𝑚) is the feature of a single
query sample. Moreover, we pool all features from the same class,
i.e., applying a reshaping function to 𝑐 to map all features of class 𝑐
into a single matrix 𝐒𝑐 : R𝐾×ℎ𝑤×𝑙 → R𝐾ℎ𝑤×𝑙, where ℎ,𝑤, 𝑙 are the height,
width and number of channels of the feature map respectively.

One core component of the SRM module is the reconstruction
of query features, using both support features and their own query

features, as elaborated below.
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Fig. 2. The model architecture of the self-reconstruction network. Support and query images are mapped to the feature space using 𝑓 (⋅|𝜃). Next, these features are sent to the
proposed self-reconstruction metric module, which generates reconstructed features through the reconstruction module RM and calculates the distances. The network is trained
according to the proposed joint loss, which combines the cross entropy loss (𝐿𝐶𝐸 ) and restricted cross entropy loss (𝐿𝑅𝐶𝐸 ).
Algorithm 1 Training procedure of self-reconstruction network for
𝑁-way 𝐾-shot classification
Input: training data 𝐷𝑡𝑟𝑎𝑖𝑛, number of classes 𝑁 , number of support images

per class 𝐾, number of query images per class 𝑀 , number of episodes 𝑡,
optimizer (SGD).

Output: model parameter 𝜃.
1: for 𝑒=1 to 𝑡 do
2: Sample a task  from 𝐷𝑡𝑟𝑎𝑖𝑛;
3: Split  into the support set  and the query set ;
4: Use 𝑓 (⋅|𝜃) to extract class-specific features {𝐒𝑐}𝑁𝑐=1 and query features

{𝐐𝑞}𝑁𝑀
𝑞=1 ;

5: for 𝐐𝑞 in {𝐐𝑞}𝑁𝑀
𝑞=1 do

6: Compute the class-specific reconstructed query feature 𝐐̄𝑐 using
Eq. (5);

7: Compute the self-reconstructed query feature 𝐐̄𝑞 using Eq. (6);
8: Compute the squared Euclidean distance 𝑑𝑐,1 between the 𝐐̄𝑐 and

𝐐𝑞 using Eq. (9);
9: Compute the squared Euclidean distance 𝑑𝑐,2 between the 𝐐̄𝑐 and

𝐐̄𝑞 using Eq. (10);
10: Obtain the distance between the query and the class 𝑐: 𝑑𝑐,𝑞 =

𝑑𝑐,1 + 𝑑𝑐,2;
11: Obtain the final classification probability 𝑃 using Eq. (12);
12: Compute the loss of model 𝐿𝑜𝑠𝑠 using Eq. (15);
13: Update model parameter 𝜃 to minimize 𝐿𝑜𝑠𝑠 using the optimizer.

The feature map 𝐐𝑞 can be reconstructed from support features 𝐒𝑐
according to Eq. (4), generating the class-specific reconstructed query
features 𝐐̄𝑐 :

𝐐̄𝑐 = 𝜌𝐀(𝜆)𝐒𝑐 = 𝜌𝐐𝑞
(

𝐒⊤𝑐 𝐒𝑐 + 𝜆𝐈
)−1 𝐒⊤𝑐 𝐒𝑐 , (5)

where 𝜌 is a learnable re-scaling parameter. Eq. (5) addresses the
misalignment between query and support features.

Applying the same technique, we can reconstruct 𝐐𝑞 from its own
feature, so as to map the query feature to a reconstruction space. Note
that the feature map 𝐐𝑞 ∈ Rℎ𝑤×𝑙 comes from a single query image,
rather than all query images. The self-reconstructed query feature 𝐐̄𝑞
is obtained as follows:

𝐐̄𝑞 = 𝜌𝐀(𝜆)𝐐𝑞 = 𝜌𝐐𝑞

(

𝐐⊤
𝑞 𝐐𝑞 + 𝜆𝐈

)−1
𝐐⊤

𝑞 𝐐𝑞 . (6)

The parameters 𝜌 and 𝜆 in Eqs. (5) and (6) are not shared and they
are updated in the same way as parameters in the feature extraction
module during training. In order to ensure 𝜌 and 𝜆 are positive, they
4

are converted to 𝑒𝛼 and 𝑒𝛽 respectively, with 𝛼 and 𝛽 initialized to zero:

𝜆 = 𝐾ℎ𝑤
𝑙

𝑒𝛼 , (7)

