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A B S T R A C T   

Constructing the reliable dynamic sensitivity profile for the output variable using the machine learning model is 
a challenging task; however, the dynamic sensitivity trends are helpful to understand the impact of the input 
variables on the system’s performance. In this paper, we have derived the partial-derivative approach-based 
sensitivity analysis expression for the non-linear auto regressive with exogenous (NARX) model for the first time. 
The engineering systems-based case studies, i.e., two distillation columns with five and ten stages, respectively 
are taken which are commonly found in the chemical processing plants. Two output variables, i.e., liquid 
composition in tray 2 and tray 4 (Y2 and Y4) of a five-stage distillation column, and liquid composition in tray 7 
(Y7) of a ten-stage (higher) distillation column are modelled by NARX with respect to time, feed concentration 
(Xf) and feed flow rate (Lf). The dynamic sensitivity profiles of the output variables with respect to Xf and Lf for 
the two distillation columns are plotted by the derived partial derivative-based sensitivity expression on the 
NARX model. Furthermore, the forward difference method of sensitivity analysis (first principle method) is also 
applied on the ordinary differential equations of the distillation columns to compute the sensitivity values of the 
output variables. A good agreement in the dynamic sensitivity values of the output variables with respect to the 
input variables is found for the two sensitivity analysis techniques thereby demonstrating the effectiveness of the 
partial-derivative approach for the improved NARX’s interpretability performance. This research presents the 
explicit partial-derivative based sensitivity analysis expression for the NARX model which can be utilised for 
time-series applications and can provide the insights about the model’s interpretation performance.   

1. Introduction 

The rising energy demand and increased emissions discharge to the 
environment is expected on the face of increasing population size, 
consumption based economies and improved life style around the world 
[1]. However, we are experiencing industry 4.0 revolution in the twenty 
first century, and the productivity, quality and efficiency of industrial 
complexes and energy systems have been boosted many folds under the 
technological advancement [2]. The industrial systems store heaps of 
data in the data storage banks formally called supervisory information 
systems. This creates the situation to deploy the industrial data for 
intensive data-exploratory and value-creating analytics for the time 
dependent applications [3,4]. The data-driven analytics can be applied 
for the operational excellence, informed decision making and 
data-aware policy making for enhancing the performance of any system 

under investigation [5]. 
Machine learning (ML) algorithms are used for the data-driven 

modelling and optimisation analytics as they can detect the pattern 
and hidden features in the data with good accuracy [6,7], and can be 
computationally cheaper compared with the first-principle model based 
analyses [8,9]. Artificial neural network is one amongst the popular 
modelling algorithms of ML [10] and is deployed for the data-driven 
modelling applications due to their versatility, excellent ability to 
approximate the function and low memory requirements [11,12]. Multi 
layered perceptron (MLP) is the basic component of ANN and its 
working mimics how human brain processes information to make de-
cisions [13]. The nonlinear autoregressive with exogenous (NARX) 
network is another variant of ANN and incorporates the MLP structure 
along with the past observations of the input and output variables that 
act as sliding windows. The sliding window passes over the training data 
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and contributes to model the nonlinear dynamics of timeseries datasets 
[14–17]. The sliding window is termed as delay in the algorithm of 
NARX and is a critical hyperparameter that is to be optimised to achieve 
the good modelling accuracy of NARX. 

Neural networks offer predictive benefits as compared to other al-
gorithms such as their ability to develop hard-to-find nonlinear and 
complex relationships and interactions between the input and output 
variables, and to handle volumes of data for building effective functional 
mapping with reasonable computational resource utilisation [18]. 
Neural networks are essentially black-box models and thus, it is quite 
difficult to explain how the model simulates the output variables’ value 
for the given input conditions (low interpretability) [19]. Therefore, 
research community is actively engaged on developing the techniques to 
understand and explain the causal effects of input variables on the 
neural network’s predictions [20]. Some examples are described as 
follows: 

Neural interpretation diagram (NID) is a modification to the struc-
ture of neural network and it highlights the width and colour of the 
connections between the neurons depending upon the sign and width of 
weights thereby differentiating the significant input variables [21]. 
Garson’s method computes the summation of the product of the absolute 
value of weights from the input to output variables via hidden layer, and 
scaled it relative to all other input variables to identify the significant 
variable [22]. Olden’s method [22] also performs the similar compu-
tation except that real value of weights is used and the resultant value is 
not scaled. Input perturbation method [23] adds a noise to the value of 
the input variable under investigation whereas other input variables are 
kept at a certain value. The constructed experiments are simulated from 
the model and the change in the selected performance metrics presents 
the relative variable importance. Similar to the input perturbation 
method, profile method [24] for sensitivity analysis allows to vary the 
value of selected input variable while keeping the other input variables 
at different quantile values. Thus, different plots for the input variables 
are created. Beck M.W [25] presented a modification to this technique 
where central value of training data clusters is utilised instead of 
selecting the quantile values. 

