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Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-
based disorders and malignancies, however it can also result in serious adverse
events, such as the development of acute graft-versus-host disease (aGVHD).
This study aimed to develop a donor-specific epigenetic classifier to reduce
incidence of aGVHD by improving donor selection. Genome-wide DNA
methylation was assessed in a discovery cohort of 288 HCT donors selected
based on recipient aGVHD outcome; this cohort consisted of 144 cases with
aGVHD grades III-IV and 144 controls with no aGVHD. We applied a machine
learning algorithm to identify CpG sites predictive of aGVHD. Receiver operating
characteristic (ROC) curve analysis of these sites resulted in a classifier with an
encouraging area under the ROC curve (AUC) of 0.91. To test this classifier, we
used an independent validation cohort (n = 288) selected using the same criteria
as the discovery cohort. Attempts to validate the classifier failed with the AUC
falling to 0.51. These results indicate that donor DNA methylation may not be a
suitable predictor of aGVHD in anHCT setting involving unrelated donors, despite
the initial promising results in the discovery cohort. Our work highlights the
importance of independent validation of machine learning classifiers, particularly
when developing classifiers intended for clinical use.
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Introduction

In the past 6 decades, allogeneic hematopoietic cell
transplantation (HCT) has become a cornerstone of treatment
for haematological malignancies and is still often considered the
only curative option (Duarte et al., 2019). Despite advances in the
precision of HLA matching in unrelated donor selection and
supportive care leading to ongoing improvements in HCT
outcomes, severe graft versus host disease (GVHD) regularly
occurs, increasing the risk of morbidity and mortality
(McDonald-Hyman et al., 2015). Acute GVHD (aGVHD) occurs
when the donor immune cells attack healthy tissue in the graft
recipient, causing a range of inflammatory lesions which primarily
affect the skin and digestive organs. Typically aGVHD occurs within
100 days of transplant. While the incidence has decreased in the last
decade due to better HLA matching of donors, aGVHD still affects
~30–50% of allogeneic HCT recipients (Al-Kadhimi et al., 2014),
making the prevention of aGVHD an important area of research.

DNA methylation is a stable modification of the DNA which can
influence gene expression without altering the underlying genetic
sequence. DNA methylation has an emerging role in precision
medicine due to the environmental and developmental exposures it
can capture. Several factors associated with the development of aGVHD
are also known to influence the epigenome, including age (Hannum
et al., 2013; Horvath, 2013), sex (Yousefi et al., 2015) and viral infections
(Birdwell et al., 2014). Despite the relative infancy of the field, DNA
methylation classifiers predictive of clinical outcome are now being used
in the clinic, notably in oncology to guide treatment of brain tumours
(Capper et al., 2018; Koelsche et al., 2021). The development of machine
learning algorithms and increasing size of datasets has also allowed
improvement in the development of such classifiers for early diagnosis
and determining subtypes of disease (Maros et al., 2020).

In 2015, we published a pilot study investigating DNA methylation
as a potential classifier of aGVHD inHCT of HLAmatched sibling pairs
(Paul et al., 2015). In that study, we assessed DNA methylation in a
cohort of 85 HCT donors selected based on recipient outcome,
identifying 31 DNA methylation markers associated with aGVHD
severity in graft recipients. In internal cross-validation these markers
showed strong predictive performance (AUC = 0.98) indicating the
potential utility of DNA methylation in improving donor selection in
sibling HCT. The purpose of the current study was to investigate if DNA
methylation is also predictive of outcome in HLA matched unrelated
donor-recipient pairs, which constitute a much greater proportion of
HCTs. To do this, we assessed genome-wide DNA methylation of
576 individuals recruited from the Center for International Blood
and Marrow Transplant Research (CIBMTR). The scale and quality
of annotation of the CIBMTR donor collection allowed us to use
stringent selection criteria to minimise confounding and increase our
power to detect methylation differences which were predictive of the
development of aGVHD following HCT.

Methods

Study population

The discovery study cohort consisted of 288 HLA-A, -B, -C and
-DRB1 matched, unrelated donor transplants reported to the

CIBMTR that had pre-transplant donor peripheral blood samples
available through the CIBMTR Research Repository. Patients
received a transplant between 2002 and 2017 for acute
lymphoblastic leukemia (ALL), acute myelogenous leukemia
(AML) and myelodysplastic syndromes (MDS) using T-cell
replete peripheral blood stem cell grafts, myeloablative
conditioning and tacrolimus with methotrexate or mycophenylate
mofetil based GVHD prophylaxis. The population was selected as a
case-control cohort with 144 cases that developed aGVHD III-IV
and controls with no aGVHD. Cases and controls were matched for
sex, age, disease and GVHD prophylaxis. Donors were all self-
reported as Caucasian.

