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The evolution of linear initial conditions present in the early Universe into extended halos of dark matter
at late times can be computed using cosmological simulations. However, a theoretical understanding of this
complex process remains elusive; in particular, the role of anisotropic information in the initial conditions
in establishing the final mass of dark matter halos remains a long-standing puzzle. Here, we build a deep
learning framework to investigate this question. We train a three-dimensional convolutional neural network
to predict the mass of dark matter halos from the initial conditions, and quantify in full generality the
amounts of information in the isotropic and anisotropic aspects of the initial density field about final halo
masses. We find that anisotropies add a small, albeit statistically significant amount of information over that
contained within spherical averages of the density field about final halo mass. However, the overall scatter
in the final mass predictions does not change qualitatively with this additional information, only decreasing
from 0.9 dex to 0.7 dex. Given such a small improvement, our results demonstrate that isotropic aspects of
the initial density field essentially saturate the relevant information about final halo mass. Therefore,
instead of searching for information directly encoded in initial conditions anisotropies, a more promising
route to accurate, fast halo mass predictions is to add approximate dynamical information based e.g. on
perturbation theory. More broadly, our results indicate that deep learning frameworks can provide a
powerful tool for extracting physical insight into cosmological structure formation.
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I. INTRODUCTION

The formation of cosmic structures in the Universe is
driven by the gravitational collapse of initially small
perturbations in the density of matter, which grow over
time into extended halos of dark matter. Computer simu-
lations are the most accurate method available to compute
the nonlinear evolution of dark matter over cosmic time
[1–4]. Given the initial conditions and a cosmological
model, N-body simulations follow the evolution of par-
ticles governed by the laws of gravity. Despite being able

to compute the evolution of matter in the Universe,
simulations alone do not provide a straightforward answer
to how dark matter halos acquire their characteristic
properties—such as mass, shape, inner profile and spin—
from the initial density perturbations.
On the other hand, analytic theories of structure for-

mation can provide a qualitative understanding of the
connection between the early- and late-time Universe.
By construction, all analytic frameworks present a far
more simplified view of gravitational evolution relative
to solving N-body dynamics, and therefore sacrifice some
predictive accuracy but allow for a much clearer inter-
pretation. Spherical collapse models provided us with
the widely accepted idea that spherical overdensities
encode the primary information about halo collapse [5,6].
Ellipsoidal collapse models yield a significant improve-
ment over spherical collapse ones in predicting statistical
quantities of the large-scale structure of the Universe, such
as the halo mass function [7–11]. Ellipsoidal collapse

*luisals@mpa-garching.mpg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW D 109, 063524 (2024)

2470-0010=2024=109(6)=063524(18) 063524-1 Published by the American Physical Society

https://orcid.org/0000-0003-0160-8408
https://orcid.org/0000-0002-2519-584X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.063524&domain=pdf&date_stamp=2024-03-14
https://doi.org/10.1103/PhysRevD.109.063524
https://doi.org/10.1103/PhysRevD.109.063524
https://doi.org/10.1103/PhysRevD.109.063524
https://doi.org/10.1103/PhysRevD.109.063524
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


models do not directly use anisotropic features of the field
in reaching their conclusion; instead, the models introduce
free parameters within the spherical collapse framework,
motivated by arguments about tidal shear effects. Those
parameters are then fitted to numerical simulations.
Therefore, whether or not anisotropic features of the initial
density field have a role in establishing final halo masses
remains a long-standing question in cosmological structure
formation.
In previous work [12,13], we proposed a novel approach

based on machine learning to gain new insights into
physical aspects of the early Universe responsible for halo
collapse. The approach consists of training a machine
learning algorithm to learn the relationship between the
early Universe and late-time halo masses directly from
numerical simulations. The learning of the algorithm is
based on a set of inputs, known as features, describing
preselected physical aspects about the linear density field in
the initial conditions. We trained the algorithm on spherical
overdensities (motivated by spherical collapse models) and
tidal shear information (motivated by ellipsoidal collapse
models) in the local environment surrounding each dark
matter particle in the initial conditions. Contrary to existing
interpretations of the Sheth-Tormen ellipsoidal collapse
model [10,11], we found that the addition of tidal shear
information does not yield an improved model of halo
collapse compared to a model based on density information
alone [12,13]. This approach is limited by the need to
explicitly construct a set of informative features, which
relies on simplified analytic approximations of halo col-
lapse. Due to this limitation, our previous work tackled a
limited science question; the role of one specific aniso-
tropic feature of the initial conditions (the tidal shear) in
predicting final halo masses.
In this work, we extend our approach to a deep learning

framework based on convolutional neural networks
(CNNs) [14,15]. Unlike standard machine learning algo-
rithms or analytic descriptions, CNNs do not require
specification of preselected features from the data; instead,
they are trained to extract information directly from raw
data. This framework allows us to address a major long-
standing issue in cosmology; the role of all anisotropic
aspects of the initial density field in establishing final halo
masses.
The structure of a CNN is closely similar to that of

existing analytic halo collapse descriptions: the information
in the initial conditions is compressed into a set of features,
which are then combined in a nonlinear way to provide a
halo mass prediction. Our CNN approach therefore yields a
simplified description of halo collapse, and should not be
expected to provide perfect predictive accuracy relative to
detailedN-body simulations. However, since a CNN allows
for the extraction of arbitrary features, it yields a model of
halo collapse that far transcends the capabilities of current
analytic approaches while following the same basic setup.

Our approach can therefore be seen as a generalization of
existing analytic approaches, which are limited to the
extraction of spherical features from the initial conditions.
In Sec. II, we present an overview of our deep learning

framework, followed by a description of the simulated data
used to train the machine learning model and details on the
CNN’s architecture. We present the halo mass predictions
returned by the model in Sec. III, comparing to expect-
ations from previous work. We then move on to interpreting
the learnt mapping between initial conditions and halo
mass in Sec. IV, by testing the impact on the model’s
performance as we remove from the inputs certain physical
aspects of the initial conditions. Finally, we test the
robustness of our model in Sec. V, and conclude with a
discussion on the implications of our work in Sec. VI.

II. THE DEEP LEARNING FRAMEWORK

N-body simulations are the most general and accurate
available approach to compute the clustering evolution of
matter at all scales (Fig. 1). Simulations start from early
times, when the Universe was filled with small matter
density perturbations that are described by a Gaussian
random field. The simulations then follow the evolution of
these fluctuations as they enter the nonlinear regime,
through the emergence of self-gravitating dark matter halos
wherein galaxies form. The final product of the simulation
resembles the Universe we observe today, characterized by
dark matter halos embedded in a web of filamentary large-
scale structure.
Our aim is to develop a deep learning framework that can

be used to learn about the physical connection between the
early Universe and the mass of the final dark matter halos
(Fig. 1). We focus on the mass of dark matter halos as it is
the halos’ primary characteristic, but our framework can
similarly be applied to other halo properties. The CNN is
trained to predict the final mass of the halo to which any
given dark matter particle in the simulation belongs at the
present time. The input to the CNN for a given particle is
given by the initial density field in a cubic subregion of the
initial conditions of the simulation, centered on the par-
ticle’s initial position. The CNN is therefore trained to learn
a particle-by-particle mapping from the initial conditions to
the final mass of the halo to which each particle belongs.
Our results are insensitive to the simulation box size and the
choice of whether to use overdensity or gravitational
potential as input, as discussed in Appendix A.
In cosmology, deep learning has become a popular

method to learn mappings that require computationally
expensive N-body simulations. Examples of CNN appli-
cations to simulations include estimating cosmological
parameters from the dark matter or galaxy distribution
[16–21], generating higher-resolution versions of low-
resolution N-body simulations [22,23], as well as emulat-
ing the mapping between Zel’dovich-displaced and
nonlinear density fields [24], or that between the dark
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matter and galaxy distributions [21,25]. The models are
evaluated on global summary statistics such as two-point or
three-point correlation functions [16,17,20,25,26]. Our
work differs from such applications primarily in the aim:
it is not to develop fast N-body surrogates, but rather to
make use of deep learning to gain physical insight into the
formation of cosmic structures within the simulations. Our
CNN model returns particle-specific predictions, yielding a
halo collapse model that can describe the nonlinear
evolution of the density field from any initial location in
the simulation.