𝜌 = 𝑒𝛽 . (8)

After obtaining the reconstructed features, we carry out distance cal-
culation as in metric-based methods. In this step, the class-specific re-
constructed query features 𝐐̄𝑐 and the self-reconstructed query features
𝐐̄𝑞 are used differently, where 𝐐̄𝑐 serves as class-specific prototypes for
spatially aligning support features with the original query features 𝐐𝑞
and 𝐐̄𝑞 serves as additional samples for expanding the representation
capability of the learned query feature space. More specifically, we
calculate the squared Euclidean distance 𝑑𝑐,1 between the support-
reconstructed query features 𝐐̄𝑐 and the original query feature 𝐐𝑞 , the
squared Euclidean distance 𝑑𝑐,2 between 𝐐̄𝑐 and the self-reconstructed
query feature 𝐐̄𝑞 , and finally sum up the two distances to get the
distance 𝑑𝑐,𝑞 , which represents the distance between the query and the
class 𝑐:

𝑑𝑐,1 = ‖𝐐̄𝑐 −𝐐𝑞‖
2
𝐹 , (9)

𝑑𝑐,2 = ‖𝐐̄𝑐 − 𝐐̄𝑞‖
2
𝐹 , (10)

𝑑𝑐,𝑞 = 𝑑𝑐,1 + 𝑑𝑐,2. (11)

3.5. Loss functions

By using the above distance, the final classification probability can
be obtained as:

𝑃
(

𝑦𝑞 = 𝑐 ∣ 𝑥𝑞
)

=
exp

(

−𝜏𝑑𝑐,𝑞
)

∑

𝑐′∈𝐶 exp
(

−𝜏𝑑𝑐′ ,𝑞
) , (12)

where 𝜏 is a learnable hyperparameter that controls the sharpness of
the metric distance.

In the training phase, we use a joint loss integrating two loss
functions to optimize the model. One is the widely-used cross-entropy
(CE) loss:

𝐿𝐶𝐸 = − 1
𝑚

𝑚
∑

𝑞=1

(

𝒚⊤𝑞 log
(

𝒑𝑞
)

)

, (13)

where 𝒚𝑞 denotes the one-hot vector, 𝒑𝑞 denotes the vector of predicted
probability, and 𝑚 is the number of query samples.

To further alleviate the overfitting problem, we propose to restrain
the cross-entropy loss on the training classes. Specifically, we design
a new restrained cross-entropy (RCE) loss in Eq. (14), which has the
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Table 1
Comparison of few-shot classification methods on CUB-200–2011, Flowers, FGVC Aircraft, Stanford-Cars, and Stanford-Dogs datasets. All
experiments adopt ResNet-12 as the backbone network. Mean accuracy and 95% confidence interval are reported. The best-performing methods
are shown in bold and the second best ones are underlined.

Method CUB Flowers Aircraft Cars Dogs

5-Way 1-Shot Accuracy (%)

MatchingNet (NeurIPS 16’)[20] 73.02 ± 0.88 75.70 ± 0.88 82.2 ± 0.80 75.70 ± 0.88 66.48 ± 0.88
ProtoNet (NeurIPS 17’)[8] 79.64 ± 0.20 75.41 ± 0.22 86.57 ± 0.18 82.29 ± 0.20 72.85 ± 0.22
RelationNet (CVPR 18’)[9] 63.94 ± 0.92 69.51 ± 1.01 74.2 ± 1.04 46.04 ± 0.91 47.35 ± 0.88
Baseline++ (CVPR 19’)[1] 64.62 ± 0.98 69.03 ± 0.92 74.51 ± 0.90 67.92 ± 0.92 59.64 ± 0.89
DeepEMD (CVPR 20’)[12] 71.11 ± 0.31 70.00 ± 0.35 69.86 ± 0.30 73.30 ± 0.29 67.59 ± 0.30
VFD (ICCV 21’)[35] 79.12 ± 0.83 76.20 ± 0.92 76.88 ± 0.85 77.52 ± 0.85 76.24 ± 0.87
FRN (CVPR 21’)[13] 83.16 ± 0.19 81.07 ± 0.20 88.04 ± 0.17 86.48 ± 0.18 76.49 ± 0.21
TDM (CVPR 22’)[30] 82.41 ± 0.19 82.85 ± 0.19 88.35 ± 0.17 87.04 ± 0.17 76.20 ± 0.21
MCL-Katz (CVPR 22’)[16] 85.63 ± 0.00 76.55 ± 0.00 87.69 ± 0.00 85.04 ± 0.00 71.49 ± 0.00
DeepBDC (CVPR 22’)[25] 79.32 ± 0.43 80.57 ± 0.49 83.14 ± 0.41 83.24 ± 0.42 76.61 ± 0.46
AGPF-FSFG (PR 22’)[17] 78.54 ± 0.83 77.92 ± 0.94 82.65 ± 0.89 83.94 ± 0.76 72.06 ± 0.91
LCCRN (TCSVT 23’)[29] 82.97 ± 0.19 82.39 ± 0.19 88.48 ± 0.17 87.04 ± 0.17 75.87 ± 0.20

