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Abstract—Fluid antenna system (FAS) represents a new tech-
nology able to flexibly and instantaneously change the antenna
position for optimizing wireless communication performance. The
high-resolution adjustment of the antenna position is what makes
FAS powerful in taking full advantage of the fading variation in
space. To obtain the benefits of FAS but without the complication
of implementing FAS, this letter considers a mobile receiver with
several fixed-position antennas and employs a transformer-based
signal prediction network to deduce the received signals at other
positions. This is possible since the received signals are correlated
in space. The outcome is an increased dimension multiple-input
multiple-output (MIMO) receiver which can be interpreted as a
virtual FAS with imaginary antennas. We evaluate the proposed
system in multiuser channels and adopt regularized zeroforcing
(RZF) in the virtual FAS to deal with the interference. Simulation
results demonstrate that the proposed virtual FAS outperforms
significantly the original fixed-position MIMO system.

Index Terms—Antenna array, fluid antenna system, imaginary
antennas, machine learning, multiuser communications.

I. INTRODUCTION

FLUID ANTENNA system (FAS) represents the concept of
antenna position flexibility, thanks to recent advances in

software-defined liquid-based antennas [1], [2], surface wave-
based flexible antennas [3], [4], and reconfigurable pixel-based
antennas [5], [6], [7]. FAS for wireless communications was
first introduced by Wong et al. for single-user systems in [8]
and multiuser systems in [9], [10]. Overview articles can also
be found in [11], [12], [13] while [14] discusses some research
opportunities. Recent efforts have been made to understand
the performance of FAS under different channel environments
[15], [16], [17] and how channel state information (CSI) can
be estimated in FAS [18], [19], [20]. Moreover, learning-based
methods have been presented to optimize the antenna position
(a.k.a. port selection) [21] and even jointly with beamforming
for integrated sensing and communication (ISAC) applications
[22]. It is also worth mentioning the related work under the
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name of ‘movable antennas’ that particularly targets determin-
istic or quasi-static fading channels [23], [24].1

Despite the early stage of FAS research, now it is apparent
that being able to finely adjust the antenna position is advan-
tageous though the channels at close-by positions are highly
correlated. It is typically not advisable to deploy multiple
fixed antennas at close-by positions to obtain the benefits of
FAS, certainly not if the antennas also come with individual
radio frequency (RF) chains. In this context, the research on
implementing fluid antennas, encompassing liquid-based and
reconfigurable pixel-based technologies, has garnered increas-
ing attention recently [11]. However, each approach possesses
different strengths and weaknesses. Consequently, designing a
suitable technology to achieve fast switchable ports with high
spatial resolution poses a significant challenge. Additionally,
reducing response times for switching to meet practical im-
plementation requirements presents another obstacle [8].

Considering the implementation challenges, we attempt to
obtain the benefits of FAS using conventional fixed-position
antennas without actually needing to deploy FAS. This is
possible because the received signals at close-by positions are
correlated and hence can be inferred with the knowledge of
the correlation structures (i.e., channel side information). How-
ever, conventional prediction techniques, such as interpolation
or compressed sensing, cannot effectively leverage correlation
structures, leading to prediction inaccuracies that fail to meet
signal reception requirements [25], [26]. Furthermore, it is
worth noting that signal prediction differs from CSI prediction,
with the former being notably more intricate. Therefore, the
“predictor antenna”, as recently introduced in [27] for CSI pre-
diction, is not applicable for signal prediction. Fortunately, the
recent advancements in employing deep learning for channel
prediction in the physical layer have made it a viable solution
[28]. In other words, presumably, it is possible to deploy fixed-
position antennas to take signal samples in space, use them to
infer the missing signals at other positions and hence increase
the dimensionality of the channel (the rank of channel matrix).
We regard this system as a virtual FAS with imaginary (non-
existing) antennas. The potential is massive. Theoretically, this
may mean that the capability of multiple-input multiple-output
(MIMO) is no longer limited by the numbers of fixed antennas
and RF chains. Virtual FAS transcends the hardware constraint
and stretches its capability to an unprecedented level.

The impact of virtual FAS is far-reaching since it propounds
to use channel side information (correlation structures in this
case) to obtain a fuller signature of the signals in the spatial
domain that exceeds the hardware limitation and thus lifts the
performance limits that are not known achievable before. The
goal of this letter is to illustrate this potential by considering

1FAS includes all forms of movable and non-movable position-flexible
antennas so movable antenna system can be viewed as a subclass of FAS.
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as an example the interference channel where a fixed-position
MIMO receiver handles more interferers than its antennas via
virtual FAS. Our contributions are listed as follows.