A. Simulations

We generated the training data from 20 dark matter-only
N-body simulations produced with P-GADGET-3 [4,27],
each consisting of a box of size L ¼ 50 Mpc h−1 (comov-
ing) and N ¼ 2563 simulation particles evolving from
z ¼ 99 to z ¼ 0. We tested the impact of the simulation
box size by repeating the analysis using three simulations
with box size L ¼ 200 Mpc h−1 and the same mass
resolution (N ¼ 10243). We found no significant change
in the final predictions of the model, demonstrating that a
box of size L ¼ 50 Mpch−1 is sufficiently large to capture
the relevant environmental effects for the halo population

considered in this analysis. The results shown in the paper
are for models trained on the L ¼ 50 Mpc h−1 cosmologi-
cal boxes. We made use of pynbody [28] to analyze the
information contained in the simulation snapshots. The
simulations adopt a WMAP5 ΛCDM cosmological model;
the cosmological parameters are given by ΩΛ ¼ 0.721,
Ωm ¼ 0.279, Ωb ¼ 0.045, σ8 ¼ 0.817, h ¼ 0.701 and
ns ¼ 0.96 [29]. Some of the simulations are part of a suite
of existing simulations, which were performed at times
where these cosmological parameters were up-to-date; the
newer simulations were then run with the same set of old
parameters for consistency. However, we do not expect our
conclusions to change when updating the cosmological
parameters to more recent constraints from observations
[30], as demonstrated in previous work [12]. Each simu-
lation is based on a different realization of a Gaussian
random field drawn from the initial power spectrum of
density fluctuations, generated using genetIC [31]. The
simulation particles of the validation and testing data were
randomly drawn from four additional, independent simu-
lations to those used for training and their inputs/outputs
were generated in the same way as for the training data.
Dark matter halos were identified at z ¼ 0 using the

SUBFIND halo finder [4], a friends-of-friends method with
a linking length of 0.2, with the additional requirement that

FIG. 1. N-body simulations of cosmological structure formation can accurately compute the gravitational evolution of dark matter
over cosmic time, but do not provide a physical understanding of how cosmic structures arise from the initial conditions. We train a CNN
model to learn the relationship between the initial density field and the final dark matter halos, given examples fromN-body simulations.
The inputs to the CNN are given by the initial density field surrounding each dark matter particle and the outputs are the mass of the dark
matter halos to which each particle belongs at z ¼ 0. The aim is to interpret the mapping learnt by the CNN in order to gain physical
insights into dark matter halo formation.
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particles in a halo be gravitationally bound. We consider the
entire set of bound particles that make up a halo and do not
account for substructure within halos. The resolution and
volume of the simulation limit the resulting range of halo
masses; the lowest-mass halo has M ¼ 2.6 × 1010M⊙ and
the highest M ¼ 4.1 × 1014M⊙. We restrict our analysis
even further to the mass range log ðM=M⊙Þ∈ ½11; 13.4�.
This is because halos with mass M ≲ 1011M⊙ contain less
than ∼100 particles and are therefore not well-resolved in
the simulation, whereas halos with mass M ≳ 3 × 1013M⊙
are underrepresented as a result of the small volume of our
simulations.

B. Inputs and outputs of the deep learning models

The training data consist of dark matter particles ran-
domly drawn from the ensemble of particles in the
simulations which belong to dark matter halos at z ¼ 0;
we consider all particles within halos, and not just those at
the halo centers.
The final snapshots of the simulations (z ¼ 0) were used

to label each dark matter particle with its ground truth
variable, given by the logarithmic mass of the dark matter
halo to which each dark matter particle belongs. We only
consider particles that make up dark matter halos at z ¼ 0
in this analysis. The ground truths were rescaled to the
range ½−1; 1� before training; this step sets a similar scale
and dynamic range for the inputs and outputs of the model,
which facilitates the model’s training.
The density field in the initial conditions of the simu-

lations (z ¼ 99) was used to generate the deep learning
inputs associated with each particle. In the initial con-
ditions, the density field is given by a random realization
δðx; tinitialÞ on a uniform 2563 grid in the ð50 Mpch−1Þ3
simulation volume. The input associated with any given
particle is given by δðx; tinitialÞ in a cubic subregion of the
full simulation centered on the particle’s initial position.
The density at every voxel of the cubic box is estimated
from the positions of the particles in the initial conditions;
specifically, we estimate the density at the location of
each particle following an SPH procedure where the SPH
kernel smoothing length depends on each particle’s 32
nearest neighbors. Our results are insensitive to the exact
number of nearest neighbors. This subvolume has size
L ¼ 15 Mpc h−1 (comoving) and resolution N ¼ 753.
The size of the sub-box was chosen to be large enough to

capture large-scale information that is relevant to the
algorithm to learn the initial conditions-to-halo mass
mapping. In previous work, we trained a different machine
learning algorithm to infer final halo masses in the same
mass range based on precomputed features of the
initial conditions density field [13]. We found that the
machine learning model was able to learn relevant infor-
mation from the smoothed density field up to a scale
of Msmoothing ∼ 1014M⊙. Therefore, we chose a sub-box
length Lbox ¼ 15 Mpc h−1, which encloses a total mass of

M ∼ 4 × 1014M⊙, which is more than the largest relevant
mass scale adopted in our previous work. We found that
increasing the volume did not change the performance of
the network. On the other hand, a smaller volume would
lead to degradation in the predictions of particles in high-
mass halos. The resolution of the sub-box was chosen such
that the length of each voxel, lvoxel, is the same as the initial
grid spacing in the simulation i.e., lvoxel ¼ 0.2 Mpc h−1

(comoving). This is the highest possible choice of reso-
lution. The training set inputs were rescaled to have 0 mean
and standard deviation 1; the same rescaling was then
applied to the validation and test sets.

