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A B S T R A C T 

General relativity predicts that two counter-orbiting clocks around a spinning mass differ in the time required to complete the 
same orbit. The difference in these two values for the orbital period is generally referred to as the gravito-magnetic (GM) clock 

effect. It has been proposed to measure the GM clock effect using atomic clocks carried by satellites in prograde and retrograde 
orbits around the Earth. The precision and stability required for satellites to accurately perform this measurement remains a 
challenge for current instrumentation. One of the most accurate clocks in the Universe is a millisecond pulsar, which emits 
periodic radio pulses with high stability. Timing of the pulsed signals from millisecond pulsars has pro v en to be very successful 
in testing predictions of general relativity and the GM clock effect is potentially measurable in binary systems. In this work, we 
derive the generic GM clock effect by considering a slowly spinning binary system on an elliptical orbit, with both arbitrary mass 
ratio and arbitrary spin orientations. The spin–orbit interaction introduces a perturbation to the orbit, causing the orbital plane to 

precess and nutate. We identify several different contributions to the clock effects: the choice of spin supplementary condition 

and the observer-dependent definition of a full revolution and ‘nearly identical’ orbits. We discuss the impact of these subtle 
definitions on the formula for GM clock effects and show that most of the existing formulae in the literature can be reco v ered 

under appropriate assumptions. 

Key words: black hole physics – gravitation – relativistic processes – celestial mechanics – time – pulsars: general. 
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n Einstein’s theory of general relativity a rotating mass distorts the
pace–time around it, leading to the precession of orbits of an object
round this rotating mass. This is known as Lense–Thirring preces-
ion (Lense & Thirring 1918 ). It is a manifestation of frame dragging.
n analogy to frame dragging can be found by comparing the
henomenon to electromagnetism, in which the gravitational mass is
reated as equi v alent to the electric charge and the gravitational field
enerated by a point mass is referred to as the gravito-electric field.
he rotation of a point mass induces an additional gravitational field
nalogous to the magnetic field produced by a spinning charge in
lectromagnetism, and this additional gravitational field corresponds
o the gravito-magnetic (GM) field. The gravito-electric field gives
ise to a clock effect via gravitational time dilation (i.e. gravitational
edshift), which has been widely applied in synchronizing clocks in
lobal Positioning System (GPS) satellites. Such time dilation was

onfirmed by Overstreet et al. ( 2022 ) 1 experimentally, using atomic
nterference. 

The GM field also leads to desynchronization of the clocks for
atellites moving in prograde and retrograde motion with respect
 E-mail: j-li.19@ucl.ac.uk (KJL); kinwah.wu@ucl.ac.uk (KW); 
.younsi@ucl.ac.uk (ZY) 
 We note that although the term ‘gravitational Aharonov–Bohm effect’ is 
sed in their publication, it does not refer to the GM potential but to the 
ravito-electric potential. 
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o the Earth’s rotation axis. Cohen, Rosenblum & Clifton ( 1988 )
btained a ‘synchronization gap’ of 1.92 × 10 −17 s for geosyn-
hronous and antigeosynchronous orbits. Cohen & Mashhoon ( 1993 )
uggested another possible measurement of the GM clock effect,
hich arise from the difference in time periods between a full

evolution of a prograde ( T + 

) orbit and that of an otherwise equi v alent
etrograde ( T −) orbit. This leads to the well-known formula 

 + 

− T − = 4 π
J 

M[ c] 2 
, (1) 

see also e.g. Mashhoon, Gronwald & Theiss 1999 ; Tartaglia 2000 ;
orio, Lichtenegger & Mashhoon 2002 ; Faruque 2004 ), where c is
he speed of light, and J and M are respectively the spin angular

omentum and mass of the Earth. This formula is applicable to
ircular orbits around the Earth, irrespective of whether they are
eosynchronous or not. There are many interesting features of this
ime difference. The topological nature of this effect is evident from
ts independence on the orbit’s radius, similar to the Aharonov–Bohm
ffect in quantum mechanics (Aharonov & Bohm 1959 ). This effect
s expected to be about 10 −7 s for the Earth (Cohen & Mashhoon
993 ), well within the timing precision achieved by current atomic
locks (see Mann 2018 ). It has been proposed that two satellites
rbiting the Earth in prograde and retrograde motion will be able to
eveal this effect. However, the precise tracking of satellite positions,
he dynamic part of Earth’s gravity, and other factors such as radiation
ressure pose significant challenges (see Gronwald et al. 1997 ;
ichtenegger, Gronwald & Mashhoon 2000 ). 
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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A promising yet often o v erlooked approach to detect this effect is
hrough binary pulsar systems. Millisecond pulsars are considered as 
he most stable natural clocks in our Uni verse. Their spin-do wn rates,
 P /d t , are in general smaller than 10 −16 s s −1 , which corresponds to
 drift of a few seconds o v er the Hubble time (see e.g. Lorimer 2008 ;
anchester 2017 ). The rotational stability of millisecond pulsars 
akes them a useful apparatus to measure the relativistic effects that 

re intrinsically small. For instance, the accurate measurement of 
he rate of decrease in the orbital period of the Hulse–Taylor binary
rovided the first indirect proof of emission of gravitational radiation 
see Taylor & Weisber g 1989 ; Weisber g & Taylor 2005 ). The various
ravitational time dilation effects have been widely used in analysing 
he pulsar timing data (see e.g. Edwards, Hobbs & Manchester 
006 ; Lorimer & Kramer 2012 ). Pulsars can also be used to test the
qui v alence principle (see Stairs 2003 , for a re vie w). F or e xample the
riple stellar system PSR J0337 + 1715 has provided a constraint on
he strong-field violation of strong equi v alence principle (Shao 2016 ;
rchibald et al. 2018 ; Voisin et al. 2020 ). Similarly, Remmen & Wu

 2013 ) proposed testing general relativity with a hierarchical three- 
ody system consisting of a double-pulsar system revolving around a 
assive black hole. It was also demonstrated that extreme-mass-ratio 

inaries with a fast-spinning pulsar revolving around a massive black 
ole can be used as a probe of the relativistic spin–orbit coupling
see Singh, Wu & Sarty 2014 ; Kimpson, Wu & Zane 2019 ; Li, Wu &
ingh 2019 ; Kimpson, Wu & Zane 2020 ; Li et al. 2022 ; Wu 2022 ). 
In order to measure the GM clock effects in a pulsar binary system,

t is necessary to derive the formula of the clock effect for a generic
rbit. Previous studies (Cohen & Mashhoon 1993 ; Mashhoon et al. 
999 ; Tartaglia 2000 ; Bini, Jantzen & Mashhoon 2001 , 2002 ; Iorio
t al. 2002 ; Faruque 2004 ) mostly focused on circular orbits with spin
ligned or anti-aligned with the orbital angular momentum, such 
hat the orbits remain on the equatorial plane. Teyssandier ( 1977 ,
978 ) extended the study to orbits around a rotating non-spherical 
ass. Faruque, Ahsan & Ishwar ( 2003 ) derived a different GM clock

ffect formula by comparing the prograde innermost stable circular 
rbit and the retrograde innermost stable circular orbit. The effect 
f the cosmological constant on the GM clock effect is studied by
err, Hauck & Mashhoon ( 2003 ). Mashhoon et al. ( 1999 ) and Iorio

t al. ( 2002 ) generalized the GM clock effect to arbitrary inclination
ngle for circular orbits. As well, Mashhoon, Iorio & Lichtenegger 
 2001 ) extended their work to eccentric and inclined orbits in an
arth-satellite system, under the exact GM analogue. The effect of 
ccentricity is also taken into account by Hackmann & L ̈ammerzahl 
 2014 ) by studying the motion of test particles in Kerr space–time
n eccentric orbits. They obtained results that differ from those of
ther literature on the topic. The effect of spin for the test mass
n circular (or semicircular) orbits is included by Bini, de Felice &
eralico ( 2004a , b ), Faruque ( 2006 ), and Mashhoon & Singh ( 2006 )
ut different coefficients were reported. 

