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Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Aşıklı Höyük in Central Anatolia 
went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numer-
ous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences 
(nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeo-
logical evidence of sheep management at Aşıklı Höyük which transitioned from residential stabling to open 
pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity 
throughout Aşıklı Höyük’s occupation rather than a bottleneck. Instead, we detected a tenfold demographic bot-
tleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. 
The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep man-
agement into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern 
sheep populations.

INTRODUCTION
The establishment of Neolithic sedentary societies in southwest Asia 
was associated with the development of farming practices between 10 
thousand and 12 thousand calibrated years before the present (ka cal 
BP). Those practices included the cultivation of cereals and legumes 
and the management of sheep, goats, cattle, and pigs, which ultimately 
resulted in their domestication (1–9). Crop-livestock subsistence 
strategies started gaining ground around 10.5 ka cal BP in the northern 
“Fertile Crescent,” and by 9.5 ka cal BP, this mode of subsistence 
had replaced the foraging lifestyle in parts of southwest Asia and Cyprus 
(2, 10–14). Archaeobotanical and zooarcheological analyses showed 
that these millennia-long practices of crop cultivation and ungulate 
management led to phenotypic changes in both plants and animals 
(2–4, 15–18). To understand these changes, it is often necessary to 
integrate the evidence of multiple sites and millennia (3, 19). Howev-
er, only a few Pre-Pottery Neolithic sites preserved a sufficiently long 
occupation history and representative faunal assemblages to track 
morphological, biometric, and demographic changes related to early 
livestock management at a single location. The list of such exceptional 
sites in Anatolia includes Çayönü, Cafer Höyük, and Nevalı Çori in 
Southeastern Anatolia and Aşıklı Höyük in Central Anatolia (1, 3, 20).

Aşıklı Höyük is situated on the bank of the Melendiz River (21, 
22). Here, large numbers of caprine bones (i.e., sheep and goats) have 
been excavated from occupational phases spanning over a thousand 
years, between ~10.3 and 9.3 ka cal BP. The importance of small live-
stock management at the site was such that, during the thousand-
years occupation, the composition of animal remains identified as 

sheep and goat increased from ~50% to 87% (table S1) (8, 23, 24). 
Analyses of this extraordinary assemblage provided a unique glimpse 
into early strategies of sheep management. This includes mortality 
curves that are indicative of the culling of juvenile males, which in 
turn reflects exploitation for meat (23), and spatial patterns of skele-
tal distribution that imply that slaughtering took place near the living 
quarters (18). Further analyses of intra-articular joint pathologies 
suggested restricted mobility close to the village, including residen-
tial stabling (25), which led to the accumulation of dung and urine 
salts in the sediments (26, 27).

By 9.7 ka cal BP, however, sheep management strategies appar-
ently shifted toward extensive herding. Evidence for this includes a 
decrease in urine salt and dung concentrations in residential areas 
(26, 27), an increase in carcass size (table S2), an improvement in 
joint health implying greater mobility (table S3) (25), and shifts in 
phytolith and stable isotope profiles that imply more extensive graz-
ing (18, 28, 29). Together, the evidence obtained at Aşıklı Höyük 
demonstrates that sheep management in early Neolithic communi-
ties was a dynamic process of learning by doing (8, 18, 25).

Although management strategies at Aşıklı Höyük likely affected 
the phenotype of sheep populations, it is not clear whether they ini-
tiated evolutionary changes that ultimately led to the strong genetic 
differentiation between wild and domestic populations that we ob-
serve today. A common assumption is that capture and spatial isolation 
of a subset of a wild population induced a “domestication bottle-
neck,” provoking the general reduction of genetic diversity evident 
in modern domestic sheep populations (30).
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Here, to address whether the initial management of sheep at Aşıklı 
Höyük caused shifts in their genetic makeup, we analyzed 629 whole 
mitogenomes sourced from 15 countries, including 62 from Aşıklı 
Höyük, spanning a period of over 10,000 years. This allowed us to 
infer the mitochondrial phylogeography and maternal demographic 
history of Anatolian and European sheep, and the contribution of the 
Aşıklı Höyük community to the formation of the Neolithic package 
dispersing across north and southwestern Anatolia between 10.0 ka 
and 8.0 ka cal BP, and subsequently into Europe.

RESULTS
Mitogenome dataset
We investigated 171 ancient samples from 7 sites in Anatolia (n = 102), 
8 localities in the Levant and Caucasus (n = 24), and 18 localities in 
Europe (n = 45). Radiocarbon dating of associated charcoal and 
plant annuals placed our ancient samples in the Neolithic, Chalco-
lithic, Bronze Age, Iron Age, Middle Ages, and post-Medieval periods. 
In addition, we used data mining to retrieve two historic sequences 
(York, UK, 0.247 ka cal BP—the year 1776 AD—) from the Sequence 
Read Archive (see Materials and Methods).

For modern sheep, our study generated 147 mitogenomes and re-
trieved 164 mitogenomes by data mining from the Sequence Read 
Archive. Furthermore, we sourced 136 mitogenomes from published 
studies (30–40) and 9 directly from GenBank (acc. numbers in 
table S5). The complete dataset, which included mitogenomes from 
24 modern mouflons (Ovis gmelini) from Iran, and 1 urial (Ovis vignei), 
encompasses 173 ancient and 456 modern sheep mitogenomes for a 
total of 629 individuals (Fig. 1 and tables S4 and S5).