The validation cohort (n = 288) was selected using the same
criteria. Using a previously described method (Tsai and Bell, 2015),
power calculations for the discovery study using the EPIC array for
genome-wide methylation measurement were performed with
genome-wide significance set at 1 × 10−6. Sample groups of
140 donors matched to recipients with grade III-IV aGvHD, and
140 donors matched to recipients with no aGVHD, would give us
88% power to detect a methylation difference of 10% between the
groups, and 100% power to detect methylation differences of 25%.
Several additional samples for each group were profiled to ensure
adequate power even if samples were removed during
quality control.

Samples

Genomic DNA was extracted from whole blood samples
obtained from CIBMTR using the QIAamp DNA Blood Mini Kit
(Qiagen) at the UCL Pathology Department (discovery study) and
the UCL Genomics facility (validation study). The quality and
concentration of DNA was assessed using NanoDrop and Qubit
(Thermo Fisher).

Genome-wide DNA methylation profiling

For each sample, 500 ng high-quality DNA was bisulphite
converted using the EZ DNA methylation kit (Zymo Research),
using alternative incubation conditions recommended for Illumina
methylation arrays. Methylation was subsequently analysed using
the Infinium MethylationEPIC array (Illumina) measuring CpG
methylation at >850,000 sites across the genome. Array preparation
was performed at the UCL Genomics facility using standard
operating procedures. Discovery and validation cohorts were
processed independently at different timepoints, but within each
cohort batches were minimised by distributing comparison groups
evenly across BeadChips and position on BeadChip.

Analysis overview

All analyses were performed in R version 3.6. Samples remaining
following quality control (n = 282 for discovery cohort and 288 for
validation cohorts) were normalised using SWAN, then problematic
probes were removed including those with a detection
p-value > 0.01, probes with a beadcount <3 in more than 5% of
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samples (Pidsley et al., 2013), non-cg probes, probes containing any
common SNPs in dbSNP (Zhou et al., 2017) and probes mapping to
the X or Y chromosomes. Singular value decomposition (SVD)
(Teschendorff et al., 2009) and principal components analysis
(PCA) were used to assess batch effects in the data, which were
subsequently adjusted for using Combat (Johnson et al., 2007). Cell
composition was estimated and adjusted for using the Houseman
method (Houseman et al., 2012) as implemented in ChAMP (Morris
et al., 2014; Tian et al., 2017), estimating cell proportions using the
Reinius reference dataset (Reinius et al., 2012). Differentially
methylated positions (DMPs) were assessed using a linear model
in Limma (Smyth, 2004).

Machine learning analysis was performed using the random
forest method (Breiman, 2001) as implemented in the
RandomForest package. Instead of using all CpG sites as input
for the RandomForest analysis, a subset of 10,000 CpG sites were
selected through feature selection.

A supervised approach was used, where DMPs were identified in
the discovery cohort using a linear model and the top 10,000 ranked
probes were used as input for the random forest analysis. An
alternative unsupervised approach was also carried out where the
top 10,000 probes with the largest overall beta variance across all
samples in the discovery cohort were used as input for the random
forest analysis. In both cases, the classifiers were then tested on
matched probe sets from the validation cohort, and sensitivity and
specificity of the classifiers were calculated.

Following these analyses, we performed machine learning on the
supervised dataset which had performed more robustly in random
forest analysis, using Support Vector Machines (SVM), Gradient
Boosting Machines (GBM), k-Nearest Neighbours (KNN), Multi-
layer perceptrons (MLP) and Logistic Regression (LR). For each
model, we explored a range of hyperparameters through a grid
search approach. Each experiment was executed 40 times with
different random seeds, resulting in training over 2,300 models in total.

Data availability

The participants involved in the study had been recruited under
different consents which require different levels of data access.
According to consent given, the corresponding data are being
made available in a three-tiered data access approach:

1. Processed data (beta matrix) for all individuals (n = 570) are
available from the open access ‘Gene Expression Omnibus’
under accession number GSE196696. To reduce the chance of
reidentification, all non-cg probes, including SNP targeting rs
probes have been removed. The data are provided in both raw
(unnormalized) and SWAN normalised formats.