In this work, we derive a formula for the general GM clock effect
nvolving two spinning masses on an orbit with arbitrary inclination 
nd eccentricity. The formula is applicable o v er a large parameter
ange, and we show that it can reproduce the results obtained in
ost other previous studies with appropriate assumptions. We also 

larify the origin of apparent discrepancy in the formulae reported 
n different papers. We organize the paper as follow. Section 2 
ives a brief introduction to spin–orbit coupling with different spin 
upplementary conditions (SSCs). Section 3 presents the equations of 
otion (EOM) of a binary system subjected to the spin–orbit 

oupling force and our deri v ation of the generic formula for GM clock
f fect. We sho w in Section 4 our results are generalization of many
revious works and how we may use our formula to resolve the issues
f the discrepancies of previous work. We also provide an in-depth
xposition of the concept of GM clock effects, highlighting common 
isconceptions and misinterpretations (of results in observations) 

ften found in literature. Further, we comment on implications on 
he observation of the GM clock effect via the pulsar binary, and via
rtificial satellite systems. Unless otherwise stated, we adopt the [ 
, + , + , + ] metric signature convention and the natural unit system
ith c = G = 1 in this paper, where c is the speed of light and G is

he gravitational constant. 

 SPI N–ORBI T  C O U P L I N G  

.1 Spin–orbit coupling and spin supplementary condition 

onsider a binary system with masses m 1 and m 2 , respectively
ocated at r 1 and r 2 , moving with v 1 and v 2 with respect to their
entre-of-mass. We define a mass ratio q ≡ m 2 / m 1 . The total mass
f the binary is therefore M = m 1 + m 2 = m 1 (1 + q ), the relative
osition r = r 1 − r 2 and relative velocity v = v 1 − v 2 . It follows 
hat the total spin S = S 1 + S 2 , and the mass −weighted total spin is
= q S 1 + q −1 S 2 . As the GM clock effect can only be measured in

 system with at least one accurate clock, we take m 1 to be a pulsar
neutron star) and m 2 be its companion star. There are no restrictions
n the value of q in the derivation presented in this work, i.e. the
ompanion star can be less or more massive than the pulsar, and
ence it can a main-sequence star, a white dwarf, a neutron star or a
lack hole. 

In additional to the Newtonian gravitational force −M r /r 3 , the
pin–orbit coupling force produces an additional acceleration on the 
inary, and it is given by 

 SO = 

1 

r 3 

{
3 

r 2 
r 
[

( r × v ) · ( ( k + 1) σ + 2 S ) 
]

+ 

3 ̇r 

r 

[
r × ( (2 − k) σ + 2 S ) 

] − v × ( 3 σ + 4 S ) 
}

(2) 

Kidder 1995 ), with k a parameter depending on the chosen spin
upplementary condition (SSC). Here and hereafter, ‘dot’ abo v e a
ariable represents the differentiation with respect to time. It is worth
oting that the SSC only affects the coefficient of σ . Before delving
nto the discussion of SSC, it is important to highlight that there
xists a gravito-electric effect [i.e. the 1pN (post-Newtonian) effect], 
hich is typically more significant than the spin–orbit coupling 

f fect (a 1.5pN ef fect). Ho we ver, the gravito-electric ef fect does not
ontribute to T + 

− T − (see equation 21 of Wu 2022 ). It is also crucial
o emphasize that the GM clock effect is inherently topological, as
videnced by the absence of orbital size in the formula equation ( 1 ).

hile higher order spin contributions, such as the interplay of the
ravito-electric effect with the GM effect (first appearing at 2.5pN 

rder) and spin–spin coupling (appearing at the 2pN order), do 
nfluence the precession speed difference between retrograde and 
rograde orbits, they do not qualify as part of the GM clock effect.
herefore, we do not include the contributions of these higher order
ffects in this work. 

The SSC and, hence, the coefficient k depend on the definition
f the centre-of-mass. For a spinning sphere of mass m and spin
agnitude s , the centre-of-mass depends on the observer (see e.g. 
osta et al. 2012 ). F or an observ er co-mo ving with the spinning

phere, the centre-of-mass coincides with its geometrical centre. 
hile for an observer moving with v with respect to the sphere,

he centre-of-mass is displaced by v × s /m . The set of centres-of-
MNRAS 530, 1118–1128 (2024) 
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Figure 1. An illustration of the geometrical configuration of the system. The 
unperturbed orbit is located on the z = 0 plane in ( x , y , z) coordinates, with 
its angular momentum in the ˆ z direction. ω is the argument of periapsis. φ
is the azimuthal angle with respect to ˆ x and ν ≡ φ − ω is the true anomaly. 
The observer is located on the x ′ − y ′ plane. ι and � are the inclination angle 
and longitude of ascending node, respectively, with respect to x ′ − y ′ plane. 
The dashed lines represent lines on and projections on to the x − y plane. The 
dotted lines represent projections on to the x ′ − y ′ plane. The polar angle θS 

and azimuthal angle φS of the total spin vector are defined with respect to 
the ( x , y , z) coordinate. The mass–weighted spin vector, which is similarly 
defined, is omitted from the figure. 
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ass determined by all possible observers form a disc perpendicular
o the spin axis with a radius of s / m , which is called the M ̈oller radius.

In principle, any observer can be chosen to describe the motion
f the spinning object, although some choices are more natural than
thers. In the literature, there are a few conventional choices which
ive rise to different values for k : the Frenkel–Mathisson–Pirani
ondition (Frenkel 1926 ; Mathisson 1937 ), which is also equi v alent
o the Tulczyjew–Dixon (Tulczyjew 1959 ; Dixon 1964 ) condition at
inear order in spin, corresponds to the case of k = 1. At linear
rder in spin, these two conditions both correspond to adopting
n observ er co-mo ving with the spinning particle. The Newton–
igner–Pryce condition (Pryce 1948 ; Newton & Wigner 1949 ) is

ssociated with k = 1/2. Although the physical interpretation of this
ondition remains unclear, it has certain advantages. For instance, it
s the only SSC that leads to vanishing Poisson brackets in both flat
pace–time (Pryce 1948 ; Newton & Wigner 1949 ; Hanson & Regge
974 ) and curved space–time (Barausse, Racine & Buonanno 2009 ).
he Corinaldesi–Papapetrou condition (Corinaldesi & Papapetrou
951 ), which is equi v alent to adopting a set of static observers,
orresponds to k = 0. 

The general-relativistic representation of these SSCs for a spinning
article with 4-momentum p μ and spin tensor S μν may be written as
ollows: 

 

μνu ν = 0 or S μνp ν = 0 ⇒ k = 1 , (3a) 

 

μν( p ν − me 
ˆ 0 
ν) = 0 ⇒ k = 

1 

2 
, (3b) 

 

0 ν = 0 ⇒ k = 0 . (3c) 

Here, m ≡ √ −p 

μp μ is the dynamical mass and u μ is the 4-
elocity of the centre-of-mass of the spinning particle. The tensor
 ̂

 a 
ν represents the natural tetrad field satisfying 

 

ˆ a 
μe 

ˆ b 
νg 

μν = η ˆ a ̂ b , (4) 

here η ˆ a ̂ b = diag ( −1 , 1 , 1 , 1). The tensor field e ˆ 0 ν is time-like and
ast-oriented, such that e ˆ 0 0 > 0. 

 P E RTU R BAT I O N  TO  N E W TO N I A N  ORBITS  

.1 Perturbation to the orbit 

n this section, we follow the method in Mashhoon et al. ( 2001 ) to
alculate the orbital perturbation due to the spin–orbit couplings for
 binary system. In the absence of spin, the binary’s motion follows
 Newtonian orbit confined to the plane perpendicular to the orbital
ngular momentum. We refer to the orbit of a non-spinning binary as
he unperturbed orbit and the orbit of a slowly spinning binary as the
erturbed orbit. Let us first consider the Cartesian coordinates ( x , y ,
) with ̂  z parallel to the unperturbed orbital angular momentum. The
otal spin S has polar angle θS and azimuthal angle φS with respect to
he ( x , y , z) coordinate. Similarly, the mass–weighted spin has polar
ngle θσ and azimuthal angle φσ . The geometry of the binary system
n shown in Fig. 1 . 