Haplogroups distribution and diversity/neutrality indexes
In our dataset, we identified previously reported domestic sheep hap-
logroups A to E, as well as an unknown haplogroup that we labeled as 
Z (Fig. 2). In addition, we labeled modern mouflon (O. gmelini) hap-
logroups collectively as G. In modern sheep, the major mitochondrial 
haplogroups show a marked structure. In western herds populating 

Europe and North Africa, haplogroup B predominated (frequen-
cies = 0.87 and 0.95, respectively). However, haplogroup B appeared 
less prominently in the Caucasus (frequency = 0.54) and in the Le-
vant (frequency = 0.63) and exhibited a lower frequency than A in 
eastern Asia [frequency (B) = 0.36; frequency (A) = 0.5], where it 
coexisted with haplogroups C, D, and E that were less common and 
mostly endemic (Fig. 1 and Table 1).

A spatial pattern compatible with the haplogroups distribution 
appeared in the nucleotide diversity as well as in the neutrality in-
dexes and tests (Fig. 3). The samples from modern Africa, modern 
and ancient Europe, and Neolithic southwestern Anatolia, which 
had haplogroup B at high frequencies, show a depleted nucleotide 
diversity (0.0004 to 0.0022) and values of Tajima’s D and Fu’s Fs sta-
tistics that were negative, large, and significant (Tajima’s D = −2.63 
to −1.84; Fu’s Fs = −23.8 to −to 3.65; P < 0.00001 to 0.015 and 0.002 
0.048, respectively). In contrast, all post-Neolithic samples (includ-
ing modern) from Anatolia, Caucasus, Levant, and eastern Asia dis-
played markedly higher nucleotide diversities (0.0033 to 0.0053), 
higher nonsignificant Tajima’s D values (−1.121 to 1.048; P = 0.113 
to 0.894), and low and significant Fu’s Fs values (−24.80 to −3.653; 
P  ≤ 0.0001 to 0.712). More notably, Aşıklı Höyük displayed the 
highest nucleotide diversity (0.0053), a positive nonsignificant Tajima’s 
D value (0.453; P =  0.762), and a positive nonsignificant value of 
Fu’s Fs (1.283; P = 0.722). In addition, the subsequent levels of Aşıklı 
Höyük did not show significant differences among them for these 
statistics and tests (Fig. 3).

Tests of temporal change in haplogroup frequencies
When we tested the temporal changes in haplogroup frequencies, 
we found, in general, significant differences between, but not within, 
groups. The western group included Africa, Europe (modern and 
ancient), and Neolithic southwestern Anatolia, while the eastern 
group included Neolithic Aşıklı Höyük, Chalcolithic Güvercinkayası, 
Caucasus, Levant, and eastern Asia. This pattern was true when the 
tests were performed with effective population sizes (Ne) between 
104 and 106 (we refrained from writing P values here because of the 
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numerous combinations of Ne used in these analyses; see table S6 for 
the exact values and fig. S2 for a graphical summary of these results). 
The whole pattern of significance makes sense of the patterns of di-
versity/neutrality indexes and leads to an important observation that 
the divergence between eastern and western groups seems to have 
originated between central and southwestern Anatolia, during the 
Neolithic (fig. S2).

In addition, the temporal tests detected no significant changes 
in haplogroup frequencies across Aşıklı Höyük’s occupation layers 
(P = 0.28 to 0.97; fig. S2 and table S6).

Phylogenetic analyses and demographic inference on 
coalescent times
Our phylogenetic analysis recovered clades corresponding to the 
major domestic sheep haplogroups A to E, as well as an unknown 
haplogroup that we labeled as Z, in addition to the modern mouflon 
haplogroups (O. gmelini) collectively labeled as G (Fig. 2 and figs. S3 
to S7). Notably, within haplogroups A to E and Z, we found a high 
density of coalescent events (nodes) between 12.0 ka and 7.6 ka cal 
BP (50% high-density interval), peaking around 11.5 ka cal BP.

We tested if this concentration of coalescences was an artifact of 
sampling by comparatively inferring the demographic histories of 
European-Anatolian samples and mouflon samples based solely on 
coalescent times (nodes ages) and sample ages. For this, we used 
an in-house developed method that takes advantage of the statisti-
cal technique known as Markov chain Monte Carlo (MCMC) (see 
text S8). Although at low resolution, the inferred demographic 
history of European-Anatolian sheep was compatible with the 

demographic history inferred by extended Bayesian skyline plots 
that were co-estimated with the phylogenetic reconstruction in 
the software BEAST. Both the MCMC procedure and the skyline 
plots suggest the occurrence of at least one major bottleneck that 
reached its peak between 8.0 ka and 10.0 ka cal BP, and a long-term 
demographic expansion thereafter, except for the last millennium 
that is characterized by a decline (Fig. 4 and fig. S8).

Simulation-based inference by approximate 
Bayesian computation
After integrating the results of the different analyses, we constructed 
some hypotheses regarding the evolution of domestic sheep in Eurasia. 
To test them, we used the simulations-based statistical technique 
known as approximate Bayesian computation (ABC). The specific 
goal was to infer a temporal population structure relating to European 
and Anatolian sampled populations and to estimate key parameters 
such as Ne. We split this inference into four phases with each phase 
targeting a simple inferential goal to prevent a number of technical 
problems such as high dimensionality and overparametrization. Fig-
ure 4A and figs. S9 to S11 show schematic representations of the 
models used in each phase.