C. The deep learning model

The deep learning model consists of a 3D CNN, made of
six convolutional layers and three fully connected layers.
Although CNNs are generally applied to two-dimensional
images, we used three-dimensional kernels in the convolu-
tional layers that can be applied to the 3D initial density
field of the N-body simulation. The convolutions were
performed with 32, 32, 64, 128, 128, 128 kernels for the six
convolutional layers, respectively. The kernels have size
3 × 3 × 3. All convolutional layers (but the first one) are
followed by max-pooling layers; their output is then used as
input to the nonlinear leaky rectified linear unit
(LeakyReLU) [32] activation function. We refer the reader
to Appendix B for more details on the CNN architecture.
By training the network across many examples of particles
across many simulations, the model learns to identify the
aspects of the initial density field which impact the final
mass of the resulting halos.
Training the deep learning model requires solving an

optimization problem. The parameters of the model, w, are
optimized to minimize the loss function, LwðMtrue;MpredÞ,
which measures how closely the predictions, Mpred, are to
their respective ground truths, Mtrue, for the training data.
The model consists of a large number of parameters, thus
making it highly flexible. As a result, CNNs are often prone
to overfitting the training data, without generalizing well to
unobserved test data. To overcome this, regularization
techniques are employed by incorporating an additional
penalty term into the loss function. We designed a custom
loss function given by

LwðMtrue;MpredÞ ¼ LpredðMtrue;MpredÞ þ LregðwÞ; ð1Þ

where LpredðMtrue;MpredÞ is the predictive term, measuring
how well the predicted values match the true target values,
and LregðwÞ is the regularization term. The predictive term
can be reexpressed as Lpred ¼ − ln ½pðMtrue; jw;MÞ�,
where pðMtruejw;MÞ describes the probability distribution
of ground truth values Mtrue, given the predicted values
Mpred of the training data returned by the 3D CNN model
Mwith parameters w. A common choice in the community
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is that of a Gaussian or Laplacian distribution, yielding the
popular mean-squared-error or mean-absolute-error losses
for regression. We found that a Cauchy distribution
provides a better description of the data, as it contains
broader tails than those of a Gaussian distribution. The
scale parameter γ of the Cauchy distribution, which
specifies the half-width at half-maximum, was optimized
via backpropagation [33] during the training procedure of
the CNN, similar to the way the model parameters w are
optimized. The regularization term in (1), LregðwÞ, was
designed to simultaneously (i) improve the optimization
during training by preventing the algorithm from overfitting
the training data and (ii) compress the neural network
model into the smallest number of parameters without loss
in performance. We refer the reader to Appendix C for more
details on our custom loss function.
The parameters w were optimized during training via

backpropagation, which consists of the chain rule for
partial differentiation applied to the gradient of the loss
with respect to the parameters. The training proceeds for
thousands of iterations, each consisting of a forward and a
backward pass. In the forward pass, the input runs through
the network and reaches the output layer, and in the
backward pass, the parameters of the network are updated
to minimize the loss function evaluated for the training
data. The algorithm was trained on 200,000 particles,
randomly drawn from the ensemble of particles of 20
simulations based on different realizations of the initial
conditions; it was then validated using 10,000 particles
randomly drawn from a single simulation, and tested on
99,950 particles drawn from four additional independent

simulations. The training set was subdivided into batches,
each made of 64 particles. Batches were fed to the network
one at a time, and each time the CNN updates its parameters
according to the samples in that batch. Training was done
using the AMSGrad optimizer [34], a variant of the widely
used Adam optimizer [35], with a learning rate of 0.00005.
The learning rate was optimized via cross-validation,
together with α, the parameter weighting the regularization
term in the loss function. Early stopping was employed to
interrupt the training at the epoch where the validation loss
reaches its minimum value.

III. PREDICTING THE MASS OF DARK MATTER
HALOS FROM THE INITIAL CONDITIONS

We applied our trained CNN model to particles from
independent simulations not used for training. The CNN
predicts the mass of the halo to which the particles will
belong at z ¼ 0. The test set contains particles belonging
to randomly selected dark matter halos with mass
log ðM=M⊙Þ∈ ½11; 13.4� (Fig. 2(a)). This mass range is
set by the resolution and volume of our simulations; halos
of mass log ðM=M⊙Þ ≲ 11 are not well-resolved and those
with mass log ðM=M⊙Þ≳ 13.4 are rare (and therefore
underrepresented) in the small volume of our simulations.
The halos in the test set do not only differ in mass; they also
differ by factors such as their formation history and their
large-scale environment, which contribute significantly to
making the mapping between initial conditions and halo
masses challenging. For example, halos of the same mass
may have assembled smoothly through small accretion

(a) (b)

FIG. 2. (a) The CNNmakes predictions for simulation particles that occupy different regions of the initial conditions of the simulation.
These particles end up in halos which differ not only in their mass, but also in their formation history, large-scale environment, and
amount of sub-structure within the halos. The CNN must identify from the initial density field the features that impact the final mass of
the resulting halos. (b) Halo mass predictions returned by a CNN trained on the initial density field surrounding each dark matter
particle’s initial position. The predictions are shown against the ground truth halo mass values as a two-dimensional histogram in the top
panel, while the bottom panel shows the residuals logðMpred=MtrueÞ. The error bars in the top (bottom) panel show the median and
68% confidence interval of the predictions (residuals) in bins of ground-truth mass values.
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events or violently through mergers with other massive
structures; they may have formed in isolated regions of the
Universe or close to filaments and other massive objects.
Particles that belong to the same halo may even have
experienced significantly different dynamical histories;
those in the inner region of halos are more likely to have
been bound to the proto-halo patch from very early times,
whereas those in the outskirts may have been more recently
accreted onto the halo through late-time halo mergers, tidal
stripping or accretion events. All this variability in the
formation process of dark matter halos is not explicitly
presented to the deep learning model; the CNN is faced
with the task of finding features in the initial conditions
which contain information about the complex, nonlinear
evolution of halos.
Our problem setup is closely related to that of analytic

models: features are extracted via convolutions from the
initial conditions and combined nonlinearly to yield a halo
mass prediction. Our CNN approach provides a major
generalization over analytic models since the former is
capable of extracting any arbitrary form of features from the
inputs. Thus, we expect the CNNmodel to return halo mass
predictions that are at least as accurate as those of state-of-
the-art analytic approximations, or more accurate if there
exists additional features of the initial conditions beyond
those captured by analytic models that yield an improved
description of halo collapse.
We compare the predictions made by the CNN to the true

halo masses of the test set particles (Fig. 2(b)). The top
panel shows the predicted against the true halo mass values
as a two-dimensional histogram, while the bottom panel
shows the residuals logðMpred=MtrueÞ. The errorbars in
the top (bottom) panel show the median and 68% con-
fidence interval of the predictions (residuals) in bins of

ground-truth values. The black dashed line shows y ¼ x
and represents the idealized case of 100% accuracy. The
predictions’ distributions are characterized by large var-
iances and skewness throughout the whole mass range of
halos, although the maxima of the posterior distributions
are in the correct location. The variance in the distributions
is larger for low-mass halos compared to high-mass halos.
The extent of the variance in the predictions of the CNN is
consistent with expectations from analytic models, such as
the Sheth-Tormen ellipsoidal collapse model [10], which
model a similar mapping between pre-selected features of
the initial conditions and halo mass. We show and quantify
the comparison between the CNN predictions and those of
analytic models in Appendix E.

IV. INTERPRETING THE INFORMATION
LEARNT BY THE CNN

Our goal it to interpret the mapping learnt by the deep
learning model to understand which aspects of the initial
conditions the CNN extracts to make its predictions. In
particular, we wish to test whether anisotropic aspects of
the density field play a major role in establishing final
halo mass.
To do this, we modified the inputs to the CNN to remove

any anistropic information about the 3D density field and
re-trained the CNN. Given 20 concentric shells around the
center of the box, the inputs were constructed by assigning
to each voxel within a given shell the average density
within that shell (Fig. 3(a)). The concentric shells were
evenly spaced in radius r within the range r∈ ½2; 75�
voxels. Outside the largest shell that fits entirely within
the box, voxels were assigned the average density within
those parts of the concentric shell that intersect with the

(a) (b)

