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Abstract
Increasing temperatures and more frequent heatwave events pose threats to population health,
particularly in urban environments due to the urban heat island (UHI) effect. Greening, in
particular planting trees, is widely discussed as a means of reducing heat exposure and associated
mortality in cities. This study aims to use data from personal weather stations (PWS) across the
Greater London Authority to understand how urban temperatures vary according to tree canopy
coverage and estimate the heat-health impacts of London’s urban trees. Data from Netatmo PWS
from 2015–2022 were cleaned, combined with official Met Office temperatures, and spatially
linked to tree canopy coverage and built environment data. A generalized additive model was used
to predict daily average urban temperatures under different tree canopy coverage scenarios for
historical and projected future summers, and subsequent health impacts estimated. Results show
areas of London with higher canopy coverage have lower urban temperatures, with average
maximum daytime temperatures 0.8 ◦C and minimum temperatures 2.0 ◦C lower in the top decile
versus bottom decile canopy coverage during the 2022 heatwaves. We estimate that London’s urban
forest helped avoid 153 heat attributable deaths from 2015–2022 (including 16 excess deaths
during the 2022 heatwaves), representing around 16% of UHI-related mortality. Increasing tree
coverage 10% in-line with the London strategy would have reduced UHI-related mortality by a
further 10%, while a maximal tree coverage would have reduced it 55%. By 2061–2080, under
RCP8.5, we estimate that London’s current tree planting strategy can help avoid an additional 23
heat-attributable deaths a year, with maximal coverage increasing this to 131. Substantial benefits
would also be seen for carbon storage and sequestration. Results of this study support increasing
urban tree coverage as part of a wider public health effort to mitigate high urban temperatures.

1. Introduction

Climate change is leading to elevated global aver-
age temperatures and increased frequency and sever-
ity of heatwave events [1]. London is already exper-
iencing extreme heat (EH) episodes, for example
in 2022 when heatwave temperatures exceeded a
record 40 ◦C, an event estimated 160 times more
likely because of climate change [2]. Heat expos-
ure may be exacerbated by the urban heat island
(UHI) effect, where urban centres are typically hotter
than surrounding rural areas. UHIs are primarily
caused by human modification of land surfaces,

replacing natural vegetation with materials like con-
crete and asphalt that have different thermal and
surface radiative properties and which absorb and
retain heat during the day [3]. In London, the dif-
ference between the urban monthly mean maximum
urban and surrounding rural temperature has been
observed around 1.4 ◦C–2.9 ◦C [4, 5], with lower
intensities found in more vegetated areas.

Heat exposure can lead to several negative phys-
ical health effects, with older people, the socially isol-
ated, very young children, and those with chronic ill-
nesses the most vulnerable [6]. It can lead to car-
diovascular strain, respiratory distress, dehydration,

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ad3a7e
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ad3a7e&domain=pdf&date_stamp=2024-4-12
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3485-1404
https://orcid.org/0000-0001-9356-5833
https://orcid.org/0000-0002-7364-710X
https://orcid.org/0000-0002-1677-6917
https://orcid.org/0000-0002-0263-4985
mailto:jonathon.taylor@tuni.fi
http://doi.org/10.1088/1748-9326/ad3a7e


Environ. Res. Lett. 19 (2024) 054004 J Taylor et al

and heat stroke, and exposure to excess heat is asso-
ciated with all-cause and cardiorespiratory mortal-
ity, adverse pregnancy outcomes, and mental health
problems [1, 6, 7]. During the 2022 heatwaves, 2985
all-cause excess deaths were observed in England,
387 of which were in London [8]. While rates of
heat-attributable deaths are greatest during extreme
weather, many deaths occur during themore frequent
warm and hot days [9].