The first phase of analyses by ABC targeted a demographic in-
ference at Aşıklı Höyük. It showed that a model with two demo-
graphic phases (fig. S9B) was moderately better supported than a 
non-changing model (fig. S9A and table S9) (Bayes factor = 1.7 to 
3.8). The parameter estimation of such a model supported a major 
increase in the sheep population throughout site occupation, al-
though posterior distributions showed a large variance (fig. S12). 

Aşıklı	Höyük

Ancient	Levant

Modern	Levant

Modern
Caucasus

Modern
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*	Ancient	western	Anatolia	includes	Suberde,	Çukuriçi,	Mente şe,	and	Marmara	regions	
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Fig. 1. Temporal and geographical distributions of haplogroup frequencies. (A) Worldwide (jittered) location of all 629 samples analyzed in this study. (B) The map 
shows details of Anatolia and surrounding regions with haplogroup frequencies by archeological site, except for Neolithic southwestern Anatolia, where the grouping is 
at the regional scale (notice the tentacles out of the pie chart indicating the included locations, named below the map). Text in red indicates data reported in previous 
studies (42, 43), wherein haplogroups A to E were assigned using five diagnostic single-nucleotide polymorphism (SNP) markers of a 144–base pair (bp) control region 
fragment. Pie chart areas are proportional to their sample sizes (key, bottom left). The numbers accompanying location names refer to their estimated age range (cali-
brated years before the present) based on the site’s stratigraphy, material culture, and radiocarbon dating of appropriate materials including charcoal and annual plants.
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Furthermore, an analysis of pseudo-observed datasets suggested 
that this analysis did not lack statistical power to detect large bottle-
necks, as our ABC methodology could detect an eightfold bottleneck 
at Aşıklı Höyük around 90% of the time with very low stringency 
criteria (Bayes factor > 1.0) (fig. S13).

The second phase of ABC analyses expanded the focus of interest to 
the spatiotemporal structure of the sheep populations in Neolithic-
Chalcolithic Anatolia. Specifically, the analyses aimed to pick the best 
among eight alternative scenarios (fig. S10). The best support was 

divided between two models. In both models, the populations of 
Neolithic southwestern Anatolia and Güvercinkayası were sisters, 
but in one model they descended directly from Aşıklı Höyük (model 
likelihood = 0.110 to 0.171), while in the other, they descended from 
an independent ancestral population (model likelihood = 0.159 to 
0.188) (fig. S10 and table S11).

The third phase of ABC analyses aimed to select the best sce-
nario of the ancestry of the European sheep population with re-
spect to the populations of Neolithic-Chalcolithic Anatolia. In the 

C

A

D

E

B

Fig. 2. Subtrees from the phylogenetic inference. This figure shows five subtrees of the full phylogenetic tree (figs. S3 to S7) to facilitate interpretation: (A) subtree of all 
62 Aşıklı Höyük samples; (B) subtree of samples from Aşıklı Höyük, Körtik Tepe, and Asiatic mouflons (O. gmelini); (C) subtree of all ancient samples except those from Aşıklı 
Höyük; (D) subtree of Asiatic mouflons; and (E) subtree from present day samples (randomly subsampled with proportional representation of haplogroups). K1 and K3 
indicate the mouflons from Körtik Tepe. Graphs above the trees correspond to smoothed histograms of inferred coalescent times (nodes). Their horizontal scale (times) is 
the same as that of the trees. The tree of modern domestic sheep exhibits a first peak of coalescences at 11.5 ka cal BP and a second peak in the tree of modern sheep 
around 8.5 ka cal BP. These are absent in the wild sheep sample.
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best-supported scenario, Neolithic southwestern Anatolia was the 
ancestor of European sheep (Bayes factor = 1.4 to 342.0) (fig. S11 
and table S13). This result was expected, though, considering the 
high prevalence of haplogroup B in both the European and Neo-
lithic western Anatolian samples (frequencies = 0.979 and 0.870 
in ancient and modern Europe; and  =  1.0 in Neolithic western 
Anatolia) (see Fig. 1).

In the last phase of ABC analyses, we estimated with improved 
precision the Ne values of sampled and unsampled populations of a 
simulation design that was constructed upon the selected models of 
the second and third phases. In such a model, modern and ancient 
European sheep descend from herds populating Neolithic southwestern 

Anatolia, which in turn descended (together with Güvercinkayası) 
from a population that branched off Aşıklı Höyük’s stem population 
at a variable time between the Epipaleolithic and Aşıklı Höyük’s aban-
donment (see fig. S11). The punctual estimations for Ne in Aşıklı 
Höyük were in the few thousand (mode = 2030), but the value esti-
mated for the population that followed (i.e., the ancestor of Neolithic 
southwestern Anatolia and Güvercinkayası) dropped one order of 
magnitude (mode = 295). The estimations of Ne for Neolithic western 
Anatolia were ~1.0 × 103 to 2.0 × 103, while for Güvercinkayası they 
were ~2.0 × 105 to 3.0 × 105. Expectedly, the population of sheep in-
creased from the Anatolian Neolithic to the European Neolithic, and 
from there to the modern European sheep population (Fig. 5).

