
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 1

Building PUF as a Service: Distributed
Authentication and Recoverable Data Sharing with

Multidimensional CRPs Security Protection
Yan Zhang, Bing Li, Bo Liu, Senior Member, IEEE, Jinke Chang

Abstract—Physically Unclonable Functions (PUFs) have
emerged as hardware fingerprints for IoT devices in the form
of challenge-response pairs (CRPs). This mapping behaviour
is regarded as a physically secure primitive, activating mech-
anisms of authentication and data protection. However, multi-
dimensional security threats to CRPs, including impersonation
attacks, availability attacks, machine learning attacks, and single
point failure, impede the applications of PUFs technology. To
simultaneously solve these threats, this paper not only leverages
Shamir secret sharing (SSS) to provide comprehensive CRPs
protection, but also integrates blockchain to address trust issues
of synchronization, supervision, and deployment brought by the
SSS system. Specifically, we first propose a security-enhanced
and reliable CRPs management method. This method leverages
SSS and its homomorphic addition feature to protect CRPs
storage, sharing, and backup processes. Meanwhile, blockchain
is involved in the SSS system to synchronize CRPs and supervise
sharing behaviours. Then, a PUF-as-a-service (PaaS) framework
is constructed, which utilizes blockchain to trace the change
of the SSS system and integrate different PUFs-based security
mechanisms. Once deployed in PaaS, users can always utilize
transactions to build secure on-chain channels with SSS system
and employ the PUF service. Based on our CRPs management
method and PaaS framework, we successfully constructed PUFs-
based distributed authentication and recoverable data sharing
with multidimensional CRPs protection. The security proof and
discussions of our scheme are also provided. Moreover, a proof-
of-concept prototype was implemented to conduct experimental
evaluations and comparative analysis. The results and additional
discussions demonstrate that our work is efficient, practical, and
suitable for IoT deployment.

Index Terms—Physically Unclonable Functions, blockchain,
Shamir secret sharing, Internet of Things (IoT), authentication
and data sharing, CRPs security protection, security and privacy.

I. INTRODUCTION

PHYSICALLY Unclonable Functions (PUFs) have recently
emerged as a promising and critical security technology

Yan Zhang (Corresponding Author) is with the School of Computer
Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China.
E-mail: yan.zhang@jsut.edu.cn.

Bing Li is with the School of Cyber Science and Engineering, Southeast
University, Nanjing, Jiangsu, China. E-mail: bernie seu@seu.edu.cn.

Bo Liu is with the School of Computer Science, University of Technology
Sydney, Ultimo, NSW, AU. E-mail: Bo.Liu@uts.edu.au.

Jinke Chang is with the UCL Faculty of Medical Sciences, University
College London, London, UK. E-mail: jinke.chang@ucl.ac.uk.

This work was supported by National Natural Science Foundation of China
62174150.

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

for Internet of Things (IoT) [1]. In general, a PUF physical
system is embedded in IoT devices to present a challenge-
responses behaviour γ : {0, 1}n → {0, 1}m. A set of n-bit
challenges are mapped into m-bit responses. As PUFs are
instanced by deriving micro-scale or nano-scale manufacturing
violations of integrated circuits, this circuit-level mapping
behaviour is efficient to operate, but hard to predict and
difficult to clone [2].

Due to these circuit-derived, instance-specific, and unclon-
able properties, PUFs essentially serve as hardware finger-
prints for IoT devices. There is no need for PUFs-embedded
IoT devices to store secret keys in non-volatile memory, thus,
effectively resisting physical and cloning attacks [3]. Conse-
quently, PUFs are widely regarded as hardware primitives to
activate various IoT security mechanisms [1], [4], [5], [6].

Authentication and data encryption are two main PUFs-
based security mechanisms for IoT. As illustrated in Fig. 1,
CRPs will be pre-registered in the verifier through a secure
channel. Subsequently, leveraging PUFs as physical identities,
IoT devices (e.g., vehicles, UAVs, smart meters) can establish
authentication and secure communications with verifiers (e.g.,
road units, base stations, edge servers) in an efficient and
secure way. Moreover, PUFs-based key generation could be
seamlessly integrated with symmetric encryption [7], [8] or
data compression [9] algorithms to safeguard the device’s
sensitive information. Therefore, it is promising to integrate
PUFs into different IoT scenarios to enhance system security.

Verifier

2. Response

1. Challenge

Mechanism 1: PUFs-based Authentication

==

PUFs-embedded

IoT Device

3. PUF-based

Key Generation
Plaintext Ciphertext

Mechanism 2: PUFs-based Data Encryption

1. Challenge

2. Response

PUFs-embedded

IoT Device

4. Encrypt

5. Secure

data storage

3. Authenticate

Features of CRPs management:

Pre-registration, One-time pad, generation from hardware.

Challenge Response

001111
100010
010000
110110
111001

001111
010011
110111
110001
101011

Pre-registered CRPs

Challenge Response

001111
100010
010000
110110
111001

001111
010011
110111
110001
101011

Pre-registered CRPs

Fig. 1. PUFs-based security mechanisms and features of CRPs management.

However, managing CRPs has features of pre-registration,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 2

one-time pad, generation from hardware, multidimensional
security threats will be brought to CRPs

(1) Impersonation attack: The security of CRPs storage
remains an open problem for PUFs-based authentication [10],
[11]. Exposed CRPs can be directly exploited to imperson-
ate IoT devices. What is worse, when implementing PUFs-
based authentication in distributed environments with multiple
verifiers, the attack surface will inevitably expand [10]. As
CRPs storage in verifiers may not always be secure, preventing
impersonation attacks becomes challenging.

(2) Availability attack: To avoid storing CRPs in multiple
verifiers, current studies rely on trusted authorities [4], [5],
[6], [10], [12], [13], [14], [15] to provide strong protection
for CRPs storage. However, involving the trusted authority in
the authentication process will lead to the availability threats,
such as denial-of-service attacks.

(3) Machine learning attack: Apart from the leakage of
CRPs storage, if attackers, either from public channels or
curious verifiers, collect enough raw CRPs during the authen-
tication process, it is possible to model the PUF circuit using
machine learning-based methods [16].

(4) Single point failure: The secret keys for PUFs-based data
encryption are derived from CRPs [8], [9]. If the embedded
PUF circuit is broken, lost, or seriously aging, devices cannot
recover the origin encryption keys as well as the protected
information. Even though CRPs may be backed up by the
trusted authority, the threat of single point failure still exists.

Therefore, we carry out our research to answer the following
question:

Is it possible to simultaneously solve these multidimensional
security threats existing in different PUFs-based security
mechanisms?

The Shamir secret sharing (SSS) [17] technology is highly
suitable for providing comprehensive CRPs protection in
PUFs-based authentication and data protection. PUF responses
can be split by (n-t)-SSS into n slices and distributed to
n different slice providers (SPs), avoiding storing CRPs in
verifiers. As long as the number of revealed slices remains
below the threshold (t), the information-theoretic security
of CRPs storage could be ensured. More importantly, this
protection method relies on distributed SPs to share CRPs
on behalf of the trusted authority. The impersonation and
availability attacks could be resisted at the same time.

During the authentication, PUF responses will be recon-
structed by verifiers using SSS system. However, exposing
even a limited number of CRPs still leads to machine learning-
based attacks [16]. To mitigate this threat, we propose lever-
aging Nonce N to randomize PUF response R = (R1||R2)
into the PUF secret (N · R1 + R2). In each request, SPs will
perform homomorphic additions on SSS slices of R1, R2

to compute PUF secret slices, which are then shared with
verifiers. The verifier will reconstruct PUF secret slices to
obtain the randomized PUF response, allowing authentication
of the IoT device without revealing real CRPs. This approach
ensures that CRPs are available but invisible.

Moreover, by collecting no less than t response slices,
the PUFs-based encryption keys will be successfully recon-

structed. The single point failure could be resisted.
However, introducing SSS system to support authentication

and data encryption raises trust concerns related to CRPs
synchronization, SPs supervision, and user deployment. First,
slices are pre-registered in SPs, and each slice will be used
only once. The slice usage order should be synchronized
among SPs [11] to resist the desynchronization attack. Second,
slice providers may not be accountable for their behaviours. It
is necessary to supervise the whole sharing process. Third,
slice users should locate devices’ SPs and build secure
channels with SPs to retrieve PUF secret slices. Additional
registrations are required to adapt to the change of SSS system,
such as SSS parameters and SPs’ certificates. It makes user
deployment complicated and inconvenient.

To address these trust issues, we turn to blockchain technol-
ogy [18]. As the blockchain has features of decentralization,
tamper-proofing, and distributed consistency, trust can be built
between slice users and SSS system, as well as within SSS
system itself. The blockchain consensus mechanism can be
used to synchronize the latest slice usage order among SPs and
trace the change of SSS system for slice users. In addition,
if the PUF secret slices are forwarded to slice users in the
form of transactions, the entire reconstruction process will be
tamper-proofing, non-repudiable and accountable.

Therefore, our work contributes to combining SSS with
blockchain to first simultaneously solve multidimensional se-
curity threats to CRPs existing in PUFs-based authentication
and data protection. Not only SSS is leveraged to provide
comprehensive CRPs protection, but also the blockchain is
integrated to address trust issues of CRPs synchronization, SPs
supervision, and user deployment brought by the SSS system.
The major contributions are summarized as follows:

(1) We propose a security-enhanced and reliable CRPs man-
agement method. SSS and its homomorphic addition feature
are leveraged to provide strong protection for CRPs storage,
sharing, and backup. Meanwhile, the blockchain is integrated
to develop a reliable sharing mode, which synchronizes CRPs
usage order and supervises SPs’ sharing behaviours.

(2) We design a PUF-as-a-Service (PaaS) framework with
flexible user deployment. The blockchain is leveraged to trace
the change of SSS system and integrate different PUFs-based
mechanisms. Any one of the users deployed in PaaS can
always build secure on-chain channels with slice providers
and employ the PUF service through transactions, eliminating
the need for additional registrations.

(3) Based on our proposed CRPs management method
and PaaS framework, we successfully construct PUFs-based
distributed authentication and recoverable data sharing with
multidimensional CRPs security protection.

(4) A comprehensive security analysis of authentication and
data sharing is given. Furthermore, a proof-of-concept proto-
type was implemented to conduct experimental evaluation and
comparative analysis. In-depth and extensive discussions are
included to show the promising prospect of our scheme.