FIG. 3. (a) We re-train the model on inputs where the density in the initial conditions is averaged over shells so that any anisotropic
information is removed. The two models each return a set of predictions for the test set particles. (b) We compare the predictions returned
by the raw-density training set model and the averaged-density training set model. The histograms show the difference between the
predicted and the true log halo mass for particles split into three mass bins of halos. The bands of the histograms capture the scatter in the
predictions of each model trained with four different random seeds. The two models show similar residual distributions, except for a
slightly smaller variance in the residual distribution of particles in the midmass range of halos.
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box. This ensured that no additional information from
outside the input sub-box region was used to construct
the inputs. This procedure implies that each voxel of the
3D input sub-box only carries information about
the spherically-averaged density. We call this model the
averaged-density training set model, whereas the original
one which uses the full initial density field as input is
denoted as the raw-density training set model. The two
separately-trained models were used to return their own
halo mass predictions for the same set of test particles.
Figure 3(b) shows the comparison between the predic-

tions of the two models, one trained on the raw initial
density field and one trained only on spherically-averaged
information. The bands of the histograms capture the
scatter in the predictions of each model when trained using
five different random seeds. We find that the two models
return qualitatively similar predictions in the halo mass
range 11 ≤ logðM=M⊙Þ ≤ 13.4, for the same set of test
particles.
To quantify the similarity between the predictions of the

two models, we used the information-theoretic metric of
mutual information (MI) between the predicted and ground
truth halo mass values of the test set particles. In contrast
to linear correlation measures such as the r-correlation,
MI measures the full (linear and nonlinear) dependence
between two variables. This allowed us to quantify and
compare the amount of information captured by each model
about the ground truth halo masses.
Mathematically, the MI between two continuous varia-

bles X and Y with values over X × Y, IðX; YÞ is defined as

IðX; YÞ≡
Z
X×Y

pðX;YÞðx; yÞ ln
pðX;YÞðx; yÞ
pXðxÞpYðyÞ

dx dy; ð2Þ

where pðX;YÞ is the joint probability density distribution of
X and Y, and pX and pY are their marginal distributions,
respectively. MI as defined by Eq. (2) is measured in natural
units of information (nats). The MI was estimated using the
publicly available software GMM-MI [36], which performs
density estimation using Gaussian mixtures to estimate
pðX;YÞ in Eq. (2) and provides MI uncertainties through
bootstrap.1

We find a value of IðMpred;MtruthÞ ¼ 0.370� 0.004 for
the raw density model and IðMpred;MtruthÞ ¼ 0.240�
0.002 for the averaged density one, as shown in Fig. 4.
The scatter in the MI between predicted and true halo mass
values of the same model initiated with different random
seeds is of order 10−3 for both the raw and averaged density
models. The anisotropic components in the initial con-
ditions add a statistically significant amount of information,
increasing the MI by a factor of 1.5.
Despite being statistically significant, this increase in MI

does not correspond to a useful qualitative improvement in
predicting halo mass. To show this, in Fig. 4, the gray
horizontal lines indicate the value of the MI for fictitious
halo mass “models” that were constructed by adding
Gaussian noise to the ground truth values with standard
deviations of 1.5, 1.0, 0.75, 0.5 dex, respectively. By
comparing the increase in MI due to the anisotropic
components in the initial density field with these fictitious
benchmark predictions, we see that while the scatter in
predictive accuracy decreases by ∼0.2 dex, the overall
scatter still remains high at ∼0.7 dex. These results confirm
that while we have quantified a statistically significant
amount of information contained in the anisotropic aspects
of the initial density field about the final halo mass,
it does not constitute sufficient information to provide a
qualitative improvement in the initial conditions-to-halo
mass mapping.

A. Dependence on particles’ radial position

We next compare the accuracy of the predictions across
particles that reside in different locations inside the halos.
Figure 5 shows the predictive accuracy of the models for
three sets of particles that were split by their location inside
the halos. Particles are split into those that live in the
innermost region of halos (left panel) i.e., r ≤ 0.3 r200 m,
where r is the radius of the particle from the center of its
host halos and r200 m is the halo virial radius, those in a
midregion (middle panel) i.e., 0.3 < r=r200 m ≤ 0.6 and
those in the outskirts of halos (right panel) i.e.,
r > 0.6 r200 m. We find that the particles with the most

FIG. 4. Mutual information between predicted and ground truth
halo mass values for the raw-density and averaged-density
models. The horizontal gray lines show the value of the MI
for mock predicted halo mass values constructed by adding
Gaussian noise to the ground truth values with standard deviation
of 1.5, 1., 0.75, 0.5 dex, respectively.

1The distribution of ground truth values contains two hard boun-
daries at logðMmin=½Msolh−1�Þ¼11 and logðMmax=½Msol h−1�Þ ¼
13.4, which can be problematic for the Gaussian mixture density
estimation ofpðX;YÞ. Moreover, the fact that there exists fewer halos
at the high mass end also introduces some discretization to the
distribution of ground truth values at highmass. To correct for these
effects, we add a small random noise and then apply an arctanh
transformation to the ground truth values. Sincemutual information
is invariant under invertible, nonlinear transformations and the
added noise is smaller than the discretization, this does not affect the
value of the MI, but makes the density estimation procedure more
robust.
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accurate predictions are those in the innermost regions of
the highest-mass halos. This is true for both the averaged-
density and raw-density models. Particles that live in the
outskirts of high-mass halos have larger bias and variance
in their predictions; this is partially due to the fact that
sometimes the input sub-box volume does not include the
full extent of the region that will later collapse into a high-
mass halo. Therefore, when the input sub-box is centered
on an outskirt particle, its volume does not cover a large
fraction of the proto-halo region, making it difficult for the
CNN to infer the correct final halo mass. This explains why
outskirts particles tend to yield larger errors than inner
particles. For halos of smaller mass, the distribution of
predictions for particles in different locations inside the
halos share similar variances. One way to improve the
predictions of outskirt particles in high-mass halos would
be to use larger sub-box volumes as inputs. However,
adopting a larger sub-box at the same resolution was not
possible due to computational limitations in memory
consumption on one Tesla V100 GPU. Similarly, decreas-
ing the resolution to accommodate for a larger volume
would cause the predictions to worsen for particles in low-
mass halos. Despite this, the performance of the CNN
remains similar to or better than the predictive accuracy of
analytic models (see Appendix E).
In all panels, the MI values indicated in the legend box

show a statistically significant gain in information when
adding anisotropic aspects to the inputs; however, this
again translates into a qualitatively small reduction in the
scatter of the predictions. Therefore, our conclusion that the
anisotropic information in the inputs does not yield a useful

improvement in halo mass modeling is valid for all
particles, regardless of their location inside the halo.

V. DEMONSTRATING THE ABILITY OF THE CNN
TO EXTRACT FEATURES

One fundamental assumption behind this interpretation
of our results is that the CNN is capable of capturing
features across the range of different scales present in the
input sub-box. If instead the CNN’s ability to learn were
limited, then we could not exclude the possibility that there
exists additional information in the inputs which affects
halo collapse, but which the CNN is unable to learn. This
motivated us to perform tests showing that the same CNN
model can return highly accurate predictions, when pre-
sented with the information to do so. In particular, we
wanted to create a test as closely related to the real initial
conditions-to-halo mass problem, which would specifically
demonstrate the ability of the CNN to extract features from
the density field, on all scales probed by the input sub-
boxes, and return halo mass predictions that are consistent
with expectations.
To do this, we tested the performance of the model in a

scenario where we could compare the predictions of the
CNN to our expectations. We trained the CNN to learn the
mapping between the nonlinear density field at the present
time (z ¼ 0) and the mass of the resulting halos. This
mapping is effectively given by an algorithm which first
identifies the boundary of a halo based on a fixed density
threshold, similar to the friends-of-friends algorithm used
to identify halos in the simulation, and then computes the

