
Transparency by default: GDPR Patterns for
Agile Development ?

Baraa Zieni1, Dayana Spagnuelo2[0000−0001−6882−6480], and Reiko Heckel1

1 University of Leicester, University Rd, Leicester, UK
{bz60,rh122}@leicester.ac.uk

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
d.spagnuelo@vu.nl

Abstract. Users have the right to know how their software works, what
data it collects about them and how this data is used. This is a legal re-
quirement under General Data Protection Regulation (GDPR) and fos-
ters users’ trust in the system. Transparency, when used correctly, is a
tool to achieve this. The adoption of agile approaches, focused on coding
and rapidly evolving functionality in situations where requirements are
unclear or fast changing, poses new problems for the systematic elicita-
tion and implementation of transparency requirements which are driven
by, but lag behind, the functionality. We propose requirements patterns
addressing GDPR’s principle of transparency by default, i.e., through a
systematic and structured approach based on the artefacts of agile devel-
opment. We present a case study using a SCRUM process to demonstrate
the effectiveness and usability of the patterns.

Keywords: transparency · GDPR · agile development · requirements
patterns · trust.

1 Introduction

In 2018, new data protection rules were put in place that changed the notion
of transparency in supporting user-centred approaches [25]. Transparency is one
of the main principles in the GDPR1, not only in terms of the contents of the
information provided to data subjects, but also its quality and understandability.
Data controllers must implement transparency in their data processes, and by
doing so they help in enhancing people’s trust [20].

Today, many software projects rely on agile methods like SCRUM to rapidly
deliver high quality software. Unlike more traditional methods, agile approaches
? The final authenticated version is available online at https://doi.org/10.1007/
978-3-030-86611-2_7

1 EU General Data Protection Regulation (GDPR): Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection Regulation),
OJ 2016 L 119/1.

https://doi.org/10.1007/978-3-030-86611-2_7
https://doi.org/10.1007/978-3-030-86611-2_7


2 B. Zieni et al.

embrace change through frequent iterations of development and feedback, focus-
ing on production code and using tests as specifications [29]. Detailed require-
ments engineering is mostly avoided as it entails substantial documentation [4].
A criticism of this approach is that requirements are inadequately addressed [29],
recommending systematic practices such as identifying non-functional require-
ments [3]. If requirements are left implicit, this drives developers to implement
them prematurely by “filling in the gaps”. Hence, agile development with its fo-
cus on speed can cause a lack of consideration for the user [2]. We argue instead
for a systematic approach to transparency requirements.

Transparency means to provide users with adequate information for informed
choices whether to trust a system, when and how to use it to achieve their
goals [5]. While trust can be addressed systematically [22], with methods in-
cluding software patterns [6] and factor analysis [14], methods for engineering
transparency requirements in software have not been studied in this context. In
fact, transparency requirements are often underestimated during software de-
velopment. This can be due to stakeholders’ lack of understanding of the trust-
transparency relation and worrying that users with a detailed understanding of
how their data is processed may be less willing to provide it or consent to its
use [23], leaving users to trust blindly in how systems handle their data [19].

We address this problem by proposing transparency patterns for requirements
engineering in agile processes, designed to support analysts in applying best
practices. We evaluate our proposal by a case study in a healthcare company
to examine the patterns’ capabilities and limitations. The evaluation answers
the questions: How has GDPR been addressed by the daily practices of agile
development? How do patterns work within an agile process? and How do they
ensure users are informed about their data concerns? The remaining of this paper
is structured as follows. Section 2 presents related work on agile development
and transparency. We describe our Transparency patterns and the methodology
used to create them in Section 3. Section 4 covers the evaluation and Section 5
discusses the results, concludes the paper and presents the future work.

2 Background and Related Works

In data protection law, business and governance, transparency is a user-centred
principle as it refers to openness and disclosure of information to the user [25].
Transparency is seen as a meta-requirement as well as a quality in use [8]. It
works at a meta level compared to functional requirements, enabling the user to
know “how requirements can be fulfilled” [8]. A transparent system must provide
information contextually relevant to the users’ concerns actions and personal
data [21]. When it is, it has been shown to elicit a high level of trust, and
enhance the stakeholder-system relationship [21,7,10]. Based on this literature,
transparency can be described as the appropriate amount of information that
users require for better decision making and to enhance their trust.