Partial dependence plot (PDP) approach [26–29] plots the individual 
conditional expectation (ICE) curves for the output variable against the 
selected input variable. Later, the average value of the ICE curves is 
taken in order to visualise the PDP curve for the input variable. Local 
interpretable model-agnostic explanations method [30] explains the 
complexity of ANN by locally approximating it with the interpretable 
models like linear regression or decision tree. Shapley values computed 
by SHAP (SHapley Additive exPlanations) method computes the mar-
ginal contribution of the input variable to explain the output of neural 
network and can be computed by conditional expectation function [31]. 
Stepwise addition and elimination methods [32] rebuild the neural 
network by adding or removing the input neuron respectively in a 
sequential approach, and the change in the chosen performance metrics 
at each step depicts the relative importance of input variable. Partial 
derivative method takes the partial derivative of neural network’s 
output with respect to the input variable and evaluate the resulting 
expression on a dataset. 

The techniques mentioned above are useful to explain the inter-
pretability of neural networks. However, they have certain drawbacks as 
well thereby limiting their applicability. Explaining the results of NID 
method is difficult given the weight connections in the neural networks. 
Garson and Olden method only consider the weights connection from 
input to hidden layer and Lek’s profile technique can present the anal-
ysis on the constructed scenarios not supported by the training data. PDP 
may present misleading results for correlated input variables. Local 
linearisation can provide information only in certain regions thus 
quantitative information on the entire dataset is missing. SHAP method 
is not an exact measure of causality, and can be computationally 
expensive for the large number of input variables. Forward and back-
ward elimination is a computationally exhaustive method and may 

produce inconsistent results based on order of input variables to be 
added or removed. Whereas, computing the partial-derivative of func-
tion with respect to large number of input variables can be time- 
consuming. 

It is important to mention here that the partial derivative method 
analytically estimates the variable significance by taking the derivative 
of the neural network with respect to the input variable from the explicit 
sensitivity analysis expression. The contributions of the weight con-
nections and activation function are also accounted in addition to the 
value of the input variables. The partial derivative method provides 
more robust diagnostics for a well-trained neural network, and thus the 
derivative of the network will provide stable results thereby providing a 
competitive edge, in terms of model interpretability compared to the 
mentioned sensitivity analysis techniques and also outweighs the time- 
consuming aspect of the approach. 

The objective of this work is to derive the partial-derivative based 
sensitivity analysis expression for the NARX model and utilise the 
expression to obtain the dynamic sensitivity information of the input 
variables of the trained NARX model. The explicit partial-derivative 
based sensitivity analysis expression for NARX is not available in the 
open literature and thus, this research bridges this identified gap by 
providing the explicit partial-derivative based sensitivity analysis 
expression for the NARX model. The partial-derivative approach ex-
plains the complexity of neural network through the explicit expression 
that offers the insights about the model’s interpretation performance. In 
this research, two case studies on time-series based engineering system’s 
applications, i.e., a distillation column and a higher-order distillation 
column are taken, and NARX models are trained on the data obtained 
after solving the ordinary differential equations (ODEs) of the distilla-
tion columns corresponding to different initial conditions. Later, the 
dynamic sensitivity trend of the output variables against the input var-
iables of the distillation columns is plotted by the derived NARX based 
partial-derivative method. Furthermore, the forward difference method 
on the ODEs of the distillation columns is applied to compute the vari-
able’s sensitivity and is compared with that of the partial-derivative 
approach to confirm the accuracy of the dynamic sensitivity trends 
plotted by partial derivative-based sensitivity analysis carried out using 
the NARX model. The comparison also allows to investigate the inter-
pretability performance of NARX model in terms of the significance 
order of the input variables towards predicting the output variables [33, 
34]. Thus, the derived partial derivative based sensitivity analysis 
expression can be utilised in various real-life applications to plot the 
dynamic trends of the system’s performance complemented with the 
improved interpretability of NARX algorithm which is helpful to make 
informed and knowledgeable decisions. 

This paper is structured as: The working of the NARX model is 
described in Section 2. The partial derivative of the NARX model is 
calculated and presented in Section 3. The dynamic sensitivity trends of 
the output variables against the input variables are plotted for two ex-
amples, distillation and higher-order distillation column, and the details 
are provided in Sections 4.1 and 4.2 respectively. Finally, conclusion of 
this research is mentioned in Section 5. 