II. RELATED WORK

In this part, we review relevant PUFs-based authentication
and data encryption studies.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 3

A. PUFs-based Authentication for IoT

PUFs-based authentication has become an important secu-
rity mechanism for IoT scenarios. However, CRPs storage in
verifiers will not always be secure, especially when expanding
authentication to distributed environments.

To avoid storing CRPs explicitly in multiple verifiers, the
existing studies rely on the trusted authority to protect CRPs
storage. Chatterjee et al. [10] impressively proposed an au-
thentication protocol by combining identity-based encryption
with hash functions to build a secure mapping mechanism.
The security association provider provides mapped CRPs to
support multi-verifier authentication. In work [14], CRPs are
also protected by identity-based encryption and stored in
a cloud server to help different verifiers authenticate smart
meters. The complex cryptographic operations are delegated
to the verifier to balance security and efficiency. Aman et
al. utilized PUFs to build privacy-preserving and scalable
authentication between roadside units and vehicles [4]. The
trusted authority was involved to specially protect vehicles’
CRPs and significantly reduce the communication overhead.
For Internet of Drones [5] and smart grid [6], Gope et al.
constructed a service provider to update devices’ CRPs during
each authentication request. Moreover, a dynamic identity
management mechanism was also designed for devices to
achieve anonymous authentication. In work [15], an anony-
mous authentication scheme 3PAA was proposed to grant
or revoke the user access dynamically. The group member
leveraged Pedersen Commitment to securely insert CRPs into
access logs. When applying 3PAA to distributed environments,
multi-registration should be performed to distribute access logs
to multiple application providers. In general, relying on the
trusted authority to protect CRPs storage in distributed envi-
ronments still suffers from availability attacks. The security of
CRPs storage and sharing should all be achieved.

To resist machine learning attacks, most of the studies
would not expose real CRPs during the authentication pro-
cess. Qureshi et al. [12] designed a lightweight masking
function to obfuscate CRPs, eliminating the need for hash
functions. Besides, their approach prevented devices from
unauthorized access, which completely inhibits any model-
building and side-channel analysis attack. The research [16]
proposed lightweight Strong-PUFs-based authentication by
transmitting shuffled PUF responses. The real response will
be reconstructed by the verifier using SSS to finish the
authentication.

In general, when expanding PUFs-based authentication to
multiple verifiers, the existing studies have not simultaneously
solved impersonation and availability attacks. Meanwhile, the
resistance to the machine learning attack should also be
considered.

B. PUFs-based Data Protection

PUFs-based data encryption has been utilized to protect
sensitive information. Barbareschi et al. [7] introduced the
Pseudo-PUF architecture, integrating PUFs key derivation with
symmetric encryption modules. This approach not only adapts
to advanced security primitives but is also suitable for the cost

and resource demands of IoT devices. The work [9] developed
a joint compression and encryption scheme to secure data
storage in edge servers. The storage overhead is reduced by the
Huffman compression algorithm. PUF responses are employed
to mutate the Huffman tree for enhanced data protection. Dai
et al. [8] built two symmetric searchable encryption protocols
to protect outsourced data. The threat of memory leakage will
be mitigated through PUFs-based key storage. The work [19]
also realized the PUFs-based key generation and management
in an FPGA-based blockchain system. Transactions will be
signed by PUFs key and generated in an isolated and secure
manner. However, the issue of recoverable CRPs storage has
not been seriously considered. Existing research lacks proper
CRPs backup mechanisms, with CRPs either not backed up or
simply stored in a trusted authority. Once single point failure
happens, the encrypted data will be lost.

In conclusion, there is an urgent need to simultaneously
solve multidimensional security threats present in PUFs-based
authentication and data protection.

III. SYSTEM MODEL AND PRELIMINARIES

A. Shamir Secret Sharing

To provide comprehensive protection for CRPs, SSS is
leveraged to divide the PUF response into SSS slices. In
addition, homomorphic additions on response slices facilitate
the sharing of the PUF secret. The definitions and properties
of (n-t)-SSS are discussed as follows.

(1) Secret Split: The dealer selects n receivers and sets
the threshold as t. A (t-1)-degree polynomial is initial-
ized as f(x) = at−1x

t−1 + at−2x
t−2 + · · · + a1x + s,

(s, a1, a2, · · · , at−1 ∈ Fp), where s is the secret, p is a
chosen large prime. Then, the secret s will be split into n
slices {(IDi, Slicei = f(IDi))}ni=1. The secret split algorithm
is denoted as {Slicei}ni=1 = SS(n, t, p, s).

(2) Secret Reconstruct: After aggregating at least (l ≥ t)
slices, s can be reconstructed by the Lagrange interpolation
formula as below:

s = f(0) =

l∑
i=1

Slicei
l∏

j=1,j 6=i

−IDj

IDi − IDj
. (1)

The secret reconstruction algorithm is defined as s =
SSS RC(p, {Slicei}li=1).

(3) Additional homomorphism: This property implies that
the addition of slices will result in the addition of the
shared secrets and the threshold t remains unchanged. In
other words, the secret (s1 + s2) will be reconstructed by
{Slice1,i + Slice2,i}ti=1.

B. Zero-knowledge Proof of Knowledge

In this paper, Zero-knowledge Proof of Knowledge
(ZKPoK) [20] is used by slice providers (SPs) to authenticate
slice users and build on-chain secure channels with Diffie-
Hellman key exchange. In general, the notation of ZKPoK is
expressed as ZKP {(a) : A = a·P} [21]. The prover is allowed
to prove the knowledge of a by generating a cryptographic
proof based on statement A = a · P. If the proof is verified,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 4

the knowledge of a could be proved, without revealing its
actual value.

Cloud Server

PUFs-embedded

IoT Device

Ciphertext

Upload

Ciphertext

PUF Secret PUF Secret

Goal 1:

Authentication

Goal 2:

Data Sharing

SP1

SPn

Data ReceiverVerifier1 Verifier2 Verifierm

Query/Invoke

Plaintext

Share

TA

BC Clients

Query/Invoke

Smart contract
BC Network

K-V State

Database

TXs Distributed storage

Maintain

Slice Users

IoT Device

SP2

BC Clients

PaaS Framework

Fig. 2. System model.

C. System Model

Our system aims to provide authentication and data sharing
for smart grids [6], intelligent transportation systems [4],
Internet of Drones [5], Internet of Videos [10], etc. We abstract
these practical scenarios into our system model, as shown in
Fig. 2. The proposed three-layer architecture consists of PaaS
framework, slice users, and IoT devices.

(1) PaaS Framework: This framework is composed of the
trusted authority, slice providers, and the blockchain.
• Trusted Authority (TA): The TA initializes the system, sets

up the blockchain, and completes the registration for SPs, slice
users, and IoT devices. Besides, TA would not be involved in
the authentication and data sharing processes.
• Slice Providers (SPs): SPs act as the participators of

(t-n)-SSS and the blockchain consensus. They also make
computations on response slices and transmit encrypted PUF
secret slices through the blockchain network. In addition,
appropriate blockchain clients will be chosen to invoke/query
the smart contract or monitor transactions on behalf of SPs.
• Blockchain: To adapt to IoT environments, the consortium

blockchain will be chosen to efficiently send and validate
transactions. The transactions are validated and recorded by
SPs to maintain a key-value state database.

(2) Slice Users: Slice users could be edge servers, base
stations, gateways, etc. They will be deployed in PaaS after
registering their public keys in the blockchain. Registered users
can employ the PUF service to authenticate IoT devices or
receive shared IoT data. Blockchain clients are also installed
on them to interact with the blockchain network.

(3) IoT Devices: IoT devices are defined as smart devices
and machines with constrained resources, including vehicles,
UAVs, smart meters, etc. These devices usually need to be

authenticated by multiple verifiers. Meanwhile, they may store
sensitive data or share them through public channels. Note
that each IoT device is equipped with a secure PUF circuit to
provide physically secure hardware fingerprints.

D. Threat Model

The capabilities of the adversary in our system model are
modeled as follows:

(1) Channel: The communication channel is constructed
by the widely-accepted Dolve-Yao (DY) threat model. The
adversary is assumed to fully control the channel.

(2) IoT Devices: Devices are under the threat of physical
and cloning attacks. The adversary has the ability to derive
secret keys stored in devices’ local non-volatile memory [3].

(3) Slice Users: Slice users will protect their private keys
properly to ensure the security of their blockchain accounts.
However, they are modeled to be semi-honest, attempting to
obtain real CRPs to model the PUF circuit.

(4) Slice Providers: SPs are also considered semi-honest,
ensuring the validity of the PUF secret slices they provide.
However, they will try their best to retrieve privacy informa-
tion. Additionally, SPs will securely keep their private keys.

(5) Threats to (t-n)-SSS: The adversary may corrupt the
storage of less than t SPs to steal or damage PUF response
slices. The number of collusive SPs will also be less than
t. In addition, there always exist at least t semi-honest SPs
participating in the reconstruction phase.

(6) Blockchain: The entire consortium blockchain is as-
sumed to be secure, trustworthy, tamper-proof, and reliable.
Only transactions proposed by authorized participants and
registered users will be validated and recorded.

IV. CRPS MANAGEMENT AND PAAS FRAMEWORK

In this section, we describe our proposed CRPs management
method and PaaS framework in Fig. 3. The CRPs management
method comprises slice-based CRPs storage and blockchain-
based reliable sharing mode.

A. Slices-based CRPs storage

We take one CRP as an example to illustrate the storage
method. The SSS system is mainly used to ensure the security
of CRPs storage and backup.

(1) Divide response: Each |R| bit-length PUF response
is divided into two |R|/2 bit-length slices {Slice1, Slice2}.
Then, the secret split algorithm SS(·) of (t, n)-SSS is lever-
aged to respectively split {Slice1, Slice2} into a sub-slices set
{Slice1,i, Slice2,i}ni=1.

(2) Distribute and store sub-slices: The ith sub-slices, along
with their related challenge Ci and helper data HDi are
distributed to SPi in secure channels. Each SPi retains these
elements in its local storage.

(3) Register IoT devices: To register IoT devices, the TA
invokes the smart contract, recording the blockchain addresses
of all SPs and the initial (C1,HD1).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 5

n SPs

IoT Device

1. Divide

PUF response

Response slices

Slice_1

Slice_2

(t, n)-SSS split

slices

Slice_1,1

Slice_1,2

Slice_1,n

Slice_2,1

Slice_2,2

Slice_2,n

.