From another perspective, in software engineering the concept of transparency
can be interpreted as making the development processes of the software visible



Transparency by default: GDPR Patterns for Agile Development 3

to the stakeholders, for example, through frequent cycles of development and
feedback in agile processes [26]. Such process transparency is distinct from the
transparency of the end product. In this paper, we refer to the latter, trans-
parency of the software system in the context of GDPR and agile development.

Little research has been carried out for better understanding the GDPR’s
practical implications in requirements engineering and software architectures.
Some authors have examined transparency and its dependencies with other sys-
tem goals. For instance, discussing transparency as a non-functional requirement
in the context of software engineering as well as organisations: transparency
knowledge is presented a graph consisting of 33 soft goals using Softgoal Inter-
dependence SIGs [1]. Transparency has been defined as the possibility of infor-
mation, intentions, behaviours to be accessed through a process of disclosure
[27]. Likewise, it is considered an important concept that can support users in
the decision making process. Kim et al. [9] states that consumers’ trust, security,
privacy, and perceived risk have a high influence on their purchasing decisions
with websites. Trust therefore is now becoming a more crucial issue especially
when it comes to stakeholders making decisions with the software.

In this research, we adopt the view that transparency leads to more informed
decisions and to user trust. Therefore, we argue it is important to empower the
end user, by giving them control over their data. This requires both knowledge
of their rights and being informed of how their data is used in the system.
This information, to be more relevant, understandable and actionable, needs to
be displayed in relation to the user goals and intentions with the system. We
advocate that this transparency can be engineered systematically during the
development process.

While most of the papers focus on privacy requirements of GDPR (i.e., [13]).
The closest work presenting such systematic approach to transparency during
development time is presented by Meis et al. [12]. Their research has mainly
examined the flow of the personal data in a system in order to generate the
static requirements of privacy that are related to personal information and its
corresponding transparency requirements. Those requirements are static in the
sense that they help the user understanding what data the system hold on them,
but not necessarily about changes that may happen to this data, or how to
execute their rights with respect to the data. In our research we develop a set
of static and dynamic patterns that generate transparency requirements about
user data. These patterns help to inform the user about their data rights under
GDPR, who has access to their data, how it has been stored, et cetera. For
instance, the user can be informed when data is collected, edited or accessed, as
well as they are given the control on who accesses their data. Further to that,
we focus on the application of the patterns in agile practices of development
to help the requirements analyst and developers to generate and implement the
resulting requirements.



4 B. Zieni et al.

3 Methodology and Patterns

To generate the transparency patterns we follow a design science methodology
proposed for Information Systems [18]. This methodology is based on six steps:
1. problem identification; 2. definition of objectives; 3. design and development;
4. demonstration; 5. evaluation; and 6. communication.

We briefly describe our approach to steps two to five. The first step is done
through the review of the literature we present in Section 2, which identifies
and justifies the problem we address. While the last refers to communicating the
software artefact developed (i.e., our patterns), we do so throughout this paper.

Definition of objectives. The regulation and literature advocate that users
must have clarity on the data the system holds, the underlying mechanisms,
data storage and access controls [15]. We define the objectives of our patterns in
reference to these demands. We underline the pieces that led to such objectives.

The GDPR takes a user-centred approach. It regulates not only on what con-
stitutes lawful processing of personal data, but on a series of rights that ensure
data subjects (the end-users, or people whose data is collected and processed) are
informed about such processing, and empowered to control it. In this work we fo-
cus on the right to transparent information, which states that the data controller
(the system collecting and processing personal data) is responsible for presenting
the data subjects with information that is transparent concise and clear2. This
right is laid down by the regulation in reference to other Articles (such as Arti-
cle 13 and 14, and 15 to 22) which define the content of the information to be
presented to data subjects, including: the categories of data being processed3,
the purposes for processing it4, and communication regarding their rights, such
as rectification or erasure of personal data5.

