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Abstract— Controlling batteries State of Charge (SoC) within
operational constraints, while minimising the power exchange
among microgrids and with the grid, is an important problem to
maximise microgrids performance and extend batteries lives. To
address this problem, this paper adopts an Unscented Predictive
Control (UPC) to optimise the SoC control under uncertain
conditions. Based on the model of the NMG and the principle of
model predictive control, the design of the SoC control strategy
is formulated as an Optimisation Problem (OP) with probability
operation conditions. To deal with the latter, the unscented
transformation is integrated with predictive control to derive
the mean value and variance of system states. A tractable OP
for NMGs is then obtained and the effectiveness of the proposed
UPC-based SoC control strategy is verified by simulations with
different NMG frameworks.

NOMENCLATURE

Abbreviations
BESS Battery Energy Storage System
ESS Energy Storage System
MG MicroGrid
MPC Model Predictive Control
NMG Networked MicroGrid
OP Optimisation Problem
PC Predictive Control
PV PhotoVoltaic
RESs Renewable Energy Sources
SoC State of Charge
UG Utility Grid
UPC Unscented Predictive Control
UT Unscented Transformation
Mathematical Definitions
E Expected operator
P Probability operator
N Normal distribution
I Identity matrix with appropriate dimension
tr(·) The trace a matrix
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I. INTRODUCTION

The Networked Microgrid (NMG) paradigm has emerge
thanks to its strong ability to connect Renewable Energy
Sources (RESs) and traditional sources [1]. NMGs can
provide support to electricity demands and the Utility Grid
(UG), while maintaining reliability and self-healing prop-
erties under emergencies and unpredictable conditions [2].
Although NMGs come with many advantages, they also
introduce some challenges, such as potentially more distur-
bance and uncertainties than single islanded microgrids that
may compromise system’s performance, and especially the
lifetime of batteries [3]. Hence, one challenge for NMGs is
to control the State of Charge (SoC) of batteries so to prevent
batteries from being overcharged or undercharged.

As one of the promising tools for NMGs control, Model
Predictive Control (MPC) attracts much attention due to
its capability of explicitly addressing technical safety and
operational constraints [4], [5]. Another reason why MPC
has become a successful method is the fact that it can predict
future states and perform with a closed-loop policy based
on current system state-input pairs. As RESs penetration
continues to expand, there is an increasing need for NMGs
development and formulating an accurate physical model of
possibly complex networks of NMGs is becoming tricky.
Traditional MPC may produce large prediction errors when
using non-accurate nominal physical models of NMGs [6].

To solve the above-mentioned modelling problem,
learning-based Predictive Control (PC) methods are proposed
in the literature for NMGs control and management. For
instance, Gaussian process modelling is combined with PC
in [7], where the photovoltaic output power and the load
demand are predicted by the Gaussian process. In [8], an
end-to-end neural-network-based PC is proposed to online
estimate the uncertain parameters and directly generate the
optimal PC actions. Although these learning-based strategies
are effective, it is difficult for their black-box mechanism to
analyse and guarantee stability conditions and operational
and safety constraints.

An alternative method is to design sampling-based PC
strategies, such as the particle-based approach presented in
[9] and the polynomial chaos expansion method in [10].
These methods can avoid possibly time-consuming and data-
eager offline training processes and directly complete the pre-
diction task of PC by collecting real-time samples. However,
one common disadvantage of sampling-based methods is that
the computational efficiency might be reduced when a large
number of samples is required. An interesting sampling-
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Fig. 1. Networked microgrid diagram with M MGs

based PC method called scenario MPC is proposed in the
literature [11]. Nevertheless, scenario MPC focuses on deal-
ing with chance constraints and analysing stability rather than
on modelling and prediction uncertainties [12]. Inspired by
the unscented Kalman filter [13], [14], Unscented PC (UPC)
has been proposed to propagate predictions over a horizon
with limited samples [15], [16]. Based on specific nonlinear
functions and Sigma points, the Unscented Transformation
(UT) can capture the posterior mean and covariance of a
random variable accurately to the 3rd order of Taylor series
expansion. Therefore, this transformation is easy to design
and promising to apply to power system applications.