2. Raw data (IDAT files) are available for individuals with
appropriate consent (n = 403 in total) from the controlled
access ‘European Genome-Phenome Archive’ under accession
number EGAS00001006033.

3. Raw data (IDAT files) and associated phenotype information
are available for all individuals included in this study (n = 570)
directly from CIBMTR. Data are available under controlled
access release upon reasonable request and execution of a data
use agreement. Requests should be submitted to CIBMTR at

info-request@mcw.edu and include the study reference
IB17-04.

Results

Cohort and dataset characteristics of a
donor-based methylation resource for
aGVHD investigation

Unrelated donor-recipient pairs undergoing HCT were selected
from the CIBMTR Research Repository, based on the aGVHD
outcomes in recipients (Figure 1). Blood-based DNA methylation
from donors was assessed using the Illumina EPIC arrays.
Methylation differences were assessed, and random forest
analysis was used to test for the presence of a classifier of
aGVHD outcome.

Unrelated donor-recipient pairs were selected by CIBMTR using
stringent criteria as described in methods, resulting in
282 individuals in the discovery cohort following initial data
quality control, and 288 individuals in the validation cohort. The
resulting cohorts were well matched for characteristics that can
influence DNAmethylation profile, including age and sex (as shown
in Table 1).

The discovery cohort was well matched for disease, with no
significant difference in proportion of AML, ALL and MDS between
comparison groups (p = 0.339). Median recipient ages for the no/
severe aGVHD groups were 45 (range 19–76) and 47 (range 18–72),
respectively. There was no significant difference for recipient sex
(p = 0.716) or ethnicity (p = 0.113) across comparison groups.
Donors were well matched across comparison groups for sex (p =
0.585), however, there was a difference in median age (p = 0.003),
though this was not apparent when individuals were stratified into
age brackets (p = 0.090). There were no significant differences across
comparison groups for donor/recipient ABO type, blood type, Rh
factor, CMV status or sex match.

The validation cohort had a significant difference in proportions
of these diseases across comparison groups (p = 0.02). The median
recipient ages for the no/severe aGVHD groups in the validation
cohort was 49 (range 20–75) and 50 (range 19–71) respectively.
There was no significant difference in the recipient age distribution
across comparison groups (p = 0.998). There was no difference in
recipient sex across the comparison groups (41% female
recipients, p = 1.0).

Donors were well matched across comparison groups for sex
(p = 0.063) and median age (p = 0.076). There were no significant
differences in ethnicity, donor/recipient ABO type, blood type, Rh
factor, CMV status or sex match across groups. There were
differences in conditioning regimen across comparison groups
(p < 0.001).

Following sample removal, quality control plots showed that the
282 individuals remaining in the discovery dataset and
288 individuals remaining in the validation dataset had very high
quality methylation profiles (Supplementary Figure S1). Following
probe filtering, 661,114 probes remained in the discovery dataset.
Singular Value Decomposition (SVD) and principal components
analysis (PCA) indicated that estimated ‘cell composition’, ‘Slide/
BeadChip’ and ‘Array’ batch effects were having the largest impact
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on the data (Supplementary Figures S2, 3), which were subsequently
adjusted for using ChAMP cell composition correction and ComBat
adjustment respectively. Cell type proportions were estimated for
each group using the DNA methylation profiles and were found to
be well balanced in each cohort with no significant difference
between groups (Supplementary Table S1).

We have created an extremely well phenotyped and highly
curated methylation dataset which has been developed with
careful consideration of technical, biological and clinical
confounders, with extensive matched clinical data. This
methylation dataset provides a unique resource for the
investigation of HCT donor DNA methylation, and will be
beneficial to the wider research community as a ‘healthy’ cohort.

Significant aGVHD-associated differential
methylation is not detectable in donor
whole blood

No CpG sites passed a false discovery rate adjusted p-value
significance threshold of 0.05 during DMP analysis when comparing
the ‘no aGVHD’ group to the ‘severe aGVHD’ group. As the main
batch and confounding effects of slide, array and cell composition
had been previously adjusted in the dataset, no additional covariates
were included during linear regression. This lack of significant
differentially methylated positions indicates that individual CpG

sites were not a strong classifier of aGVHD outcome in donor whole
blood samples.