.

.
.
.
.

A. Slices-based CRPs Storage

(Take one CRP as an example)

B. Blockchain-based Reliable Sharing Mode

. . .

2. Distribute and store sub-

slices, challenge, helper data

. . .

Sub-slices Set

Slice_1,1
Slice_2,1 SP1

SPnTA
Secure channels

. . .

C1

HD1

Slice_1,n
Slice_2,n

Cn

HDn

1. Send sharing request

(DID, C, N) in TXs

Slice userSlice user

. . .

N Slice_1,1+Slice_2,1

N Slice_1,2+Slice_2,2

N Slice_1,n+Slice_2,n

.

.

.

2. Computation on sub-slices to

calculate PUF secret slice (PSS)

Blockchain and SPs
3. Transmit encrypted PUF

secret slices in TXs

Blockchain

network

3. Register IoT

device in BC

4. Synchronize the latest

challenge among SPs through BC

5 Decrypt and reconstruct

PUF secret

PSS1

PSS2

. . .

Receive PUF secret:

 N Slice1 +Slice2

(,)PPS
i i t³

n

i=1PSS

Blockchain Network

SP1

SPn

SP2

Fig. 3. CRPs management method with multidimensional security protection.

B. Blockchain-based Reliable Sharing Mode
In this mode, SPs share the PUF secret (N ·Slice1 +Slice2)

slices to users through on-chain channels. The blockchain is
utilized to synchronize the slice usage order among SPs. In
addition, PUF secret slices are transmitted in the form of
transactions to supervise SP’s behaviours. The reliable slice
sharing proceeds as follows:

(1) Send sharing request: The slice user initiates a sharing
request by querying the latest challenge C of device DID
from the blockchain. Then, the nonce N will be chosen and
transmitted to SPs along with (DID,C) through transactions.

(2) Computation on sub-slices to calculate PSSs: Upon
receiving (DID, C, N), each SPi will use its stored sub-slices
{Slice1,i, Slice2,i} to homomorphically compute PUF secret
slice, which is denoted as PSSi = N · Slice1,i + Slice2,i.

(3) Transmit Encrypted PSSs: SPs utilize slice user’s public
key to encrypt the {PSSi}ni=1. The ciphertext will be trans-
mitted to users in the form of transactions to supervise SPs’
sharing behaviours.

(4) Synchronize the latest PUF challenge: The latest
(Cx+1,HDx+1) will be synchronized among SPs through the
blockchain consensus mechanism.

(5) Decrypt and reconstruct: The slice user utilizes its
private key to decrypt and obtain {PSSi}ni=1. Then, the re-
construction algorithm SSS RC(p, {PSSi}ni=1) is executed to
reconstruct the complete PUF secret.

PaaS Framework

Monitor

transaction

Send

transaction

Validate user

ZKP

Encrypt PUF

secret slices

Feature 1:

Build On-chain

Secure Channels

BC

 storage

User PKu

PKu

Reconstruct

PUF Secret

. . .

 n SPs

1{ ()}
u

n

PK i i
En PSS

= SPs computation units

IoT DeviceIoT Device

Decrypt and

obtain PUF

secret slices

private

key

Retrieve

sub-slices

from storage

1{ }n

i i
PSS

=

 Insert ZKP into

sharing request

PUF secretPUF secret

Feature 2: Provide a PUF Service

through Transactions

Slice User

Computation

on sub-slices

to get PUF

secret slices

sub-slices

1. Distributed authentication

2. Recoverable data sharing

1. Distributed authentication

2. Recoverable data sharing

(DID, C, N,ZKP)
ZKP

(DID, C, N)

Locate SPs in BC

Integrate different

security mechanisms

Fig. 4. Proposed PaaS framework.

C. PaaS Framework

As is shown in Fig. 4, the PaaS framework is constructed
to achieve flexible user deployment in SSS system and pro-
vide different security mechanisms for distributed users. The
important features are summarized as follows:

(1) Build on-chain secure channels: The blockchain is
leveraged to trace the change of SSS system. The slice user
will locate SPs by querying the blockchain and insert his ZKP
in sharing request. Then, SPs will query the user on-chain
public key to validate user’s ZKP. In addition, the user public
key would be utilized by SPs to encrypt PUF secret slices and
transmit them in the form of transactions. Once deployed in the
blockchain, users can always build secure on-chain channels
with SPs to share the PUF secret.

(2) Integrate different PUFs-based security mechanisms:
The PUF secret can be leveraged by slice users to activate
both authentication and data sharing. It means that any one
of the slice users can always send transactions to employ the
PUF service, needless of performing additional registrations
to accommodate the change of SSS parameters and SPs’
certificates.

V. DISTRIBUTED AUTHENTICATION AND RECOVERABLE
DATA SHARING

In this section, we construct PUFs-based distributed authen-
tication and recoverable data sharing based on our proposed
PaaS framework and CRPs management method.

A. Initialization

Our scheme is initialized as follows:
TA first selects a cyclic group G with prime order q on

elliptic curve Ep(a, b), where a, b ∈ finite field Fp. Then, a
generator P ∈ G and three hash functions H1 : {0, 1}∗ →
{0, 1}l1 , H2 : {0, 1}∗ → {0, 1}l2 , H3 : {0, 1}∗ → Zq are
chosen. To set up SSS, TA chooses, n, t, and another Fp′ with
prime p′ > |R|. |R| denotes the bit-length of the shared PUF
response. Last, public parameters {n, t, q, p, p′, P,G, H1∼3}
are made public.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 6

B. Deployment of Blockchain and Smart Contract
The TA sets up the blockchain network and deploys the

smart contract. The blockchain clients will be installed to
query/invoke the smart contract, as well as monitor transac-
tions. Recorded transactions will be secondly used to maintain
a key-value state database, which supports the efficient query
by blockchain addresses. Five different functions of the smart
contract are provided:

(1) DevReg (H1(DID), {H1(IDSPi)}ni=1, (C1,HD1)). TA
invokes this function to register IoT devices. The blockchain
addresses of all SPs and the initial (C1,HD1) used for
authentication will be recorded.

(2) UsrReg (H1(VID), pkv). Slice users invoke this function
UsrReg (H1(VID), pkv) to create their blockchain account.
The public key pkv of the user will be written in the
blockchain.

(3) ZKPoK (H1(VID), N,H1(DID), Cx, π
n
i=1). Slice user

invoke this function to distribute ZKPoK cryptographic proofs
πn
i=1 and challenge to SPs in the form of transactions.
(4) TXEPSS (H1(VID), N, {EPSSi, δi · P}ni=1). SPs trans-

mit the {EPSSi, δi · P}ni=1 encrypted PUF secret slices and
Nonce N to slice users through the blockchain.

(5) Update (H1(DID), (Cx+1,HDx+1)). SPs invoke this
function to synchronize the latest(Cx+1,HDx+1) among SPs
for the subsequent authentication request.

IoT Device Verifier (Slice User)

. . .

SPs and blockchain

2:BCSend Verifier TX¾¾®

1:BCSend SPs TX¾¾®

,1 ,2

1 ,1 ,2

3 1

3 :

: (,) (,);

: (||);

 (|| ||);

x x x x x

x x

x

A Generate PS

Generate Slice Slice R PUF C HD

Compute Flag H N N Slice Slice

V H C N Flag

= =

= × +

=

3 3: { , }Send Verifier M N V® =

*

* *

*

, 1 1 1 1

, 1 , 2 1

, 1

6 Re :

: ({ , } , ,) (());

5 :

:{ } { ()} ;

: _ (,{ });

n

x i i i x x

n n

x i i x i i i i

n

x s x i i

A trieve encoded PSS from BC

BC EPSS P C HD QueryPSS H VID

A Decode and reconstruct

Decode PSS EPSS H y P

Compute PS SSS RC p PSS

d

d

= + +

= =

=

=

= Å

=

1 1 3 (|| || (||)) ? ;

[Sec]

x xH C N H N PS V

Accept or reject PUF ret and IoT Device

==

1 :

: ;

A Send request

Input DID

1

2 1

2 :

: (,) (());

: ;

: (|| ||)

s

x x

q

x x

A Obtain Challenge

BC C HD QueryChal H DID

Choose N

Compute V H C HD N

=

Î

=

: ;
sq

: ;: ;

2 2: { , , , }x xVerifier Send M C HD N V® =

1 1: { ()}Send Verifier M H DID® =

1 1

1 3 1

3 1 1 1 1

4 :

:{ } ,{ } ;

: { , (||)} ;

: ((), , (), ,);

n n

i q i i i i

n n

i i i i i i

n

x i

A Ask for service and ZKPoK

Select y Y y P for each SP

Generate Y s y skv H pkv Y

InvokeSM TX ZKPoK H VID N H DID C

p

p

= =

= =

=

Î =

= = + ×

=

i q i i i1 11 1} ,} ,1 11 11 11 1} ,n n} ,{ }} ,} ,} ,{ }} ,} ,{ }} ,} ,1 11 11 1} ,{ }{ }1 11 11 1} ,{ }} ,} ,{ }} ,} ,1 11 11 11 1

1 1

1 1 1

3

5 :

: ((),) _ ;

 (, ,((),)) ((),);

 : : (||) ? ;

[]

: , (

i

n

i x

i i i

i q x

A SP Computation on PUF Slices

BC H VID N Monitor TX

pkv H DID C QueryZKPoK H VID N

Each SP Verify Y pkv H pkv Y s P

Accept or reject Verifier

Select C

p

d

=

+

=

=

+ × == ×

Îi q x: , (: , C: , (i q xi q x: , (: , (
+1 1

, 1, , 2, ,

, , 2

*

, 1 1 1

*

2 1 , 1

3

,);

: ;

 ();

 { } , , ;

((), ,{ , });

x

x i x i x i

x i x i i i

n

x i i x x

n

x i i i

HD

Compute PSS N Slice Slice

EPSS PSS H Y

Aggregate EPSS C HD in BC client and invoke SM

TX TXEPSS H VID N EPSS P

TX

d

d

+

= + +

=

= × +

= Å ×

= ×

1 1 1((), (,));x xUpdate H DID C HD
+ +

=

Fig. 5. PUFs-based distributed authentication.