Existing literature reviews the demands of GDPR in view of systems de-
velopment, often beyond the actual regulation and including information se-
curity into the list of concerns relevant to data subjects. For instance, they
recommend that information should be shared with the data subjects regarding
where data is stored, how data is protected and who has access to it [25], as well
as information about the choices on limiting the processing of their data [13].

Design and development. The patterns are developed following a well-ac-
cepted methodology [28]. Requirements patterns generate specific types of re-
quirements. We opt for them as they can be used during early stages of software
developments and provide benefits such as reusability, consistent vocabulary and
enhanced communication [11]. Additionally, patterns can be used to solve the is-
sue of incomplete requirements [17]. Patterns are normally defined and classified
in domain types. In our work, these domains are based on the system aspects
(i.e., data, operations) that systems are required to be transparent about. This

2 Ibid., Art. 12(1)
5 Ibid., Art. 19



Transparency by default: GDPR Patterns for Agile Development 5

paper only discusses Data Driven Patterns (DDP) [see full description of the
patterns and their domains]6.

The patterns abstract requirements and systematically guide the analyst to
address them early in the development. How to best present such information
falls outside the scope of this work. For this topic, we refer to the literature on
qualifiers of transparency [24] and user-friendly presentation of privacy-related
information [20,16]. The patterns only help to decouple the presentation choices
when passing information to the user by separating the contents from the design
options (i.e., whether users receive information promptly, or need to seek for it).
This is done so that patterns can be applied by different teams of experts.

Demonstration. We applied our patterns in a case study with Spirit Health-
care, an organisation with a small technology branch who handles sensitive
and individually identifiable medical data across several applications includ-
ing remote patient monitoring, and education booking and management. Spirit
Healthcare is one of 50 fastest growing companies in the UK. They are of man-
ageable size and use SCRUM in their software development. The patterns are
applied by their requirements analysts7 and developers.

Evaluation. To evaluate the resulting artefact, we used a qualitative approach
through semi-structured interviews, focus groups and questionnaires. The eval-
uation is conducted with the development team, and patterns run on an entire
application where the domain experts and developers are the spokesperson for
end users. We use thematic coding to analyse their responses.

3.1 Transparency Patterns

The patterns are described through templates that contain basic details (pattern
number, last update, domain, and author); applicability information defining
the cases in which to use the pattern; contents that need to be covered by the
requirement; guidance on how to derive the contents; the template specifying how
to write the requirement; and an example. Due to space constraints we show only
essential parts of the template (emphasised in the text). Table 1 presents details
on the contents and how to derive them.

Our patterns are data driven and include static and dynamic types. Static
patterns describe information related to the data schema in a type-level (i.e.,
data classes, attributes, and associations). While dynamic patterns cover the ac-
tual instance of data, e.g., what data is currently stored about users and when
it is being used. In Tables 2, 3, and 4 we present a summary of the Data Protec-
tion Transparency Pattern (static), the Data Subject Rights Pattern (dynamic,
6 https://github.com/Bara60/Supplementary-info-Transparency.git
7 Even though the task of eliciting and analysing requirements can be assigned to
different roles depending on the specific development process, in our context the
distinction between such roles is not relevant. For example, in agile processes the
product owner is responsible for requirements elicitation, but the scrum master and
scrum team are involved in requirements analysis.

https://github.com/Bara60/Supplementary-info-Transparency.git


6 B. Zieni et al.

Table 1. Pattern contents and how the requirements analyst can define them.

Summary Description
Data type The system’s data schema (classes, attributes, associations); also referred to as

categories of data by the regulation (Art. 15(1)(b)).
Data instance The actual contents of the data concerning the data subjects (e.g., their specific

names, or addresses).
Data interest Any detail deemed relevant to data subjects including but not limited to personal

data; can include an area of personal data (e.g., shipping data combines name and
address), or other concerns (e.g., choices on restricting data process [13]).

Data storage The conditions in which data is stored (e.g., how data protected, if in an encrypted
format, anonymous or pseudonymised, their retention period, location of storage
[25], and others).

