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Abstract
Automated prostate cancer detection in magnetic resonance imaging (MRI) scans is of
significant importance for cancer patient management. Most existing computer‐aided
diagnosis systems adopt segmentation methods while object detection approaches
recently show promising results. The authors have (1) carefully compared perfor-
mances of most‐developed segmentation and object detection methods in localising
prostate imaging reporting and data system (PIRADS)‐labelled prostate lesions on MRI
scans; (2) proposed an additional customised set of lesion‐level localisation sensitivity
and precision; (3) proposed efficient ways to ensemble the segmentation and object
detection methods for improved performances. The ground‐truth (GT) perspective
lesion‐level sensitivity and prediction‐perspective lesion‐level precision are reported, to
quantify the ratios of true positive voxels being detected by algorithms over the
number of voxels in the GT labelled regions and predicted regions. The two networks
are trained independently on 549 clinical patients data with PIRADS‐V2 as GT labels,
and tested on 161 internal and 100 external MRI scans. At the lesion level, nnDe-
tection outperforms nnUNet for detecting both PIRADS ≥ 3 and PIRADS ≥ 4 le-
sions in majority cases. For example, at the average false positive prediction per patient
being 3, nnDetection achieves a greater Intersection‐of‐Union (IoU)‐based sensitivity
than nnUNet for detecting PIRADS ≥ 3 lesions, being 80.78% � 1.50% versus
60.40% � 1.64% (p < 0.01). At the voxel level, nnUnet is in general superior or
comparable to nnDetection. The proposed ensemble methods achieve improved or
comparable lesion‐level accuracy, in all tested clinical scenarios. For example, at 3 false
positives, the lesion‐wise ensemble method achieves 82.24% � 1.43% sensitivity versus
80.78% � 1.50% (nnDetection) and 60.40% � 1.64% (nnUNet) for detecting PIRADS
≥ 3 lesions. Consistent conclusions are also drawn from results on the external
data set.
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1 | INTRODUCTION

Prostate cancer is one of the leading causes for males' death
worldwide, and is the third most common newly diagnosed
cancers worldwide with 1.41 million incidences in 2020 [1].
Early prostate cancer detection plays an important role in
cancer treatment [2, 3]. However, accurate prostate cancer
diagnosis with both high sensitivity and specificity remains a
challenging task [4]. For example, conventional diagnostic st-
andard such as prostate‐specific antigen (PSA) test together
with transrectal ultrasound (TRUS) can potentially either
overestimate non‐clinically significant cancer or miss clinically
significant prostate cancer [5].

The magnetic resonance imaging (MRI) scans have great
potentials for assisting the screening and diagnostic tasks of
prostate cancer in a non‐invasive way [6–8], possibly compen-
sating the limitations of PSA and TRUS [5]. Specifically, MR
imaging could help avoid unnecessary biopsies [8, 9] and reduce
chances ofmissing clinically significant prostate cancer [8, 9]. For
example, the PROMIS study on 740 men has shown that (a)
using mp‐MRI to triage men will allow 27% of patients avoid
unnecessary biopsy and 5% fewer clinically insignificant cancers;
(b) if subsequent TRUS‐biopsies are directed by mp‐MRI find-
ings, 18%more clinically significant prostate cancer cases will be
detected [9]. The latest version of the European Association of
Urology guidelines now recommend performing MRI scans
prior to biopsies [10]. Nevertheless, following factors hinder the
wide adoption of MRIs for prostate cancer diagnosis (1) reading
prostate MRI scans requires substantial expertise and is time‐
consuming for radiologists; (2) findings from MRI scans are
quite radiologist‐dependent [11, 12].

Automated especially deep‐learning‐based prostate cancer
detection approaches can alleviate the above‐mentioned limi-
tations of radiologists [13–15]. However, there are also several
challenges for accurate automated prostate cancer segmenta-
tion or detection in MRI. First, multifocal prostate cancer le-
sions may appear with different shapes and sizes, making it
rather difficult for one algorithm to exhibit high sensitivity and
specificity [2, 4]. Second, clinically significant prostate cancer
may resemble much the non‐malignant benign regions in MRI,
which may cause algorithms to generate inevitable false posi-
tives (FPs) [2]. Prostate imaging‐reporting and data system:
version2 (PI‐RADS v2) is a widely‐adopted reporting scheme
for prostate MRI, aiming to standardise the early diagnostic
process of prostate cancer in MRI [16], where each suspicious
lesion is assigned to a score from 1 to 5 indicating its likelihood
of being clinically significant [16, 17].

Computer‐aided diagnosis (CAD) of prostate cancer in
MRI can be either regarded as a segmentation or detection
task, where the later one is under‐utilised [2, 3, 18, 19]. This
study aims to answer the following two research questions. (1)
Considering that the lesion‐level and voxel‐level accuracies of
prostate cancer localisation are important clinically relevant
metrics to directly assess the usefulness of a CAD system, we
would like to ask which method achieves better performances
with those metrics at same levels of FPs per patient, seg-
mentation or object detection? (2) Based on observations that

segmentation and object detection methods exhibit different
sensitivities and specificities (as will be shown in the Results
Section) which indicates potentials of achieved improved per-
formances by combining the two, we'd like to ask what the
performances of ensemble the segmentation and object
detection algorithms at the lesion and voxel levels are?

To answer the above two questions, (1) two segmentation
and object detection networks(i.e. nnUNet(https://github.
com/MIC‐DKFZ/nnUNet) and nnDetection (https://github.
com/MIC‐DKFZ/nnDetection) respectively) have been inde-
pendently trained on a sizeable data set with bpMRI scans and
corresponding radiologists‐annotated prostate imaging report-
ing and data system (PIRADS) ≥ 3 and PIRADS ≥ 4 lesions'
masks. (2) two effective ensemble methods for combining
nnDetection and nnUNet have been proposed. (3) two limita-
tions have been identified for the Intersection of Union (IoU)
measure that is utilised to determine true positive (TP) lesion‐
level detection: (a) the IoU measure is defined in a symmetric
way; (b) neither predicted nor ground‐truth (GT) lesions are
permitted to be counted more than once [20]. To address the
above‐mentioned limitations, two customised lesion‐level met-
rics have been thus developed and utilised for evaluations.

1.1 | Contributions

This study demonstrates the first essential step towards
systematically comparing and combining deep‐learning‐
based segmentation versus detection methods for localising
PIRADS‐labelled lesions on prostate MRI scans in a clinically
relevant manner. The main contributions of this study are
summarised as follows.

1. The performances of two typical self‐configuring semantic
segmentation and object detection networks (i.e. nnUNet
[21] and nnDetection [22] respectively) have been
comprehensively trained and evaluated on sizeable labelled
clinical data, for localising PIRADS‐labelled prostate lesions
in bp‐MRI scans.

2. Two simple yet effective ensemble methods of nnUNet and
nnDetection have been proposed and carefully validated,
which have demonstrated superior or on‐par performances
against individual approaches.

3. Two customised lesion‐level metrics, that is, GT‐
perspective sensitivity and the prediction‐perspective pre-
cision, have been developed and utilised to evaluate seg-
mentation, object detection and ensemble prostate cancer
methods.

2 | RELATED WORK

The related work on automatic deep‐learning‐based prostate
cancer detection methods can be classified into two categories:
segmentation and object detection methods. The segmenta-
tion methods will output voxel‐wise classifications of being
cancerous or not over original medical images while detection
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methods generally predict bounding boxes (BBs). Another
difference is that the detection algorithm has a explicit concept
of individual object (as a group of pixels or area of BBs), while
segmentation treat the problem as a conditionally independent
pixel classification problem.