C. Registration

In this phase, IoT devices and slice users will be registered.
According to the slice-based storage method in section IV, we
first explain the device registration phase.

Step R.1: The IoT device DID first prepares and divides k
CRPs {Cj , Rj ,HDj}kj=1.

Step R.2: The PUF response slices are split into
{Cj ,HDj , Rj = {Slice1,j,i, Slice2,j,i}ni=1}kj=1 sub-slice set.
The IoT device distributes the sub-slice set to TA.

Step R.3: TA stores these sub-slices on n SPs and then
invokes DevReg function to build device’s blockchain account
and initialize (C1,HD1). Note that TA will not keep sub-slices
to avoid CRPs leakage.

Moreover, the sub-slices set will be managed according to
the following rules.

Rule 1: The first k0 CRPs activate authentication service.
The device will be authenticated by (N ·Slice1+Slice2), which
is together computed by SPs. Once providing PUF secret
slices, SPs will remove the used challenge, helper data, and
sub-slices from their local storage. Meanwhile, Update func-
tion will be invoked to synchronize the new (Cx+1,HDx+1).

Rule 2: The remaining (k−k0) CRPs enable data sharing by
using (N ·Slice1+Slice2) to generate PUFs key. To make PUFs
key recoverable, SPs will store these sub-slices, challenges,
helper data, and Nonce N in their local storage.

Rule 3: The TA periodically registers slices to avoid the
storage overhead on SPs as well as adapt to the change of
SSS parameters.

To register distributed slice users, the key pair {skv ∈
Zq, pkv = skv · P ∈ G} and VID = H1(pkv) should be first
generated. Then, the user blockchain address H1(VID) will be
calculated to invoke UsrReg function and create the blockchain
account for the slice user. If H1(VID) already exists, the slice
user has to re-generate the key pair.

D. Unidirectional Authentication

In this phase, we construct distributed unidirectional au-
thentication. Any one of the registered users could employ the
PUF service to authenticate the IoT device. The authentication
phase is discussed as follows and depicted in Fig. 5.

Step A.1: The IoT device DID sends request M1 to verifier.

Sender → Verifier: M1 = {H1(DID)}.
Step A.2: Once receiving M1, the verifier queries the

blockchain address H1(DID) to get the device’s PUF chal-
lenge and helper data (Cx,HDx). More importantly, Nonce
N will be chosen by the verifier and inserted into the returned
message. The random number N not only helps to resist replay
attack, but also randomizes each PUF response into the PUF
secret, instead of exposing real CRPs. After computing the
hash value V2 = H1(Cx||HDx||N), the verifier constructs and
returns M2 to the IoT device.

Verifier → Sender: M2 = {Cx,HDx, N, V2}.
Step A.3: Once receiving (Cx,HDx), the PUF instance is

challenged to output Rx. Then, Rx will be further divided
into (Slicex,1, Slicex,2). Afterward, the hash function is used

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 7

to calculate Flag = H1(N ||N · Slicex,1 + Slicex,2) and V3 =
H1(Cx||N ||Flag). Last, the message M3 is sent to the verifier.

Sender → Verifier: M3 = {V3}.
Step A.4: Upon receiving M3, the verifier randomly selects

n elements {yi ∈ Zq}ni=1 and computes {Yi = yi · P}ni=1.
The Fiat-Shamir heuristic is applied to generate n proofs
πn
i=1 = {Yi, si = yi + skv · H3(pkv||Yi)}ni=1 for ZKP
{(skv) : pkv = skv · P}, where (skv, pkv) is the verifier’s
key pair. Last, the verifier will invoke the function ZKPoK
{H1(VID), N,H1(DID), Cx, π

n
i=1} to distribute cryptographic

proofs πn
i=1 to n SPs in the form of transactions.

Verifier BC−→ SPs:
TX1 = ZKPoK(H1(VID), N,H1(DID), Cx, π

n
i=1).

Step A.5: Once the transaction TX1 is recorded, the
blockchain client of SPs will monitor the on-chain event to
obtain H1(VID) and N . The public keys, proofs, and challenge
(pkv, πn

i=1, H1(DID), Cx) = Query Ledger(H1(VID), N)
will be further queried from the blockchain. Then, each SPi

verifies the authenticity of the verifier by checking whether
Yi +H3(pkv||Yi) · pkv = si ·P . If so, SPi accepts the verifier
and continues to compute the PUF secret slice (PSS).

SPs will find PUF sub-slices (Slice1,x,i, Slice2,x,i) according
to H1(DID) and Cx. Then, each PUF secret slice is calculated
as PSSx,i = (N · Slice1,x,i + Slice2,x,i). To encrypt each slice,
SPi chooses a random δi ∈ Zq to compute δi · Yi. The PSSx,i

will be encrypted into EPSSx,i = PSSx,i ⊕H2(δi · Yi). After
that, (Cx+1,HDx+1) is selected in the sequence of the index.
Each SPi will transmit {EPSSx,i, (δi ·P)}, (Cx+1,HDx+1) to
the blockchain client. The TXEPSS function will be invoked
to insert n∗ encrypted PSSs into transaction TX2. At last,
the Update function will also be utilized to synchronize new
(Cx+1,HDx+1) among SPs. Note that each SP will remove
the used sub-slice from the local storage.

{SPi}n∗i=1
BC−→ Verifier:

TX2 = TXEPSS(H1(VID), N, {EPSSx,i, δiP}n
∗

i=1)
TX3 = Update(H1(VID), (Cx+1,HDx+1))

Step A.6: When noticing TX2, the verifier queries
{EPSSx,i, δi · P}n

∗

i=1 = Query Ledger(H1(VID)) from the
blockchain. Then, (yi · δi · P) is computed to decrypt and
get {PSSx,i}n

∗

i=1 = {EPSSx,i ⊕ H2(yi · δi · P)}n∗i=1. That is
to say, the PUF secret could be reconstructed by PSx =
SSS RC(p, {PSSx,i}n

∗

i=1). Finally, the verifier checks whether
H1(Cx||N ||H1(N ||PSx)) = V3. If so, the IoT device DID
could be authenticated.

E. Mutual Authentication

If mutual authentication (MA) is required, simple changes
can be directly added to the unidirectional authentication
process. The way of authenticating the IoT device is the same.
We only discuss the main differences.

In step A.1, the additional element N2 = n2 · P ∈
G will be generated and inserted into M1. In step A.2,
X = N2 · skv will be calculated by the verifier to
build V2 = H1(Cx||HDx||H1(VID||X)). Then, M2 =
{Cx,HDx, H1(VID), V2} will be sent back to the IoT device.

Once receiving M2, the IoT device uses its blockchain client
to get the public key of the verifier pkv. The queried pkv
could be used to check whether V2 is valid. If so, the verifier
VID is authenticated.

Note that our mutual authentication is not suitable for very
lightweight IoT nodes, as both the operations of ECC cryptog-
raphy and blockchain query will be involved to authenticate
multiple verifiers.

Remark: Our work only ensures identity anonymity for
devices and verifiers by transmitting their blockchain addresses
in the public channel. Different messages sent by the same
requestor could be linked. If unlinkability is required in a par-
ticular scenario, there exist two ways to improve our work. The
first one is to store one-time pseudo identities of IoT devices
in SPs. Each pseudo identity will be used for one request, as
work [6] did. Another one stores certificates of verifiers in
the IoT device in advance [25]. The transmitted identity will
be encrypted by the shared element computed by public key
cryptography. However, anonymity and unlinkability are out
of the scope of this paper. We omit detailed discussions.

Data
Encrypted

Data (ED)

Encryption

Key

Random salt T (,)r rRoot C R

SPs in

(n-t)-SSS

4. Reconstruct

When Necessary

DID

2. Store Encrypted Data

Locally or in the CloudCloudNVM
3. Download

and Decrypt

BC

,1 ,2(,)x r rR Slice Slice

1. 2(, ,)rPBKDF R T length

(, (), , ,)r rED DID En data T HD CED

Single Point

Failure

(a) Recoverable PUFs-based Data Encryption

1. 2(, ,)xPBKDF PS T length

1(|| ||)xT H C DFID DID
DFIDPUFs Key

DID

SPs in

(n-t)-SSS4. PUFs Key

Sharing
,1 ,2x r rPS N Slice Slice

2. Upload CipherText
CloudData Receiver

BC

3. Download

CT

(, ,)xC N DID

(, , , , ())xCT DFID C N DID En data

0 1(,)x x k x kC R

Pay-as-you-go

CipherText

(CT)

(b) Data Sharing with dynamic PUFs key

Fig. 6. Data encryption and sharing.

F. Recoverable PUFs-based Data Encryption

As is shown in Fig. 6 (a), PUF-based data encryption is
used by the IoT device to protect its sensitive information. The
encryption key generated by the PUF circuit is recoverable.

(1) Generate encryption key: The IoT device will choose one
CRP (Cr, Rr,HDr) from (k − k0) CRPs and a salt-value T
as the encryption root. Then, Password-Based Key Derivation
Function 2 (PBKDF2) is used to generate the encryption key
as Key=PBKDF2 (PKCS#5, Rr, T, key length).

(2) Store encrypted data (ED): The advanced symmetric
encryption primitives, such as AES, will use the encryption
key to protect sensitive data. The elements (Cr,HDr, T) will

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 8

be kept with the encrypted data. The encrypted data will be
stored locally or in the public cloud.

(3) Download and decrypt data: After downloading en-
crypted data, the IoT device can use the PUF response Rr

to generate the decryption key with the salt value T .
(4) Reconstruct encryption key: If the PUF circuit and CRPs

backup suffer from the single point failure, the TA has the
authority to request sub-slices of Rr from SPs. The Rr can
be reconstructed by SSS to recover the encryption key.

However, this data encryption method is not suitable for data
sharing. First, it is unsafe to directly share the encryption root
with other users. Second, as mentioned in [26], if public key
cryptography is used to transmit the generated encryption key,
the device should be always online and additional overhead
will be brought.

G. Data Sharing with Dynamic PUFs Key

We propose a dynamic PUFs key generation method to
support data sharing.

(1) Generate dynamic PUFs key: Assume each data file has
an open identity DFID. IoT device DID will choose (Cx,HDx)
to calculate the unique encryption key for each data file.
The salt value is generated by T = H1(Cx||DFID||DID). In
addition, the PUF secret PSx = (N · Slicex,1 + Slicex,2) is set
as the seed of PBKDF2. The dynamic PUFs key is computed
as key=PBKDF2 (PKCS#5,PSx, T, key length).