• This is the first work to study virtual FAS. In particular,
we propose a transformer-based signal prediction network
to exploit the correlation structures amongst the received
signals at multiple positions (or ports) to infer the unob-
served signals in space. A virtual FAS (or an increased
dimension MIMO channel) is then formed with both the
observed and inferred received signals for processing.

• We consider the use of regularized zeroforcing (RZF) on
the virtual FAS channel to tackle the interference. We are
particularly interested in the situations where the number
of interferers exceeds that of the physical antennas.

• Simulation results demonstrate superior performance of
the proposed virtual FAS over the original fixed-position
MIMO system in terms of bit-error-rate (BER).

Notations: (· )T , (· )H , and ∥ · ∥2 denote the transpose, the
conjugate transpose, and the L2 norm of a matrix; Rn×n/Cn×n

stands for an n × n real/complex matrix; x ∼ CN (Λ,∆)
represents the circularly symmetric complex Gaussian vector
having a mean vector of Λ and covariance matrix of ∆. ℜ(a)
and ℑ(a) denote its real and imaginary parts, respectively.

II. SYSTEM MODEL

A. Virtual FAS

Consider a downlink multiuser system where a MIMO base
station (BS) transmits information-bearing signals to K user
equipments (UEs) on the same time-frequency resource block.
The BS has K fixed antennas, each of which is dedicated to
transmitting one UE’s signal without precoding. CSI at the BS
is therefore not needed. Each UE has M(< K) fixed-position
antennas spread over a one-dimensional (1D) prescribed space
of length Wλ where λ denotes the wavelength.

The signal received at the ℓ-th fixed-position antenna of the
k-th UE is given by

y
(k)
ℓ = h

(k,k)
ℓ sk +

K∑
j=1
j ̸=k

h
(j,k)
ℓ sj + n

(k)
ℓ , ℓ = 1, . . . ,M, (1)

where sk ∼ CN
(
0, σ2

s

)
represents the signal intended to UE

k, h(j,k)
ℓ is the channel from the j-th BS antenna to the ℓ-th

antenna of UE k, and n
(k)
ℓ ∼ CN

(
0, σ2

n

)
denotes the received

noise at the ℓ-th antenna of UE k. Apparently,
∑

j ̸=k h
(j,k)
ℓ sj

is the interference on the signal reception at UE k.
As M < K, the UEs do not have enough degree of freedom

(DoF) to handle their interference and would struggle. In [9],
[10], it was proposed to adopt FAS at each UE which would
allow it to receive the signals at the position where the overall
interference suffers from deep fade and hence disappears. This
nonetheless requires a position-flexible FAS to be deployed at
each UE, which is not available in the model of this letter.

Without the FAS hardware, in fact, it is actually possible to
still benefit from the concept of FAS. In particular, one core
feature of FAS is that it always deals with correlated signals
in space because the received signals at close-by positions are
highly correlated. This reminds us that we can have not only

the received signals at those fixed positions but also something
in between due to the correlation structure. The novelty of this
work is to exploit the inherent correlation and establish the
signals in between the fixed-position antennas. The outcome is
at each UE, a MIMO receiver with increased dimension which
we refer to it as a virtual FAS with imaginary antennas.

We leave the details of how the received signals at imaginary
positions can be predicted in Section III. Now, assuming that
UE k predicts the signals received at Np imaginary positions
based on the signals received at M fixed-position antennas to
obtain a vector of N = M + Np signals, we denote uk =

[u
(k)
1 · · ·u(k)

M ]T as the actual positions of the fixed antennas2

and qk = [q
(k)
1 · · · q(k)Np

]T as the positions of the imaginary
(non-existing) antennas. Furthermore, we denote the transmit
signal vector as s = [s1 · · · sK ]T . Then the overall received
signals (both observed and predicted ones) in vector form can
be written as

yk ≜

[
yob
k

yun
k

]
=

[
Hob

k (uk)
Hun

k (qk)

]
︸ ︷︷ ︸

≜Hk

s+

[
nob
k

nun
k

]
, (2)

where yob
k and yun

k represent the observed signals of the fixed-
position antennas and the predicted signals of the imaginary
antenna positions, respectively, Hob

k (·) and Hun
k (·) denote the

respective channel matrices, nob
k is the usual additive Gaussian

noise vector at the received fixed-position antennas and nun
k

is the additive prediction noise at the imaginary antennas.3

Consequently, we now have an increased dimension MIMO
channel for UE k, from M ×K to N ×K where N = M +
Np > M . The objective is to have N ≥ K so that UE k can
then perform RZF to effectively recover the message

ŝk = eTk
(
HH

k Hk + βkIK
)−1

HH
k y, (3)

where βk is the regularizing factor, IK denotes an K × K
identity matrix, and ek is the k-th column of IK .