2. Development of non-linear auto regressive with exogenous 
(NARX) model 

A nonlinear autoregressive network with exogenous (NARX) model 
is a time-series based function approximation algorithm for modelling 
the dynamic profile of a system. A NARX model is basically a MLP 
network and can incorporate the past input and output observations to 
predict the current output value. It can include the delay terms of the 
input as well as output time-series to map their causal relationships. 
Mathematically, the working of NARX model can be expressed as [35, 
36]: 

y(t) = f
(
u(t − nu),…, u(t − 1), u(t), y

(
t − ny

)
,…, y(t − 1)

)
(1) 
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where, u(t − nu),…, u(t − 1), u(t) is the input time series and y(t − ny),…, 
y(t − 1) is the output time-series. nu and ny are the lag terms introduced 
in the time-series of input and output variables respectively. f represents 
the non-linear MLP function mapping the two exogenous series to pre-
dict the current value of the output variable (y(t)). The states of the 
NARX model are specified with respect to nu and ny which are the tapped 
delays for input and output time-series respectively. The states of the 
NARX model are updated as: 

xi(t+ 1) =

⎧
⎨

⎩

u(t) i = nu
y(t) i = nu + ny

xi+1(t) 1 ≤ i < nu and nu < i < nu + ny

(2)  

so that, at time ‘t’, the taps correspond to the values: 

x(t) =
[
u(t − nu)…u(t − 1), y

(
t − ny

)
…y(t − 1)

]
(3) 

According to the working of feedforward MLP, the output produced 
at the ith neuron of the hidden layer at time ‘t’ is given as (Hi(t)): 

Hi(t) = f1

[
∑nu

r=0
wiru(t − r)+

∑ny

l=1
wily(t − l)+ ai

]

(4)  

here, wir is the weight connecting the input time series neuron u(t − r) 
with the ith hidden layer neuron. Similarly, wlr corresponds to the 
connection weight between the feedback neuron y(t − l) and the ith 

hidden layer neuron. ai is the bias value applied at the ith hidden layer 
neuron and f1 is the activation function applied at the hidden layer. 

The final output produced at the output neuron of the NARX network 
is computed as: 

ŷj(t) = f2

[
∑nh

i=1
wjiHi(t)+ bj

]

(5)  

where, wji is the weight of the link connecting the jth and ith neuron of the 
output and hidden layer neuron respectively. bj is the bias value applied 
at the jth neuron of the output layer; nhis the number of hidden layer 
neurons; f2 is the activation function applied at the output layer. Finally, 
ŷj(t) is the output value predicted by the NARX network for the given 
exogenous input and output time series. A simple architecture demon-
strating the working of NARX model is presented in Fig. 1. Two input 
and feedback delays as well as three hidden layer neurons are consid-
ered in the NARX network, and the model predicted response for the 
output is represented by ŷ(t) for the input series u(t) and delay states 
x1(t) to x4(t). 

The modelling performance of the developed NARX network is 
measured by two statistical terms namely co-efficient of determination 
(R2) and root-mean-squared-error (RMSE). The performance matrix 

built on these two terms are utilised in research studies for evaluating 
the prediction efficiency of the machine learning model [37,38]. 
Mathematically, R2 and RMSE are written as: 

R2 = 1 −

∑N
i (yi − ŷi)

2

∑N
i (yi − yi)

2 (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ŷi − yi)

2

√
√
√
√ (7) 

R2 is regarded as the accuracy of the developed model to predict the 
value of the output variable corresponding to the input vector. The value 
of R2 varies from zero (poor predictability) to one (perfect prediction). 
Whereas, RMSE indicates the difference between the model-simulated 
responses and the true observations, and should be minimum thereby 
the model has excellent prediction performance. 

3. Partial derivative-based sensitivity expression of NARX model 

The sensitivity of NARX model can be expressed as first-order partial 
derivative between the input and output variables. NARX consists of 
MLP structure along with the feedback loop to map the output variable 
with respect to the input as well as the delayed responses of the vari-
ables. The information received at any neuron of the hidden layer at 
time ‘t’ can be expressed as: 

Sh(t) = Np(t) whp +
∑

i ∕=p

Ni(t) whi + Np(t− d) w′
hp +

∑

i ∕=p

Ni(t− d) w′
hi

+
∑d

i=1
whj yi(t− d) + bh (8)  

where, Np(t) is the dynamic input variable whose sensitivity on the 
output is to be evaluated. whp is the weight connection from Np(t) to a 
hidden layer neuron; Ni(t) is the set of other dynamic input variables 
having connection weights whi with the hidden layer neuron; Np(t − d) 
and Ni(t − d) are the delayed connections of Np(t) and Ni(t) in the NARX 
having the weights connections w′hp and w′hi respectively; yi(t − d) is the 
delayed feedback response of the output variable and whj is the weight 
connection of yi(t − d) with the hidden layer neuron; bh is the bias 
introduced to the hidden layer; and Sh(t) represents the information 
collected at the hidden layer of NARX. The activation function (ϕ) is 
applied on Sh(t) which is expressed as: 

Nh(t) = ϕh
(
Sh(t)

)
(9)  

here, Nh(t) represents the information signal forwarded to the output 
layer from the hidden layer of NARX. The information processing at the 