FIG. 5. Halo mass predictions for particles that reside in different locations inside the halos: those located in the inner region of the
halo (r ≤ 0.3 r200 m; left panel), those in a intermediate region (0.3 < r=r200 m ≤ 0.6); middle panel), and those in the outskirts of halos
(r > 0.6 r200 m; right panel). The MI between predicted and ground truth halo mass values is indicated in the legend box of each panel.
While the change in MI between raw-density and averaged-density models is statistically significant, the decrease in the scatter of the
predictions is not sufficient to provide a qualitative improvement in the initial conditions-to-halo mass mapping.
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mass enclosed within such halo. To do this, the CNN must
be able to simultaneously extract features at a number of
different scales; from that of the boundary of the lowest
mass halos up to that of the most massive ones. As this is a
more straightforward mapping than that between the initial
conditions density field and the final halo masses, we
expect the CNN to return near-perfect predictions.
Similar to the z ¼ 99 case, we provided the CNN with

the nonlinear density field in cubic subregions of the
simulation, centered at each particle’s position. The inputs
are given by the nonlinear density field δðx; tfinalÞ at z ¼ 0
in a subvolume centered at each particle’s position. As for
the z ¼ 99 case, the density is estimated based on the
particles’ positions. We revisited our choices of box size
and resolution of the 3D sub-box, as the scales of interest at
z ¼ 0 naturally differ from those in the initial conditions.
We fixed the resolution to that used for the z ¼ 99 case,
N ¼ 753, and chose a box size of L ¼ 1.5 Mpc h−1, which
approximately corresponds to the virial radius of a halo
with mass M ¼ 1014M⊙. These choices resulted in a voxel
length lvoxel ∼ 30 kpc h−1, which is approximately equiv-
alent to half the virial radius of aM ¼ 1010M⊙ halo. Given
that the box captures the virial radius of the largest and
smallest halos probed by our simulations, we expect the
input boxes to contain the information required by the
algorithm to learn the density field-to-halos mapping. To
summarize, the z ¼ 99 and z ¼ 0 settings use as inputs the
density fields at t ¼ 17.1 Myr and t ¼ 13.7 Gyr after the
big bang respectively, while keeping all other choices about
the model’s architecture and its hyperparameters identical.
Figure 6 shows the predictions of the CNN when trained

on the z ¼ 0 nonlinear density field. Just like in Fig. 2(b),

the predictions are illustrated in the form of violin
plots, showing the distributions of predicted halo masses
in bins of true mass. As expected, the predictions show
good agreement with the true halo mass labels, yielding a
correlation coefficient r ¼ 0.96, where r ¼ 1 implies an
exact linear relationship. The presence of a very low
number of outliers, that make up the visible tails
of the violin plots, is expected from any machine learning
model trained from a finite dataset; the fraction of
particles with predicted mass outside the 3σ interval of
logðMpredicted=MtrueÞ is only 0.4%. Since the predictions are
highly accurate throughout the full mass range of halos, the
CNN must be able to identify the relevant features from the
density field on all scales within the input sub-box and
yield predictions within expected accuracy.
Crucially, the volume and resolution of the input sub-

boxes were adapted to resolve the smallest and largest
scales of interest at z ¼ 0; therefore, this test confirms the
ability of the CNN to extract features from the smallest to
the largest accessible scales of the inputs. Consequently, we
expect the same architecture to also have the capability to
extract features on multiple scales within the z ¼ 99 linear
density field. However, since the features in the initial
conditions have a much more complex relationship with
halo mass, the predictions will naturally be less accurate
than the z ¼ 0 case.

VI. DISCUSSION AND CONCLUSIONS

We have presented a deep learning framework, capable
of learning final halo masses directly from the linear
density field in the initial conditions of an N-body
simulation. The overall goal of our work is to learn about

(a) (b)

FIG. 6. Halo mass predictions returned by a CNN trained on the nonlinear density field at z ¼ 0. The predictions are shown in the form
of violin plots i.e., distributions (and their medians) of predicted halo masses of particles within evenly-spaced bins of true logarithmic
halo mass. The predictions are in excellent agreement with their respective ground truth halo masses, yielding a correlation coefficient
r ¼ 0.96.
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physical aspects of the early Universe which impact the
formation of late-time halos using the results of deep
learning, without the need to featurize the initial conditions.
To do this, we require a deep learning framework that
allows for the interpretability of its learning; for example, in
understanding the features assembled by the convolutional
layers and how these map onto the final predictions. In this
work, we removed part of the information from the inputs
and retrained the CNN to test the impact of this on the
accuracy of the final predictions.
This allowed us to quantify in full generality the amounts

of information in the isotropic and anisotropic components
of the initial density field about final halo masses. We found
a small, albeit statistically significant amount of additional
information in the anisotropic component over that con-
tained in the isotropic component of the initial density field;
however, this corresponds to only a 0.2 dex decrease in a
scatter of 0.9 dex in predictive accuracy. Thus, the addition
of anisotropic information does not yield qualitative
improvements in the initial conditions-to-halo mass map-
ping in the range log ðM=M⊙Þ∈ ½11; 13.4�. In practice, the
information in the initial conditions gleaned by the deep
learning model to infer halo masses is equivalent to that
captured by spherical averages over the initial density field.
Our conclusions do not change if we train on the initial
potential field instead of the density field, demonstrating
that long-range gravitational effects do not significantly
affect the local process of halo collapse (see Appendix A).
A crucial test of robustness of our framework was to
demonstrate that the deep learning model can effectively
extract spatially local features on all scales probed by the
input sub-boxes and yield robust halo mass predictions that
match expectations for a simpler test-case scenario.
The idea of removing or changing parts of the data and

retraining has previously been used in the deep learning
community as part of a data engineering step. For example,
adversarial examples are visually imperceptible perturba-
tions added to the data that yield catastrophic failures in the
CNN predictions [37]; these are often used to test the
robustness of CNNs. In the context of astrophysics, inputs
are often modified to include different levels of noise in
simulated data [38,39]; this is also done to test the robustness
of the model against noise. In our work, modifications to the
input data are made to remove specific physical aspects from
the initial density field; the aim is to verify whether the
removed information plays a role in inferring the final output.
To our knowledge, this is the first time these techniques have
been adopted for generating a physical interpretation of a
CNN model within a cosmological setting.
Our results lead to a reevaluation of the current under-

standing of gravitational collapse based on more traditional
analytic and semianalytic approaches. Existing studies
based on the ellipsoidal collapse model [10,11,40–42]
incorporate tidal shear effects either indirectly or in the
form of free parameters calibrated to numerical simulations.

Peak-patch theories [8,43,44] do not quantify the impact of
the added tidal shear information on the predictive power
for halo mass compared to spherically-averaged density
alone. Therefore, the models do not in themselves dem-
onstrate a significant role for tidal shear in determining final
halo mass. Our work focuses on providing a direct test of
the importance of anisotropic information, and not just tidal
shear, and shows that this does not in fact play a significant
role in establishing final halo masses in the range
log ðM=M⊙Þ∈ ½11; 13.4�. Consequently, building better
theoretical models of halo collapse requires incorporating
information beyond the initial conditions, such as approx-
imations to the gravitational evolution of the density field.
Our results illustrate the promise of deep learning frame-
works as powerful tools for extracting new insights into
cosmological structure formation.