Table 1. Mitogenomic haplogroup frequencies. Individual samples match the sample codes in table S5. Temporal tests of haplogroup frequencies used the 
groups and frequencies shown here, except for modern Anatolia, Körtik Tepe, and Asiatic mouflon, that were not subject to such analyses due to sample size. 
The table shows the absolute frequencies of mitochondrial haplogroups A, B, C, D, E, Z, G, and unassigned (R).

Sample 
code

Sample origin Mean age (ka 
cal BP)

Haplogroup

A B C D E Z R G Total

aEU Ancient 
Europe

4.11 1 46 47

aSWAN Neolithic 
southwestern 

Anatolia

7.72 18 18

aCC Ancient 
Caucasus

0.83 5 8 1 14

aLEV Ancient Levant 2.72 5 5 10

aAH Asikli Höyük 
(all layers)

9.83 10 22 19 4 7 62*

aAH1 Asikli Höyük 
levels 2A-C

9.43 4 5 1 1 11

aAH2 Asikli Höyük 
levels 2D-J

9.63 1 8 3 1 2 15

aAH3 Asikli Höyük 
level 3

9.85 4 5 3 1 1 14

aAH4 Asikli Höyük 
level 4

10.15 5 5 8 1 3 22

aGK Chalcolithic 
Güvercinkayası

6.93 5 13 1 1 20

aKT Körtik Tepe 10.73 1 1 2

mAFR Modern Africa 0.0 3 89 2 94

mEU Modern 
Europe

0.0 23 154 177

mWAN Modern west-
ern Anatolia

0.0 3 3

mCC Modern 
Caucasus

0.0 18 32 6 2 1 59

mLEV Modern 
Levant

0.0 2 7 1 1 11

mEASIA Modern 
eastern Asia

0.0 44 32 11 87

mOO Asiatic 
mouflon

0.0 3 21 24

OUT Urial 0.0 1 1

Total 629

*Includes all four layers below.
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DISCUSSION
Haplogroups as potential markers of 
independent domestication
The phylogeographic structure that we observed in modern mito-
chondrial sheep haplogroups, where haplogroup B predominates in 
western populations and haplogroup A does so in eastern popula-
tions, is consistent with various reports [e.g., (33, 41–43)]. Such 
structure has been explained by means of multiple domestication 
origins (33, 44–47), the domestication of different wild populations 
or species (33), introgression (41), and lineage sorting-and-gene drift 
(33). Although multiple domestication origins are still being invoked 
to explain haplogroup structure (44–47), its popularity was most 
certainly influenced a few decades ago by the discovery of multiple 
domestication origins in pigs and cattle (33). However, sheep do-
mestication centers outside southwest Asia have never been identi-
fied (48). Furthermore, goats, also believed to have had a unique 
domestication, exhibited a phylogeographic structure similar to the 
one in sheep before the post-Neolithic rise of the modern dominant 
haplogroup (49). In cattle, the two independently domesticated spe-
cies (Bos taurus and Bos indicus) display a mitochondrial differentia-
tion that is much higher than the observed among sheep populations, 
and their phylogeographic structure is heavily influenced by post-
Neolithic introgression (50). Further criticisms of the multiple 
domestication hypothesis in sheep point out that the hypothesis 
equals haplogroups with populations while ignoring the diversity 
of the ancestral wild populations (48). In this regard, we show 
here that early Neolithic Aşıklı Höyük from Central Anatolia had 
haplogroups A, B, D, E, and unreported Z at high frequencies 
(0.161, 0.355, 0.306, 0.065, and 0.113, respectively) which is broad-
ly consistent with what is reported in Neolithic sheep (see fig. S14) 
(41–43). These findings most definitely refute multiple domestica-
tion origins as an explanation for the modern distribution of these 
haplogroups.

Regarding another hypothesis, available evidence disregards the 
contribution of species other than Asiatic mouflon (O. gmelini) to 
the domestic sheep lineage, despite ample documentation of intro-
gression among wild sheep species (33, 41, 48). It is possible, how-
ever, that domestic sheep descend from several mouflon populations 
with some degree of differentiation (see discussion below). Regarding 
lineage sorting and gene drift, we believe that they have some etio-
logical value that is, however, conferred by further anthropogenic 
and demographic causes. When put in context, our evidence sug-
gests that the near-fixation of haplogroup A in eastern Eurasian and 
haplogroup B in Europe and Africa emerged from Neolithic human-
mediated migrations and demographic bottlenecks.