Fig. 1. The multilayer perceptron-based architecture of NARX network. Here, nu = ny = 2 and H = 3.  
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output layer is given as: 

So(t) = Nh(t) woh +
∑

j ∕=h

Nj(t) woj + bo (10)  

No(t) = ϕo
(
So(t)

)
(11)  

here, bo is the bias term applied at the output layer; ϕo refers to the 
activation function applied on the output layer of NARX; ‘j’ denotes the 
neuron in the hidden layer; and No(t) is the value simulated by NARX for 
the given input values of the variables. Also, we have: 

∂Sh(t)

∂Np(t)
= whp (12)  

∂So(t)

∂Nh(t)
= woh (13) 

The first-order partial derivative of output variable with respect to 
the input variable Xp (Ni = Xp) is: 

∂No(t)

∂Xp(t)
=

∂No(t)

∂Np(t)
=

∂No(t)

∂Nh(t)

∂Nh(t)

∂Np(t)
=

(
dNo(t)

dSo(t)

∂So(t)

∂Nh(t)

)(
dNh(t)

dSh(t)

∂Sh(t)

∂Np(t)

)

(14) 

Considering Eqs. (9) and (11): 

dNo(t)

dSo(t)
= ϕ′

o

(
So(t)

)
(15)  

dNh(t)

dSh(t)
= ϕ′

h

(
Sh(t)

)
(16) 

Eq. (14) can be expressed as: 

∂No(t)

∂Xp(t)
= ϕ′

o

(
So(t)

)
wohϕ′

h

(
Sh(t)

)
whp (17) 

Since, the hidden layer consists of more than one neuron, the general 
form of partial derivative-based input sensitivity of three-layer MLP 
based NARX model for ‘nh’ hidden layer neurons is expressed as: 

∂No(t)

∂Xp(t)
=

∑nh

h=1
ϕ′

o

(
So(t)

)
wohϕ′

h

(
Sh(t)

)
whp (18) 

In this work, (ϕh(Sh) = (exp(2S) − 1)/(exp(2S) + 1)) is the tangent 
hyperbolic based activation function deployed on the hidden layer while 
linear activation function (ϕh(So) = So)is implemented on the output 
layer. Therefore, first-derivative of tangent hyperbolic function is given 
as: 

ϕ′(S) = 1 − ϕ2(S) = 1 − N2 (19) 

Thus, Eq. (18) can be expressed as: 

∂No(t)

∂Xp(t)
=

∑nh

h=1
woh

(
1 − N2)whp (20) 

The Eq. (20) describes the absolute dynamic sensitivity of output 
variable No(t) for per unit change in input variable Xp(t) which can be 
deployed to identify the significant input variables for the system under 
investigation. 

4. Results and discussion 

4.1. Development of NARX model and its partial-derivative based 
sensitivity analysis for distillation column 

A distillation column is a commonly used industrial component in 
the material separation techniques and is used for the range of appli-
cations including water desalination systems [39,40], crude oil and 
mixture separations in the process industries [41–43]. The distillation 
column is a non-linear dynamic system and is considered to investigate 

the comparison between the sensitivity analysis made by partial deriv-
ative method on the NARX model and forward difference method on 
ODEs of distillation column (first-principle method). The distillation 
tower consists of a total condenser, five trays and a reboiler. Feed in 
liquid phase is maintained at its boiling point and enters the tower at 
tray 3. It is assumed that constant molar flow rate and accurate control 
of the levels in the reboiler and condenser are maintained. The distur-
bances are introduced in feed concentration Xf and feed flow rate Lf. The 
dynamic operation of the distillation column is represented by the 
following ordinary differential equations (ODEs): 

Reboiler : Hr
dX1

dt
=

(
L+Lf

)
(X2 − X1) + V(X1 − y1) (21)  

Tray 2 : Ht
dX2

dt
=

(
L+Lf

)
(X3 − X2) + V(y1 − y2) (22)  

Feed tray : Ht
dX3

dt
= Lf Xf + LX4 −

(
L+Lf

)
X3 + V(y2 − y3) (23)  

Tray 4 : Ht
dX4

dt
= L(X5 − X4) + V(y3 − y4) (24)  

Condenser : Hc
dX5

dt
= V(y4 − X5) (25) 

The equilibrium in vapour–liquid state in the distillation column is 
expressed as: 

yi =
αXi

1 + (α − 1)Xi
(26)  

where, Xi represents the light component’s liquid mole fraction at tray i 
(i = 1,2,…,5) and yi denotes the light component’s vapor mole fraction 
above the tray i. V and L are vapor and liquid molar flow rates. The two 
liquid compositions measured at the tray 2 (X2 now represented as Y2) 
and tray 4 (X4 now represented as Y4) are taken as the output variables 
to be modelled by NARX, and are depicted on five stage distillation 
column diagram on Fig. 2. The values of the parameters are found from 
the literature [44,45] and are taken as: L = 27.3755 mol (min)− 1, Hc =

30 mol, Hr = 30 mol, Ht = 20 mol, α = 5, and V=32.3755 mol (min)− 1 

and are utilised to numerically solve the first principle equations of the 
distillation column. 