Data access The recipients of data, either natural persons, or third party organisations (Art.
13(1)(e) and Art. 14(1)(e)).

Data subject’s
rights

The rights described by the GDPR (Art. 15 to 22), such as the right to access, to
rectification, to erasure, to data portability, and others.

Data gathered The source of the data (when not obtained from the data subject) and where the
data has been gathered, inferred, or aggregated (Art. 14).

Conditions Logical statements composed of combinations of data operations with the actors
performing them, of the form «actor» «data operation» «data type», e.g., “system
admin updated address” where system admin is the actor, updated the data opera-
tion, and address the data type. These conditions are defined by the requirements
analyst and are checked during run-time.

static), and Data Pattern (dynamic) respectively. A fourth pattern, the static
version of the Data Pattern, is proposed but omitted due to space limitations. A
complete list of the patterns can be seen in the supporting materials8, this list
also contains patterns developed for other domains not covered in this paper.

Table 2. Data Protection Transparency Pattern (with an example of its application).

Summary Definition
Applicability Use Pattern to generate transparency requirements for the specified data types

of the data falling under data protection legislation the system holds about the
end user. This pattern illustrates the data accessibility and storage.

Contents Data interest. Data types. Data storage. Data access.
Template for «data
type»

If «Data Type» is a «Data Interest»: The system must communicate to the
user that it holds data of the type «Data Type» which has been «Data access»
& «Data storage».

Example
Template for Ad-
dress data

The system must communicate to the user that it holds data of the type “address”
which has been “accessed by system admin.” This data is encrypted and will be
stored until your account deletion.

3.2 Applying the patterns

To apply the patterns, the first step is to identify data interests based on user
goals, laws and regulation. The requirements analyst uses this process to define
data interests over the whole system for consistent results. Data interests are a
reference to data that are defined under the same concern or information that
matters to the user (e.g., shipping data). This process gives flexibility to identify
8 See footnote 6.



Transparency by default: GDPR Patterns for Agile Development 7

Table 3. Data Subject Rights Pattern (with an example of its application).

Summary Definition
Applicability Use this pattern to provide information about what data system holds about the

user and their rights on that data under GDPR.
Contents Data interest. Data types. Data subject’s rights.
Information Tem-
plate for «data
type»

If «data type» is a «data interest» The system must communicate to the user
that it holds data of «data type» and «data subject’s rights» can be performed
by data subject.

Feature Template
for «data type»

If «data type» is a «data interest»: In case Condition The system must im-
plement action of «data subject’s rights» on this data hold of «data type» that
can be performed by data subject.

Example
Information Tem-
plate for Address
data

The system must communicate to the user that it holds data of the type of
Address and actions of access, erasure, and data portability can be performed
by the user (data subject).

Feature Template
for Address data

The system must implement an action of access on this data hold of Address
that can be performed by data subject.

Table 4. Dynamic Data Pattern (with examples of its application).

Summary Definition
Applicability Use the pattern for the specified data instance that the system holds

about the end user. This pattern gives information, during run-time,
about what are the system actions being performed and by which ac-
tors.

Contents Data instance. Data Interest. Data type. Data gathered. Condition.
Transparency of Instance of
«Data Type» because «condi-
tion».

If «data type» is a «data interest»: In case «condition », the sys-
tem must communicate to the user « the «Data Type» (data instance)
& «data gathered» by «actor» | «condition»»

Example
Transparency of Instance of
“Address” because “system
admin updated address”

In case “system admin updated address”, the system must communi-
cate to the user “system admin updated address”.

Transparency of Instance of
“Address” because “system
admin updated address”.

In case “system admin updated address”, the system must communi-
cate to the user “University of Leicester, University road, UK LX1RH”
«gathered» by system admin.



8 B. Zieni et al.

any data group that relates to the user, not limited to personal data. Users’
data concerns often depend on their goals, e.g., “I want to see my shipping
address before confirming payments”. The analyst in this case creates a data
interest called “shipping data” to represent this concern. For each data interest,
the analyst can then derive the other concepts in Table 1.