Random forest classifier identified failed to
validate in independent cohort

Random forest analysis was performed on two sets of probes;
the unsupervised analysis using the top-ranked 10,000 most
variable probes, which all had a beta variance of >33% across
all samples. The supervised analysis used the top 10,000 probes
resulting from the linear model DMP analysis, though none
passed statistical significance these were considered sites with
putative methylation differences. Random forest analysis was run
with 500 trees, with 100 variables tested at each split for both
analysis approaches.

The high variability classifier showed very poor performance,
with an out-of-bag (OOB) estimate of error rate of 45.39% and area
under the curve (AUC) of 0.516 during internal cross-validation of
the discovery dataset (Figure 2). The differential methylation dataset
produced an initially promising classifier with an OOB estimate of
error rate of 14.89% and an AUC of 0.913 (Figure 3).

During validation analysis, the matched CpG sites used as input
to the original random forest training analysis were extracted from
the validation dataset as all probes present in training analyses are
required as input for validation. Validation analyses indicated that

FIGURE 1
Study Design. Unrelated donor-recipient pairs were selected based on the outcome of recipients following HCT. DNA methylation levels were
assessed in donors associated with no (Grade 0) or severe (Grades 3–4) aGVHD in recipients. Donor-recipient pairs were HLAmatched, and comparison
groups werematched for sex, age, disease and GVHD prophylaxis. Feature selection reduced the number of probes in the discovery dataset to 10,000 for
input to random forest analyses, and this classifier was subsequently tested in the validation cohort following pre-processing of data and refinement
to the same set of probes.
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TABLE 1 Discovery and validation cohort characteristics. Characteristics of adult patients undergoing first allogeneic PB HCT for acute leukemia or MDS
from an 8/8 HLA-matched unrelated donor between 2000 and 2016 with available donor blood samples, as reported to the CIBMTR. Restricted to
Caucasian donors, myeloablative preparative regimens, no ATG/Campath and patients surviving >100 days with no aGVHD or those that developed grades
III-IV aGVHD at any time post-HCT. Donors were matched between comparison groups based on sex and age by decade.

Discovery cohort Validation cohort

No aGVHD +100-
day survival

Grades III-IV
aGVHD

No aGVHD +100-
day survival

Grades III-IV
aGVHD

Variable N (%) N (%) p-valuea N (%) N (%) p-valuea

Number of Recipients 141 141 144 144

Disease 0.339 0.020

AML 85 (60) 73 (52) 100 (69) 77 (53)

ALL 24 (17) 31 (22) 19 (13) 27 (19)

MDS 32 (23) 37 (26) 25 (17) 40 (28)

Recipient Age 0.464 1.000

18–29 28 (20) 28 (20) 18 (13) 18 (13)

30–39 26 (18) 18 (13) 24 (17) 24 (17)

40–49 36 (26) 33 (23) 34 (24) 33 (23)

50–59 33 (23) 38 (27) 39 (27) 40 (28)

60–69 15 (11) 23 (16) 28 (19) 28 (19)

70+ 3 (2) 1 (1) 1 (1) 1 (1)

Median (Range) 45 (19–76) 47 (18–72) 0.541 49 (20–75) 50 (19–71) 0.998

Recipient Sex 0.716 1.000

Male 82 (58) 85 (60) 85 (59) 85 (59)

Female 59 (42) 56 (40) 59 (41) 59 (41)

Recipient Race/
Ethnicity

0.113 1.000

Caucasian 134 (96) 131 (94) 144 (100) 144 (100)

African American 2 (1) 1 (1) 0 0

Native American 2 (1) 0 0 0

Caucasian, Hispanic 2 (1) 8 (6) 0 0

Unknown 1 (N/A) 1 (N/A) 0 0

Recipient ABO Type 0.767 0.242

A 54 (45) 52 (42) 14 (40) 24 (53)

B 13 (11) 15 (12) 7 (20) 3 (7)

AB 3 (3) 6 (5) 4 (11) 3 (7)

O 50 (42) 50 (41) 10 (29) 15 (33)

Unknown 21 (N/A) 18 (N/A) 109 (N/A) 99 (N/A)

Rh Factor 0.788 0.167

Positive 105 (88) 109 (89) 33 (94) 38 (84)

Negative 15 (13) 14 (11) 2 (6) 7 (16)

Unknown 21 (N/A) 18 (N/A) 109 (N/A) 99 (N/A)

Blood Type 0.985 0.277

(Continued on following page)
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TABLE 1 (Continued) Discovery and validation cohort characteristics. Characteristics of adult patients undergoing first allogeneic PB HCT for acute
leukemia or MDS from an 8/8 HLA-matched unrelated donor between 2000 and 2016 with available donor blood samples, as reported to the CIBMTR.
Restricted to Caucasian donors, myeloablative preparative regimens, no ATG/Campath and patients surviving >100 days with no aGVHD or those that
developed grades III-IV aGVHD at any time post-HCT. Donors were matched between comparison groups based on sex and age by decade.