2.1 | Segmentation networks

The segmentation methods have been used and demonstrate
potential of detecting prostate cancer in bp‐MRI scans [5].
Most recent segmentation approaches resemble encoder‐
decoder Convolutional Neural Networks (CNNs) network
structure such as 2D [23] and 3D UNet [24]. Other UNet
variants include nested structures 2D UNetþþ [25], 3D V‐Net
[26], 3D Attention UNet that utilises attention gates to sup-
press irrelevant regions [27–30].

2D or 2.5D Networks 2D and 2.5D segmentation networks
can be identified according to whether neighbouring slices are
utilised [27]. Cao et al. has presented a novelmulti‐class 2DCNN
for detecting and classifying Gleason‐Score‐graded lesions with
the focal loss in training [28]. Yu et al. has proposed a 2.5DUNet‐
based PIRADS lesion detection network with a FP reduction
module [29]. 3DNetworks Saha et al. has proposed an attention‐
based 3D‐CNN prostate cancer CAD system with a FP reduc-
tion module [5]. ProsAttention‐Net is a multi‐class 3D UNet‐
based network that jointly segments the prostate gland and
Gleason Score (GS)‐graded lesions [3, 18].

nnUNet In above‐mentioned segmentation methods, the
network structures need to be changed adaptively and re-
quires additional hyper‐parameter (e.g. learning rate) tuning
when they are deployed on new datasets with different image
sizes and resolutions, which is time‐consuming and cumber-
some. In contrast, nnUNet is a self‐configuring UNet‐based
medical image segmentation method, which eliminates the
need for extra manual hyper‐parameter tuning [21, 31].
nnUNet has been demonstrated to surpass most existing
approaches, including highly specialised solutions on 23
public datasets and 53 segmentation tasks used in interna-
tional biomedical segmentation competitions [21]. nnUNet
has also been validated in prostate gland segmentation [21,
32], peripheral zone (PZ) and transition zone (TZ) segmen-
tation tasks [21, 33].

2.2 | Object detection

Object detection methods first determine whether there are
instances of interest in an image, and if present estimate each
instance's spatial location and extent usually defined with a
BB [4, 34]. Object detection methods are generally classified
into two categories: (1) the two‐stage methods where pro-
posals are utilised [35, 36]; (2) the one‐stage region‐proposal‐
free method that directly outputs classification probabilities
and box coordinates [37, 38]. Object detection methods have
recently been explored for detecting prostate cancer in
MRI [2, 19].

nnDetection nnDetection [22] is a self‐configuring one‐
stage Retina‐UNet [38] based 3D object detection approach.
nnDetection has set a new benchmark on the LUng Nodule
Analysis [39] and achieves competitive performances of
Aneurysm Detection And segMentation Challenge [22].
nnDetection's effectiveness were also validated on another 11
data sets, including ProstateX, Kits19 etc. [22]. In ref. [22],
nnDetection and nnUNet were compared with the metric
mean average precision commonly used in the computer vision
community, which is neither directly clinically relevant nor
intuitive to radiologists or urologists.

3 | METHODS

nnUNet [21] is chosen as the segmentation baseline, where GT
labels are the radiologists‐annotated lesions' masks and the
network's raw outputs are the voxel‐wise softmax probabilities.
nnDetection [22] is chosen as the detection baseline, where GT
labels are the lesions' instance segmentations while the net-
work's raw outputs are the predicted BBs with probability/
confidence scores. It is noted that the probability/confidence
score is associated with an individual predicted BB.

3.1 | Lesion‐wise ensemble

In lesion‐wise ensemble, predicted BBs from nnUNet and
nnDetection are used where BBs can be readily extracted from
predicted individual lesions' masks in nnUNet. At the lesion‐
level, ensemble the predicted BBs from both networks is
done with the weighted box clustering [22]. Suppose that there
are L ∈ Nþ predicted BBs whose IoUs with the highest
scoring and unclustered BB are larger than a threshold, the
confidence score os ∈ (0, 1] of the ensemble BB at that location
is computed as follows:

os ¼

PL

i¼1
siwi

PL

i¼1
wi þ nmissing

1
L
PL

i¼1
wi

; ð1Þ

wherewi ∈ R is the weight associated with the ith BB, si ∈ (0, 1]
is the corresponding confidence score, nmissing = max(0,
nprediction − L) where nprediction = 2 is the number of expected
predictions per location since at a specific location one predic-
tion from either independent model are expected. The weighted
coordinates of the clustered BB are computed as follows

oc ¼
PL

i¼1
ciwi

PL

i¼1
wi
, where ci ∈ R denotes the ith BB's coordinates

taking value from {x1, y1, x2, y2, z1, z2} recursively. In order to get
the lesion‐level sensitivities, the two networks' predicted BBs
whose confidence scores are larger than a varying lesion‐level
cutoff value, are ensembled with the weighted box clustering
technique and the results are kept in the final predictions. At the
lesion‐level, ensemble the nnDetection with nnUNet and
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nnUNet Argmax is referred to as Lesion‐wise Ensemble and
Lesion‐wise Ensemble Argmax respectively.

3.2 | Voxel‐wise ensemble

To ensemble nnUNet and nnDetection voxel‐wisely, the soft-
max probabilities from both networks are to be utilised, which
requires us to generate the pseudo softmax probabilities from
the nnDetection predicted BBs. In nnDetection, two different
scenarios are considered at one specific voxel as follows. Let
O ∈ Nþ denote the number of predicated instances by the
object detection network. (a) There is O = 1 predicted instance
with probability pobject ∈ (0, 1] at that voxel, the probability of
that voxel being foreground is thus equal to that of the pre-
dicted instance pdetectionvoxel ¼ pobject; (b) there are O > 1 predicted
instances at that voxel, then

pdetectionvoxel ¼max=mean
n
piobject

oO

i¼1
: ð2Þ

It is noted that the case (a) can be unified into Equation (2).
The corresponding probability of that voxel being background
is pbackgroundvoxel ¼ 1 − pforegroundvoxel ¼ pdetectionvoxel , and the softmax

probability is
�

1 − max
n
piobject

oO

i¼1
;max

n
piobject

oO

i¼1

�

. We

should determine the follows before voxel‐wise ensemble of
the two networks. (a) Should we utilise all or a subset of raw
predicted BBs in nnDetection to generate the pseudo softmax,
which are denoted as ‘all’ or ‘not all’ respectively. The subset is
acquired by applying a lesion‐level cutoff to the BBs' scores to
retain only above‐threshold ones. (b) It can be either max or
average operations in Equation (2), which are denoted as ‘max’
or ‘average’ respectively. (c) The foreground probability
pensemble
voxel ∈ ð0; 1� in the final ensemble softmax is acquired with
the max or average operations as

pensemble
voxel ¼max=mean

n
pdetectionvoxel ; psegmentation

voxel

o
; ð3Þ

whose corresponding scenarios are denoted as ‘max’ or ‘average’
respectively, psegmentation

voxel ∈ ð0; 1� denotes the nnUNet fore-
ground probability at that voxel. In total, there are 8 different
combinations of above choices, which were evaluated on the 50
split validation data and the best combination was identified.

At the voxel level, ensemble the nnDetection with nnUNet
and nnUNet Argmax are referred to as Voxel‐wise Ensemble
and Voxel‐wise Ensemble Argmax, respectively.

3.3 | Lesion‐level evaluation metrics

For one patient scan, suppose there are M ∈ Nþ GT and
N ∈ Nþ predicted lesions, i ∈ Nþ and j ∈ Nþ respectively
denote the index of GT and predicted lesions.