Next, the analyst lists the user goals (given by user stories in agile devel-
opment) that are (to be) implemented in the system. These goals are mapped
to one or more of the pattern categories (Data, GDPR). Goals can refer to
functionality already in the system, or to be added in the next iteration. Then,
for each data interest, they identify the corresponding patterns and generate
the requirements by following the pattern template. The last step is to finalise
the transparency requirements document by applying a consistency check for
removing duplicates and conflicted requirements, and aggregating requirements
that can be combined. In particular, the analyst checks for unintended informa-
tion disclosures or conflicts with security or privacy requirements. For example,
information about data servers could cause a security breach.

4 Evaluation

The evaluation used qualitative approaches such as semi-structured interviews,
focus groups, pre- and post-questionnaires. Participants included domain ex-
perts (DE1, DE2) with long clinical experience in the NHS, senior developers,
and developers (D1..D4) from Spirit Health. Four pre-questionnaires were used
to gauge the current agile development and GDPR practices in the digital team
prior to the case study. Post-questionnaires captured how introduction of pat-
terns impacted those practices and helped keeping users informed about their
data.

The digital team manages their development life cycle by organising user
stories into Product Backlog Items (PBIs) broken down into development tasks.
The PBIs are arranged into biweekly sprints with free selection of PBIs by de-
velopers. PBIs are written primarily by the domain expert and senior developer
and discussed biweekly in backlog reviews. Daily stand ups manage task pro-
gression, and communication with the business is through the product owner
(domain expert) or the senior developer (also scrum master).

To analyse the data from questionnaires and semi-structured interviews we
coded responses and clustered them to report results and find any similarities.
An initial set of themes was extended in the coding processes, some derived
from research questions (see Section 1) on how patterns impact on time and
effort of development, and how data and GDPR’s transparency are integrated
into the process by the use of patterns. One theme was discovered while analysing
responses: informing the user. The themes are discussed next.

Time and Effort. All participants agreed that agile requirements engineering
practices reduce their workload. Moreover, participants D1, D2, D3 agreed and
D4 neither agree nor disagree that they speed up the work in the project. After



Transparency by default: GDPR Patterns for Agile Development 9

applying the patterns to their user stories, the developers mentioned that the
workload remains the same, if not increased. D3 mentioned this is “due to a
more complete description of the tasks”. Moreover, D3 mentioned that applying
patterns will also speed up the work, in contrast with D4 who said that the work
would not speed up “but it would improve the quality of the system”.

Data and GDPR Transparency. The experts stated how important it is
to report to the user what data is being collected. D3 reported that using the
patterns helps to consider the relevant data interests and referred to an issue in
their system: “We often collect data without telling the users what it is being
used for, so it was good to consider why at each point in the application we
are collecting given things. Makes you rethink the validity in collecting certain
things, such as user personality ethnic details were removed from the system as
we had no real reason to collect it”. Having to systematically think of the data
interests made developers and domain experts review the purpose for collection
and processing data. As a consequence, where this purpose was no longer valid,
they were able to apply data minimisation9 (one of the pillar principles in the
GDPR). The developers stated that the data interests help in grouping related
data, then added “Data interests are a great extension on the concept of data
tables – you can group many tables under a data interest”.

Figure 1 presents an excerpt of an original user story and its requirements
outputs after applying our GDPR transparency patterns. This illustrates how
patterns systematically bridge gaps in the user story, e.g., that data is stored 2
years after account deletion was not mentioned in the original user story. During
a group session one developer pointed out the importance of informing the users
about their data and access rights, D3 also mentioned “if people know their
rights, they are more likely to fight for them”.

Domain experts also stated that the patterns help building users’ trust and
enable them to make informed decisions. DE2 noted that it will help the user to
decide if they want to use the software or not. Trust is equated with “a user feels
very confident about the system” (quote from DE1, but also voiced by DE2). To
achieve user confidence, the system needs to give “feedback [. . . ] after carrying
out commands” (DE1) and inform the users of their data (DE2).