It is convenient to adopt cylindrical coordinates ( ρ, φ, z) for
he orbit, with the ˆ z -axis parallel to the (unperturbed) orbital
ngular momentum. In the following, the subscript ‘0’ denotes the
nperturbed Newtonian orbit. We have z 0 = 0 for the unperturbed
rbit. The other two coordinates are given by: 

0 = 

a 0 (1 − e 2 0 ) 

e cos ν + 1 
, (5a) 
NRAS 530, 1118–1128 (2024) 

0 0 
0 = ω 0 + 2 arctan 

[ 

√ 

1 + e 0 

1 − e 0 
tan 

E 0 

2 

] 

, (5b) 

here a 0 and e 0 are the (unperturbed) semimajor axis and eccentric-
ty, ν0 ≡ φ0 − ω 0 is the true anomaly, and E 0 is the eccentric anomaly,
hich is related to the orbital period P 0 via E 0 − e 0 sin E 0 = 2 π / P 0 .
or a Newtonian orbit, P 0 = 2 π

√ 

a 0 3 /M . The angular momentum
f the unperturbed orbit per reduced mass is L 0 ≡

√ 

Ma 0 (1 − e 0 2 ) .
Cylindrical coordinates are related to Cartesian coordinates via

 x , y , z) ≡ ( ρ cos φ, ρ sin φ, z). We may therefore write the spins
and S in cylindrical coordinates, thereby decomposing the accel-

ration due to the spin–orbit coupling force into the three directions: 

a SO = C ρ

φ̇

ρ2 
ˆ ρ + C φ

ρ̇

ρ3 
ˆ φ + 

(
C z,φ

φ̇

ρ2 
+ C z,ρ

ρ̇

ρ3 

)
ˆ z , (6) 

here 

 ρ = 3 kσ cos θσ + 2 S cos θS , (7a) 

 φ = 3( k − 1) σ cos θσ − 2 S cos θS , (7b) 

 z,φ = 3 σ sin θσ cos ( φ − φσ ) + 4 S sin θS cos ( φ − φS ) , (7c) 

 z,ρ = 3( k − 1) σ sin θσ sin ( φ − φσ ) − 2 S sin θS sin ( φ − φS ) . (7d) 

herefore, the EOMs of the binary under the perturbation is given
y 

¨ − ρφ̇2 + 

M 

ρ2 
= C ρ

φ̇

ρ2 
, (8a) 

φ̈ + 2 ̇ρφ̇ = C φ

ρ̇

ρ3 
, (8b) 



Gravito-magnetic clock effects 1121 

z

W  

m
g
t  

i
r  

d
O

w

ρ

w
l
C

 

e  

s

w
s  

C
a  

s  

W  

p
p  

L

o

u

w  

n
o
c
I  

s  

t
r
u  

C
o  

d
t  

i  

d  

f

C

C

C

T  

a
 

a

C

) 

T  

ρ  

w  

p  

e

ρ

(  

a  

i  

m

T

H

w  

t  

g  

t  

b

3

W  

o  

a  

t  

h
o  

d
m
s  

s

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/1/1118/7640864 by D
O

 N
O

T U
SE Institute of Education m

erged w
ith 9000272 user on 16 April 2024
¨ + 

M 

ρ3 
z = C z,φ

φ̇

ρ2 
+ ε C z,ρ

ρ̇

ρ3 
. (8c) 

e have introduced a new factor, ε ≡ | a SO | / | a N | , to quantify the
agnitude of the spin–orbit coupling force relative to the Newtonian 

ravitational force. The expressions on the right-hand sides of 
he equations ( 8a –c ) are of order ∼ O( ε). Since we are primarily
nterested in the GM clock effect under the assumption of slow 

otation, we retain only the terms up to first order in the perturbation
ue to the spin–orbit coupling force. Consequently, all terms of order 
( ε2 ) or higher are ignored. Equation ( 8b ) can also be rewritten as 

d( ρ2 φ̇) 

d t 
= 

C φρ̇

ρ2 
, (9) 

hose solution is simply 

2 φ̇ = C 1 − C φ

ρ
, (10) 

here C 1 is some constant which should reduce to the angu- 
ar momentum L 0 when both spins vanish. Therefore, we have 
 1 − L 0 ∼ O( ε), ρ − ρ0 ∼ O( ε), and similarly for φ and z. 
Using the formula for φ̇ in equation ( 10 ), and defining u ≡ 1/ ρ,

quation ( 8a ) can be rewritten, with the help of equation ( 5a ), as a
econd order differential equation for u : 

d 2 u 

d φ2 
+ u = 

M 

C 

2 
1 

+ 

(
1 − e 2 0 

)−2 

a 2 0 C 1 
{ C φ

[
1 − e 2 0 cos ( 2 φ0 − 2 ω 0 ) 

]
+ 

(
C φ − C ρ

)
[ e 0 cos ( φ0 − ω 0 ) + 1 ] 2 } , (11) 

here C 1 remains undetermined. The second term on the right-hand 
ide of equation ( 11 ) corresponds to a linear-order correction in ε.
onsequently, we may introduce a quantity similar to the semimajor 
xis, denoted by a = a 0 (1 + α) where α ∼ O( ε), and a quantity
imilar to eccentricity, denoted by e = e 0 (1 + η) where η ∼ O( ε).
e can use these definitions interchangeably with a 0 and e 0 as

er convenience, and this substitution would only contribute to the 
erturbation at the second order in ε2 . We can also replace C 1 with
 0 using the same reasoning. 
Combining this differential equation and form of unperturbed 

rbit, we can guess the solution to be of the form 

 = 

1 + e cos [(1 + C 3 ) φ − ω] + C 2 cos [2(1 + C 3 ) φ − 2 ω] 

a(1 − e 2 ) 
, (12) 

here ω ≡ ω 0 + ξ . It is important to note that these definitions do not
ecessarily represent the semimajor axis, eccentricity, and argument 
f periapsis of the perturbed orbit. Ho we ver, these definitions 
orrespond to those of the unperturbed orbit when both spins vanish. 
n the solution, we have C 1 − L 0 ∼ O( ε). C 2 , C 3 , α, η, and ξ are all
mall corrections of linear order in ε. Among these, C 3 represents
he orbital precession due to the spin–orbit coupling force, while C 2 

epresents the non-sinusoidal variation of the orbit. There are five 
nknowns ( a , e , ξ , C 2 , and C 3 ) in this solution, and one unknown
 1 in the differential equation. Next, we perform a Taylor expansion 
f the proposed solution with respect to ε and compare it with the
ifferential equation, disregarding terms of order O( ε2 ). The constant 
erm in u , and the coefficients of φsin ( φ − ω 0 ) and cos (2 φ − 2 ω 0 )
nside the Taylor expansion of u would be used to eliminate three
egrees of freedom, leaving α, η, and ξ as the free variables. It
ollows that 

 2 = 

e 2 0 M 

6 L 

3 
0 

( C ρ + C φ) , (13) 
 3 = 

M 

L 

3 
0 

( C ρ − C φ) , (14) 

 1 = L 0 − M 

4 L 

2 
0 

{ 2 a 0 L 0 [ e 
2 
0 ( α + 2 η) − α] 

+ ( e 2 0 + 2) C ρ − ( e 2 0 + 4) C φ} . (15) 

he remaining free variables can be determined by the value of u , u̇
nd φ̇ at a given time instance (or at three different time instances). 