The software used to generate the simulations are
available at [45] to generate the initial conditions, and
at [46] to run the N-body simulations. The parameter files
for generating the initial conditions and simulations can be
made available from the authors upon reasonable request.
The data used in this work, including simulations and
training/validation/test sets, can be freely downloaded from
Google Cloud Storage [47]. The code used to conduct the
analysis is publicly available at [48].
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APPENDIX A: THE GRAVITATIONAL
POTENTIAL VS THE DENSITY

FIELD AS INPUT

The initial density field contains all the information to
fully describe the initial conditions of the Universe. Other
fields, such as the potential field, its gradient or its Hessian,
can be derived directly from the density field in the whole
simulations box via the Poisson equation. The solution to
the Poisson equation is a convolution, meaning that
information about the potential field is accessible to the
CNN from the density field. However, the one-to-one
correspondence between potential and density fields is
only strictly valid in the whole simulation box. Since our
inputs are limited to subregions of the simulations, the
information contained within the density field is not exactly
the same as that carried by the potential field within that
same subregion. In particular, the density field within a
sub-volume of the simulation excludes information about
long-range gravitational effects which would instead be
accessible through the potential field.
To test whether long-range gravitational effects contain

relevant information for the CNN to predict final halo
masses, we trained the CNN on the gravitational potential
field instead of the density field. We computed the potential

field across the entire simulation by solving the Poisson
equation, and replaced the initial density field within each
input sub-box with the gravitational potential field
within that same region. We retrained the CNN model
using this new set of inputs and compared the predictions
returned by the CNN when trained on the density field
and when trained on the gravitational potential field.
Figure 7 compares the distributions of predicted halo
masses within bins of true halo masses for the two cases.
Each distribution is estimated using a kernel density
estimate over the set of discrete mass values predicted
by the model. We found that the predictions from the two
models are consistent, despite small variations in the
predicted distributions at the high-mass end. We quantified
the significance of these differences by computing the
MI [Eq. (2)] between predicted and ground truth halo mass
values, for both the potential and density models.
The former yields IðlogMpred; logMtrueÞ¼0.399�0.004,
which is similar to the MI of the density model
IðlogMpred; logMtrueÞ ¼ 0.370� 0.004. Therefore, we
conclude that small variations in the predictions from the
two models present at the high-mass end do not signifi-
cantly impact the overall predictivity of the model.
This test demonstrates that long-range gravitational

effects do not impact the final mass of halos in any
significant way. Any information needed about the poten-
tial can be retrieved from the density field by the CNN,
despite the fact that this information is expected to reside on
larger scales. We therefore expect our inputs—the density
field within subvolumes of the simulation—to capture all
relevant information in the initial conditions about final
halo mass.

FIG. 7. We compare the predictions returned by the CNN when
trained on the initial density field and when trained on the
gravitational potential field. The two models yield consistent
predictions, meaning that long-range gravitational effects do not
impact the final mass of halos and that any information needed
about the potential can be retrieved from the density field by
the CNN.
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APPENDIX B: CNN ARCHITECTURE

Our deep learning architecture consists of six convolu-
tional layers, all but the first one followed by max-pooling
layers, and three fully connected layers. The convolutions
were performed with 32, 32, 64, 128, 128, 128 kernels for
the six convolutional layers, respectively—all with a stride
of 1 and zero-padding. The initial weights of the kernels in
a layer were set following the Xavier initialization tech-
nique [49], which randomly draws values from a uniform
distribution bounded between � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=ðni þ niþ1Þ
p

, where ni
and niþ1 are the number of incoming and outgoing network
connections to that layer. The kernels have size 3 × 3 × 3 in
all convolutional layers, meaning that the first layer learns
features on scales of 0.6 Mpc h−1. As more convolutional
layers are stacked on top of each other, the algorithm
becomes sensitive to features at increasing scales. In this
way, both local and global information are able to propa-
gate through the network. We applied a a nonlinear
activation function to every feature map given by a leaky
rectified linear unit (LeakyReLU) [32]

fðxÞ ¼
�
x for x ≥ 0;

β × x for x < 0;
ðB1Þ

with β ¼ 0.03. A LeakyReLU activation, with β of order
10−2, is a common choice that has proved successful in
many deep learning applications [50]. The feature maps are
then fed to max-pooling layers, which reduce their dimen-
sionality by taking the average over 2 × 2 × 2 nonoverlap-
ping regions of the feature maps. The CNN is inherently
translationally invariant due to the combination of convolu-
tional and pooling layers in the architecture; we do not
incorporate any further symmetries in the network.
After the sixth convolutional layer and subsequent

pooling layer, the output is flattened into a one-dimensional
vector and fed to a series of three fully connected layers,
each made of 256 and 128 and 1 neuron, respectively. The
nonlinear activation function of the first two layers is the
same ReLU activation [(B1)] as that used in the convolu-
tional layers, whereas the last layer has a linear activation in
order for the output to represent halo mass. The weights
were initialized using the same Xavier initialization tech-
nique used for the kernel weights of the convolutional
layers. Regularization in the convolutional and fully con-
nected layers was incorporated in the form of priors over
the parameters of the model, as explained in the next
subsection.
We chose the architecture that returned the best perfor-

mance (i.e., the lowest loss score on the validation set after
convergence) amongst many, but not all, alternative
models with different choices of architecture-specific and
layer-specific hyperparameters. We investigated the change
in the validation loss in response to the following mod-
ifications; adding batch-normalization layers, introducing
dropout, varying the amount of dropout, adding/removing

convolutional layers and/or fully connected layers, increas-
ing/decreasing the number of kernels/neurons in each
convolutional/fully connected layer, changing the weight
initializer, and changing the convolutional kernel size. In all
cases, we found that the final loss score either increased or
showed no change compared to that of the architecture
retained in this work. We leave further hyperparameter
exploration, including changes to the optimizer, the addi-
tion of skip connections, and other variations in the
architecture, to future work.

APPENDIX C: THE LOSS FUNCTION

A neural network can be viewed as a probabilistic model
pðyjx;wÞ, where given an input x, a neural network assigns
a probability to each possible output y, using the set of
parameters w. The parameters are learned via maximum
likelihood estimation (MLE); given a set of training
examples D ¼ fxi; digNi¼1, the optimal weights are those
that minimize the negative log-likelihood, ln ½pðDjwÞ� ¼P

N
i¼1 ln ½pðdijxi;wÞ�, more generally called the loss func-

tion L in the machine learning community. The issue is that
deep neural networks are generally overparametrized; it
has in fact been demonstrated that there exists a major
redundancy in the parameters used by a deep neural
network [51]. This means that when minimizing the
negative log-likelihood with a deep neural network model,
one almost always encounters the problem of overfitting.
The algorithm tends to fit the samples of the training dataD
extremely well but fails to learn patterns that are general-
izable to unseen data. To overcome this issue, one modifies
the loss function of the neural network in such a way that
prevents the algorithm from overfitting and improves its
generalizability. This is known as regularization.
We introduce regularization by adopting priors over the

weights. Following Bayes’ theorem, the goal of the neural
network then becomes to maximize the posterior distribu-
tion pðwjDÞ ¼ pðDjwÞpðwÞ, rather than the likelihood
pðDjwÞ. The loss function, L, is then given by

L ¼ − ln
�
pðwjDÞ� ¼ − ln

�
pðDjwÞ� − ln

�
pðwÞ�; ðC1Þ

where the first is the likelihood term, or predictive term
Lpred, and the second is the prior term, or regularization
term Lreg, as in (1). If w are given a Gaussian prior, this
yields L2 regularization; if w are given a Laplacian prior,
then one obtains L1 regularization. The advantage of this
form of regularization is that it can be incorporated in terms
of priors on the weights. There exist many other regulari-
zation techniques, including for example dropout, but we
choose to focus on those that have a direct Bayesian
interpretation.
Technically, the parameters optimized during training

include not just the weights, but also the biases. These
consist of a constant value that is added to the product of
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inputs and weights for every kernel (neuron) in a convolu-
tional (fully connected) layer. These parameters add little
flexibility to the model and are therefore typically not
responsible for overfitting. Therefore, we choose not to
consider setting priors on the biases as they do not require
regularization.