Intersection‐of‐Union (IoU)‐based Lesion‐Level Sensitivity
and Precision. The lesion‐level IoU between the ith GT lesion
and the jth predicted lesion is defined as follows:

IoUij
lesion‐level ¼

Sijoverlap
SiGT þ SjPredicted − Sijoverlap

; ð4Þ

where SiGT ∈ Nþ and SjPredicted ∈ Nþ are the numbers of
foreground voxels within the ith GT and the jth predicted
lesions respectively, Sijoverlap ∈ Nþ counts the number of fore-
ground voxels belonging to both the ith GT lesion and the jth
predicted lesion.

The matching process between GT and predicted lesions
will start with the predicted lesion that has the largest object
score, and iterate over all predicted lesions. The jth predicted
lesion is matched to the ith GT lesion if all follows hold (1) the
ith GT lesion has the largest IoUij

Lesion‐level among unmatched
GT lesions; (2) IoUij

Lesion‐level is larger than a pre‐set threshold;
(3) the ith GT lesion is unmatched. The number of matched GT

or predicted lesions is counted as TP
�
TPIoUlesion‐level

�
, while the

numbers of unmatched GT and predicted lesions are counted as
false negative

�
FNIoUlesion‐level

�
and FPs

�
FPIoUlesion‐level

�
respectively.

The IoU‐based lesion‐level sensitivity and precision are
computed as Sensitivity IoU‐based

Lesion‐level ¼
TPIoUlesion‐level

TPIoUlesion‐levelþFNIoUlesion‐level

and PrecisionIoU‐based
Lesion‐level ¼

TPIoUlesion‐level

TPIoUlesion‐levelþFPIoUlesion‐level .
IoU‐based Box‐Level Sensitivity The evaluations based on

Equation (4) are biased towards the nnUNet whose outputs are
masks, which motivates us to also utilise the box‐level IoU is
used to further determine TP/FP predictions, and false
negative (FN) GT lesions. Formally, the box‐level IoU between
the ith GT lesion's BB and the jth predicted lesion's BB is
defined as follows:

IoUij
box‐level ¼

V ij
overlap

V i
GT þ V j

Predicted − V ij
overlap

ð5Þ

where V i
GT ∈ R is the volume of the BB enclosing the ith

GT lesion mask, V j
Predicted ∈ R is the volume of jth predicted

BB in nnDetection or the smallest BB enclosing the jth
predicted lesion mask in nnUnet, V ij

overlap ∈ R is the volume
of intersected BB between the ith GT BB and jth predicted
BB. The matching process is similar to those in computing
IoUij

lesion‐level. Afterwards, the IoU‐based box‐level sensitivity
SensitivityIoU‐based

Box‐Level and precisions PrecisionIoU‐based
Box‐Level are

computed.
Ground‐truth‐perspective Lesion‐Level Sensitivity. The

overlap ratio of ith GT lesion, from the GT perspective is
defined as follows:

OverlapiGT;Perspective ¼
Sioverlap
SiGT

ð6Þ

4 - MIN ET AL.
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where Sioverlap ¼
PN

j¼1S
ij
overlap is the number of voxels within

both the ith GT lesion and any predicted lesion. The inherent
rationale of the formula is to compute the percentage of 1 GT
lesion being detected by all predictions.

One GT lesion is considered as a TP if
OverlapiGT;Perspective in Equation (6) is larger than a pre‐set
threshold, a FN otherwise. FP prediction is not defined
within this metric, and the definition of lesion‐level FP using
IoUij

lesion‐level is used when we plot sensitivities with respect to
FPs per patient. With the numbers being TPGT ∈ Nþ and
FNGT ∈ Nþ, the GT‐perspective lesion‐level sensitivity is
SensitivityGT‐perspective

Lesion‐Level ¼
TPGT

TPGTþFNGT while the corresponding
precision is not defined within this metric.

Prediction‐Perspective Lesion‐level Precision. The overlap
of jth prediction lesion with all GT lesions is defined as follows:

OverlapjPrediction‐Perspective ¼
Sjoverlap; prediction‐perspective

SjPrediction
; ð7Þ

where Sjoverlap; prediction‐perspective ¼
PM

i¼1S
ij
overlap represents the

number of voxels within both the jth predicted lesion and
any GT lesion. The inherent rationale behind this formula
is to compute the percentage of one predicted lesion's
voxels being any GT lesion. One prediction is a TPPred

if OverlapjPrediction‐Perspective is larger than a pre‐set thres-
hold, and a FPPred otherwise. True negative is not defined
within this metric. With TPPred ∈ Nþ and FPPred ∈ Nþ,
the prediction‐perspective lesion‐level precision is
PrecisionPrediction‐perspective

Lesion‐Level ¼ TPPred
TPPredþFPPred while the correspond-

ing sensitivity is not defined within this metric.

3.4 | Voxel‐level evaluation metric

At the voxel‐level, the Dice Similarity Coefficient (DSC) is
utilised to evaluate the predictions from different models with
the GT lesions' masks, and is computed as follows:

DSC¼
2� TPvoxel

2� TPvoxel þ FPvoxel þ FNvoxel; ð8Þ

where here TPvoxel, FPvoxel, and FNvoxel are the numbers of
corresponding voxels. One voxel is considered as TP if that
voxel is within both the GT and predicted lesions at the same
time. The reported overall DSC for the test data set is
computed by averaging the DSCs with all patients.

4 | EXPERIMENTS

4.1 | Dataset

All cases were labelled with radiologists' annotations of sus-
picious cancerous regions via PIRADS‐V2 [16]. This work

involved patient imaging data that were acquired from multiple
studies, approved by the local research ethic committees,
including SmartTarget Biopsy (14/LO/0830, 22‐08‐2014) [40],
PROMIS (11/LO/0185, 21‐07‐2021) [40], INDEX
(NCT01194648, 02‐09‐2010) [41], PICTURE (11/LO/1657,
06‐11‐2011) [42], and SmartTarget Therapy (14/LO/1375, 01‐
08‐2015) [40]. In all, 760 patients were selected for the study
with all three image types, which include T2‐weighted (T2‐W),
diffusion‐weighted imaging (DWI), and apparent diffusion
coefficient (ADC), following the local bpMR imaging pro-
tocols. All scanners vendor of the utilised data set are
SIEMENS. The mean and median lesion volume are 2.55 and
1.72 cm3(range, 0.18–27.02 cm3). There are multiple radiolo-
gists that delineate the lesions. The GT segmentation is the
consensus results of one or multiple radiologists. In the utilised
data set, 23.57% lesions are in the PZ while 76.43% lesions are
in the TZ. The cohort is further partitioned into the training,
validation and test sets, each with 549 (72.24%), 50 (6.58%)
and 161 (21.18%) cases respectively. In this study, the lesions
whose PIRADS score is larger than 3 and those whose
PIRADS score is larger than 4 are segmented, which are
denoted as PIRADS ≥ 3 and PIRADS ≥ 4 lesions, respectively.

A detailed summary of the data cohort is given in Table 1.
In the training cohort, the numbers of PIRADS ≥ 3 and
PIRADS ≥ 4 lesions are 1478 (83.74%) and 287 (16.26%) and
the numbers of cases whose index lesions being PIRADS ≥ 3
and PIRADS ≥ 4 are 337 (61.38%) and 212 (38.62%),
respectively. In the validation cohort, the numbers of the
numbers of PIRADS ≥3 and PIRADS ≥ 4 lesions are 98
(82.35%) and 21 (17.65%) and the numbers of cases whose
index lesions being PIRADS ≥ 3 and PIRADS ≥ 4 are 33
(66%) and 1734%, respectively. In the test cohort, the numbers
of the numbers of PIRADS ≥ 3 and PIRADS ≥ 4 lesions are
300(76.53%) and 92(23.47%) and the numbers of cases whose
index lesions being PIRADS ≥ 3 and PIRADS ≥ 4 are 86
(53.42%) and 75 (46.58%), respectively. In the training, vali-
dation and test cohorts, the ratios of numbers of PIRADS ≥ 3
and PIRADS ≥ 4 lesions are 5.15 1, 4.67 1 and 3.26:1
respectively while the ratios of number of cases whose index
lesions are PIRADS ≥ 3 and PIRADS ≥ 4 are 1.59:1, 1.94:1
and 1.15:1.