Informing the User. D1 said “informing the user about the data being col-
lected and the process being performed should be a requirement itself.” D4 men-
tioned an example from their project experience on where and what they inform
the user about: “We have a specific text on first login to our system (CliniTouch
Vie) that the patient must agree to in order to use the system”. It is clear that the
team has considered transparency on a case-by-case basis, rather than systemat-
ically across the application. Previous practices have regarded transparency on
a need-to-know rather than a right-to-know basis and not consistently applied it
throughout the applications.

The developers have stated that the patterns help to sustain the user focus
(the perspective fostered by the GDPR). D4 stated that applying the patterns
9 GDPR, Art. 5(1)(c)



10 B. Zieni et al.

User Story: Edit personal details.

Test Case 1: When an email address is entered or changed an email requesting confirmation should be sent
to the email address. The email should not be deemed valid until the link in the email has been clicked.

Test Case 2: When a user logs into the system, if their email address has been changed and has not been
validated it should be stated that the email address has not been validated in the personal details and the
user should be prompted at each login attempt to validate their email address. The username will remain as
the previous email address before changes were made. A link should also be presented resending the email
validation email.

Test Case 3: When any information is entered or edited in the personal details the old and new value should
be audited in an audit table and timestamped along with the user who made the change.

Dynamic Data- requirement result:
If email address is updated by admin the system must communicate to the user, the currently in use email
address which is being used by the user and other admins – informing them that the email could have been
changed.

Data Protection-requirement result:
The system must communicate that it holds data of the type of personal details which has access by the
admin team and selected members of other user types stored even after the account has been deleted due to
auditing for at least 2 years.

Data Subject Rights- requirement result:
The system must communicate to the user that any changes made to their data are audited and details of the
changer recorded.

Fig. 1. Original user story and its test cases, the GDPR resulting requirements.

aids in informing the user about their data and other system aspects as it “raises
the thought and discussion between stakeholders, which then if carried out will
certainly help the user in their use of the system.” They highlighted that patterns
aid them to reflect on the data protection issues. One of the developers stated
that a user centred view on transparency related mostly to the information
disclosed directly by users. However, a big part of personal data is gathered
indirectly via behavioural, statistical and usage data. This is often not identified
as a data concern and the user is rarely informed about it. This data can be
passively collected: “When the system collects information not directly from the
user but could be critical – when attempted login – when successful etc...”. For
instance, IP addresses, information about time spent on the website, or any other
behavioural data could affect the user or even be used to identify them. The data
interests provide a way to discover all relevant data types and inform the user
about them, whether they are collected directly or indirectly, as required by the
rights described under GDPR Art. 13 and 14.

5 Discussion and Concluding Remarks

The patterns have been shown to systematically generate transparency require-
ments according to the GDPR. This transparency is extended to indirect collec-
tion of data where informing the user is often overlooked. This, in turn, increases



Transparency by default: GDPR Patterns for Agile Development 11

the developers’ ability to structure actionable requirements in their applications.
The patterns take in high level user stories, data interests and processes and gen-
erate transparency requirements on who has access to the data and the existing
data processes. The patterns bring the users’ perception to the implementation
by default and drive the user focus (in line with the GDPR) to the point of
writing code. Integrating transparency across the software process, the patterns
are designed to fit agile practices and management tools. The dynamic aspect
of patterns, using the concept of conditions, proves useful to build transparency
contextually and in relation to user goals.

Transparency is a pillar concept in the GDPR, but our work’s relevance is
not limited to the European Union. There are international implementations of
the GPDR that place similar emphasis on transparency, for instance the Data
Protection Act in the United Kingdom10, and the LGPD in Brazil11. Other
prominent data protection regulations also touch upon the concept: the CCPA in
California, USA12 calls it the “right to know”; and the APPI in Japan13 mentions
the provision of information in its Articles 15 and 18, for instance. Although,
a note of caution should be taken when discussing compliance with those reg-
ulations. Our patterns approach transparency from early development phases,
but we do not claim they alone are sufficient for compliance with those regula-
tions’ requests. The GDPR, for instance, requires data controllers to provide the
contact of the controller’s Data Protection Officer. This request also composes
transparency, but is not covered by our patterns, as it does not directly refer to
personal data (our goal).