Therefore, focus on urban heat mitigation and
climate adaptation is growing. Increasing vegetation
is one way to decrease near-surface air temperatures
[3, 10] due to changes in surface material proper-
ties, shading, and evapotranspiration, where plants
absorb water and release it as water vapour. Trees,
in particular, have been widely studied to assess their
potential for mitigating heat in urban environments
[11–15] because their leaves and branches provide
shading and they have higher transpiration rates than
low vegetation. However, the relationship is complex,
as increased surface roughness from trees can reduce
windflow and heat dissipation [14], and recent evid-
ence suggests that in many European cities, trees have
a small or negligible effect on daytime air temperature
[15]. Estimating any heat-health benefits provided by
trees can be complicated due to meteorological data
scarcity in urban environments, meaning many stud-
ies rely on remotely-sensed land surface temperature
(LST). A recent study using LST showed that 25% of
UHI-attributable deaths could have been avoided in
2015 if tree coverage was increased by 30% in London
[16]. However, LST can be a poor predictor of urban-
canopy air-temperature [15, 17, 18], and furtherwork
is required to disentangle how trees are associated
with higher or lower heat-related mortality locally.

The recent growth of personal weather stations
(PWS) has provided opportunities to use crowd-
sourced meteorological data in urban climate studies
[19–23] that have typically relied on limited num-
bers of official meteorological stations, researcher-
measured conditions, or climate models. PWS pop-
ularity has led to increased density of PWS networks
in cities and improved geographical coverage ofmon-
itored data. While PWS have greater uncertainty than
official monitoring stations and data may be noisy
[24], various methods have been developed to per-
form quality control on data [25]. A recent study used
PWS to examine the cooling efficiencies of tree cover
in European cities, finding that trees have a smaller
impact on air than surface temperatures, andmay not
have a cooling effect in all cities [15]. Studies have
used PWS, for example, to examine the impacts of
land cover on temperatures [5, 15, 26–28], model air
temperatures [29–31], as an input to building physics
models [32], and to validate and bias-correct urban
climate simulations [24, 33].

This paper uses the dense network of PWS across
the Greater London Authority (GLA) to evaluate dif-
ferences in air temperature according to tree canopy

cover, and uses this association to estimate the poten-
tial for trees to reduce heat exposure and associated
mortality under historical and future climate scen-
arios. To do this, we derive a large dataset of PWS
and official station air temperature data fromOctober
2015–September 2022, inclusive. We then spatially
link PWS temperatures to tree canopy cover and
building coverage (BC) and height data for London
and temporally to temperatures at Heathrow Airport.
From this, a generalized additive model (GAM) is
developed and used to predict daily average urban
temperatures under different tree canopy coverage
scenarios with health impact calculations used to
estimate how changes to tree canopy coverage may
change heat-related deaths.

2. Methods

2.1. Temperature data
Near-surface temperate data was obtained from
two different sources from 01 October 2015–30
September 2022: official Met Office weather stations
and Netatmo PWS stations within a wide bound-
ing domain that includes the GLA. This timeframe
includes the historically hottest summer of 2018, and
the three exceptional heatwaves that occurred during
the summer of 2022 (15th–17th June, 17th–19th July,
and 9th–15th August) when temperatures reached a
maximum of 39 ◦C at London Heathrow.

Hourly temperatures, station ID, and coordinates
forMetOffice stationswere obtained fromSeptember
2015–December 2022 from MIDAS Open [34]. This
included the station at London Heathrow, commonly
used for studying the London climate and which
offers a comprehensive coverage of the period of
interest. This was used as a reference station.

PWS station ID, and coordinates was obtained
using the Patatmo Python module that utilizes the
Netatmo API (https://dev.netatmo.com/). This resul-
ted in 619 stations, of which 502 were within GLA
administrative boundaries. Hourly air temperatures
were then downloaded for PWS stations for the study
period. Cleaning and analysis of PWS temperatures
was carried out using R. First, the altitude of each
station was spatially joined using a 10 m resolution
Digital Elevation Model of London [35]. Height cor-
rection and outliers removal was performed using
CrowdQC+ [25], a tool developed for quality con-
trol of PWSweather data. Hourlymeasurements were
removed if they were taken by duplicate stations loc-
ated at the same coordinates (StepM1); were outliers,
as determined by their z-score (Step M2); if more
than 20% of the measurements in the month were
removed in the previous steps, indicating the PWS
may be unreliable (Step M3); and finally if the meas-
urements were not correlated to the median tem-
perature of other measurements (Pearson r < 0.9)
and are assumed to be indoors (Step M4). We then
excluded days with more than three hours of data
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Figure 1. Netatmo stations, by days of measured data, and
Met Office stations within the GLA administrative
boundaries and wider domain.

absent. This reduced the number of stations within
the GLA boundaries to 490, with 520 623 sensor-days
of valid PWS measurements.