Discovery cohort Validation cohort

No aGVHD +100-
day survival

Grades III-IV
aGVHD

No aGVHD +100-
day survival

Grades III-IV
aGVHD

Variable N (%) N (%) p-valuea N (%) N (%) p-valuea

A+ 46 (38) 46 (37) 14 (40) 20 (44)

B+ 11 (9) 13 (11) 6 (17) 3 (7)

AB+ 2 (2) 4 (3) 4 (11) 2 (4)

O+ 46 (38) 46 (37) 9 (26) 13 (29)

A- 8 (7) 6 (5) 0 4 (9)

B- 2 (2) 2 (2) 1 (3) 0

AB- 1 (1) 2 (2) 0 1 (2)

O- 4 (3) 4 (3) 1 (3) 2 (4)

Unknown 21 (N/A) 18 (N/A) 109 (N/A) 99 (N/A)

Recipient CMV Status 0.721 0.281

Negative 65 (46) 65 (46) 59 (41) 69 (48)

Positive 74 (52) 74 (52) 85 (59) 74 (51)

Inconclusive 1 (1) 2 (1) 0 1 (1)

Not tested 1 (1) 0 0 0

Donor Age 0.090 0.792

18–29 90 (64) 76 (54) 105 (73) 103 (72)

30–39 51 (36) 65 (46) 39 (27) 41 (28)

Median (Range) 26 (19–40) 29 (19–40) 0.003 26 (19–39) 27 (19–39) 0.076

Donor Sex 0.585 0.063

Male 103 (73) 107 (76) 98 (68) 112 (78)

Female 38 (27) 34 (24) 46 (32) 32 (22)

Donor Race/Ethnicity 1.000 1.000

Caucasian 141 (100) 141 (100) 144 (100) 144 (100)

Donor ABO Type 0.081 0.498

A 69 (49) 51 (36) 65 (45) 60 (42)

B 15 (11) 14 (10) 13 (9) 8 (6)

AB 6 (4) 4 (3) 6 (4) 9 (6)

O 51 (36) 72 (51) 60 (42) 67 (47)

Donor CMV Status 0.875 0.090

Negative 104 (74) 105 (74) 90 (63) 104 (72)

Positive 33 (23) 32 (23) 53 (37) 38 (26)

Previously reported
reactive

1 (1) 0 1 (1) 0

Not tested 1 (1) 1 (1) 0 2 (1)

(Continued on following page)
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TABLE 1 (Continued) Discovery and validation cohort characteristics. Characteristics of adult patients undergoing first allogeneic PB HCT for acute
leukemia or MDS from an 8/8 HLA-matched unrelated donor between 2000 and 2016 with available donor blood samples, as reported to the CIBMTR.
Restricted to Caucasian donors, myeloablative preparative regimens, no ATG/Campath and patients surviving >100 days with no aGVHD or those that
developed grades III-IV aGVHD at any time post-HCT. Donors were matched between comparison groups based on sex and age by decade.

Discovery cohort Validation cohort

No aGVHD +100-
day survival

Grades III-IV
aGVHD

No aGVHD +100-
day survival

Grades III-IV
aGVHD

Variable N (%) N (%) p-valuea N (%) N (%) p-valuea

Unknown 2 (1) 3 (2) 0 0

Donor-Recipient Sex
Match

0.818 0.072

Male-Male 62 (44) 69 (49) 69 (48) 69 (48)

Male-Female 41 (29) 38 (27) 29 (20) 43 (30)

Female-Male 20 (14) 16 (11) 16 (11) 16 (11)

Female-Female 18 (13) 18 (13) 30 (21) 16 (11)

Recipient Age at
Diagnosis

0.452 0.878

<10 0 1 (1) 0 0

10–17 1 (1) 4 (3) 1 (1) 0

18–29 29 (21) 27 (19) 20 (14) 19 (13)

30–39 29 (21) 18 (13) 23 (16) 27 (19)