Links between an increased density of coalescences and 
sheep domestication
In our phylogenetic reconstruction, we found a very high density of 
coalescent events (nodes) between 12.0 ka and 7.6 ka cal BP (peak-
ing around 11.5 ka cal BP) within haplogroups A to E and Z. Two 
types of analyses, our in-house developed MCMC procedure and 
the extended Bayesian skyline plots, suggest that the observed pat-
tern of concentrated coalescences is not due to a sampling bias but 
rather associated with demographic constriction. Furthermore, Asi-
atic mouflons did not present a concentration of coalescences nor 
bottlenecks in the demographic histories inferred by the skyline 
plots or our MCMC procedure (Fig. 3 and fig. S8), suggesting that 
the demographic process responsible for it may well be unique to 
managed rather than to wild sheep. One more clue regarding the 
origin of the concentration of coalescences is the fact that it coin-
cides with the early phases of sheep management in southwest Asia 
(2, 19). A similar coalescence pattern (between 11.0 ka and 9.5 ka cal 
BP) also appeared in ancient domestic goats (51) and is consistent 
with an inferred Neolithic bottleneck in cattle (52). Therefore, it 
seems that the concentration of coalescent events in sheep relates to 

Fig. 3. Population genetics statistics. Estimations of nucleotide diversity, Tajima’s D, and Fu’s Fs. The asterisks show the significance level of the associated statistical test 
on the statistics (* = 0.01 to 0.05, ** = 0.001 to 0.01, *** = 0.0001 to 0.001, and **** = 0.00001 to 0.0001). Significant values of Tajima’s and Fu’s neutrality tests could in-
dicate past demographic bottlenecks. The bars’ colors correspond to the sample frequency-weighted average of the haplogroup’s colors shown in Figs. 1 and 2. These 
statistics suggest a bottleneck in the ancestry line of the European populations and possibly Neolithic southwestern Anatolia, while the colors reflect the haplogroup 
differences between eastern and western samples (notice the gray tones of Aşıklı Höyük samples).
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founder events associated with the species’ early management po-
tentially because of multiple capture events and breeding in captiv-
ity, briefly a domestication bottleneck.

That said, we acknowledge our limited statistical power to detect 
a comparable phenomenon in wild sheep due to the lack of samples 
of pre-domestic Anatolian sheep. Thus, we cannot completely discard 
the possibility that the concentration of coalescences was, at least 
partially, due to pre-domestication events in mouflons. Further 
studies, especially those incorporating ancient mouflon specimens 
and whole genome sequencing data, could confirm or reject that 
such a pattern resulted from initial capture and human management 
of sheep, subsequent demographic changes, or demographic chang-
es caused by non-anthropogenic factors, such as the climate condi-
tions of the Younger Dryas cold spell.

Impact of sheep management on microevolutionary 
processes at Aşıklı Höyük
One exciting possibility that our dataset allowed us to test is the hy-
pothesis that management practices at Aşıklı Höyük caused the 

bottleneck suggested by the coalescence patterns in domestic sheep. 
However, nucleotide diversity, Tajima’s D, and Fu’s Fs statistics did 
not show significant changes across layers and levels (Fig. 3) and 
neither did the temporal tests on haplogroup frequencies (P = 0.28 
to 0.97; fig. S2 and table S6). More powerful simulation–based anal-
yses better supported a two-phased model with an increase rather 
than a decrease in population size (table S9). Although statistical 
support for this was moderate, a population increase is in line with 
zooarcheological evidence (8, 23, 24). Overall, our findings indicate 
that 1000 years of local management did not alter sheep mitoge-
nomic diversity. Although our findings only refer to female ancestry, 
they nonetheless contradict the commonly held narrative that a ge-
netic bottleneck accompanied early centuries of human manage-
ment of livestock.

The constancy of diversity and neutrality indexes and hap-
logroups’ composition across archeological levels, combined with 
the presence in the phylogenetic reconstruction of sequences that 
coalesce during the site’s occupation (see Fig. 2 and figs. S3 to S7), 
suggests breeding continuity in the sheep of Aşıklı Höyük. The 

Fig. 4. Extended Bayesian skyline plots. The charts show demographic histories inferred with the samples of (A) modern and ancient Europe, the Neolithic sites of Aşıklı 
Höyük, Körtik Tepe, and southwestern Anatolian (including Suberde, Çukuriçi, Menteşe, and Marmara regions); (B) the same samples minus Neolithic southwestern Ana-
tolian sites; and (C) modern Asiatic mouflon, plus two Körtik Tepe and one Aşıklı Höyük samples for time calibration. The dotted lines indicate the median values, while the 
gray areas represent the 95% highest probability density (HPD) regions. The plots in (A) and (B) show a strong population bottleneck peaking around 9.0 ka to 9.5 ka cal 
BP followed by a significant population expansion (consider the HPD areas). This may be a compendium of the domestication process, a demographic constriction post-
dating site occupation at Aşıklı Höyük, and a historical expansion of flocks of sheep into Europe.
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development of breeding practices could help explain the decline in 
the relative importance of game observed in the human diet during 
site occupation (18, 23, 25). However, the deep phylogenetic branch-
ing of some individuals at Aşıklı Höyük and the fact that some of 
these cluster with modern mouflons in haplogroups E may be a con-
sequence of human exploitation of non–locally bred individuals. 