TheMet Office and PWS temperatures were com-
bined into a common dataset (figure 1), except for
Heathrow which was used as a reference temperat-
ure for each date. Stations located in rural areas out-
side the GLA were used as a baseline to estimate
UHI intensity. These rural areas were identified via
a spatial join to 2011 Office for National Statistics
rural/urban classifications [36] for different census
output areas.

2.1.1. Environmental and population data
Tree canopy coverage data for the GLA is from the
London Data Store [37] (figure 2(a)). The dataset
contains 15 041 hexagons, each 350 m across, derived
fromhigh resolution (10 cmper pixel) colour infrared
imagery collected in September 2016, with pixels as
being either a tree canopy or not using a machine
learning algorithm. Further details on how the tree
canopy data was derived can be found in [38].

Urban temperatures also vary according to local
climate zones (LCZs), or local surface structure and
cover. As tree canopy is assumed to be correlated
with the natural component of LCZs, we derived
two continuous variables to describe the height and
cover of the built component. For each hexagon, a
spatial join to the OS MasterMap Building Height
Attribute [39] dataset was used to calculate the
median height of buildings (removing buildings with
low measurement confidence) (figure 2(b)) and the
percent area covered by all buildings (figure 2(c)).
OpenPopGrid [40], a 10 m gridded population data-
set, was used to calculate the population within each
hexagon (figure 2(d)). To account for broader spatial
impacts, buffers around the hexagons at 200, 500, and
1000mwere drawn and the area-weighted average BC
and building height (BH) re-calculated within these
buffers.

Hexagon canopy coverage was then adjusted for
different scenarios:

a) Current scenario: a base case with existing tree
canopy coverage.

b) Grey scenario: tree canopy cover is reduced to
near zero, representing a scenario where trees are
reduced to the lowest possible amounts seen per
BC. In this scenario, the tree coverage was set to
0.05th percentile for each hexagon.

c) London strategy: tree canopy coverage each
hexagon is increased 10%, as per the London
Environment Strategy goals for 2050 [41].

d) Average strategy: hexagons below the population-
weighted average canopy coverage are increased to
the average.

e) Green scenario: tree canopy cover is increased to
an amount that represents a maximum amount,
constrained by existing BC. Quantile regres-
sion was used to identify the maximum (99.5th
percentile) tree coverage according to the BC
within each hexagon. In cases where tree coverage
exceeded the 99.5th percentile, the current cover-
age was maintained.

Finally, to estimate the carbon benefits of these
scenarios, the estimated 2.4 million tonnes of carbon
stored and 77 200 tonnes of carbon sequestered annu-
ally by London’s trees [42] were recalculated given the
proportional changes in tree coverage.

2.2. Analysis andmodelling
Analyses were performed to produce descriptive stat-
istics on UHI intensity and examine how air temper-
atures vary by the amount of tree canopy coverage.

Hourly temperature data was used to calculate
UHI intensity for each day, defined as the maximum
hourly difference between stations within the GLA
boundaries (90th percentile) and the average of sta-
tions in the larger domain that are classified as rural.
For the three heatwaves during the 2022 summer,
the UHI intensity, hourly timeseries, and differences
in 24 h, daytime, and nighttime mean, maximum,
and minimum temperatures in areas with differing
amounts of tree coverage were calculated. Daily (d)
24 h mean (Tmean, d) was calculated for all stations
and joined by date to the corresponding value at the
heathrow reference station (Tmean, d, heathrow).