To the best of the authors’ knowledge, this paper is the
first work to propose UPC to control the SoC for battery
energy storage systems of NMGs. Models of NMGs are
first constructed, where the SoC of each MG represents the
system states and the system inputs are the power exchange
among MGs and the UG. The corresponding Optimisation
Problem (OP) with probability operation constraints is then
derived. By taking advantage of the properties of the UT, the
stochastic OP is transformed into a tractable deterministic
problem. Based on this deterministic problem, the UPC-
based SoC control method is finally formulated and sim-
ulations are carried out to verify the effectiveness of this
method.

II. NETWORKED MICROGRID MODELLING

An NMG composed of M heterogeneous microgrids is
considered in this paper. We assume microgrids are con-
nected without any specific structure, and an example is
illustrated in Fig. 1. Each MG may include RESs, such as
wind and solar PV, batteries, and local loads.

The considered dynamic model for each microgrid i =
1, 2, ...M can be written as [6]:

xi(k + 1) = xi(k) + biuij(k) + cidi(k), (1)

where xi(k) is the SoC of MG i at time step k, uij(k) is a
column vector collecting the values of the power exchanged
from MG i to MG j = 1, 2, ...M at time step k, bi is a
row vector that describes the connection among MGs and
UG: its elements are defined as bij = −bji = −1, i 6= j
when MG i and MG j are connected, while bij = −bji = 0
when MG i and MG j have no connection. ci is ith battery
nominal capacity. di(k) is an uncertain power imbalance item
which can be influenced by uncertain predicted values of
RESs and uncertain loads fluctuation in each MG. In order
to meet physical and safety constraints of MGs, such as
maximum/minimum power input, maximum/minimum SoC,
etc., the following state and input constraints are introduced:

xi(k) ∈ [xmin, xmax], (2)
uij(k) ∈ [umin, umax], (3)

where xmin and xmax denote the minimal and maximal
values of states, umin and umax denote the minimal and
maximal values of inputs. Based on Eqs. (1) - (3), the SoC
control problem for the NMG can be solved by designing
an optimal control scheme that considers the SoC model (1)
while satisfying the constraints (2) and (3).

III. SOC CONTROL PROBLEM FOR NETWORKED
MICROGRIDS

When implementing a PC to MGs, it may be possible
to estimate uncertain or unknown parameters by forecasting
methods. However, forecasting methods usually have diffi-
culties in adapting in real-time to the changing environment
or operation conditions [17], [18], [19]. It is therefore neces-
sary to propose real-time methods able to adapt in real-time
and to propagate the disturbance and build the prediction
equations in the PC framework. To solve this problem, the
UPC scheme is adopted in the following by combining
unscented transformation and PC [15], [16].

Based on the mechanism of PC, the following optimisation
objective function is given:

J(k) =

N−1∑
p=0

‖X(k + p|k)‖2Q + ‖uij(k + p|k)‖2R, (4)

where N is the prediction horizon, Q is the state weight
matrix and R denotes the input weight matrix , X(k+p|k) =
[x1(k + p|k), x2(k + p|k), ..., xM ((k + p|k)] denotes the
prediction of the state computed at time k for p steps-ahead,
uij(k+p|k) denotes the prediction of the input computed at
time k for p steps-ahead. Affected by the power imbalance,
the variable X(k+p|k) is a random variable and the objective
function (4) can be rewritten as:

J(k) = E

{
N−1∑
p=0

‖X(k + p|k)‖2Q + ‖uij(k + p|k)‖2R

}
.

(5)

Furthermore, to consider the intrinsic stochasticity of the
problem, the following optimisation problem (OP) can be
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derived to control the SoC of each MG in a networked
framework:

min J(k). (6)

where, inspired by stochastic MPC schemes [20], the fol-
lowing probability operation constraint and the line capacity
limitation are given from p = 0, 1, 2, ..., N − 1:

P {xmin ≤ xi(k + p|k) ≤ xmax} ≥ α, (7)
umin ≤ uij(k + p|k) ≤ umax, (8)

and where α is the confidence level. However, this OP is
intractable due to the uncertainty of the variable di(k+p|k).
By combining with the UT, a tractable OP is reformulated
in what follows.

Firstly, we define the mean and variance of the
initial SoC vector xi(k) as µ(k|k) and Σ(k|k), re-
spectively. Based on these definitions and by exploit-
ing the principle of UT [14], we can approximate the
mean and covariance matrix of the prediction sequence
[xi(k + 1|k), xi(k + 2|k), ..., xM (k +N − 1|k)] in a recur-
sive matter.