B. Channel Model

As in [24], we adopt a multi-path geometric channel model.
Under this model, the channel is determined by the angle-of-
departures (AoDs), angle-of-arrivals (AoAs), and gains of all
the paths. At different antenna positions, the phases of channel
path are different due to propagation delay. If there are Lk

scatterers between the BS and UE k, then the corresponding
channel vector can be constructed as

Hob
k (uk) = GH

k (uk)ΣkFk, (4)

where Fk ≜ [f1; f2; . . . ; fLk
] and Σk ∈ CLk×Lk denotes the

fading coefficient matrix from the transmit reference point to

2While the antenna positions in a random situation are arbitrary, tradition-
ally, the fixed antennas are located with a 0.5λ spacing to ensure sufficient
diversity in rich-scattering environments. However, it is noteworthy that this
same old rule-of-thumb may be less effective than placing the fixed antennas
with a closer spacing because correlation helps the prediction of the received
signals in between the fixed positions. This letter will not attempt to find the
answer of what is the best antenna spacing but defer this to future work.

3Though a larger Np gives a higher spatial degree of freedom, it increases
the prediction noise nun

k due to higher estimation inaccuracy. Determining the
optimal Np necessitates evaluating the trade-off between degrees of freedom
and the prediction noise power, a topic beyond the scope of this paper.
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the receive reference point [24]. In particular, taking the left
endpoint at the BS as the transmit reference point, we have

fl ≜
[
1, e−j 2πd

λ sin(θk
t,l), . . . , e−j

2(K−1)πd
λ sin(θk

t,l)
]

(5)

as the transmit steering vector of the l-th path, in which d is
the inter-element spacing of the BS antennas and θkt,l is the
corresponding AoD. Similarly, we also have

Gk(uk) ≜ [g1(uk),g2(uk), . . . ,gLk
(uM )] , (6)

where gk(uj) ≜

[
1, e−j

2πu
(k)
1

λ sin(θk
r,l), . . . , e−j

2πu
(k)
M

λ sin(θk
r,l)

]T
is the receive steering vector of UE k for the l-th path and
θkr,l is the corresponding AoA of that channel path.

III. DEEP LEARNING AIDED SIGNAL PREDICTION

We will use a deep learning approach to predict the signals
received at the Np imaginary antenna positions. Below we first
introduce the framework of learning-aided signal prediction,
and then show the architecture of the proposed transformer-
induced deep neural prediction network (TDNP-Net).

A. Signal Prediction Framework

Given that the available space at a UE is rather limited, the
received signals at the N positions are highly correlated. This
is particularly true if Lk is not large. Thus, signal prediction
becomes possible. However, if the number of predicted posi-
tions is large, then neither spatial interpolation methods [25]
nor compressed sensing approaches [26] will be effective to
enable virtual FAS, due to huge computational complexity and
storage demands. As an alternative, we resort to supervised
learning to develop data-driven approaches for predicting the
signals received at the imaginary positions.

In this letter, we assume that CSI is known as it has been
addressed in [19]. In what follows, pilots can be employed to
construct the training data set. Specifically, in the i-th training
epoch, the true pilots received at the Np imaginary positions of
UE k are denoted as y

un,[i]
k while the corresponding observed

signals at the fixed-position antennas are denoted by y
ob,[i]
k .

As such, the unobserved signals can be predicted as

ŷ
un,[i]
k = gw

(
y
ob,[i]
k ,Hk

)
, (7)

where gw (·) denotes the TDNP-Net whose network parameter
is w. Based on this, the prediction loss of T training samples
is adopted as the cost function to optimize the parameters of
TDNP-Net using gradient backpropagation, given by

J(w) =
1

TK

K∑
k=1

T∑
i=1

∥∥∥gw (
y
ob,[i]
k ,Hk

)
− y

un,[i]
k

∥∥∥2
2
. (8)

B. Proposed Architecture

As illustrated in Fig. 1, the proposed TDNP-Net employs a
standard encoder-decoder architecture. The encoder, consisting
of observed information embedding network (OIEN) and un-
observed information embedding network (UIEN), generates
latent vectors for observed and unobserved ports, which are
concatenated to form a global latent matrix Yk. The decoder
network then reconstructs signals for each port using Yk. We
detail the architectures below.