It is worth noting that C 1 can also be expressed as a function of a
nd e : 

 1 = 

√ 

Ma(1 − e 2 ) + 

1 

4 a 
(
1 − e 2 

) [(
e 2 + 4 

)
C φ − (

e 2 + 2 
)
C ρ

]
. 

(16

he motion in the z-direction can be solved by assuming z =
H ( φ) (Mashhoon 1978 ; Mashhoon et al. 2001 ), where H ( φ), as
ell as its deri v ati ves, are of linear order in ε. Ignoring second order
erturbations, and applying equations ( 8a –c ), we obtain a differential
quation for z: 

φ̇2 

(
d 2 H 

d φ2 + H 

)
= C z,φ

φ̇

ρ2 
+ C z,ρ

ρ̇

ρ3 
. (17) 

Note that both sides of the equation are linear in ε.) Replacing ρ, φ̇,
nd ρ̇ with 1/ u , ( C 1 u 2 − εC φu 3 ), and −u̇ /u 

2 , respectively, and upon
gnoring terms abo v e first order, the differential equation for H ( φ)
ay be rewritten as 

d 2 H 

d φ2 + H = 

M 

L 

3 
0 

{ e 0 C z,ρ sin ( φ − ω 0 ) + C z,φ[ e 0 cos ( φ − ω 0 ) + 1] } . 
(18) 

he general solution of H ( φ) that is accurate to linear order in ε is 

 = 

M 

4 L 

3 
0 

{ φ[6 σ sin θσ sin ( φ − φσ ) + 8 S sin θS sin ( φ − φS )] 

+ C 4 sin φ + C 5 cos φ + 2 e 0 [ σ sin θσ (3 k cos ( φσ − ω 0 ) 

+ ( k − 2) cos (2 φ − φσ − ω 0 )) 

+ 4 S sin θS sin ( φ − φS ) sin ( φ − ω 0 )] } , (19) 

ith C 4 and C 5 being arbitrary constants which are linear in ε. These
wo degrees of freedom can be determined by the value of z and ̇z at a
iven time instance (or two different instances). Further, it is notable
hat H grows secularly as φ → ∞ , emphasizing that the formula will
e less accurate as the number of orbit increases. 

.2 Projection of orbit on the obser v er’s coordinate system 

e adopt a new Cartesian coordinate system ( x ′ , y ′ , z ′ ) for the
bserver (i.e. a terrestrial radio telescope in case of pulsar timing or
 laser ranging site for artificial satellite) with the observer placed on
he x ′ − y ′ plane. We note that the definition of inclination angle
ere is different from the convention adopted in binary system 

bservations, and an edge-on orbit corresponds to ι = 0 in our
efinition. To simplify calculations, we may ignore the relative 
otion between the centre-of-mass of the binary and the observer, 

uch that both coordinate systems ( x , y , z) and ( x ′ , y ′ , z ′ ) remain
tatic. These coordinate systems are related via the rotation ⎡ 

⎣ 

x ′ 

y ′ 

z ′ 

⎤ 

⎦ = 

⎡ 

⎣ 

cos � − cos ι sin � sin ι sin �
sin � cos ι cos � − cos � sin ι

0 sin ι cos ι

⎤ 

⎦ 

⎡ 

⎣ 

x 

y 

z 

⎤ 

⎦ , (20) 
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here � is the longitude of the ascending node and ι is the inclination
ngle with respect to the reference plane x ′ − y ′ . We also introduce
he spherical coordinate system ( R, ϕ, ϑ), which is defined with
espect to ( x ′ , y ′ , z ′ ). 

.3 General solution 

ecause a 0 , e 0 , and ω 0 are all parameters that are not directly
easurable, the results are instead expressed in terms of a , e , and ω.
his choice of variables eliminates the three degrees of freedom

epresented by α, η, and ξ . Due to precession, the orbit is no
ong closed (expect for when the orbit is strictly circular, even
nder perturbations). To account for this, we introduce an additional
erm φ1 , of linear order in ε, which characterises the nutation and
recession of the orbital plane. Assuming a full orbit starts at φ =
0 and ends at φ = φ0 + 2 π + εφ1 , the time it takes to complete a

ull orbit is: 

 = 

∫ φ0 + 2 π+ εφ1 

φ0 

d φ

C 1 u 

2 − εC φu 

3 

= 2 π

√ 

a 3 

M 

+ 

π

2(1 − e 2 ) 5 / 2 M 

× [
( −3 e 4 + 3 e 2 − 2) C ρ + (3 e 4 − 9 e 2 + 4) C φ

]
+ 

1 

M [ 1 + e cos ( ω − φ0 ) ] 
2 

× [
2 π

(
C ρ − C φ

) + a 3 / 2 (1 − e 2 ) 3 / 2 
√ 

M φ1 

]
. (21) 

he angle φ1 depends on the definition of a full orbit. To linear order
n ε, the period difference between the perturbed and unperturbed
rbit is given by: 

 T = T − 2 π

√ 

a 0 3 

M 

= � T size + � T fixed + � T orb , (22) 

here 

 T size = 2 π

√ 

a 3 

M 

− 2 π

√ 

a 0 3 

M 

= 3 πα

√ 

a 0 3 

M 

, (23a) 

 T fixed = 

π
[
( −3 e 4 + 3 e 2 − 2) C ρ + (3 e 4 − 9 e 2 + 4) C φ

]
2(1 − e 2 ) 5 / 2 M 

, (23b) 

 T orb = 

[
a 3 / 2 (1 − e 2 ) 3 / 2 

√ 

M φ1 + 2 π
(
C ρ − C φ

) ]
M [ 1 + e cos ( ω − φ0 ) ] 

2 . (23c) 

o linear order in ε, replacing e with e 0 does not affect the three
erms, hence they are independent of the free parameter η. � T fixed is
ndependent of the choice of α, φ1 or φ0 . � T size depends on the free
arameter α, and therefore represents the period difference due to the
ifference in size of the perturbed and unperturbed orbits. As we will
iscuss later, this difference is related to the non-unique definition
f ‘nearly identical’ orbits. � T orb depends on the definition of a full
evolution and on the initial position φ0 . Because α and φ1 are free
arameters (as long as they are linear in ε), � T fixed and � T orb are
omewhat arbitrary and can themselves vanish, or be fine-tuned to
ake � T vanish under suitable parameter choices. 
This is part of the reason why the GM clock effect formula differs

cross the literature. These differences will be discussed in further
etail in the following section. To clarify, the GM clock difference
sually refers to the period difference between a prograde orbit and
 retrograde orbit. In our case, we define � T as the difference in
eriod between a spinning and non-spinning binary system, which
s about half of the GM clock effect commonly referred to in the
iterature. 
NRAS 530, 1118–1128 (2024) 
.4 A full revolution: � T orb 

onsider an observer at ( R , ϕ, ϑ) = ( ∞ , ϕ 0 , π /2) and a binary
pproximately edge-on (such that ι 	 π /2). A full orbit can be
efined as the orbit with ϕ moving from ϕ 0 (which corresponds to
= φ0 ) to ϕ 0 + 2 π (which corresponds to φ = φ0 + 2 π + εφ1 ),
ith ϕ defined as: 

tan ϕ ≡ y ′ 

x ′ 
= 

sin � cos φ + cos � cos ι sin φ − εH ( φ) cos � sin ι

cos � cos φ − sin � cos ι sin φ + εH ( φ) sin � sin ι
. 

(24)

uch an azimuthal closure would correspond to two sequential pulsar
uperior conjunctions (or approximately, two maximum Shapiro
elays) for this observer. The duration of such an orbit is known
s the sidereal period, as shown in the top panel of Fig. 2 . With this
efinition, the angle φ1 can be calculated by solving tan ϕ| φ= φ0 =
an ϕ| φ= φ0 + 2 π+ εφ1 , yielding: 

1 = −πM 

L 0 
3 tan ι cos φ0 

× [ 3 σ sin θσ sin ( φσ − φ0 ) + 4 S sin θS sin ( φS − φ0 ) ] . (25) 

his formula is independent of the SSC condition as it roots from
he v × (3 σ + 4 S ) part of the spin–orbit coupling force, from which
he parameter k is absent. When the inclination angle is zero, the x

y plane o v erlaps with the x ′ − y ′ plane and we have φ1 = 0, as
xpected. 