All three modalities are resampled to image size of
128 � 128 � 32 and spatial resolutions being 0.625
� 0.625 � 3 mm3 with higher resolution in the x‐y plane. For
each patient, the DWI and ADC images are spatially resampled
once (using the rigid image‐to‐scanner transformations) to their
corresponding T2 image. All modalities are also normalised to
[0,1]. For both detection and segmentation networks, T2W,ADC
and DWI are concatenated together into 128� 128� 32� 3 as
the network inputs.

4.2 | nnUNet

An appropriate strategy is needed to aggregate lesions from
raw voxel‐wise softmax probabilities of nnUNet [22]. First,
each voxel in the MRI volume is classified as foreground or
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background, which can be achieved either (a) by applying a
minimum threshold value (voxel‐level cutoff) to foreground
probability in the softmax. In the binary‐class segmentation,
the voxel is considered as foreground if the foreground soft-
max probability is greater or equal to the voxel‐level cutoff; or
(b) with the argmax operation, which can also be understood
as applying certain voxel‐level cutoffs to the softmax proba-
bility scores. In the binary‐class segmentation, the argmax
operation is equivalent to applying a voxel‐level cutoff being
0.5 to the foreground softmax probability. Second, one pre-
dicted lesion's confidence score has to be determined from the
aggregated voxels's foreground probabilities, which could be
max (used in our study), mean, median, 95% percentile oper-
ations [22]. Third, the aggregated lesions in the final diagnostic
prediction is determined by keeping those lesions whose
confidence scores are not less than a minimum threshold
(lesion‐level cutoff).

Given the above introduced strategy, two nnUNet variants
are utilised in this study. (a) The argmax operation is used to
determine foreground voxels, which are then aggregated into
individual lesions with the connected component analysis
(CCA) technique [22]. After that, the lesions whose confidence
scores are higher than varying lesion‐level cut‐offs are retained
in the final diagnostic prediction. This variant of nnUNet is
referred to as nnUNet Argmax. (b) The foreground voxels are
determined by identifying voxels whose foreground probabil-
ities are higher than varying voxel‐level cutoffs, and foreground
voxels are then aggregated into individual lesions with the
CCA technique [22]. This variant of nnUNet is referred to as

nnUNet. The BB is determined as the smallest cuboid that
encloses the predicted lesion mask in 3D. Two experiments
were conducted with PIRADS ≥ 3 and PIRADS ≥ 4 lesions.
In both cases, nnUNet was trained in a five fold cross vali-
dation manner for 1000 epochs with 250 minimatches per
epoch [21].

4.3 | nnDetection

In nnDetection, lesions whose confidence scores are higher
than varying lesion‐level cutoffs are retained in the final pre-
dictions, in order to achieve different lesion‐level sensitivities,
precisions, and voxel‐level DSCs. The predicted lesion mask is
acquired from the BB noting that all voxels inside the BBs are
considered as foreground.

nnDetection was trained independently with PIRADS ≥ 3
and PIRADS ≥ 4 lesions' labels, similar to the scenario of
nnUNet, in a five‐fold cross validation manner for 60 epochs
with 2500 mini batches per epoch [22].

4.4 | Ensemble

Lesion‐wise Ensemble Hyperparameter Tuning. The hyper‐
parameters that need to be tuned include the weights with
the nnunet predictions wi in Equation (1) and the IoU
threshold IoUensemble to determine whether the two boxes are
to be clustered, which are chosen from

TABLE 1 A detailed summary of the utilised internal data set.

Properties Training cohort Validation cohort Test cohort

Number of Patients 549 50 161

No. of MRI‐detected lesions per patient

One lesion 69 12 33

Two lesions 126 18 57

Three lesions 144 13 45

Four lesions 104 6 22

Five lesions 61 0 2

Six lesions 29 0 2

Seven lesions 11 0 0

Eight lesions 5 1 0

Nine lesions 0 0 0

MRI index lesion per patient

PI‐RADS 3 337 33 86

PIRADS 45 212 17 75

MRI assessment per lesion

Total 1765 119 392

PIRADS 3 1478 98 300

PIRADS 45 287 21 92
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wi ∈ ½0:1; 0:3; 0:5; 0:7; 0:9�; ð9Þ

and

IoUensemble ∈ ½0:1; 0:3; 0:5; 0:7; 0:9�: ð10Þ

Totally, there are 25 different cases that contain different
parameter combinations, which have been optimised on the
split validation set.

Voxel‐Wise Ensemble Hyperparameter Tuning. The soft-
max probabilities from both individual methods at the infer-
ence stage are ensembled with the approach in Voxel‐Wise
Ensemble of Methods Section. The combinations in Voxel‐
Wise Ensemble of Methods Section were chosen according
to the results on the validation data set.

5 | RESULTS

In this section, we compare the results of nnDetection, nnU-
Net, nnUNet Argmax, Lesion‐wise Ensemble, Lesion‐wise
Ensemble Argmax, Voxel‐wise Ensemble, and Voxel‐wise
Ensemble Argmax at both the lesion and voxel levels, where
nnUNet, nnDetection and nnUNet Argmax are considered as
baselines. To compare methods, multi‐way ANOVA tests have
been conducted and statistical significance results of paired t‐
test are reported after multiple testing correction. More spe-
cifically, we have done the ANOVA test using 7 (i.e. nnUNet,
nnDetection, nnUNet Argmax, Lesion‐wise Ensemble,
Lesion‐wise Ensemble Argmax, Voxel‐wise Ensemble, Voxe‐
wise Ensemble Argmax) or 5 methods(i.e. nnUNet, nnDe-
tection, Lesion‐wise Ensemble, Lesion‐wise Ensemble Arg-
max, Lesion‐wise Ensemble Argmax) with 3 overlap measures
(i.e. IoUlesion‐level, OverlapGT, Perspective and IoUbox‐level) at the 4
different levels of FP (i.e. 0.5FP, 1FP, 2FPs, 3 FPs) for the two
classification problems (i.e. PIRADS ≥ 3 or not and PIRADS
≥ 4 or not).

Figure 1 includes IoU‐based lesion‐level sensitivity
(a), GT‐perspective lesion‐level sensitivity (b) and IoU‐based
box‐level sensitivity (c) at different FPs per patient

respectively, in detecting the PIRADS ≥ 3 lesions. Figure 2
includes similar results in detecting PIRADS ≥ 4 lesions,
respectively.

Table 2 and Table 3 include the mean values of three
different sensitivities and DSC in detecting PIRADS ≥ 3 and
PIRADS ≥ 4 lesions, respectively. Table 4 and Table 5 include
the mean values of two precisions and DSC in detecting
PIRADS ≥ 3 and PIRADS ≥ 4 lesions, respectively. In all the
tables, the above‐mentioned evaluation metrics are presented
at four specified FPs: 0.5,1,2,3.

5.1 | Comparison between nnDetection and
nnUnet at the lesion‐level

nnDetection outperforms nnUnet, when considerable lesion‐
level sensitivity is required for specific clinical application
such as MRI‐targeted surgical biopsies, in detecting PIRADS ≥
3 and PIRADS ≥ 4 lesions.