(2) Upload ciphertext (CT): The data file DFID will
be encrypted into En(data) using the PUFs key. The
DFID=(DFID, Cx,DID, N,En(data)) will be uploaded to the
cloud for data sharing.

(3) Download ciphertext: The data receiver downloads the
ciphertext from the cloud.

(4) PUFs key sharing (PKS): The data receiver uses
(Cx,DID, N) to request slices from SPs. After taking the same
steps (A4 ∼ A6) mentioned in the authentication phase, the
data receiver will reconstruct the PUF secret (PSx). Then, the
PUFs key can be computed to decrypt the data De(data) and
get the data file of DFID. After processing the initial key
sharing, SPs will store the Nonce N with sub-slices, Cx, and
helper data to verify future sharing requests.

VI. SECURITY ANALYSIS

In this section, we analyze our authentication and data
sharing scheme by performing security proof and security
discussions.

A. Provable Security and Security Reduction

The provable security is a classic and widely accepted way
of performing security proof. The security reduction is an
important security analysis method of provable security and
has been used in many relevant studies [22], [23]. Hence, we
use provable security and security reduction to make security
proof for our authentication.

The provable security is based on complexity theory and
reduces the security of protocols or algorithms to some good
axioms or difficult problems. If the security reduction process

is correct, and these axioms are correct or the mathematical
problems (e.g., discrete logarithm problem, Diffie-Hellman
problem) are indeed difficult to solve, the protocol/algorithm
will be proved to be computationally secure. It is important
to note that the provable security does not directly prove the
security of the cryptographic scheme, but rather perform the
security reduction to protocol/algorithm.

Challenger

2. Attack P1 3. Attack P2

1. Train adversary
Adversary

Difficult

Problem P2
Protocol P1

Training Environment

Fig. 7. Framework of security reduction.

As shown in Fig. 7, the challenger C first trains the adversary
A to attack protocol P1. A’s behaviours in our training
environment are modeled according to the threat model. If A
is trained to break P1, C will use A’s attack ability to break
difficult problem P2. However, P2 is assumed to be difficult to
solve based on the computational complexity. Therefore, the
security of P1 can be proven by contradiction.

B. Security Model
The security model that models the adversary’s behaviours

in training is constructed as an interactive game between the
challenge C and the adversary A. C and A are both modeled
by a Probabilistic Polynomial Time (P.P.T) Turing machine.
The

∏l
Ω is defined as an instance l of a participant Ω, where

Ω represents IoT devices, verifiers, or SPs. In this game,
A’s behaviours are set as different queries and C answers
them according to the real protocol as follows to perform the
training process.
• hi(mj)-Query: When A asks a hash query on message

mj , C returns with a random element rj and records (mj , rj)
in the hash list Lhi .
• Extract (DIDi)-Query: When A asks this query, C returns

the identity DIDi and PUF instance PUFi, and record them
in the PUF instance list Lp.
• Send (

∏l
Ω,m)-Query: In this query, A sends m to partic-

ipant Ω of instance l. C will make operations according to the
actual protocol and return results to A.
• RevealPUFSecret (

∏l
Ω)-Query: If

∏l
Ω is accepted, C

returns the PUF secret to A. Otherwise, ⊥ will be returned.
• ExtractPUFSlices (DIDi, Ci)-Query: In this query, C re-

turns less than t PUF slices correlated to Ci, where t is the
threshold of (t-n)-SSS.
• BC (IDi)-Query: In this query, C returns the information

recorded in the blockchain account IDi.
After a set of queries has been asked in finite time, the

adversary A tries to break the security of our mutual authen-
tication (MA). A will impersonate an IoT device to violate

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 9

the verifier’s authentication, or forge a verifier to pass the
verification of the IoT device.

Next, we introduce the definitions of underlying hard prob-
lems and security assumptions used in security proof.

Definition 1 (Decisional Uniqueness Problem (DUP) for
PUF [10], [15], [24]): Given a secure PUF instance, with only
an n-bit output, a challenge Ci, and an n-bit string z ∈ {0, 1}n,
this DUP problem is to decide whether z is a random string
or a valid PUF response Ri = PUF(Ci) correlated to Ci.

Definition 2 (Computational Diffie-Hellman (CDH) Prob-
lem: Given elements (P, a · P , b · P ∈ G), this CDH problem
aims to compute a · b · P ∈ G.

Definition 3 (CDH and DUP Assumptions): Assume that
DUP and CDH problems are hard. The P.P.T adversary A can
solve these problems with negligible probability.

C. Security Proof

Lemma 1: No P.P.T adversaryA can forge an IoT device DIDt

to violate the verifier’s authentication with non-negligible
probability.

Proof: Assume that A can impersonate a device DIDt to pass
the verifier’s authentication with non-negligible probability ε1.
In this lemma, we will present how challenge C solves DUP
problem with non-negligible probability.

Given an instance (DIDt,PUFt, Cx, z) of DUP problem,
C first initializes the system and publishes public parameters.
Then, C simulates the authentication scheme by answering A′s
queries as follows.
hi(mj)-Query: C keeps a set of lists {Lhi

}3i=1 as the tuple
(mj , rj). If (mj , rj) exists in Lhi , C returns rj . Otherwise, rj
is generated by the random oracle and sent back to A. And,
the tuple (mj , rj) is inserted to Lhi

.
Extract (DIDi)-Query: C maintains a list of IoT devices’

PUF instances Lp = (DIDi,PUFi) , which will be initialized
as empty. Each PUF instance presents a unique challenge-
response behaviour. If DIDi exits in Lp, the instance PUFi

will be returned to A. Else, C proceeds as follows.
• If DIDi = DIDt, C returns (DIDt,⊥) to A.
• If DIDi 6= DIDt, C constructs a unique PUFi instance

and returns (DIDt,PUFi) to A, and updates Lp.
BC (H1(DIDi))-Query: C maintains a CRP list Lcrp for each

device, which is initialized as empty. C will randomly choose
C1 to challenge PUFi and generate (C1,HD1, R1) to initialize
Lcrp. The Lcrp will be updated once during each authentication
request. In this query, C returns (C,HD) to A.

BC (H1(VIDi))-Query: C will maintain a public key list Lk

for all verifiers. If VIDi exists, C sends the public key pkvi
to A. Otherwise, C generates (pkvi, skvi) and updates Lk. In
this query, pkvi will be sent to A.

RevealPUFSecret (
∏l

Ω)-Query: C will find Cx, N,DIDi

used in instance l. Then, the PUF instance PUFi in Lp will
be used to generate Rx. Last, C splits Rx = Rx,1||Rx,2 to
calculate the PUF secret (NRx,1 +Rx,2) and returns it to A.

ExtractPUFSlices (DIDi, Ci)-Query: In this query, C finds
the according Rx,1 and splits it into n slices. Only less than
t slices will be returned to A.

Send (
∏l

DIDi
)-Query: If DIDi = DIDt, C aborts the game.

As C does not know the real PUF instance of DIDt, the game
should be aborted to ensure the correctness of this simulation.
Otherwise, C answers the query as follows.
• When A sends (

∏l
DIDi

, ’start’), C sends M1 =
{H1(DIDi)} to A. If mutual authentication is required, C will
choose N2 = n2 · P to compute and insert N2 into M1.
• When A sends (

∏l
VIDi

, M1), C first retrieves (Cx,HDx)
by asking BC (H1(DIDi))-Query. Then, C chooses nonce N
to construct M2 = {Cx,HDx, N, V2} will be returned to A. If
mutual authentication is required, X = N2 · skv is computed
and inserted into V2 with H1(VIDi) .
• When A sends (

∏l
DIDi

, M2), C first checks whether
DIDi = DIDt. Then, C retrieves n2 and N generated in
(
∏l

DIDi
, ’start’)-Query. Then, the public key pkv of the veri-

fier is obtained by BC (H1(VIDi))-Query to verify whether
M2 is valid. If not, C aborts the game. Otherwise, C in-
puts (Cx,HDx) in M2 into the instance PUFi queried in
Extract (DIDi)-Query to generate Rx. Rx will be divided into
Slicex,1, Slicex,2 to compute PSx and V3. Afterward, C sends
M3 = {N,V3 = H1(Cx||N ||H1(N ||PSx))} to A.
• When A sends (

∏l
VIDi

, M3), C can directly obtain
Rx, N, PSx from previous queries. These elements could be
used to verify the validity of M3. At last, C will randomly
choose a new challenge to generate (Cx+1, Rx+1,HDx+1) to
update Lcrp for DIDi.

Finally, once A forges a valid login request M∗3 = {V3 =
H1(Cx||N ||H1(N ||PSx))}, the solution to DUP problem can
be found by C. The legality of M∗3 means that A has queried
the PUF secret in Lh1 . Thus, C first randomly chooses a tuple
(m, r) from Lh1 . Then, C divides z already prepared in DUP
instance into (z1, z2) to compute (N∗z1 +z2). If (N ||N∗z1 +
z2) equals to m, C can decide that z is the PUF response. The
DUP problem will be solved.

Now, we compute the probability of solving DUP problem.
Three events are defined as:
• E1: C performs a right simulation and a useful attack (C

aborts the Send-Query).
• E2: A forges the valid M∗.
• E3: C picks a right tuple from Lhi

.
We get Pr[E1] = (1− 1/(qs + 1))qs , Pr[E2|E1] = ε1, and

Pr[E3|E1 ∧ E2] = 1/qh, where qs and qh are the maximum
times of Send-Query and hi-Query. As a result, we get the
probability as follows:

Pr[E1 ∧ E2 ∧ E3]

= Pr[E1] · Pr[E1|E2] · Pr[E3|E1 ∧ E2]

= (1− 1
qs+1)qs · ε1 · 1

qh

(2)

Since the probability of solving DUP problem is not negli-
gible, it contracts the hardness of DUP. Therefore, A cannot
impersonate a device to pass the verifier’s authentication with
non-negligible probability. Lemma 1 can be proved.

Lemma 2: No P.P.T adversary A could impersonate the
verifier VIDt to pass the authentication of the IoT device with
non-negligible probability.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 10

Proof: Assume that A enables to perform the impersonation of
the verifiers with a non-negligible probability ε2. We will show
that C can solve CDH problem with non-negligible probability.