There are other possible definitions of a full orbit. Considering an
bserver on the x ′ − y ′ plane, the azimuthal closure is well-defined
or nearly edge-on orbits, but it loses its meaning for face-on orbits.
 more sensible definition of a full revolution for eccentric face-on
rbits can be defined by the time interval between two successive
eriapsis passages, which is also known as the anomalistic period, as
hown in the middle panel of Fig. 2 . This definition corresponds to
he time difference between two sequential maxima of the Einstein
ime delay. Under this assumption, the full orbit is defined as
 u/ d φ| φ= φ0 = d u/ d φ| φ= φ0 + 2 π+ εφ1 = 0. Both the initial position φ0 ,
nd φ1 , are independent of the observer’s location. The expression
or φ1 is given by: 

1 = 

2 πM 

L 0 
3 

(
C φ − C ρ

)
. (26) 

hat this definition of a full revolution yields � T orb = 0 is expected.
lthough this expression is not divergent as e 0 → 0, it is important

o emphasize that it is not applicable to circular orbits. In the
imit of a circular orbit, the physical meaning of the anomal-
stic period becomes invalid due to the absence of periapsides.
he bottom panel of Fig. 2 demonstrates the nodal period (or
raconic period). It is defined as the time interval between two
uccessive upward crossings of the x ′ − y ′ plane. These crossing
oints are known as the ascending nodes, which correspond to the
anishing of 

 

′ = ερH ( φ) cos ι + ρ sin ι sin φ . (27) 

or simplicity, we set H (0) = 0 such that the first ascending node
orresponds to φ = 0. The second passage can be found by solving
 

′ | φ= 2 π+ εφ1 = 0. To linear order in ε, one finds: 

1 = 

πM 

L 0 
3 cot ι ( 3 σ sin φσ sin θσ + 4 S sin φS sin θS ) . (28) 

s expected, the nodal period diverges when ι → 0, since the
scending node is not well-defined in this case. When ι = π /2 we
ave φ1 = 0. 
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Figure 2. These figures illustrate different ways of defining a full orbital 
period. The top panel shows the sidereal period defined with respect to a 
distant observer on the vertical plane. The middle panel shows the anomalistic 
period, which is independent of observer’s position. The bottom panel 
displays the nodal period, which is the duration between two successive 
upward crossings of the z ′ = 0 plane. In each panel, the curved solid line 
represents the perturbed orbit, with the perturbing force exaggerated for 
clarity. The dot connected to the origin with dashed (solid) line marks the 
start (end) point of the specific orbital period. The sector that the orbit sweeps 
through during one orbital period is shaded. 
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The abo v e definitions are not unique. F or e xample the synodic
eriod, which is defined with reference to two or more observers
e.g. the Earth and the Sun) would be a more feasible defini-
ion for the measurement of the GM clock effect with artificial 
atellites. Most importantly, all of these different definitions of 
rbital period are identical for a binary under Newtonian gravity 
n the absence of any perturbing force, but differ for perturbed 
rbits. 
.5 Nearly-identical orbits: � T size 

he GM clock effect is usually represented by the difference in
he orbital period of a prograde (i.e. S · L > 0) orbit and that of
n identical retrograde (i.e. S · L < 0) motion. Ho we ver, from a
heoretical perspective, there are no identical orbits when the spin–
rbit force is included. This is simple to illustrate: the radial motion,
.e. equation ( 12 ), has additional terms with approximately two
imes the orbital frequency (i.e. the term with coefficient C 2 ) and
 precession term, C 3 . While it is possible to fix both C 2 and C 3 to
anish simultaneously, the motion in the z-direction cannot also be 
xed to vanish, and vice versa. Even for circular orbits which seem
ery much similar, the angular velocity for orbits with identical radii
ill be different. This difference in angular velocity is in fact the

ource of the GM clock effect. 
Therefore, before proceeding to calculate the GM clock effect, the 

rbits that we choose to compare must be carefully specified. We will
efer to these orbits as ‘nearly identical’ or indistinguishable orbits. 
he non-unique choice of what constitutes two ‘nearly identical’ 
rbits can be translated into the choice of the free variable α, which is
omewhat arbitrary and can be fine-tuned to make the time difference
anish. F or e xample if we define two ‘nearly identical’ circular orbits
s two circular orbits with the same φ̇ but slightly different radii (at
he ∼ O( ε) level), the clock effect for a full revolution will vanish
or these two nearly identical orbits. 

The definition of ‘nearly identical’ is best clarified in terms of
bservable parameters. For pulsar observations, the main observables 
re the time delay due to pulse-arri v al-time and Doppler effects.
n general, it would be natural to define nearly identical orbits as
hose that result in indistinguishable observational signatures. For 
xample if two different orbits can be fitted by the same template
ith exactly the same parameters, these two orbits will be considered
early identical. Ho we ver, such a definition can be quite subtle, and
s dependent on the observation carried out, the noise level, and the
emplate used to fit the data. 

In the simplified model where the centre-of-mass of the binary is
t rest with respect to the observer, there are several sources of time
elays, in particular: (i) the Roemer delay due to the displacement
f the pulsar relative to the centre-of-mass, (ii) the Shapiro delay
ue to the passage of light ray around the companion, and (iii) the
instein delay due to time dilation in the gravitational field. As for

he Doppler effect, its importance depends on the magnitude of the
ulsar’s velocity projected on to the line of sight. Consequently, 
ifferent measurements are sensitive to different orbital parameters. 
F or e xample the Roemer delay is sensitiv e to the (projected) size

f the orbit. Two orbits of the same projected size but with slightly
ifferent velocities will be indistinguishable from the point of view of
he Roemer delay. The Einstein delay depends on the variation of the
ravitational potential (i.e. m 2 / r ) from the companion star. Roughly
peaking, this effect depends on the eccentricity and semimajor axis 
f the orbit. Hence, two orbits with the same eccentricity and same
emimajor axes will be considered as nearly identical orbits if only
he Einstein time delay is used to determine the binary parameters.
he Doppler effect depends on the projected velocity and is therefore
ot as sensitive to the shape of the orbit. 
In practice, all of these different time delays are combined to

stimate the best-fitting orbital parameters. Whether two orbits 
re distinguishable or not depends on the binary parameters, the 
rientation of the orbit, and the noise level, which introduce random
actors into the estimated parameters. A detailed and observationally 
onsistent definition of ‘nearly identical’ orbits is complex and is 
eyond the scope of this work. In the following, we will use a few
MNRAS 530, 1118–1128 (2024) 
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M

Figure 3. This is a representation of different definitions of nearly identical 
perturbed orbits. The solid ellipse represents the unperturbed orbit. The two 
dotted circles represent circular orbits with radii r min and r max . The semi- 
ellipses represent perturbed orbits which are nearly identical to the ellipse 
under different definitions. The dashed semi-ellipse represents a perturbed 
orbit with the same r min and r max as the unperturbed orbit. The dashed–
dotted semi-ellipse and the dashed–dotted–dotted semi-ellipse represent an 
orbit that connects to the unperturbed orbit smoothly at φ = 0.75 π and φ = 

1.2 π , respectively. Each of the connecting points is highlighted with an arrow. 
The perturbation is exaggerated (i.e. ε ∼ 0.15) to assist visualization. 
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implified assumptions to demonstrate how the definition of nearly
dentical orbits affects the value of the GM clock effect. We will
onsider a few typical examples which are presented in Fig. 3 . 