PIRADS ≥ 3. Sensitivities As it is shown in Figure 1 and
Table 2, in most cases, nnDetection achieves significantly larger
sensitivities than nnUNet at four specific levels of FPs (11 out
of 12 different cases). For example, the IoU‐based lesion‐level
sensitivities at 3FPs are 80.78% � 1.50% versus
60.40% � 1.64% for nnDetection and nnUNet respectively.

Precisions nnDetection is better than nnUNet for five of the
eight different FPs significantly (Table 4). For example, as shown
inTable 4, the two precisions at 3FPs are 39.70%� 1.24%versus
33.0on and nnUNet respectively.

PIRADS ≥ 4. Sensitivities 4% � 1.95%, 65.70% � 1.83%
versus 40.43% � 2.27% for nnDetectiand Precisions As shown
in Tables 3 and 5, in most cases, nnDetection has significantly
higher sensitivities (10 out of 12 different cases).

5.2 | Comparison between nnDetection and
nnUnet at the voxel‐level

nnUNet achieves higher DSC than nnDetection in detecting
the PIRADS ≥3 lesions when more than 1 FP is allowed,

F I GURE 1 The performance comparison in detecting PIRADS ≥ 3 lesions with IoU‐based lesion‐level sensitivity (a), GT‐perspective lesion‐level
sensitivity (b) and IoU‐based box‐level sensitivity (c). The transparent areas denote 95% confidence intervals. PIRADS, prostate imaging reporting and data
system.
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while outperforms nnDetection at nearly all test levels of FPs
in detecting PIRADS ≥4 lesions.

PIRADS ≥ 3. As shown in Table 4, the DSC with
nnUNet is greater than nnDetection at 1FP, 2FPs and 3FPs.
At 0.5FP, as shown in Table 4, the DSC with nnUNet

are larger than nnDetection being 0.16 � 0.01 versus
0.31 � 0.01.

PIRADS ≥ 4. As shown in Table 3, nnUNet significantly
outperforms nnDetection at the four sampled levels of FPs
(i.e. 0.5,1,2,3) (p < 0.01).

F I GURE 2 The performance comparison in detecting PIRADS ≥ 4 lesions with IoU‐based lesion‐level sensitivity (a), GT‐perspective lesion‐level
sensitivity (b), IoU‐based box‐level sensitivity (c). The transparent areas are 95% confidence intervals. PIRADS, prostate imaging reporting and data system.

TABLE 2 Mean sensitivities with corresponding average numbers of false positives (FPs) per patient, in detecting PIRADS ≥ 3 Lesions.

Model

SensitivityIoU‐based
Lesion‐Level Sensitivityoverlap‐based

GT‐perspective SensitivityIoU‐based
Box‐Level

0.5FP 1FP 2FPs 3FPs 0.5FP 1FP 2FPs 3FPs 0.5FP 1FP 2FPs 3FPs

nnUNet 0.26 0.57 0.64 0.60 0.27 0.60 0.91° 0.92 0.30 0.68 0.63 0.60

nnDetection 0.47° 0.64° 0.76° 0.81° 0.59° 0.78° 0.90 0.94° 0.57° 0.72° 0.83° 0.87°

nnUNet Argmax 0.57 0.61 N/A N/A 0.60 0.66 N/A N/A 0.59 N/A N/A N/A

Lesion‐wise Ensemble 0.41 0.53 0.74 0.77 0.43 0.59 0.84 0.91 0.29 0.50 0.77 0.84

Lesion‐wise Ensemble Argmax 0.56 0.67⋆ 0.82⋆ 0.82⋆ 0.66⋆ 0.77 0.93⋆ 0.95⋆ 0.60⋆ 0.69 0.86⋆ 0.88⋆

Voxel‐wise Ensemble 0.26 0.58 0.56 0.26 0.27 0.61 0.88 0.98⋆ 0.29 0.63 0.63 0.30

Voxe‐wise Ensemble Argmax 0.51 N/A N/A N/A 0.73⋆ N/A N/A N/A 0.56 N/A N/A N/A

Note: ⋆: significantly better than all baselines that are nnUNet, nnDetection and nnUNet Argmax (p < 0.01). °: the differences between nnUNet andnnDetection are significant
(p < 0.01). N/A: not applicable.
Abbreviation: PIRADS, prostate imaging reporting and data system.

TABLE 3 Mean sensitivities with corresponding average numbers of false positives (FPs) in detecting PIRADS ≥ 4 Lesions.

Model

SensitivityIoU‐based
Lesion‐Level Sensitivityoverlap‐based

GT‐perspective SensitivityIoU‐based
Box‐Level

0.5FP 1FP 2FPs 3FPs 0.5FP 1FP 2FPs 3FPs 0.5FP 1FP 2FPs 3FPs

nnUNet 0.47° 0.51° 0.53 0.54 0.48 0.52 0.55 0.56 0.49 0.54 0.59 0.58

nnDetection 0.44 0.50 0.58° 0.62° 0.55° 0.61° 0.67° 0.72° 0.50° 0.55° 0.62° 0.65°

nnUnet Argmax N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Lesion‐wise Ensemble 0.49⋆ 0.56⋆ 0.64⋆ 0.65⋆ 0.59⋆ 0.62⋆ 0.70⋆ 0.74⋆ 0.54⋆ 0.58⋆ 0.65⋆ 0.69⋆

Lesion‐wise Ensemble Argmax 0.48⋆ 0.56⋆ 0.62⋆ 0.64⋆ 0.56⋆ 0.64⋆ 0.70⋆ 0.72 0.53⋆ 0.61⋆ 0.65⋆ 0.68⋆

Voxel‐wise Ensemble 0.47 0.51 0.51 0.57 0.57⋆ 0.61 0.66 0.72 0.55⋆ 0.59⋆ 0.64⋆ 0.66⋆

Voxe‐wise Ensemble Argmax N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Note: ⋆: significantly better than all baselines that are nnUNet, nnDetection (p < 0.01). °: the difference between the nnUNet and nnDetection are significant (p < 0.01).
Abbreviation: PIRADS, prostate imaging reporting and data system.
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5.3 | Performance of lesion‐wise ensemble
methods

Lesion‐wise ensemble methods can significantly improve the
lesion‐level sensitivities and precisions in detecting PIRADS ≥
3 and PIRADS ≥ 4 lesions.

PIRADS ≥ 3. Sensitivities Improved performances with
respect to baselines are found with the Lesion‐wise Ensemble
Argmax (refer to Figure 1 and Table 2). According to results of
paired t‐tests, Lesion‐wise Ensemble Argmax achieves signifi-
cantly greater values than baselines (a) in terms of IoU‐based
lesion‐level sensitivity at 1FP, 2FPs and 3 FPs; (b) in terms
of IoU‐based box‐level sensitivity at 0.5FP, 2FPs, and 3FPs.
For example, at 2 FPs, Lesion‐wise Ensemble Argmax achieves
SensitivityIoU‐based

Lesion‐Level of 81.81% � 1.41%, outperforming
63.81% � 1.67% (nnUNet) and 76.05% � 2.0% (nnDe-
tection). It is noted that nnUNet Argmax cannot achieve 2 FPs.
Lesion‐wise Ensemble Argmax also outperforms baselines at
0.5 FP, 2FPs and 3FPs for SensitivityIoU‐based

Box‐Level with statistical
significance (p < 0.01).

Precisions Lesion‐wise Ensemble and Lesion‐wise
Ensemble Argmax outperform baselines at 0.5FP, 1FP, 2FPs

and 3FPs for PrecisionIoU‐based
Lesion‐Level and PrecisionIoU‐based

Lesion‐Level,
respectively (refer to Table 4).