Ours 83.82 ± 0.18 83.51 ± 0.19 88.94 ± 0.16 88.02 ± 0.16 76.54 ± 0.21

5-Way 5-Shot Accuracy (%)

MatchingNet (NeurIPS 16’)[20] 85.17 ± 0.60 87.61 ± 0.55 88.99 ± 0.50 87.61 ± 0.55 79.57 ± 0.63
ProtoNet (NeurIPS 17’)[8] 91.15 ± 0.11 89.46 ± 0.14 93.51 ± 0.09 93.11 ± 0.10 86.54 ± 0.13
RelationNet (CVPR 18’)[9] 77.87 ± 0.64 86.84 ± 0.56 86.62 ± 0.55 68.52 ± 0.78 66.20 ± 0.74
Baseline++ (CVPR 19’)[1] 81.15 ± 0.61 85.72 ± 0.63 88.06 ± 0.44 84.17 ± 0.58 77.36 ± 0.62
DeepEMD (CVPR 20’)[12] 86.30 ± 0.19 83.63 ± 0.26 85.17 ± 0.28 88.37 ± 0.17 81.13 ± 0.20
VFD (ICCV 21’)[35] 91.48 ± 0.39 89.90 ± 0.53 88.77 ± 0.46 90.76 ± 0.46 88.00 ± 0.47
FRN (CVPR 21’)[13] 92.59 ± 0.10 92.52 ± 0.11 94.21 ± 0.08 94.78 ± 0.08 88.22 ± 0.12
TDM (CVPR 22’)[30] 92.37 ± 0.10 93.60 ± 0.10 94.47 ± 0.08 96.11 ± 0.07 88.32 ± 0.12
MCL-Katz (CVPR 22’)[16] 93.18 ± 0.00 90.31 ± 0.00 93.28 ± 0.00 93.92 ± 0.00 85.24 ± 0.00
DeepBDC (CVPR 22’)[25] 92.10 ± 0.24 92.82 ± 0.24 93.25 ± 0.18 94.97 ± 0.19 90.22 ± 0.23
AGPF-FSFG (PR 22’)[17] 89.85 ± 0.44 91.96 ± 0.45 89.25 ± 0.49 94.11 ± 0.36 84.83 ± 0.50
LCCRN (TCSVT 23’)[29] 93.63 ± 0.10 94.24 ± 0.09 94.61 ± 0.08 96.19 ± 0.07 88.36 ± 0.11

Ours 93.45 ± 0.10 95.27 ± 0.08 94.88 ± 0.08 96.23 ± 0.07 88.52 ± 0.12
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opposite effect to the CE loss and can prevent the learned model from
being over-confident in its predictions on the training set:

𝐿𝑅𝐶𝐸 = − 1
𝑚

𝑚
∑

𝑞=1

(

(

𝟏 − 𝒚𝑞
)⊤ log

(

𝒑𝑞
)

)

. (14)

The final loss is obtained by combining the CE loss and RCE loss:

𝐿𝑜𝑠𝑠 = 𝐿𝐶𝐸 + 𝑘𝐿𝑅𝐶𝐸

= − 1
𝑚

𝑚
∑

𝑞=1

([

𝒚⊤𝑞 + 𝑘
(

𝟏 − 𝒚𝑞
)⊤

]

log
(

𝒑𝑞
)

)

,
(15)

here 0 < 𝑘 < 1 adjusts the influence of the RCE loss. When combined
ith the CE loss as in Eq. (15), the RCE loss can effectively restrict

he decrease of CE loss. Moreover, when 0 < 𝑘 < 1, the joint loss
rades off between assigning the probability of 1 to the correct class
nd assigning equal probabilities to all classes. Therefore, the training
rocess will encourage the query sample to be correctly classified as
sual, but not necessarily with a high classification probability, thus
reventing the model from overfitting to noises or non-generalizable
eatures and improving generalization [34].