1. The choice of the likelihood function

We denote d ¼ dðxÞ as the ground truth variable
rescaled to ½−1; 1� and y ¼ yðx;wÞ as the prediction
returned by the CNN model with weights w, for a given
set of rescaled inputs x. The likelihood function describes
the distribution of ground truth values d for a given value of
predicted output y, returned from the neural network model
with weights w. A typical choice in the field is that of a
Gaussian or Laplacian likelihood, yielding the popular
mean-squared-error or mean-absolute-error losses. For our
problem, we found that a Gaussian distribution is a poor
description of the training data: the distributions of d for
fixed values of y contain long tails, especially when y is
close to the boundaries y ¼ −1 and y ¼ 1, that a Gaussian
distribution fails to account for. Not accounting for these
tails led to biased predictions, especially towards the
boundaries. Instead, we choose a Cauchy distribution
function for the likelihood, characterized by the scale
parameter γ, which has broader tails than a Gaussian
and a well-defined form for its conditional distribution
function.
The negative log-likelihood then becomes

− ln ½pðdjy; SÞ� ¼ 1

N

XN
i¼1

�
lnðγÞ þ ln

�
1þ

�
di − yi

γ

�
2
	

þ ln

�
arctan

�
dmax − yi

γ

�

− arctan

�
dmin − yi

γ

�		
; ðC2Þ

for a Cauchy likelihood function with scale parameter γ,
under a top-hat selection function S over the ground truth
variable, pðSjdÞ ¼ Θðdmax − dÞΘðd − dminÞ, where Θ is
the Heaviside step function. The latter arises from the fact
that, by construction, the rescaled ground truth is restricted
to dmin ≤ d ≤ dmax, where dmin ¼ −1 and dmax ¼ 1. This
selection function was needed in order to correctly model
the loss at the boundaries. The first two terms in (C2) arise
from the Cauchy likelihood; the first is effectively a prior
on γ which is insensitive to the predictions y, and the
second measures the difference between predicted and
ground truth values weighed by the scale parameter γ.
The third term in (C2) comes from accounting for the
selection function S. The normalization factor 1=N is not
part of the negative log-likelihood but is typically intro-
duced in the loss function so that the loss is insensitive to

the size of the training set (or, of the batch size if
performing batch gradient descent when training). The
scale parameter γ determines the half-width at half-maxi-
mum of the Cauchy distribution. Since the optimal value of
γ is not known a priori, we optimize that parameter during
training using backpropagation, together with the rest of the
weights and biases optimized by the network. To test the
robustness of simultaneously optimizing loss function
hyperparameters and network weights, we retrained the
network with γ fixed to its best-fit value and found no
significant change in the performance of the network. The
above likelihood term in the loss function satisfies our
desiderata of having a heavy-tailed probability distribution
function and accounting for the restricted range of ground
truth d.
The expression in (C2) is valid under the condition that

d; y∈ ½−1; 1�. However, since the activation function in the
last layer is given by the unbounded linear function
σðzÞ ¼ z, the predictions can technically take any value
y∈R. To solve this, we introduced a superexponential
function, denoted as fðyÞ, in the regime jyj ≥ 1, to counter
balance the Cauchy limits at the boundaries and sharply
disfavor predictions outside the interval ½−1; 1�. The func-
tion is continuously matched to the Cauchy distribution at
the boundaries y ¼ �1. The likelihood term of the loss
function Lpred is then given by a piecewise function
conditional on y,

Lpred¼
1

N

XN
i¼1

�
−lnpðdijyi;SÞΘðjyjþ1ÞþfðyiÞΘðjyj−1Þ�:

ðC3Þ

Figure 8 compares the form of the likelihood, given the
optimized value for γ returned by the model, compared to
the empirical distribution of ground truth values at fixed
slices in y, the predicted variable returned by the trained
CNN, for the training set samples. The Cauchy likelihood
provides a good fit to the empirical likelihood distribution
of the model. However, we note that for small values of y,
the fit could have been improved by adopting a two-tailed
Cauchy likelihood function. Further flexibility could be
provided by using a student’s t-distribution. We leave this
to future work.

2. The choice of priors: regularization
and model compression

We adopt weight priors that can simultaneously
(i) improve the optimization during training by preventing
overfitting and (ii) compress the neural network model into
the least number of parameters without loss in performance.
Regularization and model compression are very much
related; these tasks can be achieved simultaneously by
minimizing a properly defined cost function. We selected
weight priors that penalize large values (for regularization)
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and induce sparsity (for model compression). To regularize
the network, we adopted weight priors that promote smaller
values, as these typically lead to more generalizable
solutions. We chose Gaussian priors for the weights of
the convolutional layers and Laplacian priors for the
weights of the fully connected layers, which penalize the
sum of the squared values or the sum of the absolute values
of the weights, respectively. The choice of Laplacian prior
has the additional benefit that it induces sparsity on the
weights by driving most weights to be zero; a Laplacian
prior thus combines the idea of model compression and
regularization. For model compression, our aim is to induce
a more compact network with the smallest number of
nonzero neurons in the fully connected layers. To do this,
we adopted the group Lasso formulation [52] which
imposes group-level sparsity, meaning that all the variables
in that group are either simultaneously set to 0, or none of
them are. For the case of fully connected layers, a group is
equivalent to an entire neuron.
The log priors over the weights become

ln pðwÞ ¼ α

�X
l∈ lc

XPl

p¼1

ðwðlÞ
p Þ2þ

X
l∈ ld

XQl

q¼1

jwðlÞ
q j

þ
X
l∈ ld

XNl−1

i¼1

�XNl

j¼1

w2
ij

	1=2	
; ðC4Þ

where the first term is a Gaussian prior over each of the Pl

weights of each convolutional layer lc, w
ðlÞ
p , the second term

is a Laplacian prior over each of the Ql weights of each

fully connected layer ld, w
ðlÞ
q , and the third term is a group

Lasso prior over the set of weights that determine the
connections between a single neuron in the (l − 1)th layer
and all the neurons in the lth layer. The idea of group-level
sparsity can also be applied to convolutional layers, where a
single group is given by the collection of weights from a
single kernel of the layer. This can be thought of as a feature
selection method, in that it removes entire kernels (and thus
the feature represented by that kernel) within each convolu-
tional layer. Given that our network is relatively small, we
chose not to perform feature selection; we leave this for
future work.
The prior term ln ½pðwÞ� is added to the likelihood term in

the loss function, as in (C1). The regularization parameter α
in (C4) weighs the prior term relative to the likelihood term
in the loss function. Its value sets the balance between an
overly-complex model (which overfits and has a high
variance) and an overly simple model (which underfits
and has a high bias). We optimized this parameter, in
combination with the learning rate, using cross-validation.