A system dominated by the Einstein delay would consider
rbits with the same r min and r max as nearly identical. Because
 = 

√ 

ρ2 + z 2 , the oscillation in the z -direction only contributes
o changes in the radial distance at second order in ε. Therefore, we
ave r min ≈ ρmin = u max and similarly for r max . This requires 

= 

C 2 (1 + e 0 
2 ) 

1 − e 0 2 
, (29) 

= C 2 . (30) 

sing this relation in the case of � T orb = 0 (i.e. the anomalistic
eriod), the clock effect between the period of the perturbed and that
f the unperturbed orbit is given by 

 T size + � T fixed = −π
(
C ρ − 2 C φ

)
M 

√ 

1 − e 0 2 

= 

3 π [ ( k − 2) σ cos θσ − 2 S cos θS ] 

M 

√ 

1 − e 0 2 
. (31) 

ince the coefficients of σ and S are both ne gativ e (for k = 0,
/2, 1), this implies that when � T orb = 0, it takes less time for a
inary to complete a full revolution on a prograde orbit than on
n unperturbed orbit or a perturbed retrograde orbit. This counter-
ntuitive conclusion is specific to the anomalistic period. As spin–
rbit coupling forces cause the orbit to precess, the periaspsis vectors
otate in the opposite direction of the angular velocity for prograde
rbits. Therefore, an anomalistic period is complete for �φ < 2 π on
 prograde orbit, so that the time it takes to finish a full revolution
s in fact shorter than the corresponding unperturbed or retrograde
rbit. 
Another example is given by a system that connects the perturbed

rbit and unperturbed orbit smoothly. If we assume the unperturbed
NRAS 530, 1118–1128 (2024) 
rbit turns into a perturbed orbit at φ = φ0 , it is equi v alent to assuming
hat the spin–orbit coupling force is turned on at φ = φ0 . We require
hat u , u̇ , and φ̇ of the perturbed orbit at φ = φ0 coincide with their
ounterparts of the unperturbed orbit. Similarly, we have z = ż = 0
t φ = φ0 . This requires 

= 

a 0 M 

2 

6 L 0 
5 { 2 e 0 ( C ρ + C φ)[2 e 0 

2 cos 3 ( φ0 − ω 0 ) 

+ 3 e 0 cos (2 φ0 − 2 ω 0 ) + 6 cos ( φ0 − ω 0 )] 

+ 3( e 0 
4 + e 0 

2 + 2) C ρ − 3( e 0 
2 − 5) e 0 

2 C φ} . (32) 

e omit the formula of the GM clock effect under this condition as
t is redundant. 

 C O M PA R I S O N  WI TH  P R E V I O U S  STUDIES  

n this section, we compare the GM clock effect we defined with
he results from Mashhoon et al. ( 2001 ), Bini et al. ( 2004a , b ),

ashhoon & Singh ( 2006 ), and Hackmann & L ̈ammerzahl ( 2014 ).
he systems they studied are all extreme-mass-ratio-inspiral (EMRI)
ystems, with special focus on the Earth-satellite system. For an
MRI system, we consider m 1 to be the mass of the test particle
nd m 2 to be the massive object. This system could refer to a
ulsar orbiting a massive black hole or a satellite orbiting the
arth. Therefore, we have m 1 / m 2 	 1 and M ≡ m 1 + m 2 ≈ m 2 .
o leading order in the mass ratio, we have S ≈ S 2 ∼ m 

2 
2 and

= m 2 S 1 /m 1 + m 1 S 2 /m 2 ∼ m 1 m 2 . We note that for the Earth-
atellite system σ = 0 due to the negligible spin of the satellite.
urthermore, we note that in Bini et al. ( 2004a , b ) and Mashhoon &
ingh ( 2006 ), they have used σ = m 2 S 1 /m 1 instead, such that the
lock effect formula is accurate to leading order in mass ratio for S 1 
nd S 2 , respectively. 

In addition, the EOMs for the test particles are usually described
s geodesics (with or without perturbations due to the spin of the
mall mass S 1 ) in the Kerr space–time, and the inertial frame is
sually defined with reference to S 2 , instead of the orbital angular
omentum. The observer’s frame ( x ′ , y ′ , z ′ ) is defined such that S 
 v erlaps with the z ′ -axis. Therefore, the inclination angle of the
rbital plane ι is equi v alent to θS . This difference in definition
ncodes implicit restrictions of the parameter space and naturally
eads to discrepancies in the results, as illustrated in the following
ections. 

.1 Mashhoon’s clock effect 

ashhoon et al. ( 2001 ) investigated the clock effect of a test particle
rbiting the Earth. The mass and spin of the Earth dominates the spin–
rbit coupling forces. Therefore, the mass–weighted spin vector σ
nd the spin S 1 can be ignored. For the observer on the Earth, its z ′ 

xis matches the spin axis, i.e. θS = ι and φS = π /2. The two degrees
f freedom in the H ( φ) are remo v ed by requiring H ( φ0 ) = H 

′ ( φ0 ) =
. With these conditions, the coefficients of the forces are given by 

 ρ = 2 S cos ι , (33a) 

 φ = −2 S cos ι , (33b) 

 z,ρ = 2 S cos φ sin ι , (33c) 

 z,φ = 4 S sin φ sin ι . (33d) 

hese conditions yield C 2 = 0, where the orbital semimajor axis and
ccentricity of the perturbed orbit coincide with a and e . The authors
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efined a full orbit using the sidereal period, i.e. equation ( 25 ). This
s equi v alent to fixing the angle φ1 to be 

1 = −4 πM 

L 0 
3 S sin ι tan ι cos 2 φ0 . (34) 

ashhoon et al. ( 2001 ) commented that ι should not be near π /2 to
nsure φ1 remains small, given the divergence of tan ι around ι = π /2.
e seek to provide a more precise range of the required inclination

ngle. For a satellite in low Earth orbit, to ensure that φ1 	 1, we
ust have 

π

2 
− ι � 4 πM ⊕I ⊕ω ⊕

( aM ⊕) 3 / 2 

= 1 . 7 × 10 −10 rad 

(
I ⊕

8 × 10 37 kg m 

2 

)(
6400 km 

a 

)3 / 2 

, 

(35) 

here we have used I ⊕  0.33 M ⊕R ⊕2 to calculate the Earth’s
oment of inertia, with the coefficient 0.33 taken from Williams 

 1994 ). This condition implies that equation ( 34 ) remains valid for
he majority of existing satellites, suggesting that the clock effect 
ould potentially be revealed with existing data. The time it takes to
omplete an azimuthal closure is therefore 

 = 2 π

√ 

a 3 

M 

+ 

2 πS cos ι

M 

{ 

4 − 2 cos 2 φ0 tan 2 ι[
1 + e cos ( φ0 − ω) 

]2 −
3 √ 

1 − e 2 

} 

. 

(36) 

his result agrees precisely with equation (30) of Mashhoon et al. 
 2001 ). 

.2 Bini’s results: circular equatorial orbits with spinning 
econdary 

ini et al. ( 2004a , b ) studied the GM clock effects in EMRIs with
oth perturbed and unperturbed orbits, which are strictly circular 
nd restricted to the equatorial plane. The unperturbed orbit, the 
erturbed prograde orbit, and the perturbed retrograde orbit, are all 
ssumed to have the same radius. This corresponds to cases with e =
 0 = 0 and α = 0, such that a = a 0 represents the constant distance
etween the binary pair. Both spins are required to be perpendicular 
o the orbital plane (i.e. sin θσ = sin θS = 0) such that the motion in
he z-direction vanishes. For a strictly circular orbit, we have φ1 = 

 regardless of the orientation of the observer’s plane. The time it
akes for the binary to complete one orbit becomes 

 = 2 π

√ 

a 3 

M 

+ 

2 π

M 

(
±3 

2 
kσ ± S 

)
, (37) 

here the plus (minus) sign depends on the relative orientation of the
pin axis and corresponds to the spin axis being aligned (anti-aligned) 
ith the orbital angular momentum. For an EMRI system, assuming 
 m 2 S 1 /m 1 and S  S 2 , the orbital time-scale becomes 

 = 2 π

√ 

a 3 

M 

+ 

2 π

M 

(
±3 

2 
k 

M 

m 1 
S 1 ± S 2 

)
. (38) 

his result matches equations (3.2) and (3.3) of Bini et al. ( 2004b )
or the three SSCs considered in their paper. It also matches the result
f Faruque ( 2004 ) when k = 1. 