. Experiments and discussions

To evaluate the effectiveness of our proposed approach, we present
n this section experiments designed for six purposes:

• To compare our proposed method with state-of-the-art meth-
ods for the task of few-shot fine-grained image classification
(Section 4.2);

• To study the effectiveness of each branch of our network in image
classification and in mitigating the overfitting problem (Sections
4.3, 4.5.1, 4.5.3);

• To investigate the stability of the classification accuracy (Sec-
tion 4.4);

• To evaluate the discriminative power of the learned features
(Sections 4.5.4, 4.5.2);
5

• To illustrate the effect of feature reconstruction (Section 4.5.5);
• To assess the computational complexity (Section 4.6).

.1. Implementation details

We conduct experiments on the following five popular bench-
ark datasets: CUB-200-2011 (CUB) [36], Stanford-Cars (Cars) [37],

tanford-Dogs (Dogs) [38], Flowers [39], and FGVC-Aircraft (Air-
raft) [40]. The CUB dataset is consistent with that in [13], and the
mages are pre-cropped into the bounding boxes provided. All datasets
re divided into base, validation, and novel datasets according to the
atio of 2:1:1.

For the feature extractor, we adopt two widely-used backbones:
esNet-12 and ResNet-18 [1,13]. The ResNet-12 structure has 4 resid-
al blocks, and each residual block contains 3 convolutional layers with
× 3 convolution kernel. Each convolutional layer is followed by a

batch normalization, and the first convolutional layer is followed by a
ReLU nonlinearity, while a 2 × 2 maximum pooling layer is added at
the end of each residual block. The input dimension of the network is
3 × 84 × 84, and the output feature dimension is 640 × 5 × 5 after
feature extraction.

Unlike the ResNet-18 network in [41], our ResNet-18 network is
modified on the ResNet-12 network. [41] uses a 7 × 7 convolution
kernel in the first convolutional layer, which is not conducive to fine-
grained feature extraction as the subtle discriminative features may
locate in a tiny region in fine-grained image classification. Our ResNet-
18 network, like ResNet-12, has 4 residual blocks, but the first two
residual blocks are divided into two sub-residual blocks; each sub-
residual block contains 3 convolutional layers with 3 × 3 convolution
kernel. The rest of the structure is similar to ResNet-12.

Throughout the experiments, we use the setting of 10-way 5-shot
for training, 5-way 5-shot for validating, and 5-way 1-shot and 5-way
5-shot for testing. The query set contains 16 images in all three phases.
In the training phase, we use the SGD optimizer on all datasets with
an initial learning rate of 0.1 and momentum of 0.9, and train 1200
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Table 2
Comparison of few-shot classification methods on CUB-200–2011, Flowers, FGVC Aircraft, Stanford-Cars, and Stanford-Dogs datasets. All
experiments adopt ResNet-18 as the backbone network. Mean accuracy and 95% confidence interval are reported. The best-performing methods
are shown in bold and the second best ones are underlined.

Method CUB Flowers Aircraft Cars Dogs

5-Way 1-Shot Accuracy (%)

MatchingNet (NeurIPS 16’)[20] 72.88 ± 0.89 76.07 ± 0.82 82.84 ± 0.81 75.03 ± 0.95 65.59 ± 0.95
RelationNet (CVPR 18’)[9] 68.82 ± 1.04 69.04 ± 0.97 74.76 ± 0.97 64.08 ± 1.05 54.21 ± 1.00
Baseline++ (CVPR 19’)[1] 65.67 ± 0.95 67.90 ± 0.96 75.92 ± 0.88 67.41 ± 0.99 62.54 ± 0.87
Neg-margin (CVPR 19’)[6] 72.51 ± 0.82 76.34 ± 0.89 77.40 ± 0.86 76.04 ± 0.81 68.86 ± 0.83
FRN (CVPR 21’)[13] 83.40 ± 0.19 81.22 ± 0.21 87.89 ± 0.18 87.63 ± 0.17 77.53 ± 0.21
TDM (CVPR 22’)[30] 83.25 ± 0.19 82.31 ± 0.20 87.91 ± 0.17 87.69 ± 0.17 76.59 ± 0.21
MCL-Katz (CVPR 22’)[16] 85.84 ± 0.00 76.57 ± 0.00 88.44 ± 0.00 86.12 ± 0.00 72.07 ± 0.00
DeepBDC (CVPR 22’)[25] 81.85 ± 0.42 81.07 ± 0.50 85.22 ± 0.41 85.48 ± 0.40 78.81 ± 0.43
AGPF-FSFG (PR 22’)[17] 79.02 ± 0.83 78.69 ± 0.84 85.02 ± 0.86 84.68 ± 0.78 73.61 ± 0.91
LCCRN (TCSVT 23’)[29] 82.80 ± 0.19 82.86 ± 0.19 88.66 ± 0.18 86.24 ± 0.18 77.29 ± 0.20