GAMs were then fit to the aggregated daily data
using themgcv package inR. GAMswere used because
they allow the response variable to depend on smooth
functions of the predictor variables; this can present
an advantage over linear regression models which
contain the assumption that response is linear in the
predictor variables. Another advantage is the assump-
tion that effects of each variable are separate, enabling
extrapolation to the counterfactual scenarios. The
effects of the predictor variables were assumed to
be independent to enable counterfactual reason-
ing about the effect of changing tree cover while
keeping other aspects of the built environment the
same. Smoothing parameters were estimated using
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Figure 2. For each hexagon, (a) percent tree canopy coverage (b) median building height, and (c) percent coverage of buildings,
and (d) population density.

restrictedmaximum likelihood (REML),with degrees
of freedom limited to 9 a priori to improve trans-
ferability for the counterfactual scenario and inter-
polation between data points. The response vari-
able was Tmean, d and the predictor variables were
Tmean, d, heathrow; tree canopy cover, BC, and BH in the
hexagon which the station is located; and the BC and
BH within 200 m, 500 m, or 1000 m buffers.

Models were fit for the different buffer sizes,
using 5-fold cross-validation (stratified by station) to
identify the buffer best able to predict temperatures
at an unseen station. Model residuals were inspected,
testing for spatial autocorrelation using a variogram
and calculation of Morans I (for the whole dataset,
summers, and each day), and examined for temporal
autocorrelation using the Durban–Watson test.

2.3. Heat and health impact modelling
The GAM model was then used to estimate tem-
perature exposures from 2015–2022 under different
tree coverage scenarios and the corresponding health

impacts calculated. Rural temperatures from 2015–
2022 were used as a baseline. For the same time
period, the GAMSmodel was used to predict the daily
mean temperature (Tmean, d,k) for each hexagon (k)
under different canopy coverage scenarios. For each
day, the population-weighted mean daily temperat-
ure for the GLA was calculated (equation (1)):

Tmean, d =

∑n
i=1 (Tmean, d,k)× Pk∑n

i=1Pk
(1)

where Pk is the population within a hexagon.
Health impact calculations were then carried

out to estimate daily heat-related mortality. We use
the heat-mortality relationship for London from
Arbuthnott et al [43] (table 1), which derived a relat-
ive risk (RR) of mortality for different age groups (i)
using lag 0, 1Tmean, d (herein referred to asTmean, d,lag)
for London. When Tmean, d,lag exceeds a temperature
threshold (Th, or 18.9 ◦C in London) the RR of heat
related mortality increases per degree C:
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Table 1.Heat-mortality relationship for London, from
Arbuthnott et al [43].

Age group
Threshold,

Th

RR of mortality
(95% CI), total

0–64
18.9 ◦C

1.022
65–74 1.024
75– 1.049

RRi,d = eca(Tmean, d, lag−Th) when Tmean, d, lag > Th

RRi,d = 0 when Tmean, d, lag ⩽ Th (2)

where c(a) is the natural log of the RR at 1 ◦C above
the threshold. The attributable fraction (AF) of heat-
related mortality is calculated as:

AFi,d =
RRi,d − 1

RRi,d
. (3)

This was used alongside the number of deaths
per each day of the year for different age groups
(qi,d) in London (2015–2022) [44, 45] to calculate
heat-related mortality and summed across all days
and ages to estimate attributable mortality (AM):

AM=
∑
d

∑
i

qi,d ×AFi,d. (4)

Heat AM under different scenarios was also
examined using projected (1980–2010, 2041–2060,
2061–2080) climates for London for RCP8.5 from
UKCP18 [46]. This data includes 12 ensemble mem-
bers of average temperatures for each day of the year
for these time periods. The GAM model was used to
estimate Ts,d for projected climates, and AM estim-
ated using the number of deaths per day of year and
age group averaged over 2015–2022.