The two input variables, Xf and Lf, are varied in the operating range, 
i.e., 0.5–0.7 and 6 to 10 as reported in literature [44,45]. The step-size of 
0.01 and 0.2 is taken for Xf and Lf respectively, and 20 experiments are 
constructed for the input variables. Subsequently, the developed ODEs 
of the distillation column are numerically solved in MATLAB 2021b 
version using ode23 solver. The dynamic profiles of the two output 
variables, Y2 and Y4 are retained for two time-step values, i.e., t = 13, 26. 
Thus, the simulated datasets consisting of the causal inputs and the 
output variables and having 40 observations are normalised into − 1 to 1 
scale and are deployed to develop the NARX model for Y2 and Y4. 

NARX network is trained on the data simulated by the ODEs of the 
distillation column. Levenberg Marquardt algorithm is deployed for the 
parametric optimisation of the network and sum-of-square-error is used 
as loss function [46]. The activation function applied at the hidden and 
output layer of NARX is tangent sigmoidal and linear respectively [47]. 
Various combinations of the delays (input and feedback) and hidden 
layer neurons are tried for the NARX model development. The perfor-
mance metrics constructed on R2 and RMSE are measured corresponding 
to the developed NARX network. Fig. 2 shows the performance metrics 
computed for the NARX network of Y2 and Y4 under various architec-
tural configuration (hidden layer neurons, input delay, feedback delay). 
The performance metrics of the developed networks are compared. It is 
found that NARX network with five hidden layer neurons and one 
feedback delay has the comparatively improved values of R2 and RMSE, 
i.e., 1 and 0.00076 respectively for Y2. Similarly, the optimal architec-
tural configuration developed for Y4 has four hidden layer neurons and 
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one feedback delay with R2 value of 1 and RMSE is 0.00020. The two 
NARX models have comparatively higher merit of performance in 
modelling the two output variables and are deployed for conducting the 
partial-derivative based sensitivity analysis. 

The partial derivative-based sensitivity of the input over the output 
variable is computed using Eq. (20) for the NARX model. The weight 
vector of the input variable from input layer to the hidden layer of NARX 
is compiled. Moreover, the weight vector from the hidden layer neurons 
to the output neuron is constructed. Similarly, the term (1 − N2) is 
computed using the Eq. (19). The dynamic sensitivity profile of the input 
variables, i.e., Xf and Lf is evaluated over the output variables (Y2 and 
Y4) for two time step values. Similarly, the dynamic sensitivity profile of 
the input variables over the two output variables is also developed by 
the forward difference method applied on the ODEs (Eqs. (21)–(26)). 

Fig. 3 compares the sensitivity of two output variables, i.e., Y2 and Y4 
towards the input variables (Xf and Lf) at t = 13,26. The dynamic 
sensitivity profiles of the two output variables are constructed at the four 
operating points of Xf and Lf taken as 0.54–0.57 and 7.6–8.8 with the 
step size of 0.01 and 0.4 respectively. During the evaluation of dynamic 
sensitivity of Y2 and Y4 with respect to Xf, Lf is kept at 8. Similarly, Xf is 
set at 0.55 to investigate the dynamic sensitivity of two output variables 
towards Lf. 

A general increasing trend in the dynamic sensitivity of the two 
output variables is observed with respect to Xf and Lf computed by 
partial derivative method on NARX model and forward difference 
method on ODEs (first principle). Y2 appears to be more sensitive to Xf 
since the dynamic sensitivity values are comparatively bigger than that 

of Lf. However, Y4 has higher dynamic sensitivity to Lf compared with 
that of Xf. It is important to note that the two sensitivity analysis 
methods present the comparable and similar dynamic sensitivity trends 
for the output variables which are computed with respect to the input 
variables. Furthermore, the similar significance order of the input var-
iables is established by the two techniques confirming the accurate 
interpretability performance of the NARX model to predict the values of 
the output variables as investigated by the derived partial-based sensi-
tivity expression. 

Initially, the dynamic sensitivity profiles of Y2 and Y4 with respect to 
Xf and Lf are constructed relative to the time scale for t = 13, 26. Fig. 4 
presents sensitivity trend of Y4 plotted with respect to Xf and Lf at t = 13, 
26 computed by first principle and partial-derivative approach applied 
on NARX. An increasing dynamic sensitivity trend is observed for Xf and 
Lf when time is kept at 13 and 26. The sensitivity values at the two-time 
steps are in good agreement for two sensitivity analysis techniques 
indicating the good functional mapping created in the trained NARX 
model for the predictive analysis. 