PIRADS ≥ 4. Sensitivities Both ensemble methods ach-
ieve significantly greater sensitivities than baselines in almost all
cases at 0.5FP, 1FP, 2FPs and 3FPs (refer to Table 3). The only
exception is that the difference between Lesion‐wise Ensemble
Argmax (72.31% � 4.26%) and nnDtection (72.15% � 3.87)
at 3FP are not statistically significant for Sensitivityoverlap‐based

GT‐perspective
(p‐value = 0.3946).

Precisions Lesion‐wise Ensemble and Lesion‐wise
Ensemble Argmax respectively achieve significantly higher
values of PrecisionIoU‐based

Lesion‐Level than baselines at 0.5FP, 1FP,
2FPs and 1FP, 2FPs, 3FPs (refer to Table 5). For
PrecisionIoU‐based

Lesion‐Level, (a) the difference between Lesion‐wise
Ensemble (11.06% � 1.11%) and nnDetection (10.98% -
� 1.23%) is not significant at 3FP (p‐value = 0.3290); (b)
the difference between Lesion‐wise Ensemble Argmax
(34.86% � 4.07%) and nnUNet (35.33% � 3.19%) is not
statistically significant at 0.5FP (p‐value = 0.1348). It is
observed that both ensemble variants are inferior to nnDe-
tection for Precisionoverlap‐based

Prediction‐perspective (Table 5).

TABLE 4 Mean precisions and Dice Similarity Coefficient (DSC) with corresponding average numbers of false positives (FPs) in detecting PIRADS ≥ 3
Lesions.

Model

PrecisionIoU‐based
Lesion‐Level Precisionoverlap‐based

Prediction‐perspective DSC

0.5FP 1FP 2FPs 3FPs 0.5FP 1FP 2FPs 3FPs 0.5FP 1FP 2FPs 3FPs

nnUNet N/A 0.58 0.44 0.33 N/A 0.74 0.53 0.40 0.16 0.38° 0.45° 0.45°

nnDetection 0.69 0.61° 0.48° 0.40° 0.76 0.74 0.69° 0.66° 0.31° 0.35 0.36 0.35

nnUNet Argmax 0.73 0.60 N/A N/A 0.81 0.74 N/A N/A 0.40 0.41 N/A N/A

Lesion‐wise Ensemble 0.67 0.56 0.48 0.39 0.84⋆ 0.77⋆ 0.71⋆ 0.67⋆ 0.31 0.35 0.36 0.34

Lesion‐wise Ensemble Argmax 0.73 0.62⋆ 0.50⋆ 0.40⋆ 0.78 0.73 0.65 0.58 0.35 0.37 0.38 0.35

Voxel‐wise Ensemble N/A 0.59 0.40 0.18 N/A 0.73 0.49 0.25 0.16 0.38 0.40 0.29

Voxe‐wise Ensemble Argmax 0.71 N/A N/A N/A 0.78 N/A N/A N/A 0.35 N/A N/A N/A

Note: ⋆: significantly better than all baselines that are nnUNet, nnDetection and nnUNet Argmax (p < 0.01). °: the differences between nnUNet and nnDetection are significant
(p < 0.01).
Abbreviation: PIRADS, prostate imaging reporting and data system.

TABLE 5 Mean precisions and dice similarity coefficient (DSC) with corresponding average numbers of false positives (FPs) in detecting PIRADS ≥ 4
Lesions.

Model

PrecisionIoU‐based
Lesion‐Level Precisionoverlap‐based

Prediction‐perspective DSC

0.5FP 1FP 2FPs 3FPs 0.5FP 1FP 2FPs 3FPs 0.5FP 1FP 2FPs 3FPs

nnUNet 0.35° 0.23° 0.13 0.10 0.39 0.28 0.18 0.14 0.21° 0.19° 0.16° 0.16°

nnDetection 0.33 0.22 0.14° 0.11° 0.43° 0.35° 0.28° 0.23° 0.19 0.18 0.15 0.13

nnUnet Argmax N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Lesion‐wise Ensemble 0.36⋆ 0.24⋆ 0.16⋆ 0.11 0.41 0.28 0.18 0.14 0.19 0.15 0.14 0.13

Lesion‐wise Ensemble Argmax 0.35 0.24⋆ 0.16⋆ 0.11⋆ 0.41 0.29 0.20 0.17 0.19 0.16 0.13 0.11

Voxel‐wise Ensemble 0.35 0.23 0.13 0.10 0.36 0.26 0.16 0.12 0.19 0.16 0.14 0.13

Voxe‐wise Ensemble Argmax N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Note: ⋆: significantly better than all baselines that are nnUNet, nnDetection (p < 0.01). °: the differences between the nnUNet and nnDetection are significant (p < 0.01).
Abbreviation: PIRADS, prostate imaging reporting and data system.
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5.4 | Performance of voxel‐wise ensemble
methods

Voxel‐wise ensemble methods can significantly improve the
GT‐perspective sensitivities for detecting both PIRADS ≥ 3
and PIRADS ≥ 4 lesions, and IoU‐based box‐level sensitivity
for detecting PIRADS ≥ 4 lesions, both at certain levels
of FPs.

PIRADS ≥ 3. Sensitivities Voxel‐wise Ensemble Argmax
and Voxel‐wise Ensemble has achieved significantly greater
Sensitivityoverlap‐based

GT‐perspective than the best of baselines at 0.5FP and
3FPs, with 73.00% � 1.94 versus 60.20% � 1.56% and
97.99% � 0.69% versus 94.34% � 0.82% respectively (refer to
Table 2). Both ensemble variants perform worse than best of
baselines at other sampled FPs and/or sensitivities.

Precisions Both voxel‐wise ensemble variants are inferior
to the best of baselines at 0.5FP, 1FP, 2FP and 3FP (Table 4).

PIRADS ≥ 4. Sensitivities It is observed that Voxel‐wise
Ensemble outperform the baselines for IoU‐based box‐level
sensitivity significantly at 0.5FP, 1FP, 2FPs, 3FPs (refer to
Table 3). For SensitivityIoU‐based

Lesion‐Level and Sensitivityoverlap‐based
GT‐perspective,

Voxel‐wise Ensemble is worse than the best of baselines (refer
to Table 3).

Precisions Similar to the case of PIRADS ≥ 3, Voxel‐wise
Ensemble is worse than the best of baselines (Table 5).

6 | EXPERIMENTS AND RESULTS ON
EXTERNAL DATA SET

In this section, we show the results of trained models being
tested on the external data set with 100 patient scans, which
were acquired from different institutions from those of the
internal data set. In the external data, radiologist contours were
obtained for all lesions with Likert‐scores ≥3 and served as GT
labels. The models used is the one that have been trained with
the PIRADS ≥ 3 lesions. The mean and median lesion volume
are 2.05 and 1.18 cm3(range, 0.11–18.34 cm3). In the external
test data set, 81.48% lesions are in the PZ while 18.52% lesions
are in the TZ, which is quite different from the lesions' spatial
distribution in the internal data set as described in the Dataset
of the Experiments Section. All the data were centre cropped
and resampled to 128 � 128 � 32 with the spatial resolutions
being 0.625 � 0.625 � 3 mm.