3. Results

3.1. Tree coverage
The tree canopy coverage varied significantly, with a
population-weighted average of 17.5% (range of 0%–
99.9%), and a total of 336 km2 of tree canopy with the
GLA. The results of the quantile regression showed
a correlation between the 99.5th percentile tree can-
opy and BC (figure 3) (1.5% reduction in tree canopy
per 1% increase in building area, p= 0.00). PWS sta-
tions were relatively representative of the distribution
of populated hexagons, although the maximum tree
coverage was 64%. Population-weighted tree canopy
coverage increased to 58% under the greening scen-
ario (1242 km2) and 21% (395 km2) under the aver-
age scenario. Met stations were in areas with lower
canopy coverage.

3.2. Temperatures
Over the 2015–2022 period, the average UHI intens-
ity was 3.3 ◦C, greatest during spring (mean of 3.8 ◦C,

Figure 3. The variation of tree canopy coverage and
building density for hexagons (green), PWS stations (blue),
and Met Office stations (orange) with quantile regression
for the hexagons.

max of 7.6 ◦C) and lowest during winter (mean of
2.9 ◦C, max of 7.1 ◦C). An hourly timeseries of tem-
peratures during the 2022 heatwaves (figure 4) shows
the average of all PWS within the GLA, the average of
those within the top decile (40.2%–99.9% tree can-
opy coverage), those in the bottom decile (0%–5.4%
canopy coverage), and in the rural areas surround-
ing the GLA administrative boundaries. During these
heatwaves, areas in the top decile tree canopy cov-
erage were, on average, 1.2 ◦C cooler that those in
the lowest decile tree canopy coverage. Differences
were most apparent at night, when nighttime min-
imum temperatures were around 2.0 ◦C lower in the
areas with themost tree canopy, whilemaximumday-
time temperatures were on average 0.8 ◦C lower. The
maximum UHI intensities tended to be in the very
early morning hours and averaged 4.3 ◦C across all
heatwave days.

Differences in daily mean, minimum, and max-
imum temperatures for stations with different levels
of tree canopy coverage can be seen over the long-
term data (figures 5 and 6). These figures show
mean, minimum, and maximum anomalies (or dif-
ferences between the stations and the average of all
stations) as temperatures increase. Temperatures are,
on average, 0.8 ◦C higher in deciles with the least tree
coverage compared to themost, or around−0.019 ◦C
(−0.0192 to −0.0187) per % increase in tree canopy.
The temperature differences between the areas with
the greatest and least amount of tree canopy coverage
was greatest at lower temperatures (averageminimum
difference 1.1 ◦C), and the least at higher temperat-
ures (average maximum differences 0.6 ◦C).

3.3. Heat exposure and health impact models
As expected, data was noisy and with unexplained
variance in the model. The GAM with the 1000 m
buffer showed the best performance as judged by
chi-squared tests between models (table S1 in the
appendix). Negligible amounts of spatial autocorrel-
ation were present in the residuals of this model (an
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Figure 4. London PWS temperatures during the summer 2022 heatwaves (1st decile tree coverage, 10th decile tree coverage, PWS
station average within the GLA, and PWS station average for surrounding rural areas). (a) 15th–17th June, (b) 17th–19th July, and
(c) 9th–15th August. Vertical lines show the time and extent of the maximum UHI intensity on each 24 h period (12pm–12pm).

Figure 5. Daily average PWS temperature anomaly (or
difference between the average PWS temperature of stations
in tree coverage decile, and the average of all PWS stations)
by daily average PWS temperature. The bottom (1), median
(5) and top (10) decile of tree canopy coverage are shown.

average Morans I of 0.000 41 during summers) com-
pared to the total variation. A cyclical temporal cor-
relation was apparent with peaks during summer;
closer examination alongside additional Met Office
data indicates that these may be due to exposure to
solar radiation. As a result, both spatial and temporal
autocorrelation were decided to be unimportant, but
we acknowledge that errors may be underestimated

because daily samples may not be independent. The
final model was able to predict daily temperatures
with an R2 of 98.3% and a root mean square error
(RMSE) of 0.808 for stations and 0.761 for observa-
tions on held-out data. Partial dependence plots can
be seen in the appendix.