40–49 31 (22) 34 (24) 34 (24) 34 (24)

50–59 36 (26) 38 (27) 39 (27) 37 (26)

60–69 13 (9) 18 (13) 26 (18) 27 (19)

70+ 2 (1) 1 (1) 1 (1) 0

Median (Range) 44 (16–75) 46 (11–72) 0.450 48 (17–75) 49 (18–70) 0.867

MDS Disease Status 0.465 0.941

Early 14 (44) 13 (35) 2 (8) 3 (8)

Advanced 18 (56) 24 (65) 23 (92) 37 (93)

AML/ALL Disease
Status

0.137 0.009

Early 51 (47) 43 (40) 67 (56) 67 (64)

Intermediate 30 (28) 21 (20) 32 (27) 11 (11)

Advanced 23 (21) 28 (27) 20 (17) 24 (23)

Unknown 5 (5) 12 (12) 0 2 (2)

Conditioning Regimen 0.114 <0.001

Bu + Cy 49 (35) 56 (40) 53 (37) 54 (38)

Bu + Mel 1 (1) 3 (2) 0 0

Bu + Flud 38 (27) 26 (18) 61 (42) 32 (22)

Mel + Flud 0 1 (1) 7 (5) 10 (7)

Cy Alone 43 (30) 35 (24) 22 (16) 45 (31)

Others 10 (7) 20 (14) 1 (1) 3 (2)

TBI Usage 0.806 0.001

(Continued on following page)
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the differential methylation classifier had a sensitivity of 90.97% but
a specificity of just 6.25%, and an AUC of 0.508. This is driven by an
over-prediction of the ‘severe aGVHD’ group in the independent
validation cohort, resulting in many false positive predictions. The
unsupervised differential variability classifier also had an extremely

poor performance in the validation cohort, with a sensitivity of just
50%, a specificity of 51.39% and an AUC of 0.523. As such, neither of
these approaches yielded a useful classifier. Additional machine
learning analyses applying a range of machine learning methods
(SVM, GBM, KNN, MLP and LR) to the supervised dataset found a

TABLE 1 (Continued) Discovery and validation cohort characteristics. Characteristics of adult patients undergoing first allogeneic PB HCT for acute
leukemia or MDS from an 8/8 HLA-matched unrelated donor between 2000 and 2016 with available donor blood samples, as reported to the CIBMTR.
Restricted to Caucasian donors, myeloablative preparative regimens, no ATG/Campath and patients surviving >100 days with no aGVHD or those that
developed grades III-IV aGVHD at any time post-HCT. Donors were matched between comparison groups based on sex and age by decade.

Discovery cohort Validation cohort

No aGVHD +100-
day survival

Grades III-IV
aGVHD

No aGVHD +100-
day survival

Grades III-IV
aGVHD

Variable N (%) N (%) p-valuea N (%) N (%) p-valuea

Yes 53 (38) 55 (39) 23 (16) 48 (33)

No 88 (62) 86 (61) 114 (79) 86 (60)

Unknown 0 0 7 (5) 10 (7)

GvHD prophylaxis 0.090 0.715

Tac + MMF ± others 24 (17) 32 (23) 16 (11) 18 (13)

Tac + MTX ± others 100 (71) 82 (58) 128 (89) 126 (88)

CSA + MMF ±
others

4 (3) 11 (8) 0 0

CSA + MTX ± others 13 (9) 16 (11) 0 0

Use of ATG or
Campath

1.000 1.000

No ATG or
CAMPATH

141 (100) 141 (100) 144 (100) 144 (100)

Year of Transplant 0.585 0.173

2002 0 1 (1) 0 1 (1)

2003 5 (4) 4 (3) 0 0

2004 9 (6) 12 (9) 3 (2) 4 (3)

2005 10 (7) 13 (9) 1 (1) 6 (4)

2006 8 (6) 12 (9) 1 (1) 2 (1)

2007 13 (9) 17 (12) 6 (4) 2 (1)

2008 17 (12) 12 (9) 10 (7) 10 (7)

2009 13 (9) 19 (13) 12 (8) 14 (10)

2010 23 (16) 11 (8) 13 (9) 10 (7)

2011 5 (4) 6 (4) 13 (9) 22 (15)

2012 7 (5) 4 (3) 25 (17) 14 (10)

2013 10 (7) 13 (9) 19 (13) 19 (13)

2014 9 (6) 9 (6) 21 (15) 14 (10)

2015 11 (8) 8 (6) 13 (9) 15 (10)

2016 1 (1) 0 5 (3) 11 (8)

2017 0 0 2 (1) 0

aThe Pearson chi-square test was used for comparing discrete variables; the Kruskal–Wallis test was used for comparing continuous variables.
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slight improvement in measures of AUC, however even the best
models from an optimised selection of over 2,300 had an AUC of
0.60–0.61 showing a marginal improvement which is not
appropriate for clinical translation (Figure 4).