We firstly sample 2n + 1 Sigma points σ[l] using the
following rules:

σ[0] = µ(k|k)

σ[l] = µ(k|k) +
(√

(n+ λ) Σ(k|k)
)
l

for l = 1, . . . , n

σ[l] = µ(k|k)−
(√

(n+ λ) Σ(k|k)
)
l

for l = n+ 1, . . . , 2n

(9)

where λ = a2(n + b) − n and n is the dimension of
state xi(k). The parameters (a, b) determine the quality of
approximation and have been analysed in [14]. (

√
·)l denotes

the lth row of the square root matrix. The Sigma points (9)
will be used with the following weights

w[0]
m =

λ

n+ λ

w[0]
c =

λ

n+ λ
+
(
1− a2 + β

)
w[l]
m = w[l]

c =
1

2 (n+ λ)
for l = 1, . . . , 2n (10)

where β is a tuning parameter. Based on these Sigma points
and weights, the next-step prediction mean µ(k + 1|k) can
be obtained as

µ(k + 1|k) =

2n∑
i=0

w[l]
mσ̄

[l] (11)

and the next-step variance Σ(k + 1|k) as

Σ(k + 1|k) =
2n∑
j=0

w[l]
c

(
σ̄[l] − µ(k + 1|k)

)(
σ̄[l] − µ(k + 1|k)

)T
+ V0

(12)

where V0 is the noise covariance of the system disturbance
di(k|k) and σ̄[l] = σ[l] + biuij(k|k). By repeating the

above process from 0 to N − 1, the mean and variance
of the sequence xi(k + p|k) can be derived. The expected
performance index (5) can be also derived as follows

J(k) =

N−1∑
p=0

‖µ(k + p|k)‖2Q + ‖uij(k + p|k)‖2R

+ tr(QΣ(k + p|k)) (13)

To tightening the probability constraint (7), we define g =
[−1, 1] and h = [−xmin, xmax]. Then, according to the
Chebyshev’s inequality [21], the probability state constraint
(7) can be approximated as:

gTµ(k + p|k) + gT kpΣ(k + p|k) ≤ hT (14)

where kp =
√

α
1−α . Based on the above discussion, we

optimally control the SoC of each microgrid under state and
input constraints by solving the following OP

min (13) (15)
s.t. (8), (14) (16)

The resulting UPC strategy is summarised in Algorithm
1.

Algorithm 1 The UPC Strategy:
1: Initialise state xi(k), input uij(k), expected value µ(k|k)

and covariance matrix Σ(k|k)
2: for p = 0, 1, 2, · · · , N − 1 do
3: Sample Sigma points by using Eq. (9)
4: Generate the prediction mean and variance based on

Eqs. (9) and (10)
5: Update values by using Eqs. (11) and (12)
6: end for
7: Obtain the optimal control sequence by solving OP (15)-

(16)
8: Select and apply the first control step uij(k) for the

system (1)

Remark 1: The performance of the proposed method is
not affected by the interconnection structure among MGs as
long as connectivity is maintained. By increasing the size of
the NMG, the computational cost will increase in a nonlinear
way in terms of parameters M and n. To reduce this issue, an
improved decentralised or distributed architecture is expected
to be proposed to decouple parameters M and n in the future
work.

IV. SIMULATION

An example of an NMG composed of three MGs and
the UG is introduced to verify the effectiveness of the
proposed control method. The connection framework of
the considered NMG is shown in Fig. 2. According to
this framework, the SoC state vector can be defined as
X(k) = [x1(k), x2(k), x3(k)]T and the power input vector
is uij(k) = [u12(k), u13(k), u23(k), u24(k)]T . The system
connection vectors are given as b1 = [−1 − 1, 0, 0], b2 =
[1, 0,−1,−1], b3 = [0, 1, 1, 0]. By setting the battery nominal
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TABLE I
PARAMETERS OF THE PROPOSED METHOD

Name Value

Prediction horizon length N = 10
The weight matrix of SoC xi Q = 5I
The weight matrix of power input uij R = I
The parameters of UT a = 0.01, b = 0.05, β = 2
The parameters of constraints α = 0.8, xmin = 4, xmax = 20
The initial SoC of each microgrid x1 = 6, x2 = 8, x3 = 10

TABLE II
UPC COMPUTATION TIME OF DIFFERENT PREDICTION HORIZON

LENGTHS

Prediction Horizon Lengths UPC Computation Time

N = 10 2.165s
N = 15 2.563s
N = 20 2.838s
N = 25 3.246s

capacity of each microgrid to 25kWh, we can obtain ci =
1
25 . For simulating this system, we estimate the system (1)
by using an openly available dataset in Ref. [22] and the
parameters of the proposed UPC are shown in Table I.