.3 Mashhoon and Singh’s results 

ashhoon & Singh ( 2006 ) studied the GM clock effect for an EMRI
ystem on a semicircular orbit close to the equatorial plane. The 
ircular geodesics are considered as unperturbed orbits and the force 
ue to the interaction of curvature with the spin of the test particle
 S 1 ) is considered as the perturbing force. The spin of the massive
bject is therefore either aligned or anti-aligned with the orbital 
ngular momentum, but there is no restriction on the orientation of
he smaller spin. 

The nearly identical perturbed orbit is defined as the orbit that
he test particle will follow if the force due to the smaller spin is
witched on at t = 0. More specifically, two orbits with the same S 
ut with either vanishing S 1 or non-vanishing S 1 , that share the same
 , u̇ , φ, φ̇, and z = 0 = ż at t = 0, are considered nearly identical.
he azimuthal closure is defined as φ0 → φ0 + 2 π , such that the
otion in the z-direction (and hence the projection of the spin on to

he orbital plane) can be ignored and we have φ1 = 0. Under this
ondition, we have e 0 = 0 and 

= e 0 η = 

3 kσ√ 

a 0 3 M 

. (39) 

he unperturbed orbit is strictly circular but the perturbed orbit 
dmits a small eccentricity. The time it takes for the smaller particle
o complete one full orbit is 

 = 2 π

√ 

a 0 3 

M 

+ 

2 π

M 

(
6 k 

M 

m 1 
S 1 cos θS 1 ± S 2 

)
. (40) 

he sign in front of S 2 depends on the relative orientation of the
rbit. As the perturbed orbit remains close to the equatorial plane,
he sign of S 2 is positive (negative) when the spin of the black hole is
ligned (anti-aligned) with the orbital angular momentum. The angle 
S 1 is not restricted and can be written as ˆ S 1 · ˆ J . Mashhoon & Singh
 2006 ) used the Tulczyjew–Dixon condition, which suggests k = 1.
nder this condition, our result becomes equi v alent to equation (57)

n their paper. In comparison to the work of Bini et al. ( 2004a , b ) and
aruque ( 2006 ), the coefficient of S 1 in Mashhoon & Singh ( 2006 )
nd equation ( 40 ) is much larger. We confirm that the difference
n this coefficient is merely an artefact of the different literature
efinitions of ‘nearly identical’ orbits. 

.4 Hackmann and L ̈ammerzahl’s results 

ackmann & L ̈ammerzahl ( 2014 ) compared inclined orbits of a non-
pinning test particle in the Kerr and Schwarzschild space–times. The 
err geodesics were considered to be the perturbed orbit while the
chwarzschild geodesics were the unperturbed orbit. The spin axis 

S = S 2 was aligned (or anti-aligned) with the z-axis, while the orbital
ngular momentum was inclined at an angle ι with respect to the z-
xis. The orbit precesses and nutates at different frequencies around 
he spin axis, as a consequence of the spin–orbit coupling force.
hey calculated the clock effect by averaging the azimuthal velocity 
 v er radial oscillation and altitudinal oscillation, respectively. As 
hese two oscillations have different frequencies in the presence of 
erturbative forces, their result is equivalent to averaging the GM 

lock effect o v er infinite time. Further, by using the inverse azimuthal
 elocity to deriv e the clock effect, the y hav e ef fecti vely considered
he azimuthal closure condition and their formula represents the 
nfinitely averaged sidereal period. Consequently, their result is 
ndependent of the argument of periapsis of the orbit. The formula,
.e. equation (30) of Hackmann & L ̈ammerzahl ( 2014 ), in our
otation reads: 

 T = 

2 πS 

M 

(
3 e 2 + 2 e + 3 

)
cos ι − 2 e − 2 (

1 − e 2 
)3 / 2 . (41) 
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n general, spin–orbit coupling forces give rise to the GM clock
erms that contain θS (which is equi v alent to ι in this case). Ho we ver,
heir formula has a component that is independent of ι. We argue
hat this term is a direct consequence of the precession of the orbital
ngular momentum and that, although not explicitly stated, their
veraging method has assumed the orbital angular momentum of the
on-spinning test particle to be much smaller than S . When S � μL ,
he orbital angular momentum approximately precesses around the
pin axis (Kidder 1995 ) with 

L̇ = 

2 

r 3 
S 2 × L . (42) 

he prograde motion acquires a positive angular velocity such that
 S = 2 S 2 / r 3 , regardless of the inclination angle. In fact, this angular
elocity is the precession speed of the longitude of the ascending
ode (i.e. nodal precession) of the satellite (Lense & Thirring 1918 ).
he correction to the orbital period due to this angular velocity is 

 T = 

2 π

ω N + ω S 

− 2 π

ω N 
= −4 πS 

M 

+ O( S 2 ) , (43) 

or a circular orbit, which is equi v alent to the part of equation ( 41 )
hat is independent of the inclination angle when e = 0. Here, ω N =

 

M /r 3 is the Newtonian angular velocity. This relation implies that
he inclination-independent component of the clock effect originates
rom the nodal precession of the orbit. During the node’s prograde
recession with respect to the spin of the massive object, it contributes
o reducing the orbital period of the prograde motion and increasing
he orbital period of the retrograde motion. As the azimuthal velocity
as been averaged over infinite time, the clock effect was calculated
ith respect to a distant and fix ed observ er located on the x ′ −
 

′ plane. This physical picture suggests that the spinning axis is
f fecti v ely fix ed with respect to the distant observ er while the orbital
ngular momentum precesses about this axis. As both spin and orbital
ngular momenta precess around the total angular momentum, J =

S 2 + μL , this picture is only valid when J ≈ S 2 , which implies
 S 2 | � μ| L | . This requirement suggests that the formula will be
alid in the test particle limit (e.g. an Earth-satellite system) but may
e violated in compact pulsar-black hole systems, where the angular
omentum of the pulsar is non-negligible compared with the black

ole’s spin. 
In comparison, our perturbation method is valid regardless of the
ass ratio and whichever angular momentum dominates. Since we

ave ignored precession of the orbital angular momentum and spin
ngular momenta, our formula is valid when the observational time-
cale is much shorter than the precession time-scale. For this reason,
t is unnecessary to compare our formula with the result of Hack-
ann & L ̈ammerzahl ( 2014 ). Nevertheless, these two methods lead

o consistent results when the spin axes are approximately aligned
or anti-aligned) with orbital angular momentum, as precession may
e ignored in such cases. When ι = 0, equation ( 36 ) reduces to 

 T = 

2 πS 

M 

〈 

− 3 √ 

1 − e 2 
+ 

4 [
1 + e cos ( φ0 − ω) 

]2 

〉 

ω 

= 

2 πS 

M 

1 + 3 e 2 (
1 − e 2 

)3 / 2 , (44) 

here < ··· > ω represents averaging over ω. This is the same as
quation ( 41 ) for ι = 0. 
NRAS 530, 1118–1128 (2024) 
.5 Further comments on the clock effect 

t has been shown that the differences in various results in the
iterature are due to the choice of SSC (i.e. the value of k ), the
efinition of ‘nearly identical’ orbits (i.e. the value of α), and the
efinition of a full revolution (i.e. the value of φ1 ). For example
he constant coefficients in front of the secondary spin could differ
y a factor of four in equations ( 38 ) and ( 40 ), even for the same
SC, as a consequence of different definitions of ‘nearly identical’
rbits. In fact, the coefficients can be made arbitrarily large or small
ith suitable choices of α and φ1 . Some coefficients appear in the

iterature more often than others, simply because their underlying
efinitions seem more natural for the system being considered, as
ompared with others. 