Health impact calculation results can be seen in
figures 7 and 8. Between 2015–2022, we estimate that
the current tree coverage avoided 153 heat attrib-
utable deaths. This represents a 16% reduction of
the UHI-related mortality that would have occurred
under the ‘grey scenario’. Relative to the current tree
canopy coverage, increasing tree coverage to average
levels from 2017–2022 would have further reduced
UHI mortality by 8%, the London strategy by 10%,
and the green scenario by 55%. During the heat-
wave events of 2022, we estimate that the current tree
coverage helped avoid around 16 heat attributable
deaths (14% of UHI-associated deaths). This would
increase to 23 (21%), 25 (22%), and 67 (61%) under
the average, London strategy, and green scenarios,
respectively.

Heat mortality is projected to increase around
8-fold by 2061–2080 relative to 1981–2000 as a res-
ult of the rising temperatures and the more fre-
quent exceedance of Th under RCP8.5 (figure 8). By
2061–2080, we estimate that the current tree cov-
erage would help avoid around 42 heat-attributable
deaths a year. Increased coverage from the London
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Figure 6. (a) Daily minimum PWS temperature anomaly (or difference between the average minimum PWS temperature of
stations in tree coverage decile, and the average minimum of all PWS stations) and average daily minimum PWS temperature,
and (b) Daily maximum PWS temperature anomaly (or difference between the average maximum PWS temperature of stations in
tree coverage decile, and the average maximum of all PWS stations) and average daily maximum PWS temperature. The bottom
(1), median (5) and top (10) decile of tree canopy coverage are shown.

strategy would help avoid an additional 23 deaths a
year relative to current levels, and the green scen-
ario 131 deaths a year. The changes also lead to sub-
stantial benefits for carbon storage and sequestration,
with an additional 1.1million tonnes of carbon stored
and 36 500 tonnes sequestered annually under the
London strategy, rising to 5.6 million tonnes stored
and 181 000 tonnes sequestered annually under the
green scenario.

4. Discussion

This paper has used the growing number and density
of PWS stations around the GLA to evaluate temper-
ature differences by tree canopy coverage and between
urban and surrounding rural areas over a period
of seven years. Differences in urban temperatures
were observed by tree canopy coverage. During the
three heatwaves in 2022, areas with the top 10% of
tree canopy coverage were 1.2 ◦C cooler, on average,
then those in the bottom 10% tree canopy coverage.
Differences were greatest at night, with temperatures
around 2.0 ◦C lower in the areas with the most tree
canopy, versus 0.8 ◦C lower during the day. This is
likely due to the UHI effect, which is more prominent
at night, and support prior studies showing the noc-
turnal cooling effects on greenspace in London [10].
When analysed over the entire timeseries, temperat-
ure differences are greatest during cooler weather.

From this data, a GAM model was developed
to estimate the influence of tree canopy on

temperatures. The model was able to achieve an
RMSE of 0.761 and an R2 of 98.3% for observa-
tions. The highly variable nature of the temperat-
ure data meant that there is a high degree of model
uncertainty. We have focused here on model sim-
plicity, but further work can help to develop the
predictive power further. By including BC and BH
as a covariate, we aim to account for the urban heat
island effect. Both are unchanged for the scenario
predictions, meaning we are comparing hypothet-
ical areas with the same buildings but different tree
coverage.

Applying the model to timeseries weather data
from different climate scenarios enables changes in
heat exposure and subsequent mortality to be pre-
dicted. This novel approach enables estimation of
near-surface air temperature exposure under differ-
ent scenarios, building upon past work that has used
LST or greenery as an effect modifier. The scale of
future mortality under current levels of tree canopy
coverage are similar to estimates from other studies
[47, 48]. Our estimated impact of trees on reducing
mortality lies in between other studies. Iungman et al
[16], estimated a decrease in UHI-AM of 24.3% in
London if tree coverage was increased from 15.5%,
to 30%, whereas we estimate that increasing canopy
coverage from 21%–31% (London Strategy) would
reduce UHI-AM by 10%, comparatively smaller. Our
results are higher than those of Choi et al [49], whose
analysis of heat-mortality and greenspace levels in
425 cities located in 24 countries, estimating that
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Figure 7. Estimated average yearly heat-associated mortality under the different tree canopy coverage scenarios. The number of
days above Th is shown for each year and scenario. Estimates at rural temperatures are excluded for 2015 and 2016 due to low
numbers of rural weather stations. Error bars show 95% confidence interval. The estimated storage and sequestration (per
annum) for the scenarios is shown in the legend. NB. Estimates after 2020 use daily mortality data that includes covid-related
mortality.