4.2. Development of NARX model and its partial-derivative based 
sensitivity analysis for higher distillation column 

A higher order distillation column comprising on ten stages 
including reboiler, condenser and feed entering at stage five is consid-
ered to implement the partial-derivative method for the sensitivity 
analysis of NARX model. The liquid composition at stage seven is taken 
as output variable (X7 now taken as Y7) to be modelled by t, Xf and Lf and 

Fig. 2. Graphical visualisation of five stage distillation column where Xf and Lf are deployed to model Y2 and Y4 by NARX. Development of NARX network for Y2 and 
Y4 under different configurations (hidden layer neurons, input delay, feedback delay) is presented. Y2 (5,0,1) and Y4 (4,0,1) achieved comparatively higher R2 and 
lower RMSE values than those of other NARX networks having different structural configuration. 
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also shown on Fig. 5. The mathematical model of the considered higher 
distillation column is given as follows: 

Reboiler : Hr
dX1

dt
=

(
L+ Lf

)
(X2 − X1) + V(X1 − y1) (27)  

Tray 2 : Ht
dX2

dt
=

(
L+ Lf

)
(X3 − X2) + V(y1 − y2) (28)  

Tray 3 : Ht
dX3

dt
=

(
L+ Lf

)
(X4 − X3) + V(y2 − y3) (29)  

Tray 4 : Ht
dX4

dt
=

(
L+ Lf

)
(X5 − X4) + V(y3 − y4) (30)  

Feed tray : Ht
dX5

dt
= Lf Xf + LX6 −

(
L+Lf

)
X5+V(y4 − y5 (31)  

Tray 6 : Ht
dX6

dt
= L(X7 − X6) + V(y5 − y6) (32)  

Tray 7 : Ht
dX7

dt
= L(X8 − X7) + V(y6 − y7) (33)  

Tray 8 : Ht
dX8

dt
= L(X9 − X8) + V(y7 − y8) (34)  

Tray 9 : Ht
dX9

dt
= L(X10 − X9) + V(y8 − y9) (35)  

Condenser : Hc
dX10

dt
= V(y9 − X10) (36) 

The vapour–liquid equilibrium maintained in the distillation column 
is expressed as: 

yi =
αXi

1 + (α − 1)Xi
(37) 

The values of parameters are same as considered for distillation 
column in the previous Section 4.1 and are deployed for solving the 
ODEs of higher distillation columns in MATLAB 2021b version using 
ode23 solver. Xf and Lf are varied from 0.5 to 0.7 and 6 to 10 respectively 
with the step size of 0.01 and 0.4 thereby making 20 input conditions. 
The simulated values of Y7 are retained and taken corresponding to t =
0.39, 1.0, 1.44, 2.07 thereby making 80 observations for the 
input–output dataset. 

The simulated dataset is normalised into − 1 to 1 scale and is 
deployed for modelling Y7 on the input variables by NARX algorithm. 
Tangent sigmoidal and linear activation function are implemented at the 
hidden and output layer of NARX respectively. Various combinations of 
the delays (input and feedback) and hidden layer neurons are tried for 
the NARX model development. R2 and RMSE are calculated corre-
sponding to the architecture of the network. Fig. 5 shows the modelling 
performance of the NARX networks developed under different combi-
nation of hidden layer neurons, input delay and feedback delay. R2 value 
is observed from 0.62 to 1.0 whereas RMSE is varied from 0.0168 to 
0.312. Closely comparing the performance metrics of the developed 

Fig. 3. Comparison of partial-derivative based sensitivity analysis of developed NARX models and first principle method for Y2 and Y4 with respect to Xf and Lf. A 
good match is observable for the dynamic sensitivity values of Y2 and Y4 against the input variables. 
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models, it is found that NARX network with four hidden layer neurons 
and one feedback delay has comparatively better values of performance 
metrics, i.e., R2 = 1 and RMSE = 0.0168. Thus, the developed NARX 
model is deployed to evaluate the sensitivity of Y7 towards the input 
variables by partial-derivative method. 

The developed NARX network for modelling Y7 is deployed for 
conducting the partial derivative-based sensitivity analysis. The weight 
matrices woh and whp are compiled and the term (1 − N2) is computed on 
the data deployed for conducting the sensitivity analysis. Fig. 6 shows 
the sensitivity of Y7 towards the input variables at four-time step values 
computed by partial derivative approach on NARX network and forward 
difference method on the ODEs (first principle) of higher distillation 
column. The dynamic sensitivity of output variable is evaluated for Xf =