Those individuals can be compared to two Körtik Tepe individuals 
(Fig. 2, B and C, labeled K1 and K3) that coalesce, one at the base of 
haplogroup B and one to a deep branch that is paraphyletic to all 
mouflon and sheep individuals. The Körtik Tepe individuals, dated 
to 11.7 ka cal BP, are considered wild based on their archeological 
context, morphology, and dating (53). The possibility that the entire 

BA

Fig. 5. Modern and ancient Ne values inferred by ABC. (A) Schematic representation of the model used in phase four of the simulation-based inference by ABC. Rectangles 
and trapezoids represent constant-size populations, while the inverted-funnel shape at the bottom represents a population with exponential growth (distributions cor-
responding to initial and final Ne values); (B) posterior probability distributions (in color) of Ne. The color matches the average haplogroup color of the corresponding 
samples (as in Fig. 3), except for the ancestral population (in yellow) of Neolithic southwestern Anatolia and Chalcolithic Güvercinkayası. Notice the small value of the 
central estimations of Ne in such a population as compared to the sheep population of Aşıklı Höyük.
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sheep population of Aşıklı Höyük was hunted or captured and 
raised [see, e.g., (8)] could explain the high diversity—and lack of 
bottleneck—at the site but is at odds with the mitogenomic related-
ness that we observe and with the archeological evidence pointing 
toward dense stabling. Thus, we hypothesize that a minority of indi-
viduals at Aşıklı Höyük are likely wild sheep, which is in agreement 
with archeological evidence of hunted individuals that are distin-
guishable from the local stock, both in Aşıklı Höyük and in related 
sites (8, 23).

The simultaneous presence of presumably wild and managed in-
dividuals in Aşıklı Höyük brings up an obvious question: Why? 
Although speculative, the presence of wild individuals may be ex-
plained by re-stocking that was used to compensate for losses caused 
by abortions and lamb mortality (54). It is also possible that some 
individuals at Aşıklı Höyük were exchanged with other communities 
of sheep keepers or that the founder herd of managed individuals 
was relatively large and diverse in geographic origin, possibly coming 
from somewhere else. A geographical translocation was the case for 
a “new” glume wheat that was coevally cultivated at Cafer Höyük, 
Aşıklı Höyük, and Boncuklu. This variety was not endemic to Cen-
tral Anatolia but transferred long-distance from the Upper Euphrates 
valley (7, 55, 56). Since in this part of Anatolia, early cereal cultiva-
tion went along with sheep and goat management (2, 19, 20), a trans-
fer of small stock on the hoof must be taken into consideration.

Beyond Aşıklı Höyük
We found, in the phylogenetic reconstruction, multiple mitoge-
nomes from modern and ancient Anatolian and European sheep 
that coalesced with mitogenomes from Aşıklı Höyük within 2000 
years of the site’s occupation. This suggests that the genetic make-
up of modern sheep populations retains a legacy from early Cen-
tral Anatolia. As Central Anatolia participated in extensive trade 
networks since the Epipaleolithic (57), we assume that this legacy 
stemmed from an ancestral sheep metapopulation that included 
Aşıklı Höyük.

In contrast to Aşıklı Höyük, we found haplogroup B dominating 
later western Anatolian sites, Chalcolithic Güvercinkayası, and re-
ported Anatolian sites dated between the Epipaleolithic and the Late 
Neolithic (41–43). Outside Anatolia, the same haplogroup appeared 
quasi-fixed in ancient and modern European and African sheep but 
became less dominant in the Levant and the Caucasus regions and 
turned out to be less prevalent than haplogroup A in modern sheep 
from central and eastern Asia. The spatial and temporal pattern of 
diversity and neutrality statistics, complemented and refined by the 
results of the temporal tests, suggests that the near fixation of hap-
logroup B in western Eurasia and A in central and eastern Asia re-
sulted from demographic processes that postdate the occupation of 
Aşıklı Höyük yet predate the introduction of sheep to Europe (~8.5 
ka cal BP) and central (~7.0 ka cal BP) and eastern Asia (~5.0 ka cal 
BP). More specifically, a bottleneck.

We tracked the origin of this putative bottleneck with several 
rounds of simulations-based analyses. These analyses revealed an ap-
proximately tenfold reduction in Ne in the ancestral sheep popula-
tion from which the populations in Neolithic southwestern Anatolia 
and Chalcolithic Güvercinkayası putatively descended (Fig. 5). This 
conspicuous bottleneck most likely occurred after Aşıklı Höyük had 
already been abandoned and coincided with the expansion of the 
Neolithic way of life beyond its formative zone. From the archeologi-
cal record, the Neolithic expansion beyond Central Anatolia into 

western Anatolia and further (north-)west occurred by an inland 
route, via the Lake District, as well as through maritime expansion 
following the southern Anatolian coast, as has also been suggested 
recently (58–60). The migration of humans and their flocks was nei-
ther a single event nor a linear phenomenon, but a complex process 
involving various groups, which has recently been confirmed by the 
palaeogenomics of Neolithic Anatolian farmers (61). We therefore 
hypothesize that the demographic constraint observed in sheep 
could be the result of serial founder events that took place as sheep 
husbandry dispersed into (north-)western Anatolia.

Our analyses provide a definitive answer to previous reports that 
hinted at a possible gradient of increasing diversity and decreasing 
frequency of haplogroup B toward central and Eastern Anatolia and 
toward the Neolithic [e.g. (41, 42)] but failed to track its origin. Our 
results indicate that the rise of haplogroup B was not the result of 
founder events that co-occurred with the introduction of sheep into 
Europe but rather related to a prior demographic process when 
sheep husbandry gained a foothold beyond Central Anatolia.

Our ABC analyses, MCMC-estimated historical demography, 
and Skyline Plots also support a substantial population expansion 
(~10×) in European sheep over the past ~5000 years (Figs. 3 and 4 
and fig. S8). This demographic process can conceivably be the result 
of post-Neolithic human expansion, and an increase in genetic di-
versity related to the dispersal of wool sheep lineages originating in 
southwest Asia and beyond (62, 63).