We seek to further illustrate this effect by showing that even
he well-known formula equation ( 1 ) admits variants. Consider an
arth-satellite system with a satellite moving on an unperturbed
ircular orbit on the equatorial plane of the Earth. We now define a
early identical perturbed orbit as one that connects to the circular
nperturbed orbit smoothly at periapsis. For an unperturbed orbit
ith radius a 0 , we then have 

= 

C ρ

a 0 3 / 2 M 

1 / 2 
. (45) 

he GM clock effect is now given by 

 + 

− T − = 

16 πS 

M 

. (46) 

o the best of our knowledge, only the constant coefficient 4 π appears
n the literature. This is because it seems more natural to consider two
rbits with the same size ( r min and r max ) as being nearly identical.
or pulsar timing, this is indeed the case as the Roemer delay is,

n general, the dominant time delay (with order ∼r / c ), while the
ther effects depend on v/ c (the Doppler effect), ( v/ c ) 2 (the Einstein
elay), or Gm 2 / c 3 (the Shapiro delay). Ho we ver, the Roemer delay
s only sensitive to the projected size of the orbit, hence for binaries
ith nearly face-on orientations the Roemer delay will vanish and
ecoding other time delays will be necessary to acquire the full
nformation of the orbital parameters in pulsar timing observations. 

 C O N C L U S I O N S  

n this study, we have derived the GM clock effects for a binary
ystem with arbitrary mass ratio, eccentricity, inclination angle, and
pin orientation. The difference in orbital period between a spinning
inary and a non-spinning binary is given by equation ( 22 ). The
eneric clock effect admits three degrees of freedom: the choice of
SC (i.e. value of k ) which comes from the dependence of spin–
rbit coupling forces on the SSC, the definition of ‘nearly identical’
rbits (i.e. the value of α), and the definition of a full revolution
i.e. the value of φ1 ). We demonstrate how these various definitions
f ‘nearly identical’ orbits affect the clock effect in Section 3.5 and
ho w ho w the definition of a full revolution affects the clock effect
n Section 3.4 . 

When the spin–orbit force is present, the orbit can no longer
o be identical to orbits where the spin–orbit coupling force is
bsent. This can also be explained by the fact that the spin is
on-degenerate and cannot be mimicked by a Newtonian non-
pinning binary. Therefore, the GM clock effects depend on the
rbits being compared. We refer to those orbits being compared
s ‘nearly identical’ orbits and argue that this definition should
e observationally motivated. In Section 3.5 , we presented some
xamples of possible definitions of ‘nearly identical’ orbits that are
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ele v ant for pulsar timing observations and demonstrated that these 
ould lead to different formulae for the GM clock effects. 
In the context of general relativity, the definition of a full revolution 

s not unique, unlike in Newtonian mechanics. This is due to the pre-
ession of the argument of periapsis, which gives rise to at least two
ifferent definitions: the sidereal period and the anomalistic period. 
or nearly edge-on orbits, the sidereal period corresponds to the time 

nterval between two total eclipses (or two successive maxima of the 
hapiro delay). For nearly face-on orbits, the anomalistic period is 
 more sensible definition, as it represents the time interval between 
uccessive maxima of the Einstein delay. It is also possible to define
he orbital period as the nodal period, but the physical meaning of this
efinition is ambiguous. For binaries with an intermediate inclination 
ngle, finding a sensible definition is complicated by the potential 
e generac y between the orbital parameters. 
We compare the existing expressions in the literature (in Section 4 )

nd demonstrate that the generic clock effect formula that we derive 
an reco v er most of these results. We have identified the source
f discrepancies in the literature and explained these differences 
sing the three degrees of freedom mentioned earlier. Compared to 
revious works, our generic clock effect formula can be applied to 
 broader parameter space, including, but not limited to, extreme- 
ass-ratio binaries. This study thus provides a useful framework 

or the investigation of GM clocks effects and orbital dynamics in 
 broad range of systems, from artificial satellites around the Earth
o general astrophysical systems containing two spinning compact 
bjects in close orbits around each other. 
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PPENDIX  A :  EQUATION  O F  MOTION  A N D  

AU G E  SYMMETRY  

he GM clock effect is a consequence of the analogy between
lectromagnetic and gravitational field. It was initially derived (e.g.
ladimiro v, Mitskevich & Horsk y 1984 ; Mashhoon et al. 2001 ; Iorio

t al. 2002 ) from a Lorentz-force-like formula, with the gravito-
lectric field arising from the point mass, and the GM (gravito-
agnetic) field taking the form of a magnetic dipole (see e.g.
raginskii, Caves & Thorne 1977 ; Thorne 1988 ; Harris 1991 ;
lark & Tucker 2000 ; Mashhoon 2001 , 2003 ; Iorio & Mashhoon
023 ). In this work, we adopt the spin–orbit coupling representation,
imilar to that in Barker & Oconnell ( 1979 ) through equation ( 2 ),
n approach different from the approaches that explicitly use the
orentz-force-like formula. The difference in the two formula stems

rom the geometrical nature of gravity. While gauge transformation
oes not interfere with the coordinates in the electromagnetic theory,
auge transformation explicitly changes the coordinates in general
elativity, and the Lorentz-force-like formula appears a specific gauge
hoice, commonly referred to as the (gravito-electromagnetic) GEM
auge. Consequently, there is some arbitrariness in the definition
f the GM field, depending on the construction of the analogy
nd the adopted gauge-fixing conditions (see e.g. Clark & Tucker
000 ; Mashhoon 2001 ). Owning to this subtlety, it is unsurprising
hat the spin–orbit coupling force presented in this work, which
s derived under the standard pN gauge and ADM gauge, differs
rom that of the GEM gauge. These disparities can be reconciled
hrough appropriate coordinate transformations. Ho we ver, we are not
ware of existing literature that addresses this difference, possibly
ue to the limited o v erlap between the two fields. Since Newtonian
ravity does not exhibit this subtlety, the differences between
hese sets of coordinates become apparent, at least at the 1pN
rder. 
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The intricacies of this coordinate issue become particularly
ele v ant when connecting a locally defined field (e.g. the GM field)
ith a globally defined concept (e.g. orbital size and eccentricity),
hich are commonly employed in pulsar timing, satellite ranging,

nd similar observations. To counter this ambiguity, gauge-invariant
uantities like orbital frequency and Detweiler’s redshift have
een widely adopted to a v oid coordinate-dependent artefacts. It’s
mportant to note that classical GM clock effect, as demonstrated in
quation ( 1 ), does not exhibit such coordinate-dependent artefacts,
wing to its topological characteristics and symmetrical nature.
espite variations arising from different schemes, the same clock
ifference is consistently obtained without the need to clarify the
ifference in coordinates. 
Aligning two artificial satellites in the exact opposite yet the same

rbit is a challenging task. Realistic measurements need to account
or formulae that incorporate orbital size and eccentricity informa-
ion, which, inevitably, are written in a coordinate-dependent manner.
he appearance of eccentricity may raise concerns, especially given

he v arious dif ferent definitions of eccentricity (see e.g. Loutrel et al.
019 ), and the unconventional definition we have adopted. As the
lock effect due to eccentricity is already a perturbation at the 1.5pN
ev el, an y alternativ e definition of eccentricity would alter the clock
ffect at (at least) the 2.5pN order. Therefore, we can safely ignore
hen considering leading-order effects. 
In contrast, the semimajor axis presents a more serious challenge,

s discussed earlier. We attempt to address this by introducing the
omewhat arbitrary parameter α in equation ( 23a ). Exploring the
ntricate differences in coordinates defined in various gauges is
eyond the scope of this work. Instead, our focus is on directing
he audience’s attention to the observationally oriented definitions,
s argued in Sections 3.4 and 3.5 . 
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