0.54 to 0.7 and Lf = 7.6 to 8.8 with the step size of 0.01 and 0.4 
respectively at t = 0.39, 1.0, 1.44, 2.07. Similarly, Lf and Xf is taken as 8 
and 0.6 during dynamic sensitivity evaluation with respect to Xf and 
Lfrespectively. A non-linear dynamic sensitivity trend is observed for Y7 
with respect to Xf and Lf for four-time step values as shown on Fig. 6. 
There exists a good agreement between the NARX based partial deriv-
ative approach and forward difference method on the ODEs for the 
sensitivity analysis indicating the accuracy of the derived partial- 
derivative expression for the NARX model. Another important aspect 
to note here is the significance order of the input variables towards the 
sensitivity of Y7. It is apparent from Fig. 6 that Y7 is more sensitive to Lf 
as compared to Xf since the sensitivity values computed by the two 
techniques for the output variable are higher with respect to Lf than 
those of Xf. The correct significance order of input variables is estab-
lished by the partial-derivative based approach offering the accurate 

interpretability performance of NARX model. This further confirms the 
accurate interpretability performance of the NARX model as computed 
through leveraging the mathematical rigor of partial-derivative 
approach. 

The dynamic sensitivity of Y7 to Xf and Lf is visualised with respect to 
time scale and presented in Fig. 7. The dynamic sensitivity trend is 
plotted corresponding to Xf = 0.54 and Lf = 8.8 for time scale: t = 0.39, 
1, 1.44, 2.07. A nonlinear sensitivity trend of Y7 initially increased from t 
= 0.39 to t = 1.0 and subsequently decreased until t = 1.44 and finally 
increased up to t = 2.07 for both input variables, i.e., Xf and Lf. The two 
sensitivity analysis approaches, i.e., partial derivative method of NARX 
model and first principle method on ODEs present the closer sensitivity 
values and follows the trend in good agreement. 

5. Conclusion 

In this paper, we have derived the partial derivative based explicit 
dynamic sensitivity analysis expression for the non-linear auto regres-
sive with exogenous (NARX) model. The derived expression for the 
dynamic sensitivity analysis is applied on two engineering system-based 
case studies, i.e., distillation column and higher distillation column. The 
input variables of the distillation column, i.e., t, Xf and Lf are deployed to 
model liquid mole fraction corresponding to second & fourth stage of 
distillation column (Y2 & Y4), and liquid mole fraction corresponding to 
seventh stage of higher distillation column (Y7).  

• Y2 is appeared to be relatively more sensitive to Xf than Lf, whereas Lf 
is relatively more significant towards the dynamic sensitivity of Y4 as 

Fig. 4. Comparison of the dynamic sensitivity trend of Y2 and Y4 against Xf and Lf as based upon the first principle and NARX method. A reasonably good match 
among the dynamic sensitivity values and pointing of the trend is observable for the two approaches. 
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evaluated on partial-derivative approach on NARX model and first 
principle method. Moreover, higher relative sensitivity of Y7 towards 
Lf as compared with that of Xf is observed as analysed by partial- 
derivative and first-principle approach.  

• The comparison of the sensitivity values computed from the NARX 
model by partial-derivative and first-principle approach allows to 
investigate the interpretation performance of the NARX model. We 
observe the similar order of significance of the input variables to-
wards the output variables of distillation columns as established by 
partial-derivative and first-principle approach that confirms the 
good interpretation performance analysed by partial-derivative 
approach on the NARX model.  

• This research presents the explicit expression derived by the partial 
derivative approach to plot the dynamic sensitivity trends for the 
NARX model that is helpful to explain the interpretability perfor-
mance of the NARX model. Furthermore, the partial-derivative based 
sensitivity expression can help get the insight of the impact of causal 

variables on the dynamic operations of system under investigation. 
The current work presents the dynamic sensitivity information cor-
responding to the time-steps upon which the NARX model is trained. 
In the future work, the dynamic sensitivity values can be computed 
at different values of the time and the information can be used for the 
control and decision-making for the dynamic operations of real-life 
applications. 

Funding 

The Punjab Education Endowment Fund (PEEF) provides the funding 
(funding number: PEEF/CMMS/21/142) to Waqar Muhammad Ashraf 
to pursue his PhD from University College London. 

CRediT authorship contribution statement 

Waqar Muhammad Ashraf: Writing – original draft, Software, 

Fig. 5. Graphical visualisation of ten stage distillation column where Xf and Lf are deployed to model Y7 by NARX development of NARX network to model Y7 of 
higher-order distillation column under various architectural configurations (hidden layer neurons, input delay, feedback delay) is presented. Y7 (4,0,1) achieved R2 

value of 1 and RMSE value of 0.0168 representing improved performance metrics in comparison with those of other NARX networks having different configurations. 

W.M. Ashraf and V. Dua                                                                                                                                                                                                                     



Chemical Engineering Journal Advances 18 (2024) 100605

9

Methodology, Investigation, Data curation. Vivek Dua: Writing – re-
view & editing, Supervision, Project administration, Investigation, 
Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

References 

[1] M.W. Shahzad, et al., Energy-water-environment nexus underpinning future 
desalination sustainability, Desalination 413 (2017) 52–64. 