MATERIALS AND METHODS
Experimental design
To evaluate the mitogenomic diversity and the possible presence of a 
domestication bottleneck during the early stages of sheep manage-
ment, we used a worldwide sample of mitogenomic sequences of 
sheep that was exceptionally dense in Neolithic southwest Asia and 
Europe. We computed population genetics statistics and applied mul-
tiple statistical analyses, including a phylogenetic reconstruction and 
simulation-based analyses by ABC. To better understand the numer-
ous analyses of our study, consider that they pertain to three spatio-
temporal scales. The first one focuses on Aşıklı Höyük, an aceramic 
Neolithic site in Central Anatolia with a long occupation span; at the 
next scale, analyses focused on Neolithic-Chalcolithic sites in Anato-
lia, and at the largest scale, our analyses involved all ancient and mod-
ern sites in Anatolia and Europe.

With respect to Aşıklı Höyük, we compared four subsequent ar-
cheological occupation layers that experienced substantial changes in 
sheep management. We first estimated and compared gene and nucle-
otide diversities, and the neutrality statistics Fs of Fu and D of Tajima 
(along with the associated statistical tests). Next, we tested the tempo-
ral changes in the haplogroup frequencies across layers, and after-
ward, we carried out simulation-based analyses by ABC for testing a 
set of possible scenarios of demographic change (or lack of it) across 
one millennium of site occupation while estimating their Ne.

In a subsequent phase of analyses, we inferred the relationships 
between Aşıklı Höyük and the other ancient Anatolian samples in 
our sheep dataset, namely, Neolithic southwestern Anatolia and 
Chalcolithic Güvercinkayası. For this stage, we also compared dis-
tinct scenarios and inferred Ne by means of simulations and ABC.

With the results of the previous analyses, we moved forward to 
study the relationship between European domestic sheep and their 
Anatolian ancestors. As in previous phases of analysis, we used 
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simulation-based analyses by ABC to select the best statistically sup-
ported scenario among a suite of alternatives. With the selected sce-
nario we carried out a second simulation-based inference (by ABC) 
to estimate Ne for all populations of the selected scenario, includ-
ing Aşıklı Höyük, Neolithic southwestern Anatolia, Chalcolithic 
Güvercinkayası, and ancient and modern Europe.

Sampling
Samples were obtained from three sources (see tables S4 and S5 for 
details and table S14 for contact information).

1) De novo sequences obtained from direct sampling of both live 
specimens and ancient remains. The set of ancient samples resulted 
from the study of >500 bone and tooth specimens from archeologi-
cal sites and museum collections in southwest Asia and Europe, and 
subsequent processing through targeted capture and next-generation 
sequencing.

2) Sequences retrieved from public repositories of high throughput 
sequencing data by means of data mining techniques (see text S7).

3) Published mitogenomes. We gathered mitogenomes associat-
ed with published studies or directly from GenBank. Published data 
from archeological sheep originated from sites in Bulgaria, Georgia, 
Germany, Ireland, Israel, Malta, Serbia, Türkiye, and the United 
Kingdom. Details of the samples including age, geographical origin, 
and haplogroup are shown in table S5.

DNA extraction and sequencing
We processed modern and ancient samples for DNA extraction, 
polymerase chain reaction, mitochondrial DNA (mtDNA) bait cap-
ture of sequencing libraries, and sequencing, in separate facilities, 
following established protocols (see texts S1 to S6). We processed 
ancient DNA samples in clean room facilities designed to deal with 
ancient and highly degraded materials both at the University of Mu-
nich (LMU) and Trinity College Dublin. Sequencing took place at 
the Gene Center, LMU, and the TrinSeq facility, Trinity College 
Dublin. We aligned sequences and generated consensus FASTA files 
as described in texts S4 to S6. The final database of 629 mitogenomes 
was initially subject to five packages of statistical analyses.

Haplogroup identification and population genetics indexes
After alignment, we identified haplogroups A to E by using the pub-
lished sequences in our dataset as a reference. These haplogroups 
displayed split times older than 30 ka cal BP. We called Z a new hap-
logroup constituting a deep monophyletic clade that was paraphyletic 
to haplogroups A and B. Another unreported mouflon-exclusive 
haplogroup was named G. This haplogroup is polyphyletic, though 
this was not problematic since it was not used for statistical infer-
ence. We noticed that haplogroup A contains two individuals that 
diverged so deep that it would even challenge their haplogroup call-
ing. However, we kept their classification as A, as their impact on the 
statistical analysis would be negligible or null.

After assigning haplogroups to all samples, we grouped all samples 
into 12 groups based on temporal and geographic closeness and com-
puted haplogroup frequencies for them. In addition, we subdivided the 
sample from Aşıklı Höyük into four groups corresponding to different 
archeological occupation layers. Last, we used these 12 + 4 sample 
groups to estimate the average number of pairwise differences, nucleo-
tide diversity, and gene diversity as well as to compute the neutrality 
tests, and the corresponding indexes, of Tajima (D), Fu (Fs), Ewens-
Watterson, and Chakraborty. We computed diversity and neutrality 

statistics and tests with the software Arlequin v3.5.2.2 (64) and MEGA 
X v10.0.5 (65).