APPENDIX D: TRAINING AND OPTIMIZATION

The algorithm was trained on 200,000 particles, ran-
domly drawn from the ensemble of particles of 20

FIG. 8. Distribution of d for fixed slices in y, where d is the ground truth logarithmic halo mass variable rescaled to the range ½−1; 1�
and y is the predicted value returned by the CNN in rescaled units. The black line is the likelihood function given the value of γ at the
epoch where the validation loss reaches its minimum, γ ¼ 0.26.
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simulations based on different realizations of the initial
conditions. We validated the model using 10,000 particles
from a single simulation, and tested it on 99,950 particles
from four independent simulations. We did not perform
data augmentation to increase the size of the training set
since we had available a large number of training samples
and therefore opted for testing the impact of adding new
(independent) samples instead. We found no improvement
in the performance of the algorithm as we added to the
training set an additional 300,000 particles from another
independent simulation, implying that our choices were
sufficient to yield a training set representative of the
mapping between initial conditions and halos. We further
investigated changes to the training set, such as re-balanc-
ing the training set to have the same number of particles in
low- and high-mass halos, and found no change in the
accuracy of the predictions. The training set was sub-
divided into batches, each made of 64 particles. Batches
were fed to the network one at a time, and each time the
CNN updates its parameters according to the samples in
that batch.
Training was done using the AMSGrad optimizer [34], a

variant of the widely-used Adam optimizer [35], with a
learning rate of 0.00005. The learning rate was optimized
via cross-validation, together with α, the parameter weight-
ing the regularization term in the loss function. The number
of trained parameters in the network is 2,108,258. Figure 9
shows the loss function (upper panel) evaluated for the
training and validation sets, and the value of the parameter γ
in the likelihood term of the loss (lower panel) as a function
of the number of iterations. Early stopping was employed

to interrupt the training at the epoch where the validation
loss reaches its minimum value; the early-stopping iteration
is shown as a vertical gray line in Fig. 9. The final weights
of the CNN and the optimized value of γ are given by those
characterizing the model at the end of the early stopping
iteration.
Validation and testing was performed on particles from

an independent simulation based on a different realization
of the initial density field to those used for training.
Although the validation set does not directly enter the
training process of the algorithm, it is indirectly used to test
the response of the algorithm to changes in the architecture,
and to determine the stopping point for training. Validating
and testing on independent realizations ensures that the
algorithm is not overfitting patterns specific to the simu-
lations used for training. Instead, it ensures that the CNN is
learning physical connections between the initial condi-
tions and the final halos which are generalizable to any
realization of the initial density field.

APPENDIX E: A COMPARISON WITH
ANALYTIC MODELS

We compared the accuracy of the CNN predictions
against that of analytic models which also provide final
halo mass predictions from the initial conditions. This
serves as a validation test for our CNN model. We expect
the CNN model to return halo mass predictions that are at
least as accurate as those of state-of-the-art analytic
approximations, since both CNN models have access to
the spherically-averaged density around each particle
which is what is used by the analytic models to predict
the final halo mass.
We compared the CNN to the extended Press-Schechter

(EPS) [6] and Sheth-Tormen (ST) [11] analytic halo-
collapse models. According to EPS, the fraction of density
trajectories with a first upcrossing of a density threshold
barrier δth is equivalent to the fraction of haloes of massM.
The density threshold barrier δth adopted by Bond et al. [6]
is that of spherical collapse; δthðzÞ ¼ ðDðzÞ=Dð0ÞÞδsc,
where δsc ≈ 1.686. The predicted halo mass of each test
particle is given by the smoothing mass scale at which the
particle first upcrosses the density threshold barrier.
In the ST formalism, EPS theory is extended by adopting

a “moving” collapse barrier rather than the spherical
collapse barrier. The ST collapse barrier bðzÞ varies as a
function of the mass variance σ2ðMÞ and is given by

bðzÞ ¼ ffiffiffi
a

p
δscðzÞ

�
1þ

�
β
σ2ðMÞ
aδ2scðzÞ

�
γ
	
; ðE1Þ

where δscð0Þ ≈ 1.686 and the best-fit parameters found in
Sheth et al. [10] are β ¼ 0.485, γ ¼ 0.615 and a ¼ 0.707.
Similar to the EPS case, the predicted halo mass of each test
particle is given by the smoothing mass scale at which the
particle first upcrosses the threshold barrier given by

FIG. 9. Top panel: The loss function evaluated for the training
set and the validation set at each batch iteration. Early stopping
was employed to interrupt the training at the epoch where the
validation loss reaches its minimum. The weights of the CNN at
the early-stopping iteration were retained. Bottom panel: The
half-width at half-maximum parameter of the Cauchy likelihood
function, γ, as a function of iteration.
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Eq. (E1). Note that 30% (58%) of particles in the test set
have trajectories that never cross the EPS (ST) collapse
barrier for the smoothing mass scales we consider, and so
these do not have an associated mass prediction. This
selection bias will be relevant when making quantitative
comparisons with the CNN models in terms of MI, as
described below.
We computed the EPS and ST predicted halo masses for

the particles in the test set used to test the CNN. Figure 10
shows the predicted halo masses as a function of true halo
masses for the analytic and CNN models. We show two-
dimensional histograms and the contours containing 68%
and 95% of the joint probability. All models show
qualitatively similar predictions, but with tighter confi-
dence regions for the CNN predictions. This is especially
notable in the bottom-right region of the middle and right
panels, where the analytic models’ predictions extend to
much lower mass values than the CNN predictions. The
CNN shows a slight tendency to underpredict the mass of
high-mass halos as these are close to the edge of the
training set mass range; although our loss function was
designed to mitigate this common bias effect in CNNs, it
does not entirely remove it. The ST predictions are shifted
towards lower mass values compared to the EPS predic-
tions, for fixed true halo mass. This is because the ST
collapse barrier takes larger δ values than the EPS barrier at
fixed smoothing mass scale; as a result, the same particle
will cross the collapse barrier at lower smoothing mass
scales for ST compared to EPS. This in turn yields a lower
halo mass prediction for ST compared to EPS.
In Tables I and II, we quantitatively compare the

performance of the CNN models with the analytic ones
in terms of the MI between predicted and ground truth halo
mass values. When making a quantitative comparison, one

must consider that particles whose trajectories do not cross
the EPS (or ST) collapse barrier do not have an associated
halo mass prediction. By contrast, the CNN will always
return a mass prediction for every particle used for testing.
Therefore, we compare the performance of EPS to that of
the CNNmodels for only those subset of particles in the test
set that have a predicted mass value according to EPS, and
report the MI values in Table I. We do the same for ST and
report the MI values in Table II. We find that the raw
density and averaged density models perform better than
state-of-the-art analytic models for the same set of particles,
as the MI of the CNN models is higher than that of the
analytic models.
This test validates our results as it confirms that the CNN

is at least as accurate as the analytic models.

FIG. 10. Two-dimensional histograms and contours containing 68% and 95% of the joint probability of the predicted vs true halo
masses for the analytic and CNN models. We compare the raw-density CNN predictions (left panel) with those from the Sheth-Tormen
(middle panel) and extended Press-Schechter (right panel) analytic models. The predictions are qualitatively similar, but with tighter
confidence regions for the CNN case. This validates our results from the CNN as we find no evidence of any lack of predictive
performance from the CNN compared to established analytic models of the same mapping.

TABLE I. MI (in nats) between predicted and ground truth halo
mass values for the raw-density, averaged-density and EPS
models. The MI computation includes only test set particles
which have a prediction under the EPS model.

Raw density Averaged density EPS

0.409� 0.004 0.271� 0.004 0.257� 0.005

TABLE II. MI (in nats) between predicted and ground truth
halo mass values for the raw-density, averaged-density and ST
models. The MI computation includes only test set particles
which have a prediction under the ST model.

Raw density Averaged density ST

0.411� 0.004 0.299� 0.004 0.260� 0.005
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