Ours 84.14 ± 0.18 83.25 ± 0.19 89.14 ± 0.17 88.70 ± 0.16 77.57 ± 0.20

5-Way 5-Shot Accuracy (%)

MatchingNet (NeurIPS 16’)[20] 85.25 ± 0.57 87.46 ± 0.51 88.77 ± 0.54 87.02 ± 0.56 80.94 ± 0.60
RelationNet (CVPR 18’)[9] 82.68 ± 0.58 85.46 ± 0.58 87.45 ± 0.55 91.45 ± 0.44 80.42 ± 0.62
Baseline++ (CVPR 19’)[1] 81.53 ± 0.58 84.34 ± 0.62 88.13 ± 0.47 85.50 ± 0.58 79.04 ± 0.61
Neg-margin (CVPR 19’)[6] 89.25 ± 0.43 90.83 ± 0.47 90.92 ± 0.39 93.06 ± 0.38 85.75 ± 0.52
FRN (CVPR 21’)[13] 92.69 ± 0.10 92.33 ± 0.11 93.96 ± 0.09 95.35 ± 0.08 89.05 ± 0.11
TDM (CVPR 22’)[30] 92.98 ± 0.10 93.46 ± 0.11 94.28 ± 0.08 96.06 ± 0.07 88.87 ± 0.11
MCL-Katz (CVPR 22’)[16] 93.29 ± 0.00 90.06 ± 0.00 93.22 ± 0.00 93.35 ± 0.00 85.46 ± 0.00
DeepBDC (CVPR 22’)[25] 93.00 ± 0.24 93.19 ± 0.24 94.26 ± 0.16 95.84 ± 0.16 91.33 ± 0.22
AGPF-FSFG (PR 22’)[17] 89.92 ± 0.42 92.78 ± 0.40 91.94 ± 0.47 94.87 ± 0.33 85.68 ± 0.52
LCCRN (TCSVT 23’)[29] 93.60 ± 0.10 93.87 ± 0.10 94.72 ± 0.07 96.34 ± 0.07 89.54 ± 0.10

Ours 93.58 ± 0.09 94.70 ± 0.09 94.79 ± 0.08 96.40 ± 0.07 89.20 ± 0.11
epochs in total. In the testing phase, the accuracy score is obtained by
averaging over 10,000 trials. The coefficient 𝑘 in Eq. (15) is chosen
separately for each dataset according to the accuracy on the validation
set. The code of our method is available at https://github.com/liz-
lut/SRM-main.

4.2. Comparison with state-of-the-arts

To validate the efficacy of our method, we compare it with the
following 13 methods: (1) four classical few-shot learning methods,
namely MatchingNet [20], ProtoNet [8], RelationNet [9], Baseline++
[1]; (2) three state-of-the-art metric-based methods, namely Deep-
EMD [12], MCL-Katz [16], DeepBDC [25]; (3) five state-of-the-art
fine-grained few-shot methods, namely VFD [35], FRN [13], TDM [30],
AGPF-FSFG [17], LCCRN [29]; and (4) one method that targets the
generalizability, namely Neg-margin [6]. Tables 1 and 2 list the per-
formance of these methods with ResNet-12 and ResNet-18 as the back-
bone, respectively. From the experimental results, we observe that
our approach achieves the highest classification accuracy on three
datasets for both 5-way 1-shot and 5-way 5-shot classification and
is the second-best in most other cases. In particular, compared with
FRN which reconstructs query features only from support features, our
approach, adding self-reconstruction and restrained cross-entropy loss,
shows 2.44% gains in 5-way 1-shot classification and 2.75% gains in the
5-way 5-shot classification on the Flowers dataset with the ResNet-12
backbone; similar improvements can be observed with the ResNet-
18 backbone. This demonstrates the effectiveness of our proposed
method and encourages the use of self-reconstruction and restrained
cross-entropy loss.