How personal data is handled in secondary processes (e.g., collecting be-
havioural data) was all but completely ignored in the initial elicitation process
carried out on the Spirit Health application. This information is not accessible
through other standard elicitation methods due to not being directly related to
the system’s functionality, and is thus ignored. The patterns expose lack of trans-
parency, particularly in secondary processes. The patterns generate details on
what users must know about system aspects and data processing. This aids the
requirements analysts’ and developers’ decision on what information to show.
We believe this process should be formalised into a standard, so that it can be
leveraged by other companies as well.

The case study with the Spirit Healthcare demonstrates that patterns fit well
with agile practices. Current limitations in agile are that requirements are not
well defined and the users’ perspective is not fully included, because of a focus on
rapid iteration. The patterns contribute to addressing these issues by extending
the agile process. Teams can continue to work in a familiar structure whilst more
deeply rooting the users’ considerations into the process.

10 https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
11 http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/

L13709compilado.htm
12 https://oag.ca.gov/privacy/ccpa
13 https://www.ppc.go.jp/en/legal/

https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709compilado.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709compilado.htm
https://oag.ca.gov/privacy/ccpa
https://www.ppc.go.jp/en/legal/


12 B. Zieni et al.

The main limitation of our approach is that the completeness and consis-
tency of the generated requirements highly depends on identifying the related
data interests as one of the developers mentioned in the evaluation: “I can see
the same things being repeated and to be able to standardise them across the
application would be great”. Therefore, it is important that the requirements
analyst has sufficient domain and application knowledge. Another limitation is
that transparency can overwhelm the user. Specifying different types of users
(with different data interests) can help, and this option needs to be clear in the
condition section. However, developers have not explored presentation choices in
this evaluation.

Concluding remarks. The results from the evaluation showed that the pat-
terns are effective in bringing the end-users’ perception into the development
process. This happens by informing users what data the system collects about
them, how this data is used, and by whom it is accessed, according to GDPR
requests. This information is provided in relation to the user goals. The pat-
terns prompt the developers and requirements analyst to consider the data as-
pects that the user must know about. Furthermore, implementing the resulting
transparency requirements has advanced other data protection concepts, such as
exposing information which is not directly accessible to the user, thus ignored
by standard elicitation methods, and the one of improving data minimisation
through systematically reflecting on the purpose for data collection. This has
been done systematically and based on the artefacts of agile development.

Future work for this research could investigate how to standardise the pat-
terns using ISO standards. This could be used in a transparency certification
awarded to companies that adhere to the defined practices by the standard.

Acknowledgement. The research is supported by University of Leicester. We
also would like to thank Dr Mahmood Hosseini for the valuable input and Spirit
Healthcare team for their collaboration, experience.

References

1. Cappelli, C., Leite, J.: Software transparency. Business and Information Systems
Engineering 2, 127–139 (2010)

2. Drury, M., Conboy, K., Power, K.: Obstacles to decision making in agile software
development teams. Journal of Systems and Software 85(6), 1239–1254 (2012)

3. Eberlein, A., Leite, J.: Agile requirements definition: A view from requirements
engineering. In: Proc. of the Int. Workshop on Time-Constrained Requirements
Engineering. pp. 4–8 (2002)

4. Erickson, J., Lyytinen, K., Siau, K.: Agile modeling, agile software development,
and extreme programming: the state of research. Journal of Database Management
(JDM) 16(4), 88–100 (2005)

5. Herrnfeld, H.H.: Article 67 data protection by design and by default. In: European
Public Prosecutor’s Office. pp. 513–514. Nomos Verlagsgesellschaft mbH & Co. KG
(2020)



Transparency by default: GDPR Patterns for Agile Development 13

6. Hoffmann, A., Söllner, M., Hoffmann, H., Leimeister, J.M.: Towards trust-based
software requirement patterns. In: 2nd IEEE Int. Workshop on Requirements Pat-
terns. pp. 7–11. IEEE (2012)

7. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Foundations for transparency require-
ments engineering. In: Int.l Working Conf. on Requirements Engineering: Founda-
tion for Software Quality. pp. 225–231. Springer (2016)

8. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: A modelling language for transparency
requirements in business information systems. In: Int. Conf. on Advanced Infor-
mation Systems Engineering. pp. 239–254. Springer (2016)

9. Kim, D.J., Ferrin, D.L., Rao, H.R.: A trust-based consumer decision-making model
in electronic commerce: The role of trust, perceived risk, and their antecedents.
Decision support systems 44(2), 544–564 (2008)

10. Kizilcec, R.F.: How much information? Effects of transparency on trust in an al-
gorithmic interface. In: Proc. of the 2016 CHI Conference on Human Factors in
Computing Systems. pp. 2390–2395 (2016)

11. Loizides, F., Winckler, M., Chatterjee, U., Abdelnour-Nocera, J., Parmaxi, A.:
Human Computer Interaction and Emerging Technologies: Workshop Proc. from
the INTERACT 2019 Workshops. Cardiff University Press (2020)

12. Meis, R., Heisel, M.: Computer-aided identification and validation of privacy re-
quirements. Information 7(2), 28 (2016)

13. Meis, R., Wirtz, R., Heisel, M.: A taxonomy of requirements for the privacy goal
transparency. In: Int. Conf. on Trust and Privacy in Digital Business. pp. 195–209.
Springer (2015)

14. Moyano, F., Fernandez-Gago, C., Lopez, J.: Building trust and reputation in: A
development framework for trust models implementation. In: Int. Workshop on
Security and Trust Management. pp. 113–128. Springer (2012)

15. Murmann, P., Fischer-Hübner, S.: Tools for achieving usable ex post transparency:
a survey. IEEE Access 5, 22965–22991 (2017)

16. Murmann, P., Karegar, F.: From design requirements to effective privacy notifi-
cations: Empowering users of online services to make informed decisions. Interna-
tional Journal of Human–Computer Interaction pp. 1–26 (2021)

17. Palomares Bonache, C.: Definition and use of software requirement patterns in
requirements engineering activities. In: Proc. of REFSQ 2011 Workshops, REFSQ
2011 Empirical Track, and REFSQ 2014 Doctoral Symposium. pp. 60–66 (2014)

18. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. Journal of management
information systems 24(3), 45–77 (2007)

19. PRIVACY, G.M.: Consumer research insights and considerations for policymakers
(2014)

20. Rossi, A., Lenzini, G.: Transparency by design in data-informed research: A collec-
tion of information design patterns. Computer Law & Security Review 37, 105402
(2020)

21. Schwab, K., Marcus, A., Oyola, J., Hoffman, W., Luzi, M.: Personal data: The
emergence of a new asset class. In: An Initiative of the World Economic Forum
(2011)

22. Söllner, M., Hoffmann, A., Hoffmann, H., Leimeister, J.M.: How to use behavioral
research insights on trust for HCI system design. In: CHI’12 Extended Abstracts
on Human Factors in Computing Systems, pp. 1703–1708. ACM (2012)

23. Solutions, V.E.: Verizon 2014 data breach investigations report. verizon. com ver-
izon. com (2016)



14 B. Zieni et al.

24. Spagnuelo, D., Bartolini, C., Lenzini, G.: Qualifying and measuring transparency:
A medical data system case study. Computers & Security 91, 101717 (2020)

25. Spagnuelo, D., Ferreira, A., Lenzini, G.: Transparency Enhancing Tools and the
GDPR: Do They Match? In: Information Systems Security and Privacy. pp. 162–
185. Springer International Publishing, Cham (2020)

26. Tu, Y.C., Tempero, E., Thomborson, C.: An experiment on the impact of trans-
parency on the effectiveness of requirements documents. Empirical Software Engi-
neering 21(3), 1035–1066 (2016)

27. Turilli, M., Floridi, L.: The ethics of information transparency. Ethics and Infor-
mation Technology 11(2), 105–112 (2009)

28. Withall, S.: Software requirement patterns. Pearson Education (2007)
29. Zhu, K.: Information transparency in electronic marketplaces: Why data trans-

parency may hinder the adoption of B2B exchanges. Electronic markets 12(2),
92–99 (2002)


	Transparency by default: GDPR Patterns for Agile Development 