Based on these parameters and by setting the reference
value for the SoC to 20kWh, the corresponding results are
given in Fig. 3 and Fig. 4. As we can see from Fig. 3
and Fig. 4, all the battery storage devices converge to the
reference value within 30 minutes. In Fig. 4, the negative
value of u24 implies that the UG transmits the power to
MG 2. The positive values showing in green, blue and
red lines represent the power transmission from MG 1 to
MG 2, MG 1 to MG 3 and MG 2 to MG 3, respectively.
These three MGs perform well in this networked framework
with the connection of the Utility Grid. On the other hand,
in order to clearly show the efficiency of the proposed
method, Table II reports the computation time under different
prediction horizon lengths. From this Table, we can observe
that the time increases linearly with the increased prediction
horizon lengths. Compared to other sampling methods whose
computation time increases exponentially [9], the proposed
UPC method benefits from an efficient computation time.

In addition, a comparison with other control schemes
is also given. For the sake of simplicity and clarity of
presentation, only x3 and u24 are illustrated in Figs. 5 -

Fig. 2. The connection configuration of the NMG
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Fig. 3. SoC trajectories in each MG
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Fig. 4. Power exchange between MGs and the UG

6 by comparing a PID controller, a traditional MPC and
the proposed method. It can be seen that all three methods
can converge to the reference SoC value, but PID and MPC
overcharge the batteries and make SoC trajectories slightly
higher than the reference. For the PID control, although the
problem may be solved by tuning parameters, the number
of parameters needed to be tuned in this problem is 36 due
to the dimensions of state and input. Compared with MPC
schemes, the tuning process of PID is much more tedious.
For the MPC method, it experiences poor performance
because it does not consider the impact of the disturbance.
On the contrary, the proposed method outperforms both
methodologies showing in Fig. 6.

The PID, MPC and UPC are also deployed on a different
NMG system that consists of 10 MGs. The connection is
shown in Fig. 7 and the trajectories of 10 SOCs are depicted
in Figs. 8 - 10. As can be seen from Fig. 8, PID performs
worse when enlarging the NMG network. This is because
tuning corresponding parameters is the key to PID. However,
there are 360 PID parameters in this NMG and it is difficult
to tune such a number of parameters. By observing Figs. 9
and 10, we can see that the NMG is trying to continuously
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Fig. 5. SoC trajectories with different control schemes
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Fig. 6. Power exchange between MG 2 and the UG 4 with different control
schemes

approach the expected value in an oscillating form under the
usage of the traditional MPC. This phenomenon implies that
the traditional MPC is affected by the disturbances even more
when the number of MGs increases, resulting in continuous
fluctuations in SOC. By contrary, the proposed method can
drive the NMG to converge to the desired SOC.

V. CONCLUSION

To control batteries SoC and minimise the power exchange
among each microgrid, an unscented predictive control was
proposed in this paper. Firstly, unscented transformation was
used to propagate the power imbalance caused by RESs and
their forecasting values. Besides, a modified optimisation
problem was formulated by considering the mean and vari-
ance of the SoC. By solving this optimisation problem under
operation and safety constraints, optimal operation signals
were obtained. The effectiveness of the proposed method was
verified in a simulation environment considering different
frameworks of NMGs. As a future work, we would like
to consider more complex and larger networks integrating
the energy storage control with the other aspects of the
NMG control and the robustness of the proposed method

Fig. 7. The connection configuration with 10 MGs
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Fig. 8. 10 SoC trajectories with PID method
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Fig. 9. 10 SoC trajectories with general MPC method
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Fig. 10. 10 SoC trajectories with the proposed method

to parameter uncertainties and external disturbances will be
explored.
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