4.3. Ablation studies

To further demonstrate the effectiveness of our proposed network,
we conduct 5-way 1-shot and 5-way 5-shot experiments on four model
structures on Flowers and Cars datasets with ResNet-12 backbone.
The four models are as follows: ProtoNet, ProtoNet with our proposed
self-reconstruction metric module (SRM), ProtoNet with our proposed
loss 𝐿 , and ProtoNet with both SRM and 𝐿 (i.e., Ours). As
6

𝑅𝐶𝐸 𝑅𝐶𝐸
Table 3
Ablation studies on the Flowers and Cars datasets. All experiments adopt the ResNet-12
backbone. Mean accuracy and its 95% confidence interval are reported. ProtoNet with
both SRM and 𝐿𝑅𝐶𝐸 is our proposed network, noted in the table as Ours.

Method Flowers Cars

5-Way 1-Shot

ProtoNet 75.41 ± 0.22 82.29 ± 0.20
ProtoNet+𝐿𝑅𝐶𝐸 76.62 ± 0.22 85.25 ± 0.19
ProtoNet+SRM 82.67 ± 0.19 85.74 ± 0.18

Ours 83.51 ± 0.18 88.02 ± 0.16

5-Way 5-Shot

ProtoNet 89.46 ± 0.14 93.11 ± 0.10
ProtoNet+𝐿𝑅𝐶𝐸 89.18 ± 0.14 93.55 ± 0.10
ProtoNet+SRM 94.89 ± 0.08 95.37 ± 0.08

Ours 95.27 ± 0.08 96.23 ± 0.07

shown in Table 3, when using the SRM module on the ProtoNet, the
accuracy is higher than ProtoNet in all cases. When using loss 𝐿𝑅𝐶𝐸
on ProtoNet, the accuracy is slightly lower than ProtoNet on the 1-
shot task on Flowers, while it improves in other cases. Finally, when
the SRM module and 𝐿𝑅𝐶𝐸 are used together (Ours), the accuracy
increases dramatically. This highlights the importance of combining
both techniques to get a better network.

4.4. Stability analysis

4.4.1. Boxplots of classification accuracy
Tables 1 and 2 list the mean value and 95% confidence interval

of test accuracy. To provide a further insight into the classification
performance, we present the boxplots of classification accuracy of
ProtoNet, FRN, and our proposed method on CUB, Dogs, Flowers, and
Cars datasets in Fig. 3. All experiments are based on a 5-way 5-shot
classification setup with the ResNet-12 backbone. On each dataset, 100
tasks were randomly selected and used to evaluate the methods.

As can be seen from Fig. 3, our method is obviously better than the
other two methods in terms of the median (orange lines) and mean
(green dashed lines). Moreover, the range of classification accuracy
excluding outliers (i.e., the distance between whiskers) of our method
is significantly narrower than that of ProtoNet and FRN, indicating that

our method is more stable and has higher confidence. Furthermore,

https://github.com/liz-lut/SRM-main
https://github.com/liz-lut/SRM-main
https://github.com/liz-lut/SRM-main
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c

Fig. 3. Boxplots of classification accuracy of ProtoNet, FRN, and our proposed method on CUB, Dogs, Flowers, and Cars datasets. All experiments are based on a 5-way 5-shot
lassification setup with the ResNet-12 backbone. Each method has been evaluated for 100 rounds, and the distributions of test accuracy are shown via boxplots. In each boxplot,

the central orange line marks the median, and the green dashed line marks the mean; the edges of the box are the 25th and 75th percentiles, respectively; and the outliers are
marked in red individually.
Fig. 4. Test accuracy of ProtoNet, FRN, and our proposed method on CUB, Dogs, Flowers, and Cars datasets in different 𝐾-shot settings. All experiments are based on a 5-way
classification setup with the ResNet-12 backbone.
looking at the outliers (red points), we can see that the classification
accuracy of our method is also better than the other two methods on
the worst-performing tasks.