Given an instance (P, n2 ·P, skv ·P) of CDH problem. The
skv · P denotes the public key of the verifier. C sets up the
system, publishes parameters, and answers A’s queries.

Note that hi-Query, Extract-Query, Send-Query, BC-Query,
RevealPUFSecret-Query, ExtractPUFSlices-Query are almost
the same as the queries defined in Lemma 1. There are only
three differences:

(1) Extract (DIDi)-Query will respond to all IoT devices’
PUF instances.

(2) Extract (VIDi)-Query is added to simulate the regis-
tration of A. To ensure the correctness, if VIDi = VIDt,
return (VID,⊥) to A. Otherwise, C constructs (skvi, pkvi)
and returns to A, and then updates Lk.

(3) In Send (
∏l

Ω, mj)-Query, if Ω is the verifier and
mj=M1 contains N2, C aborts the game. Because C does not
know the verifier’s private key. Otherwise, C continues the
protocol and returns the message to A.

Finally, A forges a valid login message M∗2 =
{Cx,HDx, N,H1(VID), V2} to pass device’s verification,
where V2 = H1(Cx||HDx||N ||H1(VID)||X∗). It means that A
has queried X∗ = n2 ·pkv in the hash list. Thus, C can find X∗

from Lh3 as a solution to solve CDH problem. As is explained
in Lemma 1, the probability of solving CDH problem can be
calculated as:

Pr[AdvCDH] = (1− 1

qs + 1
)qs · ε2 ·

1

qh
. (3)

The probability of solving CDH problem is non-negligible,
and it contradicts the hard assumption of CDH problem. Thus,
Lemma 2 could be proved.

Theorem 1: The mutual authentication-security of our authen-
tication scheme will be achieved, if the hardness of DUP and
CDH problems both hold.

Proof: The P.P.T adversary that breaks the MA-security of our
scheme can forge login messages to pass the verification of
devices or verifiers. However, Lemma 1 and Lemma 2 prove
that no adversary could perform malicious impersonations.
Therefore, Theorem 1 can be proved.

D. Security Discussions
In this part, we discuss the security features and functions

of our scheme.
1) Unidirectional authentication: To authenticate the IoT

device, the verifier will send transactions to obtain the PUF
secret (N · R1 + R2) from the blockchain and SPs. The
authenticity of the IoT device will be verified by checking
the validity of the hash value V3. Only the valid IoT device
has the unique PUF circuit to compute the correct PUF secret,
which will then be inserted in V3.

2) Mutual authentication: If mutual authentication is re-
quired, the IoT device will insert the random number N2 =
n2 ·P ∈ G in M1 and check whether the element X = n2 ·pkv
is contained in the returned V2. Only the valid verifier can use
its private key to compute the correct X = N2 · skv, due to
the hardness of computational Diffie-Hellman problem.

3) Recoverable PUFs-based encryption key: The recovery
of PUFs-based encryption key is guaranteed by SSS system.
As long as no less than t SPs are available, the TA will use
the challenge Cr kept with the encryption data ED to require
enough sub-slices from SPs and reconstruct the PUF response.
As a result, the encryption keys generated from the hardware
PUF circuit are always recoverable.

4) Secure PUF secrets: The PUF secret can be recon-
structed by PUF secret slices, which are encrypted and shared
to the slice user in the form of transactions. The attacker
cannot impersonate a legal slice user to retrieve PSSs. Because
SPs will query the user public key from the blockchain
and verify the user’s Schnorr signature to accept the sharing
request. The security of Schnorr signature could be reduced
to the discrete logarithm problem by the forking lemma [25].
Moreover, the on-chain information, such as the user public
key, will be tamper-proofing and trustworthy, as long as the
blockchain is not compromised.

In addition, each PUF secret slice is encrypted into the
transaction by the element X = (y · δ · P). If CDH problem
is hard, the adversary cannot compute the correct X from
the given y · P and δ · P to extract real PUF secret slices.
Furthermore, only the transactions proposed by authorized
participants (slice providers) in the consortium blockchain can
be validated and recorded. In general, the security of PUF
secrets could be guaranteed.

5) No online devices in data sharing: The shared data
is uploaded to the cloud server and the data receiver needs
to propose transactions to obtain the PUF secret from SPs.
The PUF secret is utilized as the seed of key derivation
function to recover the decryption key. The authorization of
data sharing is supported by the concept of pay-as-you-go [27].
The data receiver will first pay the data sharing service through
transactions and then obtain the decryption capability. This
approach ensures that the data receiver does not require direct
online device access to obtain PUF keys.

Then, we discuss how our scheme provides multidimen-
sional CRPs security protection.

6) Resistance to impersonation attack: In our scheme,
CRPs are distributed to SPs and stored in the form of SSS
slices. The attacker may corrupt the storage of SPs or SPs
would try to collude with each other.

Let H(·) be the Shannon’s entropy function [16], [28]. The
(t-n)-SSS with the secret S and secret set (s1, s2, ..., sn) is
correct and perfect:

Correctness : H(S|s1, s2, . . . , sn) = 0, if(n ≥ t).
Perfectness : H(S|s1, s2, . . . , sn) = H(S), if(n < t).

(4)

However, the attacker can only get m(< t) PUF slices from
SPs, according to the threat model. Based on the Perfectness of
SSS, the entropy function (4) shows H(Rx|s1, s2, . . . , sm2

) =
H(S). The attacker still learns nothing about the PUF re-
sponse. Essentially, the threshold feature of SSS ensures the
security of CRPs storage and prevent impersonation attack.

7) Resistance to available attack: SPs together leverage
blockchain transactions to transmit PUF secret slices to dis-
tributed slice users and synchronize the CRPs usage order for
each request. There is no trusted authority involved in the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 11

(a) (2-3)-SSS (b) (4-7)-SSS (c) (6-11)-SSS

(d) (8-17)-SSS (e) Average Running Time (f) Time of Slicing CRPs

(g) Storage Brought by Authentication (h) Invoke Latency (i) Invoke Latency

Fig. 8. Experiment results.

authentication and data sharing processes. As long as there are
no less than t SPs alive, available attacks could be resisted.

8) Resistance to machine learning attack: While authenti-
cating the IoT device, the verifier will obtain the one-time pad
PUF secret N ·Slice1+Slice2, which is calculated by the newest
CRP updated for each session. However, it is hard to determine
both two slices from one equation to recover the original
PUF response R = Slice1||Slice2. It means that no raw CRPs
would be exposed to the curious verifier or attackers from the
public channel. Therefore, the machine learning attack could
be effectively prevented.

9) Resistance to single point failure: If the PUF circuit is
broken and CRPs backup is lost, the TA will use the challenge
kept with ciphertext to require enough sub-slices from SPs
and reconstruct the PUF response. Based on the Correctness
of SSS, once obtaining at least t PUF slices, CRPs used for
data encryption and sharing still remain recoverable.

10) Resistance to replay attack: The random number mech-
anism is adopted by our scheme. Random numbers N , N2, and
yi ∈ Zq are inserted to ensure that communication messages
are fresh and independent of other sessions. Therefore, our

authentication scheme is free from the replay attack.

VII. EXPERIMENTAL EVALUATION

In the experiment, we built a proof-of-concept prototype
to analyze the actual running time, conduct the overhead
comparisons, and evaluate the smart contract performance.

A. Experiment Settings

In our prototype, the PUF circuit, blockchain network, and
involved entities were all implemented as below.

(1) PUF circuit: In this paper, the hardware circuit of XOR-
APUFs was instanced on a Xilinx Virtex-5 FPGA board to
provide hardware fingerprints. Our PUF circuit costs 421
LUTs, 214 registers. And, the generation of a 128-bit PUF
response takes 2816 clock cycles with a clock frequency of
100 MHz (0.028 ms). The average reliability of the PUFs is
92.29 %, and the biggest noise is 10.8 % (14 bits). The BCH
(127, 43, 29) was chosen to correct the biggest 14-bit error.

(2) Blockchain network: The consortium blockchain Hyper-
ledger Fabric was run on a Linux system with 2 cores and 4-
GB RAM to build the blockchain network. The configuration

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 12

TABLE I
COMPARISONS OF COMPUTATIONb AND COMMUNICATIONa OVERHEAD OF PAAS

Protocols Computation Time on Device Computation Time on verifier Communication on Device
[10] 6TH+2TGa+Tbp ≈ 2170.23 ms 5TH+2TGa+Tbp ≈ 134.97 ms 2752 bits
[11] 3TGm+13TH ≈ 144.47 ms 5TGm+12TH+TMreDe+TMreEn ≈ 111.28 ms 2656 bits
[4] 2TH+Ten ≈ 0.834 ms 4TH+3Ten ≈ 0.063 ms 1280 bits
UA 3TH ≈ 0.816 ms n*(TGm+TGa+TH)+TH ≈ 1.57*n+0.006 ms 1152 bits
MA 3TH+2TGm ≈ 94.504 ms (n+1)*(TGm+TH)+n*TGa ≈ 1.57*n+3.148 ms 1928 bits

a The communication overhead was calculated at 128-bit security level. The length of hash function |H| is 256 bits, |ID|, C,HD are all 128
bits, N is 64 bits. The ECC private/public keys are 256/520 bits. The number of SPs is n.
b To perform TH hash function, TGm multiplication on G , TGa addition on G, Tbp bilinear mapping, Ten symmetric encryption, the IoT
device respectively takes 0.272 ms, 46.98 ms, 0.136 ms 2168.47 ms, 0.29 ms. And, the verifier costs 0.006 ms, 1.568 ms, 0.004 ms, 132.94
ms, 0.013 ms. The multi-receiver encryption and decryption in [11] takes about 103.38 ms.

parameters BatachTimeout and MaxMessageCount are set as
50 ms and 10. The smart contract was realized by GO
language. In addition, the blockchain client was constructed
by Java-SDK and installed on the verifier/data receiver and
SPs to invoke or query the smart contract. The performance
of the smart contract was evaluated by Hyperledger Caliper.

(3) Entities: The relevant operations of entities were realized
by Java 1.8 and BouncyCastle 1.60 library. The verifier and
SPs were deployed on a laptop with 16 GB RAM and an I5
core. Moreover, the IoT device was realized on a Raspberry
Pi 3b+, which communicates with our PUF circuit instanced
on FPGA to exchange CRPs through the serial port.