Through extensive analyses we have concluded that DNA
methylation in donor whole blood is not a strong predictor of
aGVHD outcome in recipients during unrelated HCT. These
findings also demonstrate the importance of independent
validation of methylation-based classifiers particularly when using
machine learning approaches.

Discussion

Recently developed predictors of aGVHD using clinical
variables have had modest success with an AUC of ~0.6 (Lee
et al., 2018), however this indicated that biological markers of
gene expression, such as epigenetic markers, could provide
additional insight to improve prediction of aGVHD. This was
also supported by the recent finding that hypermethylation of the
TP53 gene in HCT recipients was found to correlate with relapse of
myelodysplastic syndromes following transplantation, indicating
recipient-based DNA methylation could be predictive of
outcomes during HCT (Wang et al., 2021). As DNA methylation
levels reflect both the underlying genetic sequence and factors
known to be associated with aGVHD development (such as
donor age, sex and cytomegalovirus serostatus), we hypothesised
they would be a strong candidate for classifier identification. Our
initial study focused on sibling donor-recipient pairs, in which a
DNA methylation classifier of aGVHD development was identified
in the blood of donors (Paul et al., 2015). In the current study, we
tested if DNA methylation as measured by EPIC arrays is also
predictive of aGVHD in unrelated donor-recipient pairs and found
that it is not.

There are several potential technical and biological reasons
that a robust classifier of aGVHD was not identified in this study.
Firstly, while the study performed was shown to have power to
detect larger methylation differences of >10%, the relatively
small sample size of the discovery cohort (n = 280) and

FIGURE 2
ROC curve of classifier performance of the unsupervised Random Forest Classifier. Plot (A) shows the performance of the variable probe based
(unsupervised approach) classifier which used the top 10,000most variable CpG sites as input, during internal cross validation on the training dataset. Plot
(B) shows the performance of the variability based classifier on the independent validation cohort, with an AUC of 0.523, a sensitivity of 50.0% and a very
poor specificity of 51.4%.

FIGURE 3
ROC curve of classifier performance of the supervised Random
Forest Classifier. The figure shows the performance of the differential
methylation (supervised approach) classifier which used the top
10,000 most differentially methylated CpG sites as input, during
internal cross validation on the training dataset (blue line). The
performance of the differential methylation classifier on the
independent validation cohort is indicated by the orange line, which
had an AUCof 0.508, a sensitivity of 90.97%with a very poor specificity
of 6.25%. While initially this differential methylation-based classifier
appeared encouraging with the discovery cohort, the classifier did not
perform well during validation analyses.
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validation cohort (n = 288) may have limited our ability to detect
more subtle methylation differences. In the future, larger scale
studies may provide increased power to detect such differences.

Secondly, the tissue we investigated was peripheral blood of
donors which was intended to act as a surrogate tissue reflecting
outcome. DNA methylation profiles are known to be highly cell
type specific (Ji et al., 2010), and while blood based DNA
methylation may reflect certain exposures and factors
associated with aGVHD development, it is possible that a
specific cellular subtype which is not present in the whole
blood of donors is responsible for the development of
aGVHD and as such would not be reflected in the
methylation profile. Another possibility is that the specific
cell type which is causing aGVHD could be present in whole
blood, but in small proportions, making the signal significantly
diluted by other more prominent cell types. Indeed, in the
current analysis, cell composition was the biggest driver of
variation in the data, and though this was balanced overall
between the comparison groups and adjusted for in the data
analysis, it could have been a confounding factor in the study, or
subtle methylation effects could have been lost during
adjustment. In the future, methylation analysis of individual
cell types isolated from stem cell grafts may provide more insight
into DNA methylation differences driving the development of
aGVHD. While this approach would provide a more refined
methylation measurement, it would be a significantly less
practical approach for a clinical test, limiting the utility for
optimising donor selection as usually these cells would only be
collected once a donor is committed.