1) OIEN: The OIEN comprises a trainable position embed-
ding matrix B ∈ C256×N , two information embedding
modules and a vision transformer (ViT) module. We first
adopt multi-layer perception (MLP) to learn the latent
representations of the CSI and the received signals of the
M observed fixed positions, i.e.,

Ĥob
k = WH

[
R

(
Hob

k (uk)
)
; I

(
Hob

k (uk)
)]T

+BH,

Ak = Wy
[
R

((
yob
k

)T)
; I

((
yob
k

)T)]
+By, (9)

in which WH ∈ R256×2K , BH ∈ R256×M , Wy ∈
R256×2 and By ∈ R256×M are the trainable parameters
of MLP. Then, a trainable parameter, B, is introduced,
whose column vector represents the latent information of
each port, such as position. Accordingly, the sub-matrix
of B, i.e., B̃ob

k ∈ R256×M represents the latent vectors
of M observed positions. Furthermore, the summation
of latent representations of signal, positions and CSI, i.e.,
Xk = Ak + B̃ob

k + Ĥob
k , is input into the ViT module4

to extract composite features, yielding X̂k ∈ R256×M .
Finally, we use X̂k to construct the composite features
Zk, which is given by

Zk =

{
X̂k, for observed positons,
0, for unobserved positions.

(10)

2) UIEN: We first introduce a learnable token matrix B̂ ∈
R256×N , whose column vector represents the embedding
information of the FAS’s position. Additionally, B̃un

k ∈
R256×N is a masked version of B̂, which retains the
embedding information for the Np unobserved positions
while setting others as zeroes. Then, the CSI latent
representation of the unobserved positions is extracted
using the same MLP in OIEN, which is filled into the
sparse matrix Mk ∈ R256×N , i.e.,
Ĥun

k = WH [R (Hun
k (qk)) ; I (Hun

k (qk))]
T
+bH, (11)

Mk =

{
0, for observed positions,
Ĥun

k , for unobserved positions.
(12)

Finally, we compute the summation of Yk ∈ R256×N =
B̃un

k +Mk +Zk as the input of the decoder network for
predicting the signals at the imaginary positions.

3) Decoder Network: The decoder employs a residual net-
work architecture, which includes 2D convolution mod-
ules, layer normalization modules, and Gaussian error
linear units (GELU) activation function. The decoder
network predicts the unobserved signals at the imaginary
positions Ŷ ∈ C2×N based on the composite features
Yk. Note that during 2D convolution, Yk is considered
as an image of size N × 1 with 256 channels.

We employ the Big-O notation for complexity analysis.
The computational load of OIEN and UIEN primarily lies
in the MLP and multi-head attention mechanism, with com-

4Although traditional deep neural networks have been widely used to extract
wireless signal features, the emerging network architecture “transformer” has
shown greater advantage than traditional architectures in language process-
ing and computer vision tasks. The transformer architecture is specifically
designed with the self-attention mechanism, providing it with an expansive
receptive field. Moreover, the multi-head mechanism allows the network to
concentrate on several distinct areas within the input data.

This article has been accepted for publication in IEEE Wireless Communications Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LWC.2024.3382220

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 23,2024 at 12:37:27 UTC from IEEE Xplore.  Restrictions apply. 



4

Observed Information 

Embedding Network (OIEN)

Position

 (256,N)

CSI

(N,K)

(256,M)

(256,M)

M
L

P

Learnable 

Token Matrix

(256,N)

Filling Observed

Filling Unobserved

Decoder Network

M
L

PSignal

(M,1)

Unobserved Information 

Embedding Network (UIEN)

(256,N)
···

6

R
esid

u
a
l

N
etw

o
rk

R
eS

id
u

al
B

lo
ck

R
eS

id
u

al
B

lo
ck

R
eS

id
u

al
B

lo
ck

R
eS

id
u

al
B

lo
ck

···

6

R
esid

u
a
l

N
etw

o
rk

R
eS

id
u

al
B

lo
ck

R
eS

id
u

al
B

lo
ck

N
o

rm

G
E

L
U

N
o
rm

M
u

lti-H
ead

A
tten

tio
n

N
o

rm

M
L

P

N
o
rm

M
u

lti-H
ead

A
tten

tio
n

N
o

rm

M
L

P

V
isio

n

T
ran

sfo
rm

···

6

E
n

co
d

er 
B

lo
ck

E
n

co
d

er 
B

lo
ck

E
n

co
d

er 
B

lo
ck

E
n

co
d

er 
B

lo
ck

Prediction

(256,N)

··· ···

(256,M)

M
L

P
M

L
P

(256,M)

,

u

ob ky

ob

kBB

kA

kX ˆ
kX

ˆ ob

kH

kH ˆ un

kH

B

un

kB

kZ

kM

kY ˆ
kY

(256,Np)

Masked

Token

Mask

C
o

n
v

2
D

(2
5

6
,3

2
)

C
o

n
v

2
D

(3
2

,3
2

)

C
o

n
v

2
D

(3
2

,2
)(256,N) (2,N)

Observed PortsObserved Ports Unobserved PortsUnobserved Ports

Learnable VariablesLearnable Variables Zero ValueZero Value

Observed Ports Unobserved Ports

Learnable Variables Zero Value

Fig. 1. The proposed learning-aided signal prediction network.