For brevity, we only show the two lesion‐level sensitivities.
Table 6 shows SensitivityIoU‐based

Lesion‐Level and Sensitivity
overlap‐based
GT‐perspective at

the average numbers of FPs being 0.5, 1, 2, 3, 5, 10 FPs. In terms
of SensitivityIoU‐based

Lesion‐Level, either lesion‐wise ensemble method
achieve greater values (p < 0.01) than nnDetection and nnUNet
at five out of six FP levels(i.e. 1,2,3,5,10 FPs). In terms of
Sensitivityoverlap‐based

GT‐perspective, either lesion‐wise or voxel‐wise ensemble
(or Argmax) methods achieve greater values (p < 0.01) than

TABLE 6 Mean SensitivityIoU‐based
Lesion‐Level and Sensitivityoverlap‐based

GT‐perspective on the external data set with corresponding average numbers of false positives (FPs) per
patient, in detecting Likert‐scores ≥3 Lesions.

Model

SensitivityIoU‐based
Lesion‐Level

0.5FP 1FP 2FPs 3FPs 5FPs 10FPs

nnUNet 0.08 � 0.02 0.20 � 0.03 0.32 � 0.03 0.34 � 0.03 0.35 � 0.03 0.36 � 0.03

nnDetection 0.21° � 0.03° 0.27° � 0.03° 0.33° � 0.04° 0.38° � 0.04° 0.44° � 0.04° 0.50° � 0.04°

nnUNet Argmax 0.18 � 0.03 0.26 � 0.03 N/A N/A N/A N/A

Lesion‐wise Ensemble 0.13 � 0.02 0.23 � 0.03 0.34 � 0.04 0.35 � 0.04 0.42 � 0.04 0.49 � 0.04

Lesion‐wise Ensemble Argmax 0.17 � 0.03 0.28⋆ � 0.04⋆ 0.36⋆ � 0.04⋆ 0.40⋆ � 0.04⋆ 0.45⋆ � 0.04⋆ 0.52⋆ � 0.04⋆

Voxel‐wise Ensemble 0.08 � 0.02 0.20 � 0.03 0.32 � 0.04 0.32 � 0.04 0.29 � 0.03 0.21 � 0.03

Voxe‐wise Ensemble Argmax 0.19 � 0.03 0.28 � 0.03 N/A N/A N/A N/A

Model

Sensitivityoverlap‐based
GT‐perspective

0.5FP 1FP 2FPs 3FPs 5FPs 10FPs

nnUNet 0.09 � 0.02 0.20 � 0.03 0.47 � 0.04 0.58 � 0.04 0.63 � 0.04 0.68 � 0.04

nnDetection 0.33° � 0.04° 0.45° � 0.04° 0.61° � 0.04° 0.70° � 0.04° 0.76° � 0.03° 0.84° � 0.03°

nnUNet Argmax 0.23 � 0.03 0.32 � 0.04 N/A N/A N/A N/A

Lesion‐wise Ensemble 0.15 � 0.03 0.32 � 0.04 0.56 � 0.04 0.68 � 0.04 0.80⋆ � 0.03⋆ 0.88⋆ � 0.03⋆

Lesion‐wise Ensemble Argmax 0.31 � 0.04 0.50⋆ � 0.04⋆ 0.64⋆ � 0.04⋆ 0.68 � 0.04 0.74 � 0.04 0.87 � 0.03

Voxel‐wise Ensemble 0.09 � 0.02 0.20 � 0.03 0.43 � 0.04 0.54 � 0.04 0.70 � 0.04 0.81 � 0.03

Voxe‐wise Ensemble Argmax 0.33 � 0.04 0.46 � 0.04 N/A N/A N/A N/A

Note: ⋆: significantly better than all baselines including nnUNet, nnDetection and nnUNet Argmax (p < 0.01). °: the differences between nnUNet and nnDetection are significant
(p < 0.01). N/A: not applicable.
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nnDetection and nnUNet at four out of six FP levels(i.e. 1,2,5,10
FPs). Although lower sensitivity values have been achieved on
the external data set than those tested on the internal data set.
Two similar trends/observations/conclusions from both the
internal and external data sets: nnDetection outperforms nnU-
Net in terms of lesion‐level sensitivities and ensemble methods
can significantly improve the lesion‐level metrics.

7 | DISCUSSIONS

Results reveal that (1) nnDetection generally achieves signifi-
cant greater lesion‐level sensitivities and precisions than
nnUNet; (2) nnUNet (or its variants nnUNet Argmax) reaches
higher DSC than nnDtection at most levels of FPs; (3)
ensemble nnUNet and nnDetection significantly improves or is
comparable with the individual, regarding of the localisation
ability of detecting PIRADS > 3 and PIRADS ≥ 4 lesions.

Results reported in this study also indicate the strong
impact of the evaluation metric for comparing algorithms in
prostate cancer detection, where slight different observations
and thus following conclusions may be made. For example, it is
observed that under different definitions of sensitivities both
Voxel‐wise Ensemble(dashed purple line) and nnUNet(solid
red line) methods exhibit different trends with increasing FPs
(refer to Figure 1, more specifically comparing Figures 1(a,c)
and (b)). It is also noticed that all methods generally reach
higher values with the definition of prediction‐perspective
lesion‐level precision (b) than with that of IoU‐based lesion‐
level precision (a). For example, at 3FP, nnDetection ach-
ieves PrecisionPrediction‐perspective

Lesion‐Level versus PrecisionIoU‐based
Lesion‐Level of

39.70% � 1.24% versus 65.70% � 1.83% and 23.36%(0.0273)
versus 10.98% � 1.23% in detecting PIRADS ≥ 3 and
PIRADS ≥ 4 lesions respectively. The difference can be
explained by the fact that one prediction is considered as TP if
its ‘overlap’ with all GT lesions exceeds the preset threshold
(set to be 0.1 in this study) using the definition of
PrecisionPrediction‐perspective

Lesion‐Level in Lesion‐Level Evaluation Metrics
of the Methods Section whilst it has to ‘overlap’ with one
specific GT lesion more than that preset threshold using the
definition of PrecisionIoU‐based

Lesion‐Level in Lesion‐Level Evaluation
Metrics of the Methods Section.

Tables 7 and 8 show the maximum sensitivities and cor-
responding average number of FPs, in detecting PIRADS ≥ 3
and PIRADS ≥ 4 lesions respectively. For detecting
PIRADS ≥ 3 lesions, Lesion‐wise Ensemble Argmax achieves
the maximum SensitivityIoU‐based

Lesion‐Level and SensitivityIoU‐based
Box‐Level of

85.53% � 1.28% and 91.0% � 0.80% at 5 FPs. Voxel‐wise
Ensemble achieves the maximum Sensitivityoverlap‐based

GT‐perspective of
98.37% � 0.53% at 5 FPs. nnUNet achieves the maximum
DSC of 0.46 � 0.01 at 1.75 FPs. Due to the fact that detecting
prostate cancer in MRI scans is quite a challenging task, the
DSC being less than 0.5 in the scenario of automated prostate
cancer detection using deep‐learning is reasonable and
consistently with other reported in the literature. For example,

the study that utilises 2D UNet as the backbone and the
Gleason Grade group as the GT has reported the DSC being
0.370 � 0.046 for segmenting clinically significant cancer
(defined as GGG ≥ 2)2. For detecting PIRADS ≥ 4 lesions,
Lesion‐wise Ensemble Argmax achieves the maximum
SensitivityIoU‐based

Lesion‐Level of 67.84% � 3.55% at 5 FPs. Voxel‐wise
Ensemble achieves the maximum Sensitivityoverlap‐based

GT‐perspective of
77.27% � 2.84% at 5FPs. Lesion‐wise Ensemble achieves the
maximum SensitivityIoU‐based

Box‐Level of 73.14% � 2.85% at 5 FPs.
nnUNet achieves the maximum DSC of 0.22� 0.02 at 0.38 FP.
It is noted that the DSC in the range of [0.17,0.22] in detecting
the PIRADS ≥ 4 lesions are considerably smaller than the DSC
lying in the range of [0.35, 0.46] in detecting the PIRADS ≥ 3
lesions. The reasons are two‐folds: there are much fewer
PIRADS ≥ 4 lesions than PIRADS ≥ 3 lesions; in the binary
segmentation/detection of PIRADS ≥ 4 lesions, there are
patients with no GT PIRADS ≥ 4 lesions while the DSC is
computed patient‐wise and averaged over all patients. As an
example, if where is GT PIRADS ≥ 4 lesions but deep‐
learning models predict regions in one MRI scan, the DSC
computed with (8) is expected to be low. Thus, the way of
computing the DSC is pessimistic but the results are reason-
able. To conclude, for both detecting PIRADS ≥ 3 and
PIRADS ≥ 4 lesions (a) Lesion‐wise ensemble methods ach-
ieves the largest IoU‐based lesion‐level/box‐level sensitivities;
(b) Voxel‐wise ensemble method achieves the largest GT‐
perspective sensitivity; (c) nnUNet reaches the largest DSC.