A classifier of aGVHD development was identified in our
previously published work, which investigated donor DNA
methylation from sibling HCT. A potential reason a similar

biomarker was not identified in this cohort is that it could have
been specific to sibling transplants, which generally have a lower
incidence of aGVHD which may be driven more by extrinsic
factors which influence DNA methylation, while aGVHD
following HCT from an unrelated donor may be driven more
by genetic factors. There may also be an issue of ‘epigenetic
compatibility’, with donors and recipients varying in epigenetic
profile inciting the initiation of aGVHD in certain individuals,
without this being driven by a specifically differentially
methylated gene or pathway. This would explain why a
classifier was not identified in the current study, as the
epigenetic marks conferring risk of aGVHD would be
different for each individual. In the future, studies
investigating the DNA methylation of both donors and
recipients during HCT could provide more insight into this
possibility. This should be considered with the caveat that
previous studies have assessed donor and recipient DNA
(Rodriguez et al., 2013) and this revealed several key
problems with comparing donor and recipient DNA for
aGVHD prediction. Notably, HCT recipients are often being
treated for blood-based malignancies which have enormous
impacts on the epigenome (Blecua et al., 2020), as well as
dramatically altering cell composition. In addition, many
recipients have already been exposed to therapeutics which
can dramatically alter the epigenome. Finally, as
demonstrated by Rodriguez et al., following HCT, recipients
retain the methylation patterns of the donor as well as their own,
resulting in cellular chimerism. The combination of these factors
make it difficult to extract meaningful signal when comparing
the methylation patterns of donors and recipients during HCT.
Even with access to the substantial cohorts we have used in this
study, it would be immensely difficult to identify a suitably

FIGURE 4
ROC curves of classifiers developed using additionalmachine learningmethods. The additional machine learningmethods applied to the supervised
dataset were Support Vector Machines (SVM), Gradient Boosting Machines (GBM), k-Nearest Neighbours (KNN), Multi-layer perceptrons (MLP) and
Logistic Regression (LR). For each model, we explored a range of hyperparameters through a grid search approach. Each experiment was executed 40
times with different random seeds, resulting in training over 2300 models in total. The ROC curves illustrate the best performing models which
reached a maximum validation AUC of 0.6 for the LR method. Plot (A) shows the performance of these models in the discovery cohort while plot (B)
shows the performance in the validation cohort.
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homogenous population (with the same diagnosis, stage of
disease and treatment history) with adequate power to
identify subtle methylation differences in immune cells with
clinical utility. Although both donor and recipients’ genetic
sequence is taken into account during HLA matching, we
concluded that due to the dynamic nature of the epigenome,
and confounding factors listed above, this is not an appropriate
approach to take when developing an epigenetic classifier of
outcome in HCT.

When considering the clinical context of the development of
aGVHD, it is likely the end result of a complicated clinical
setting with multiple donor and recipient factors affecting the
outcome. If the epigenetic pattern was highly predictive, it
might infer that the occurrence of severe aGVHD is pre-
ordained just by donor factors, which seems
biologically unlikely.

On a technical level, this study has also demonstrated the
importance of careful development and testing of analysis
pipelines for methylation studies, in particular when applying
complex machine learning methods to datasets. Our initial
findings indicated a robust classifier might be present within
the dataset, a finding which was amplified when data was pre-
processed as a single batch with subsequent splitting of the
dataset and internal cross validation. While our validation
dataset was of exceptionally high quality and donors included
were matched to a very high degree with the discovery cohort,
the classifier was not validated even with extensive optimisation
and testing of alternate pipeline settings. This demonstrates that
even with the identification of a promising and robust classifier
in a well-designed study, independent validation is critical
(Ransohoff, 2004), and such validation datasets need to be
generated completely independently with unique individuals
and pre-processed separately to the training/discovery cohort.
This also better mimics the experimental realities of clinical
classifier use, making any findings that do stand up to the
validation process more robust and clinically useful.

Conclusion

In this study, we performed the definitive investigation of donor-
derived blood-based DNA methylation as a classifier of aGVHD
outcome in HCT and found that donor DNA methylation as
assessed by methylation arrays is not a strong candidate for
prediction of aGVHD. It is possible that other methylation signals
exist which might improve our understanding of the development of
aGVHD in these cohorts, which we plan to investigate in the future. We
have also highlighted the importance of study design and well-designed
independent validation of methylation differences especially when
applying machine learning approaches.
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