B. Actual Time Costs

We implemented our system with different settings to ana-
lyze the actual running time. We configured four types of SSS
with different combinations of t and n, including (2-3)-SSS,
(4-7)-SSS, (6-11)-SSS, (8-17)-SSS. Besides, the security level
was set from 112-bit to 256-bit.

First, the actual time costs of authentication (UA and MA),
and PUFs key sharing (PKS) are shown in Fig. 8 (a) to
Fig. 8 (d). The average running time is depicted in Fig. 8
(e). It is efficient for our scheme to spend only 974.45 ms
and 794.80 ms on average on UA and PKS. Moreover, the
reconstruction (REC) of PUF response takes about 781.23
ms. The MA process will need a bit more time, which costs
1283.79 ms. The blockchain communication (BC COMM) that
transmits the PUF secret slices takes 586.7 ms for distinct
requests. Overall, our PaaS enables to use various SSS settings
to efficiently provide PUFs-based mechanisms at different
security levels.

In addition, the results presented in these figures indicate
that the running time increases step-wise upward with the
increasing security level and the parameters of SSS. We further
calculated the standard deviations of these time costs. The
standard deviations of UA, MA, and PKS time are 136.5,
178.29, and 139.6. It means that the MA time is more sensitive
to the variations in the security level and parameters of SSS.
Because the IoT device should perform ECC cryptography
during the MA process. Compared with verifiers and SPs, the
IoT device needs much more efforts to finish high-security
level cryptography algorithms (e.g., secp521r1, SHA-512).

Then, the time of slicing CRPs during the registration was
evaluated. The relevant results are presented in Fig. 8(f). It
shows that if the parameters of SSS are big (e.g., 8 and 17),

it will take much time for the IoT device to slice CRPs. For
example, when slicing 10000 CRPs, it takes the IoT device
13.051 s with (8-17)-SSS. However, the time that uses (2-
3)-SSS is only 1.652 s. To make the registration phase more
practical, the time of slicing CRPs should be limited to an
acceptable value.

According to the above discussions, it is recommended
that: (1) We should choose proper security levels in mutual
authentication scenarios; (2) If the IoT device is very resource-
constrained, it should properly adjust the number of the
registered CRPs and parameters of SSS.

In general, our work can achieve different security levels
and adapt to various settings of SSS. Meanwhile, the efficiency
of PUFs-based security mechanisms deployed in various IoT
scenarios could also be guaranteed.

C. Comparative Analysis
In this part, we compare the unidirectional and mutual

authentication with relevant IoT authentication studies [4],
[10], [11], which also involves CRPs management.

To evaluate the computation overhead, we count the most
time-consuming basic cryptographic operations of IoT devices
and verifiers in Table 1. For IoT devices, our UA service
requires the minimum computation overhead. Apart from PUF
operations, devices in UA only perform three hash functions,
which approximately cost 0.816 ms. The computation over-
head for the device in work [4] is close to UA service,
which takes two hash functions and one symmetric encryption.
The difference gap is only 0.018 ms. The work [10] puts
the heaviest overhead on the IoT device, as the bilinear
mapping that takes 2168.47 ms should be performed. The work
[11] and our MA service both involve operations of scalar
multiplication (46.98 ms) on G. However, our MA service
takes one TGm less than their work [11].

For the verifier, the studies [11], [10] take relatively heavy
overhead, which needs 134.97 ms and 111.28 ms. Because
multi-receiver encryption/decryption and bilinear mapping
take up many computation resources. The work [4] takes
the minimum computation overhead (0.063 ms). Moreover,
the computation overheads in UA and MA are linear to the
parameter n of SSS, as the verifier takes TGm to construct
schnorr signature for each SP. However, the verifier could
efficiently compute TGm (1.568 ms). Thus, our PaaS brings
relatively low overhead to users (verifiers and data receivers).

To evaluate communication overhead, we only calculate the
messages received and transmitted by IoT devices. The device

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 13

in UA service takes the minimum communication overhead
(1152 bits). The device in MA service communicates 648
bits more than work [4], since the additional element on G
should be exchanged. The studies [11], [10] put relatively
heavy communication overhead on IoT devices.

Finally, we compare the device’s storage overhead brought
by authentication with PPBMA [11], SBPA [29], and PPSA
[4]. PPBMA and SBPA should store verifiers’ certificates or
public keys in the device. Hence, the overhead is linear to the
number of verifiers, as is presented in Fig. 8(g). There is no
need for devices in PaaS to store verifier’s information. Each
device will install a client to directly query verifier’s public key
from the blockchain. As a result, the storage size is only 16
bytes. Similarly, PPSA’s storage for devices is also a constant
value. However, it should keep a set of pseudo identities to
achieve anonymity. Assume that there are 50 identities. The
storage size of PPSA is 832 bytes.

To sum up, our PUF service has a comparatively satisfactory
performance on computation, communication, and storage
overheads, which are appropriate for IoT scenarios.
D. Performance of Smart Contract

We simulated four kinds of blockchain networks to evaluate
the performance of the smart contract. These networks consist
of different numbers of blockchain nodes.

The invoke latency evaluates the efficiency of the on-chain
communications. This latency measures the time duration from
the point that the transaction is proposed to the point that
the proposed transaction is recorded in the blockchain. As is
depicted in Fig. 8 (h) and Fig. 8(i), when the send rate is
under 50 transactions per second (TPS), the latency is low
and around 0.01∼0.15 s in all networks. However, the latency
increases sharply with increasing concurrent transactions as
shown in Fig. 8 (i). It is easy to find that the network with more
nodes always has a larger latency time under the same send
rate. It takes more time to reach the consensus and record the
proposed transaction. Moreover, the query latency is always
stable to be around 32.96 ms. Because data only needs to be
retrieved from the local copy of the blockchain ledger.

Our PUF service needs to propose three transactions during
each PUFs-based service request. Hence, the efficiency is
determined by the invoke latency. However, when concurrent
transactions per second are more than 50 in our simulation, the
performance of the invoke latency is not satisfactory. Because
the blockchain network implemented in our work only has a
low throughput around 50 TPS.

It is recommended to choose blockchain networks with high
throughputs to greatly reduce the invoke latency and maintain
high efficiency. When deployed in industrial scenarios, it only
needs to replace our simulated blockchain network with high-
performance network, such as FastFabric [30]. The throughput
of FastFabric could even reach 20000 TPS. Therefore, our
scheme has the potential to efficiently process concurrent
requests in industrial deployments.

VIII. IN-DEPTH AND EXTENSIVE DISCUSSIONS

In this section, we conduct additional discussions from a
deep and broad perspective to show the promising prospect of
our scheme.

A. Complexity and Usability

The integration of SSS system, blockchain, and PUFs in-
creases complexity, but the impact brought to the usability is
acceptable and worthwhile. We explain this point from the
following three aspects:

(1) From the IoT device perspective: The increased com-
plexity has little impact on IoT devices. Operations relevant
to SSS and PUFs are all efficient and lightweight. The com-
parative analysis shows that computation overhead on IoT
devices is satisfactory and suitable for most IoT devices in
the distributed authentication environment, such as drones,
vehicles, smart meters, etc. However, our scheme would not
be regarded as super lightweight, as the hash function is
involved. Extremely resource-constrained IoT environments,
such as implanted medical devices and body area networks,
cannot afford our scheme.

(2) From the verifier perspective: Our scheme put forward
special requirements for verifiers, but the brought complexity
is worthwhile. The verifier should install the blockchain client
to interact with available blockchain nodes. Although extra
overhead is brought to verifiers, it makes the deployment phase
flexible, convenient, and reliable. Each verifier only needs to
be registered in the blockchain, needless of adapting to the
change of the SSS system.

(3) From the PaaS framework perspective: The integration
of SSS and blockchain system has great potential to be
acceptable by less technically advanced IoT environments. The
blockchain is recently built as a key network infrastructure
[18]. The cost of leveraging the blockchain system would be
greatly reduced. Moreover, the PaaS framework in our three-
layer architecture only interacts with the slice user layer and
would not influence the IoT device layer too much. After
properly improving the abilities of verifiers, most distributed
IoT environments can be deployed in our system.

B. Scalability Analysis and Future Directions

We give a detailed analysis of how to scale our scheme in
larger networks as follows.

To handle access requests and data flows from a vast number
of devices, we should first deploy more verifiers to reduce re-
sponse time and communication bandwidth. However, the key
factor that restricts the scalability is the blockchain throughput
and consensus latency. As is shown in Fig. 8(h∼i), if con-
current requests increase to a large number, the blockchain
network cannot handle transactions in an efficient latency
(0.01∼0.15 s). The latency even increases to several seconds
and greatly influences the efficiency of authentication and key
sharing. Fig. 8(i) also indicates that the number of blockchain
nodes directly affects the blockchain performance. However,
we cannot simply reduce blockchain nodes to improve perfor-
mance. The number of blockchain nodes is closely related to
the security of SSS slices, the storage capacity of slices, and
adaptability to SSS parameters. Hence, we should increase
the throughput and reduce the consensus latency as much
as possible under a certain node scale. The mechanisms of
blockchain sharding, node selection, and threshold signature

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 14

can be properly combined to improve the blockchain perfor-
mance. If the number of requests still exceeds the throughput
of the blockchain too much, we will consider registering new
devices into a parallelly deployed blockchain.

In future work, improving blockchain performance under a
certain node scale would be formulated as a joint optimization
problem using a Markov decision process [31]. We plan to use
deep reinforcement learning to find the optimal strategy in an
intelligence way.

C. Adaptability and Future-Proofing
In this part, we first discuss how our solution adapts to the

impending quantum attack.
As one of the emerging security threats brought by the

changing technologies, the quantum attack would be a real
threat to current public-key cryptography systems. The public
key system involved in our solution and blockchain system
is elliptic curve cryptography, the security of which relies
on the hardness of discrete logarithm problem. However, the
combination of Grover algorithm (quantum search algorithm)
[32] and side channel attack has the chance to break the elliptic
curve cryptography [33].

To withstand quantum computing attacks, it is an inevitable
choice to replace the public key algorithms in our scheme
with post-quantum algorithms, such as lattice-based signature
(CRYSTALS-Dilithium and Falcon), code-based public key
encryption (McEliece). However, migrating our scheme as
well as the blockchain system to post-quantum cryptography
(PQC) presents a brand-new research area. Advancements in
migration research will facilitate our scheme’s adaptation to
the era of quantum computing.