4.4.2. Classification accuracy under different shots
To further evaluate the stability of our method, we calculate the

test accuracy of ProtoNet, FRN, and our proposed method in different
𝐾-shot settings on CUB, Dogs, Flowers, and Cars datasets. Fig. 4 shows
7

the classification accuracy in different 𝐾-shot settings for the 5-way
classification task. While our method is only slightly better than Pro-
toNet and FRN on the Dogs dataset, its advantage is more obvious on
other datasets. The advantage over ProtoNet is more pronounced for 1-
shot classification, which is reasonable since overfitting is more likely
to occur when only one support image is provided. The advantage over
FRN holds across different number of shots.
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Fig. 5. Validation loss of FRN and our method on the Cars dataset. All experiments
re based on a 5-way 5-shot classification setup with the ResNet-12 backbone.

.5. Visualization analysis

.5.1. Visualization of validation loss
As discussed in the introduction, FRN suffers from overfitting and, to

vercome this issue, we propose both self-reconstruction and restrained
ross-entropy loss. Fig. 5 shows the cross-entropy losses of four model
tructures on Cars; the four models are FRN, ours without the proposed
elf-reconstruction metric module (SRM), ours without the proposed
oss 𝐿𝑅𝐶𝐸 , and our proposed method. Each data point is calculated on
he validation set after each epoch. As we can see, FRN reaches the
inimum value of cross-entropy loss at around the 420th epoch and

radually increases afterward, indicating the occurrence of overfitting.
owever, the cross-entropy loss does not tend to increase after the
00th epoch for our method and its two variants. Therefore, both the
roposed SRM structure and restrained cross-entropy loss 𝐿𝑅𝐶𝐸 can
ffectively mitigate the overfitting problem.

.5.2. Visualization of classification probabilities
To further evaluate the effectiveness of the proposed RCE loss in

reventing over-confident predictions, we present a heat map of the
lassification probabilities of query samples predicted by ProtoNet,
RN, and our method (defined by Eq. (12)) on the test set of Cars
ataset. As shown in Fig. 6, in each confusion matrix, the vertical axis
hows 5 classes in a task, and the horizontal axis shows query samples
n the 5 classes with each class containing 16 query samples. The
ain diagonal line indicates the correct classification. Warmer color

epresents higher probability score.
Firstly, we notice that ProtoNet and FRN make a number of incor-

ect predictions for 1-shot classification. Taking class 3 as an example,
he probabilities of assigning queries of class 3 to the correct class
re often lower than the probabilities of assigning them to other
lasses, resulting in incorrect predictions. These match the classifica-
ion accuracy shown below their respective figures. Secondly, we see
hat our method makes correct predictions on more query samples
s the correct class is often assigned with the highest classification
robabilities. Moreover, the correct classification probabilities of our
ethod are typically not very high, mostly ranging from 0.4 to 0.7.
his is a consequence of including the restricted cross-entropy in the

oss function to prevent over-confident predictions, aligning with the
indings drawn from Fig. 5.

.5.3. Visualization of discriminative feature regions
To demonstrate the effectiveness of our proposed method on feature

xtraction, we show the feature regions extracted from the original
mage by visualizing them using Grad-CAM [42].

Fig. 7 shows that the discriminative feature regions extracted by
ur method are more concentrated compared with ProtoNet and FRN.
t also extracts discriminative features that ProtoNet and FRN do not
apture well, so our method could generalize better and become more
obust in the presence of noises in some spatial regions.
8

Table 4
Comparison of model complexity and computational cost.

Method Number of parameters Training time (per epoch)
CUB Flowers Cars

FRN 12,424,323 11.96 s 12.34 s 21.03 s
Ours 12,424,325 12.45 s 12.62 s 22.23 s

4.5.4. Visualization of feature embeddings
We also visualize the feature embeddings learned by ProtoNet, FRN,

and our method by 𝑡-distributed stochastic neighbor embedding (𝑡-
SNE) [43] on the Flowers dataset and show the results in Fig. 8. As
can be seen from the figure, the distribution of feature embeddings
of our method is relatively concentrated, and the inter-class margin is
large. The two variants of our method, ours without self-reconstruction
metric module (SRM) or loss 𝐿𝑅𝐶𝐸 , also show larger inter-class mar-
gin compared with FRN and ProtoNet. Thus, our approach improves
separability between classes, which is more favorable for the task of
few-shot classification.

