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Summary

This study delves into the evolution of high streets’ vitality during different periods — pre,
during, and post the COVID-19 pandemic — by analysing hourly footfall patterns on high
streets. While prior research primarily focused on weekly or monthly footfall changes, this

investigation employs time series clustering to categorise high streets based on granular

temporal patterns. Through extensive analysis, the study reveals the diverse functionalities of
high streets and illustrates the immediate and enduring impacts of lockdown measures on high
street dynamics and human behaviours. The study highlights the importance of finer-scale
dynamics and contributes insights crucial for future development planning.
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1 Introduction

High streets are important urban areas that serve as centres for commerce, social interaction, and
cultural activities. Taking London as an example, high streets are home to 41% of businesses and
28% of all jobs in the capital (pre-pandemic). London’s high streets are also inclusive, participative,
accessible places in the city, with 90% of all Londoners living within 10 minutes of their local high
street (GLA, 2023). Before the COVID-19 pandemic, high streets around the world already strug-
gled to attract sufficient visitors to remain economically sustainable and the pandemic exacerbated
the downturn (Enoch et al., 2022). Although COVID-19 is no longer a public health emergency of
international concern (WHO, 2023), its long-term effects linger and continue to shape urban land-
scapes. One important aspect in future recovery and development plan is to establish long-term
and comprehensive assessment of high streets performance.

Footfall is considered as the “lifeblood” of a retail centre vitality and viability (Birkin et al., 2017)
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and has been used as a proxy measure for high street performance. Within the COVID-19 context,
Enoch et al. (2022) used footfall data to analyse the impact of COVID-19 pandemic on six high
streets in England. Ballantyne et al. (2022) used a mobile phone app location dataset to examine
the recent recovery of retail centres from the pandemic. In a most recent study, Wang et al. (2023)
examined the long-term performance change of London’s high streets. Through clustering analysis,
they revealed the spatial distribution of clusters and the underlying causes of varying recovery pat-
tern. Existing literature primarily measures the impact of the pandemic through changes in weekly
footfall values, which is an intuitive way of revealing long-term trends. However, the vitality of
urban spaces also changes on a daily or even hourly basis, necessitating the exploration of their
dynamic evolution on a finer temporal scale. In this study, we conduct a detailed examination of
hourly footfall pattern during different periods, i.e., before, during and post pandemic. Specifically,
we perform time series clustering to categorise high streets into groups with unique patterns. By
presenting and analysing the changes of patterns throughout the specified periods and the geograph-
ical distribution of different clusters, we uncover the varying dynamics of high streets and illustrate
both the immediate and lasting impact of lockdown measures.

In the following sections, we describe the dataset used in this study, followed by a brief introduction
to the methods employed. We present the results and discuss their implications in Section 4. Finally,
we conclude the paper by summarising the main findings and contributions.

2 Data

Mobile phone app location data: It is a large-scale mobility dataset containing millions of
anonymous users’ mobile phone GPS trajectory data (collected from tens of location-based service
apps) provided by Location Sciences under GDPR compliance. Our study focuses on February in
three consecutive years (2020-2022) to analyse high street performance before, during, and after
the pandemic. This selection facilitates year-on-year analysis, ensures representation of distinct
pandemic stages and minimises holiday-related influences. The dataset features a high sampling
rate and a consistent collection method across the country, making it suitable and representative
for our study.

High street boundary dataset: Provided by the Greater London Authority!, this is a shape-
file containing the boundaries of 616 London high streets located outside the Central Activity
Zone.

3 Method

3.1 Footfall calculation

Stay detection: We identify stays where individuals remain stationary for more than a specified
duration (in this study, we set the threshold at 5 minutes). Hourly footfall calculation: Stays are
joined to high street boundaries, and footfall is calculated on an hourly basis. The one-month hourly
footfall is then averaged and aggregated into 24 hours (of a day).

"https://data.london.gov.uk/dataset /gla-high-street-boundaries



3.2 K-means time series clustering

We utilise a K-means time-series clustering algorithm to group hourly footfall time series. Dynamic
time warping is employed to calculate the distance metric, chosen for its robustness to temporal
shifts or distortions. The optimal cluster number K is determined using the Elbow method and the
Silhouette score.

4 Results and analysis

4.1 The hourly footfall clustering results

The clustering process yielded four groups during the pre-pandemic stage, three groups during the
lockdown period, and five groups for the post-pandemic stage, as depicted in the heatmap shown
in Figure 1. The color intensity within each cell signifies the relative footfall level during the
respective hour of the day, with darker colors indicating higher footfall. “Pen portrait” labels have
been assigned to each cluster based on the timing of peak footfall.
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Figure 1: Heatmap of the hourly footfall of high street clusters

4.2 Proportional changes and pattern transforms

The Sankey diagram of high street clusters is shown in Figure 2, revealing several noteworthy
observations. Firstly, the Midday cluster, characterised by a footfall peak around noon, is the dom-
inant hourly pattern across London’s high streets throughout the three specified periods. Moreover,
two particular types, namely After Work and FEarly Morning, vanished during the lockdown and



re-emerged in the post-pandemic phase. This reflects the change of people’s behaviour due to
lockdown restrictions like work form home mandates. During the lockdown, with diminished of-
fice attendance, activities like early morning commutes and after work socialising no longer exists.
Additionally, the Afternoon cluster emerged during lockdown and persisted even after most of the
restrictions were lifted, indicating a lasting impact of the COVID-19 pandemic on the dynamics of
high streets.

Post-pandemic

Before pandemic
P During lockdown

Midday 68%
67% Midday
70% Midday

Afternoon 12%
12% After Work

I o
: s 23% Afternoon - After Work. 9%
11% Early Morning
Early Morning 2%
10% .Night UL 7% .Night Time Night Time. 9%

Figure 2: The Sankey diagram for high street clusters over three periods.

4.3 Spatial distribution

The spatial distributions of various high street groups and their changes throughout three phases
are illustrated in Figure 3. Notably, the map highlights the distinct emergence and retention of
the Afternoon type as well as a significant reduction in the Early Morning type. Furthermore, it
is noteworthy that the majority of connected high streets, indicated by prominent and continuous
lines extending from Central London along specified routes to the London boundary, as well as high
streets with relatively large areas, fall into the Midday category.

5 Conclusions

This study investigated high street dynamics through a more detailed examination of footfall changes
on a finer scale. A time series clustering revealed distinct hourly patterns among different high
streets. By comparing the clustering results in different phases, we uncovered the immediate and en-
during effects of lockdown measures on high street dynamics as well as human behaviours. Our work
provides a different perspective for analysing high street performance, and the proposed method is
applicable to other urban areas. The findings presented in this paper could assist policymakers to
make more informed decisions for regenerating and revitalising high streets.
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Figure 3: Spatial variation of high street hourly profiles during three periods.
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