[2] M. Ghobakhloo, Industry 4.0, digitization, and opportunities for sustainability, 
J. Clean. Prod. 252 (2020) 119869. 

[3] C.P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and 
technologies: a survey on Big Data, Inf. Sci. (Ny) 275 (2014) 314–347. 

[4] P. Valduriez, et al., Scientific data analysis using data-intensive scalable 
computing: the scidisc project, in: LADaS: Latin America Data Science Workshop, 
2018. CEUR-WS. org. 

[5] Z. Sun, L. Sun, K. Strang, Big data analytics services for enhancing business 
intelligence, J. Comput. Inf. Syst. 58 (2) (2018) 162–169. 

[6] J. Krzywanski, et al., Modelling of SO2 and NOx emissions from coal and biomass 
combustion in air-firing, oxyfuel, iG-CLC, and CLOU conditions by fuzzy logic 
approach, Energies (Basel) 15 (21) (2022) 8095. 

[7] J. Krzywanski, et al., Towards enhanced heat and mass exchange in adsorption 
systems: the role of AutoML and fluidized bed innovations, Int. Commun. Heat 
Mass Transf. 152 (2024) 107262. 

[8] K.T. Butler, et al., Machine learning for molecular and materials science, Nature 
559 (7715) (2018) 547–555. 

[9] W. Quaghebeur, I. Nopens, B. De Baets, Incorporating unmodeled dynamics into 
first-principles models through machine learning, IEEE Access 9 (2021) 
22014–22022. 

[10] J. Krzywanski, W. Nowak, Artificial intelligence treatment of SO 2 emissions from 
CFBC in air and oxygen-enriched conditions, J. Energy Eng. 142 (1) (2016) 
04015017. 

Fig. 6. Comparison of partial-derivative based sensitivity analysis of developed NARX model by partial-derivative and first principle method for Y7. The dynamic 
sensitivity values are computed for four time-step values. A good comparison is observable for the computed sensitivity values of Y7 with respect to Xf and Lf by the 
two approaches. 

Fig. 7. Comparison of the dynamic sensitivity trend plotted by partial-derivative approach on NARX model and first-principle method for Y7 against Xf and Lf. A 
reasonably good match in the computed sensitivity values as well as dynamic sensitivity trend lines is observed. 

W.M. Ashraf and V. Dua                                                                                                                                                                                                                     

http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0001
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0001
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0002
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0002
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0003
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0003
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0004
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0004
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0004
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0005
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0005
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0006
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0006
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0006
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0007
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0007
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0007
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0008
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0008
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0009
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0009
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0009
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0010
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0010
http://refhub.elsevier.com/S2666-8211(24)00023-1/sbref0010


Chemical Engineering Journal Advances 18 (2024) 100605

10

[11] J. Bourquin, et al., Advantages of Artificial Neural Networks (ANNs) as alternative 
modelling technique for data sets showing non-linear relationships using data from 
a galenical study on a solid dosage form, Eur. J. Pharm. Sci. 7 (1) (1998) 5–16. 

[12] F. Hajabdollahi, Z. Hajabdollahi, H. Hajabdollahi, Soft computing based multi- 
objective optimization of steam cycle power plant using NSGA-II and ANN, Appl. 
Soft Comput. 12 (11) (2012) 3648–3655. 

[13] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back- 
propagating errors, Nature 323 (6088) (1986) 533–536. 

[14] Y.P. Lin, R. Dhib, M. Mehrvar, ARX/NARX modeling and PID controller in a UV/ 
H2O2 tubular photoreactor for aqueous PVA degradation, Chem. Eng. Res. Des. 
195 (2023) 286–302. 

[15] E. Heidari, et al., Prediction of the droplet spreading dynamics on a solid substrate 
at irregular sampling intervals: nonlinear auto-regressive eXogenous artificial 
neural network approach (NARX-ANN), Chem. Eng. Res. Des. 156 (2020) 263–272. 

[16] C.E. de Araújo Padilha, et al., Recurrent neural network modeling applied to 
expanded bed adsorption chromatography of chitosanases produced by 
Paenibacillus ehimensis, Chem. Eng. Res. Des. 117 (2017) 24–33. 

[17] P. Azadi, et al., A hybrid dynamic model for the prediction of molten iron and slag 
quality indices of a large-scale blast furnace, Comput. Chem. Eng. 156 (2022) 
107573. 

[18] S. Haykin, Neural Networks and Learning Machines, 3/E, Pearson Education India, 
2009. 

[19] J.M. Benítez, J.L. Castro, I. Requena, Are artificial neural networks black boxes? 
IEEE Trans. Neural Netw. 8 (5) (1997) 1156–1164. 

[20] Z. Zhang, et al., Opening the black box of neural networks: methods for 
interpreting neural network models in clinical applications, Ann. Transl. Med. 6 
(11) (2018). 
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