4.5.5. Visualization of reconstructed features
To provide a deeper insight into the reconstruction module, we train

an image generator to recover images from query features. Specifically,
three types of query features are considered, namely original features
obtained directly after the feature extraction module, self-reconstructed
query features, and support-reconstructed query features. To map fea-
tures back to images, an inverted ResNet-12 decoder is trained on the
5-way 5-shot task to decode features of dimension 640 × 5 × 5 into
3 × 84 × 84. We use the Adam optimizer and 𝐿1 loss to train the
decoder. The initial learning rate of the optimizer is set as 0.01, and
the batch size is set as 200. After training for 2000 epochs, we select
the parameter with the minimum loss as the parameter of the decoder.

In Fig. 9, panel (a) shows 5 query images of the same class, and
panel (e) shows 5 support images from 5 classes, where images in
the third column has the same class as the query. Panels (b)–(d) are
images generated from query features after feature extraction, i.e., 𝑄𝑞 ,
from self-reconstructed query features, i.e., 𝑄̄𝑞 , and from support-
reconstructed query features, i.e., 𝑄̄𝑐 . The (𝑖, 𝑗)th image in panel (d) is
the recovered image for 𝑖th query by using query features reconstructed
from the 𝑗th support class.

As we can see from Fig. 9, firstly, images recovered from self-
reconstructed query features (panel (c)) are very similar to those re-
covered from the original query features (panel (b)), but there are
some differences. For example, in the second image, feather is more
blurred in the self-reconstructed case than in the original case; in
the fifth image, beak is missing in the self-reconstructed case. This
suggests that the self-reconstructed query features increase the feature
diversity, especially generating some hard samples for classification,
and therefore help alleviate overfitting. Secondly, as seen from panel
(d), images generated from the query features that were reconstructed
from same-class support features (i.e., the middle column in that panel)
are much more similar to the ground-truth query images than those
based on different-class reconstructions (i.e., other four columns in that
panel). This shows that our proposed reconstruction module preserves
the merit of FRN in reconstructing semantically faithful images from
support images.

4.6. Computational cost

We evaluate the computational complexity of the proposed method.
Table 4 lists the model complexity in terms of the number of pa-
rameters and the computational cost in terms of the training time
per epoch. All methods were implemented by using PyTorch on an
NVIDIA RTX 3090 GPU. Compared with FRN, our method introduces
an additional self-reconstruction step and distance calculation. The self-
reconstruction step only adds two new parameters, namely 𝜌 and 𝜆 in

Eq. (6). Moreover, the increase in training time is marginal.
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Fig. 6. Visualization of classification probabilities predicted by ProtoNet, FRN and our proposed method on the test set of Cars dataset. In each confusion matrix, the vertical
axis shows 5 classes in a task and the horizontal axis shows query samples in the 5 classes with each class containing 16 query samples. Warmer color means higher probability.
Classification accuracy of each method is displayed below its respective figure.

Fig. 7. Feature visualization under ProtoNet, FRN, and our method on the CUB (left) and Cars (right) datasets. Red indicates the learned discriminative features. The redder the
region, the more discriminative the learned features.

Fig. 8. The t-SNE visualization of convolutional feature of samples by ProtoNet, FRN, and Ours with the ResNet-12 backbone on the Flowers dataset.
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Fig. 9. Visualization of image reconstruction for CUB. Panel (a) shows 5 query images. Panel (e) shows 25 support images (5 in each class on a column). Panels (b)–(d) are images
generated by using original features after feature extraction, self-reconstructed query features, and support-reconstructed query features, respectively. Self-reconstruction increases
the diversity, especially the hard samples, and reconstruction from the same class is more credible than that from different classes.
,

5. Conclusion

In this paper, we proposed a self-reconstruction network for few-
shot fine-grained image classification. Our innovation includes enhanc-
ing feature diversity by self-reconstructing query samples and intro-
ducing restrained cross-entropy loss to mitigate overfitting. Extensive
experiments on five benchmark fine-grained datasets demonstrate the
efficacy of our method with the state-of-the-art performance achieved
on both 5-way 1-shot and 5-way 5-shot classification tasks.

We can observe in Fig. 4 a big performance increase from 1-shot
classification to 3-shot classification. This is likely due to the lack of
important information in the support images in the 1-shot situation. If
we can simulate support images by using some generative models or
expand the support feature set by dynamically utilizing query images
in a semi-supervised way, the accuracy of 1-shot classification may
improve substantially.
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