Tests of temporal change in haplogroup frequencies
To discard gene drift and sampling error as the causes behind the 
observed differences in haplogroups, we applied temporal tests of 
allele frequencies, here applied to haplogroup frequencies. We ap-
plied these tests among all sample pairs that had different ages. The 
rationale is that a significant result with these tests would suggest the 
presence of evolutionary forces, other than gene drift under a con-
stant population size. Those forces could be selection or gene flow 
but also intense demographic changes. We applied simultaneously 
four tests for every comparison: a conventional contingency-table 
chi-squared test, the test of Waples (66), and a Bayesian test that in-
cludes the estimation of a temporal version of the statistic FST (67). 
The Waples and the Bayesian tests are statistically more suited and 
accurate for testing temporal changes in genetic diversity but re-
quire knowledge of Ne values. To bypass this problem, we tested five 
values of Ne for each comparison (102, 103, 104, and 105). For these 
analyses, it was necessary to group temporally some samples that 
displayed different ages but were geographically and chronologically 
close (see Table 1 and table S6). Because of their large number, we 
presented the comparisons in two groups: only ancient Anatolian 
samples, and comparisons among Anatolian samples and other sam-
ples (see fig. S1).

Phylogenetic analyses
We reconstructed a temporally calibrated phylogenetic tree, taking 
advantage of our high coverage time-stamped mitogenomes, and in-
ference of historical demography by means of an extended Bayesian 
skyline plot associated with the phylogenetic inference (68). We used 
all modern and ancient mitochondrial sequences reported here, in-
cluding a urial specimen (O. vignei) as an outgroup. We partitioned 
the sequences in three codon positions (all protein-coding genes), 
tRNAs, rRNAs, and noncoding regions, and used the HKY85 + G as 
a substitution model, following the result of the model selection tool 
implemented in MEGA X v10.0.5 (65). For the phylogenetic infer-
ence, we used the Bayesian method with trees of the posterior set 
sampled by MCMC, as implemented in the software BEAST v2.6.6 
(68). We used the software BEAUti (69) to create the input files. We 
carried out a pre-run of 100 million generations to obtain operator 
diagnostics for improving convergence, and two final parallel runs 
with 25% burn-in and an overall of one billion generations each. The 
full run allowed most parameters to reach the minimum effective 
sample size of 200. Mixing was assessed using the software Tracer (70).

To infer the extended Bayesian skyline plot (71, 72), we ran three 
separate runs: the first one using samples from modern and ancient 
Europe and Neolithic sites Aşıklı Höyük and Körtiktepe, the second 
one with the previously described set plus samples from Neolithic 
southwestern Anatolia (Suberde, Çukuriçi, Menteşe, and Marmara 
regions), and the third one using only samples of modern mouflons.

Demographic inference on coalescent times
In our phylogenetic reconstruction, we found a very high density of 
nodes between 12.0 ka and 7.6 ka cal BP, inside the clades correspond-
ing to haplogroups A to E (excluding mouflons). To test whether this 
high density of coalescences is the result of a founder event or an arti-
fact of having numerous ancient samples with broadly contempora-
neous ages, we applied a Monte Carlo statistical procedure to the set 
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of coalescent times and samples ages: the first ones obtained from the 
BEAST-estimated nodes’ ages and second ones from the radiocarbon-
 and stratigraphy-estimated samples ages. This procedure, developed 
in-house, takes advantage of the known mathematical relationship 
between demographic history and inter-coalescent times to sample 
the demographic history of Anatolian and European sheep by means 
of MCMC. The inference should produce an approximately constant 
demographic history if the increased density of coalescence events 
was solely due to sampling bias (see details in text S8).

Simulation-based inference by approximate 
Bayesian computation
The latest and most extensive package of analyses consisted in a se-
ries of simulation-based analyses performed by ABC (73). ABC 
analyses were performed in four phases, each with a specific infer-
ential goal. They were the following:

1) To test and estimate the changes in Ne between the subse-
quent excavation layers of Aşıklı Höyük. These analyses included 
an analysis that used pseudo-observed datasets to estimate the sta-
tistical power that our methodology had to detect a bottleneck 
around Aşıklı Höyük.

2) To select the best model of ancestry relationships among the 
three sampled ancient Anatolian populations, namely, Neolithic 
Aşıklı Höyük, Neolithic southwestern Anatolia, and Chalcolithic 
Güvercinkayası.

3) To select the best ancestry model for the European population 
out of the ancient Anatolian populations.

4) To estimate with improved precision the population sizes in all 
involved populations, from Aşıklı Höyük to modern Europe and 
thus confirm or discard the presence of a domestication bottleneck.

All analyses included optimization and inferential steps, and the 
fit of the summary statistics was controlled by visual inspection on 
the predictive distribution of the summary statistics (figs. S15 and 
S16). All analyses were also replicated with different sets of sum-
mary statistics, as well as with a procedure based on random forests, 
a type of ABC inference assisted by machine learning (see text S9 
and tables S7, S8, S10, and S12 for details on the simulation-based 
inference by ABC).

Ethics statement
All work involving living animals was conducted according to the 
national and international guidelines for animal welfare. Blood sam-
ples were collected with owner consent during routine examinations 
under good veterinary practice. Sampling was approved by the re-
gional government of Upper Bavaria (55.2-1-54-2532.0-47-2016).
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