a 20% increase in greenspace could result in a 9%
decrease in heat-mortality annually in these cities.
Results support epidemiological evidence that trees
in London can significantly reduce heat mortality
[50].

The effectiveness of the tree canopy at reducing
heat exposure and mortality is estimated to slightly
decrease as temperatures increase. This is due to the
threshold effect of themodel, wherewarmdays can be
reduced below the heat mortality threshold through
adaptations. As temperatures increase, the numbers
of days that can be reduced below this threshold
decreases, and heat-related mortality rises. This effect
could be partially compensated for if populations
adapt to heat effects in future and therefore mortal-
ity thresholds rise. However, evidence on population
adaptation to heat effects is sparse, and time frames
for adaptation are uncertain [51].

4.1. Limitations and uncertainties
A strength of this study is the large amounts of tem-
perature data with dense coverage. A tradeoff, how-
ever, is in the accuracy of the stations compared to
official meteorological stations. To minimize errors,
we use data cleaning methods to remove outliers, sta-
tions with unreliable data, and indoor stations, while
all PWS stations are from the same manufacturer
and are assumed to have similar instrumental errors.
Five official stations are used to supplement cover-
age, meaning a relatively small number of different
instruments are included in the modelling dataset,
but the data from these will be more with accurate
than those from PWS. Our reference for UHI intens-
ity are stations outside the GLA located in rural areas,
and acknowledge that the trends and amplitude of
the UHI we report are sensitive to these reference
temperatures [52].

8



Environ. Res. Lett. 19 (2024) 054004 J Taylor et al

Figure 8. Estimated yearly heat-associated mortality for the different scenarios under projected climates. Distributions represent
the range in annual mortality estimates across years and ensemble members. Points indicate the median estimated annual
mortality for each ensemble member. The median number of days above Th is shown for each epoch and scenario.

By using quantile regression to identify the max-
imum amount of local tree coverage according to
building density, we aimed to estimate a maximal
amount of tree canopy that can be added, while the
London Strategy and average scenarios present more
achievable targets; these scenarios are an advance
over prior studies that offered a percent increase in
tree coverage unsupported by evidence or policy.
Temperatures will also depend on LCZs, but due to
the correlation of the natural component with tree
coverage we opted to derive from a buildings dataset
to reflect the built component. However, tree canopy
coverage and buildings are just one factor which con-
tributes to urban temperature differences and may
be confounded by other parameters which we have
not included here. The GAMmodel does not include
prevailing wind conditions, nor any advective cool-
ing from the river Thames or the sea. The use of
hexagons with a relatively small area helps to separate
large areas of tree canopy (such as parks) from areas

with residential populations. The modelled temper-
ature changes are associative and cross-sectional and
do not demonstrate causality, although this is equally
a problem with all other studies of this type, e.g [16].

The tree canopy data offers high resolution cov-
erage derived using machine learning processed aer-
ial imagery. The report on the generation of the data-
set acknowledges various limitations. These include
the data coming from single time point (September
2016) and a time of the year when leaf structure may
be breaking down. The model occasionally misclas-
sifies trees as bushes and can miss sections of can-
opy altogether. However, the model has an accur-
acy rate of 94% and produces estimates that are at
minimum comparable to estimates from traditional
survey methods when aggregated across larger areas.
Estimates of the stored carbon within London’s trees
is based on figures from a 2015 report [42], and may
in fact underestimate the amount of carbon stored
[53].
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The heat-mortality estimates use a relationship
between outdoor air temperature and mortality
derived for 1996–2013. This model does not include
relative humidity or air pollution as confounders,
although previous research has not found these to be
significant factors for heatmortality in theUK [9, 43].
This heat-mortality relationship uses dailymean tem-
perature, however, there is evidence that nighttime
temperatures are particularly important for health
outcomes [54]. Given that the greatest effect of tree
coverage was seen at night, this could mean that the
health benefits of the tree canopy are underestimated.
We have not looked at cold. For the future projec-
tions, we do not model population social or techno-
logical adaptation to heat, such as heatwave plans or
use of air conditioning, nor do we model population
demographic changes such as population aging. The
baseline mortality rate for 2020–2022 will include the
effects of Covid-19.