For clinical applications like MRI‐targeted biopsies that
require missing as few clinically significant prostatic lesions as
possible [8], ensemble methods seem better choices with its
demonstrated greater sensitivities and precisions. Given that
one lesion has already detected, nnUNet with its higher DSC
maybe a better choice for applications like focal therapy that
requires as high lesion coverage as possible.

This study has limitations in a few aspects. First, the fact
that the raw nnDetection predictions are BBs may lead to bias
towards nnUNet in the evaluation when the metrics are based
on the lesion masks, and vice versa (i.e. it may lead to bias
towards nnDetection when the box‐level metrics are utilised).
More specifically, the segmentation network outputs the pre-
cise segmentation(that can be of any shapes) mask of interested
region while the detection network can only predict BBs(that
can only be rectangles). Thus, if the evaluation GT is
segmented masks of lesions (that can be of any shapes), the
evaluation will be biased towards the segmentation network.
Second, all networks are trained with and thus predict the
radiologist‐annotated PIRADS lesions, which themselves have
a wide range of sensitivity and specificity due to inter‐reader
variability and sub‐optimal analysis [28]. In the future, studies
on the real‐world clinical data with the histological GT will be
conducted, to see the extent of detecting histological‐
confirmed prostate cancer of deep‐learning‐based segmenta-
tion and detection models. Third, although we have validated
the approaches on one external data set, it should be noted that
the observations and conclusions cannot be directly
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TABLE 7 Maximum sensitivities with corresponding average numbers of false positives (FPs) in detecting PIRADS ≥ 3 Lesions. Inside the parentheses
are the numbers of FPs.

Model SensitivityIoU‐based
Lesion‐Level Sensitivityoverlap‐based

GT‐perspective SensitivityIoU‐based
Box‐Level DSC

nnUNet 70.88% � 1.77%(1.25) 93.46% � 0.87%(5) 73.92% � 1.56%(1.25) 0.46 ± 0.01(1.75)

nnDetection 83.31% � 1.73%(5) 96.65% � 0.83%(5) 90.05% � 1.18%(5) 0.36 � 0.01(1.75)

nnUnet Argmax 66.9 � 1.64%(1) 65.99% � 1.55%(1) 64.55% � 1.36%(0.88) 0.41 � 0.02 (0.63)

Lesion‐wise Ensemble 83.18% � 1.54%(5) 97.65% � 0.64%(5) 88.58% � 1.56%(5) 0.36 � 0.01(2)

Lesion‐wise Ensemble Argmax 85.53% ± 1.28%(5) 97.07% � 0.64% 91.0% ± 0.80%(5) 0.38 � 0.01(1.75)

Voxel‐wise Ensemble 70.49% � 1.50%(1.88) 98.37% ± 0.53%(5) 74.17% � 1.58%(1.75) 0.45 � 0.01(1.88)

Voxe‐wise Ensemble Argmax 53.23% � 1.72%(0.75) 75.62% � 1.78%(0.75) 58.39% � 1.89%(0.63) 0.35 � 0.01(0.75)

Abbreviation: PIRADS, prostate imaging reporting and data system.

TABLE 8 Maximum sensitivities and corresponding average numbers of false positives (FPs) in detecting PIRADS ≥ 4 Lesions.

Model SensitivityIoU‐based
Lesion‐Level(FPs) Sensitivityoverlap‐based

GT‐perspective(FPs) SensitivityIoU‐based
Box‐Level (FPs) DSC (FPs)

nnUNet 54.88% � 5.16%(2.63) 57.10% � 4.29%(5) 60.98% � 4.45%(5) 0.22 � 0.02(0.38)

nnDetection 66.42% � 3.42%(5) 76.42% � 3.26%(5) 69.29% � 3.55%(5) 0.20 � 0.02(0.5)

nnUnet Argmax 31.03% � 4.68%(0.08) 27.33% � 3.47%(0.08) 28.18% � 3.44%(0.05) 0.17 � 0.02(0.08)

Lesion‐wise Ensemble 67.5% � 3.90%(5) 76.89% � 2.90%(5) 73.14% ± 2.85%(5) 0.19 � 0.02(0.25)

Lesion‐wise Ensemble Argmax 67.84% ± 3.55%(5) 74.42% � 3.82(5) 70.55% � 3.61%(5) 0.20 � 0.02(0.38)

Voxel‐wise Ensemble 58.04% � 3.68%(5) 77.27% ± 2.84%(5) 66.74% � 4.74%(2.75) 0.19 � 0.02(0.25)

Voxe‐wise Ensemble Argmax 30.74% � 3.96%(0.08) 31.72% � 4.20%(0.08) 30.07% � 4.48%(0.08) 0.21 � 0.03(0.08)

Abbreviation: PIRADS, prostate imaging reporting and data system.

generalised to new data sets. We plan to conduct more ex-
periments for cross‐validation between more data sets [43].

ProstAttention‐Net achieves 69.0% � 14.5% sensitivity at
2.9 FP per patient, where the clinically significant lesions are
defined as those with GS > 6 [3]. As shown in Table 2, at 3
FPs, nnUNet, nnDetection, Lesion‐level Ensemble and
Lesion‐level Ensemble Argmax achieve 60.40% � 1.64%,
80.78% � 1.50%, 77.34% � 2.01% and 82.24% � 1.43% in
detecting the PIRADS ≥ 3 lesions, respectively. It should be
taken into consideration that the GT labels are not the same
between ProstAttention‐Net (GS) and our work (PIRADS
Score), and thus the direct comparisons of these numbers
should be taken with care.

Following aspects will be explored in the future. First,
multi‐class segmentation and object detection networks will be
trained where lesions with different PIRADS or Gleason scores
are distinguished and utilised. Second, ensemble methods of
segmentation and detection networks at the training stage will
be developed, in hope of further enhancing the performances.
For example, utilising the segmented masks in the training of an
object detection network has great potential for improving its
voxel‐level performance while maintaining high lesion‐level
sensitivity and precision at the same time.

8 | CONCLUSION

We believe that this paper provides an important set of
results to advance further development in this appli-
cation area, addressing a number of unanswered questions

regarding methodology choice, real‐world data performance
and rigorous validation. Results on real‐world clinical data
demonstrate that the object detection method generally ach-
ieves higher lesion‐level performances while the segmentation
reaches greater voxel‐level DSCs, and that the proposed
ensemble algorithms combining segmentation and detection
methods have shown effectiveness in improving localisation
accuracies. The proposed method potentially opens up the
possibility for exploring new ways to fully utilise both deep‐
learning‐based segmentation and object detection approaches
for automatic prostate cancer detection in MRI (also general
CAD from medical images).
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