Fig. 2. BER results against SNR with M = 4.

plexities of O(NK) and O(N2), respectively. The decoder’s
computational load mainly resides in the convolutional layers,
with a complexity of O(N). Consequently, the computational
complexity of TDNP-Net is O(NK +N2).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of virtual FAS
using Monte Carlo simulations. Unless specified otherwise,
the carrier frequency fc = 3.4 GHz, the number of users is
K = 6, the number of antenna positions is N = 10, and the
number of scatterers is Lk = 10, for 1 ≤ k ≤ K and the
signal-to-noise ratio (SNR) is defined as Γ ≜ σ2

s/σ
2
n. Also, it

is assumed that W = 2. We use exhaustive search to optimize
the regularizing factor βk for minimizing the BER of each UE.
We compare the proposed virtual FAS with MIMO with M
fixed-position antennas for different values of M . The model
training consists of two stages: pre-training and fine-tuning,
both utilizing the AdamW optimizer. During the pre-training
stage, the model is trained with a batch size of 32, a learning
rate of 0.001, under Γ = 3dB, and M = 6. For fine-tuning, a
dynamic number of M is used with a learning rate of 0.0001.
Note that N = 10 is fixed so the value of Np is set according
to M . In addition, the position vectors {uk, qk} are randomly
generated in over 10, 000 independent channel simulations.

Fig. 2 shows the BER results of the proposed virtual FAS
and fixed-position MIMO and compares them. Since M = 4,
traditional fixed-position MIMO can only support at most 4
users without inter-user interference utilizing RZF. Our virtual
FAS predicts the received signals to increase the DoF so that

Fig. 3. BER results against the number of fixed-position antennas, M . The
“*” symbols mark the simulation results based on the 3GPP clustered delay
line (CDL) channel model using the MATLAB 5G toolbox at 24.25 GHz.

Fig. 4. BER results against the number of users, K with Γ = −1 dB.
more users can be accommodated. As we can see, virtual FAS
can achieve much better performance than traditional MIMO.
The impressive performance continues with the increasing K
until K = 5. However, when K = 6, the improvement appears
to reduce due to errors in signal prediction.

Now, our attention turns to the BER results as M changes in
Fig. 3. The results demonstrate that increasing M enlarges the
performance gap between virtual FAS and traditional MIMO
because increasing M clearly improves the quality of signal
prediction due to more observations. Besides, increasing the
SNR, Γ, reduces the performance gap, since increasing Γ will
improve the signal reception and reduce the benefit brought
by the signal prediction of virtual FAS.
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Fig. 5. NMSE against the number of fixed-position antennas, M .

Fig. 4 provides the BER results with the number of users,
K, on the x-axis. As has been mentioned above, increasing M
will improve signal reception due to the increasing number of
observed antenna positions. Therefore, a larger M will result
in a smaller BER. Besides, increasing K deteriorates BER due
to the increasing inter-user interference. Moreover, increasing
M will increase the gains brought by the proposed virtual
FAS, which confirms the simulation results given in Fig. 3.

Finally, Fig. 5 shows the prediction accuracy of the signals
at the imaginary antenna positions in terms of the normalized
mean square error (NMSE). Apparently, increasing M and Γ
can both improve the signal estimation accuracy due to more
available information. Besides, when M ≥ 4, the NMSE of
signal prediction decreases below 10−1, which achieves much
better estimation of the unobserved signals.

V. CONCLUSION

This letter proposed a virtual FAS with imaginary antennas
that increased the dimensionality of fixed-position MIMO by
using a deep learning approach. We achieved this by adopting
a ViT transformer-based signal prediction network to deduce
the signals that would have been received at some imaginary
positions in between the fixed antenna positions, due to spatial
correlation. Simulation results demonstrated that virtual FAS
can greatly enhance the performance of fixed-position MIMO
and enable the system to support more users. An important
message in this work is that the performance of MIMO is no
longer limited by the numbers of fixed-position antennas and
RF chains. With spatial correlation as side information, the
rank or dimensionality of the channel is higher and MIMO in
the form of virtual FAS is a more powerful scheme.
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