The heat-mortality-relationship used is based on
epidemiological analysis of mortality data which par-
tially pre-dates the development of many of the UK
heatwave public healthmeasures. Our predictedmor-
tality for the heat periods of the summer of 2022
is both higher than other real-time models and the
observed excess mortality [8], likely due to differ-
ent sources of temperature data, as well as different
underlying methods in calculating heat-AM. During
these heatwaves, theUKMetOffice issued heat-health
alert and red EH weather warnings to the public for
the first time. It is possible that the warnings and
advice from theMetOffice andPublicHealth agencies
had a role in reducing the actualmortality belowwhat
was expected. The estimated mortality in this study
should therefore be interpreted as a theoretical quan-
tification of the role of trees rather than an absolute
estimate of heat-related mortality during this period.

4.2. Implications
The methods used here can be applied to other loc-
ations and with different land covers wherever PWS
data are available. While the results of this study can
provide an indicative value for similar cities, cau-
tion should be applied when generalizing as city-
specific characteristics like climate, the amount of
potential greening, and the built environment will
influence estimates and a recent PWS study shows
that increased tree cover in many European cities
does not lead to reduced air temperatures [15]. The
types of trees, such as their leaf area index, and the
albedo of the built environment are also important
considerations [55].

In addition to benefits for reducing heat expos-
ure, trees offer a number of benefits, including
biodiversity, stormwater management, air pollution
removal, and carbon storage and sequestration [42].
Green spaces have been shown to have a posit-
ive influence on physical activity, stress, social con-
tacts, and restoration [56], and increased urban street

tree density is associated with reduced mental health
issues [57]. In the UK, all-cause mortality was found
to be 6% lower in the quintile with the most green-
space compared to the quintile with the lowest [58].

Trees also have some disadvantages. Under cer-
tain circumstances, trees can risk negatively impact-
ing air quality by preventing dispersion of polluted
air in narrow streets for certain wind directions [59,
60], while the pollen produced by certain tree species
can exacerbate allergies [61]. Our results show areas
withmore trees are colder at lower temperatures, with
possible increased in space heating energy demand
[62] if the necessary energy efficient retrofits are not
carried out. Types of trees are likely to be important,
with deciduous trees offering beneficial shading dur-
ing the summer. Future research could compare the
estimated costs associated with additional tree cov-
erage with the potential savings provided by reduced
health care cost and examine the impacts on indoor
temperatures and heating or cooling demand.

5. Conclusions

This study examined the differences in air temper-
atures in London according to tree canopy cover-
age, focusing in particular on heat. PWS data from
2015–2022 shows that areas with higher tree can-
opy coverage were associated with reduced levels of
heat compared to those with low tree canopy cover-
age. During the heatwaves of 2022, this correspon-
ded to a lower average difference in maximum day-
time temperatures (0.8 ◦C) and minimum temperat-
ures (2.0 ◦C). Modelled impacts of different climate
and tree canopy coverage scenarios estimates that
the existing urban tree canopy coverage in London
may have reduced excess heat-related mortality by
around 16% during 2015–2022. Increasing the tree
canopy to the maximum level, given building density,
is estimated to lead to a reduction of 55%. The cool-
ing benefits from trees become even greater under
hotter future climates. The results of this study sup-
port increasing tree canopy coverage to help mitig-
ate high urban temperatures in the future, with urban
greening part of a set of broader public health actions
that can help reduce heat-related mortality in the
future.
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