Then, we explain why our work would be future-proofed
against upcoming technological advancements in IoT follow-
ing four aspects:

(1) PUF circuit: The convenience of our scheme is that we
separate the PUF circuit from the design of authentication and
data sharing. The PUF circuit is only regarded as a security
primitive to provide keys for devices. We can replace our
XOR-APUFs with proper and advanced PUF circuits.

(2) Devices: Ongoing developments in integrated circuits
and IoT hardware will enhance devices’ storage, communica-
tion, and computing abilities. As a result, our scheme would
have the potential to be applied to more IoT applications. We
can even deploy mobile devices as verifiers to increase the
flexibility and scalability of our scheme.

(3) Architecture: The promising AIoT [34] is the combina-
tion of Artificial Intelligence (AI) and IoT to support more
intelligent and efficient applications. The edge servers are
integrated in AIoT to afford AI computation tasks. The three-
layer architecture of our system is consistent with the concept
of edge computing and AIoT. Our solution has the potential
to adapt to upcoming distributed IoT architectures and ensure
the security of them.

(4) Blockchain: The sharding mechanism [35] is the fron-
tier of blockchain and helps to greatly improve blockchain
performance. The development of sharding mechanism would
enable our scheme to better meet the scalability and efficiency
requirements of future IoT environments.

D. Real-World Applicability

We first discuss the potential real-world applications. The
applications of our scheme are divided into two types: la-
tency tolerance and low latency. The first type is featured
by providing large-scale data collection. Typical scenarios are
smart grids, smart meters, Internet of Video Things, which
focus on transmitting data securely. The latency brought by
authentication and session key establishment can be toler-
ated. Differently, the core requirement of the second type is
efficiency. In applications relevant to transportation, devices
(drones or vehicles) need to keep real-time communications
with road side units or base stations. The latency should be
reduced as much as possible.

Then, we describe the challenges in deploying and op-
erating our scheme in real-world applications, and provide
corresponding recommendations and guidance.

(1) Deployment: We should pay more attention to the
registration and update of CRPs. We recommend two ways
of distributing CRPs. The first is recommended for initial
registration. The user can directly get access to IoT devices
and collect data using his own device. Then, the multi-factor
(password, biometrics, verification code) authentication could
be achieved between the user device and trusted authority
to support securely uploading CRPs. The second way does
not require human-machine interaction and is particularly
suggested for system maintenance. In this method, the device
uses its PUF circuit to authenticate with the trusted authority
periodically and update CRPs automatically.

(2) Operation: We should seriously consider how to properly
run the blockchain to adaptively achieve scalability and effi-
ciency. In general, consortium blockchain networks, such as
Hyperledger Fabric, FISCO, and Ethereum, could be chosen to
implement our scheme. In real-time communication applica-
tions, consensus algorithms that reduce the latency should be
selected to keep efficiency. The applications featured by large-
scale data collection should use consensus algorithms with
high throughput. If efficiency and scalability are all urgently
required, it is recommended to deploy a new blockchain
network in parallel when necessary.

IX. CONCLUSION

In this paper, we propose PUFs-based distributed authen-
tication and recoverable data sharing with multidimensional
CRPs security protection. We proved the security of our
authentication and data sharing. The experimental evaluation
shows that it only costs 974.45 ms, 1283.79 ms, 794.80
ms on average to complete UA, MA, and PKS in different
settings. Moreover, the brought computation, communication,
and storage overheads are comparatively satisfactory. When
deployed within high-performance blockchain networks, our
PaaS framework could efficiently process concurrent trans-
actions in approximately 0.01∼0.15 s. We also perform dis-
cussions from aspects of complexity and usability, scalability
analysis and future directions, adaptability and future-proofing,
real-world applicability, to show the promising prospect of our
scheme. In conclusion, our work is efficient, practical, and
suitable for IoT deployments.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER XXXX 15

REFERENCES

[1] Y. S. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable func-
tions,” Nature Electronics, vol. 3, no. 2, pp. 81–91, 2020.

[2] Y. Zheng, W. Liu, C. Gu, and C. H. Chang, “Puf-based mutual authenti-
cation and key exchange protocol for peer-to-peer iot applications,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–18, 2022.

[3] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-card
security under the threat of power analysis attacks,” IEEE Transactions
on Computers, vol. 51, no. 5, pp. 541–552, 2002.

[4] M. N. Aman, U. Javaid, and B. Sikdar, “A privacy-preserving and scalable
authentication protocol for the internet of vehicles,” IEEE Internet of
Things Journal, vol. 8, no. 2, pp. 1123–1139, 2021.

[5] P. Gope and B. Sikdar, “An efficient privacy-preserving authenticated key
agreement scheme for edge-assisted internet of drones,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 11, pp. 13 621–13 630, 2020.

[6] P. Gope and B. Sikdar, “Privacy-aware authenticated key agreement
scheme for secure smart grid communication,” IEEE Transactions on
Smart Grid, vol. 10, no. 4, pp. 3953–3962, 2019.

[7] M. Barbareschi, V. Casola, A. D. Benedictis, E. L. Montagna, and
N. Mazzocca, “On the adoption of physically unclonable functions to
secure iiot devices,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 11, pp. 7781–7790, 2021.

[8] S. Dai, H. Li, and F. Zhang, “Memory leakage-resilient searchable
symmetric encryption,” Future Generation Computer Systems, vol. 62,
pp. 76–84, 2016.

[9] Y. Liu, B. Li, Y. Zhang, and X. Zhao, “A huffman-based joint compression
and encryption scheme for secure data storage using physical unclonable
functions,” Electronics, vol. 10, no. 11, 2021.

[10] U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay, R. S.
Chakraborty, D. Mahata, and M. M. Prabhu, “Building puf based authen-
tication and key exchange protocol for iot without explicit crps in verifier
database,” IEEE Transactions on Dependable and Secure Computing,
vol. 16, no. 3, pp. 424–437, 2019.

[11] Y. Zhang, B. Li, B. Liu, Y. Hu, and H. Zheng, “A privacy-aware pufs-
based multiserver authentication protocol in cloud-edge iot systems using
blockchain,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 13 958–
13 974, 2021.

[12] M. A. Qureshi and A. Munir, “Puf-rake: A puf-based robust and
lightweight authentication and key establishment protocol,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 19, no. 4, pp. 2457–
2475, 2022.

[13] G. Bansal, N. Naren, V. Chamola, B. Sikdar, N. Kumar, and M. Guizani,
“Lightweight mutual authentication protocol for v2g using physical un-
clonable function,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 7, pp. 7234–7246, 2020.

[14] B. Harishma, P. Mathew, S. Patranabis, U. Chatterjee, U. Agarwal,
M. Maheshwari, S. Dey, and D. Mukhopadhyay, “Safe is the new smart:
Puf-based authentication for load modification-resistant smart meters,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 1,
pp. 663–680, 2022.

[15] U. Chaterjee, D. Mukhopadhyay, and R. S. Chakraborty, “3PPA: A
private puf protocol for anonymous authentication,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp. 756–769, 2021.

[16] S. Chen, B. Li, Z. Chen, Y. Zhang, C. Wang, and C. Tao, “Novel strong-
puf-based authentication protocols leveraging shamir’s secret sharing,”
IEEE Internet of Things Journal, pp. 1–1, 2021.

[17] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, p.
612–613, 1979.

[18] Y. Wang, Z. Su, J. Ni, N. Zhang, and X. Shen, “Blockchain-empowered
space-air-ground integrated networks: Opportunities, challenges, and so-
lutions,” IEEE Communications Surveys and Tutorials, vol. 24, no. 1,
pp. 160–209, 2022.

[19] H. Y. Kim, L. Xu, W. Shi, and T. Suh, “A secure and flexible fpga-based
blockchain system for the iiot,” Computer, vol. 54, no. 2, pp. 50–59, 2021.

[20] S. Goldwasser and S. Micali, “The knowledge complexity of interactive
proof systems,” SIAM Journal on Computing, vol. 18, no. 1, p. 186–208,
1989.

[21] Y. Yu, Y. Zhao, Y. Li, X. Du, L. Wang, and M. Guizani, “Blockchain-
based anonymous authentication with selective revocation for smart
industrial applications,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 5, pp. 3290–3300, 2020.

[22] L. Wu, J. Wang, K.-K. R. Choo, and D. He, “Secure key agreement and
key protection for mobile device user authentication,” IEEE Transactions
on Information Forensics and Security, vol. 14, no. 2, pp. 319–330, 2019.

[23] X. Li, D. He, Y. Gao, X. Liu, S. Chan, M. Pan, and K.-K. R.
Choo, “Light: Lightweight authentication for intra embedded integrated
electronic systems,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 20, no. 2, pp. 1088–1103, 2023.

[24] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A puf-based
secure communication protocol for iot,” ACM Trans. Embed. Comput.
Syst., vol. 16, apr 2017.

[25] J. Wang, L. Wu, K. Choo, and D. He, “Blockchain-based anonymous
authentication with key management for smart grid edge computing
infrastructure,” IEEE Transactions on Industrial Informatics, vol. PP,
no. 99, pp. 1–1, 2019.

[26] H. Guo, Z. Zhang, J. Xu, N. An, and X. Lan, “Accountable proxy re-
encryption for secure data sharing,” IEEE Transactions on Dependable
and Secure Computing, vol. 18, no. 1, pp. 145–159, 2021.

[27] T. Wang, H. Ma, Y. Zhou, R. Zhang, and Z. Song, “Fully accountable
data sharing for pay-as-you-go cloud scenes,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 4, pp. 2005–2016, 2021.

[28] C. L. F. Corniaux and H. Ghodosi, “An entropy-based demonstration
of the security of shamir’s secret sharing scheme,” in 2014 International
Conference on Information Science, Electronics and Electrical Engineer-
ing, vol. 1, pp. 46–48, 2014.

[29] J. Zhao, W. Bian, D. Xu, B. Jie, and H. Zhang, “A secure biometrics
and pufs-based authentication scheme with key agreement for multi-server
environments,” IEEE Access, vol. PP, no. 99, pp. 1–1, 2020.

[30] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling
hyperledger fabric to 20,000 transactions per second,” in 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
Conference Proceedings, pp. 455–463.

[31] Z. Yang, R. Yang, F. R. Yu, M. Li, Y. Zhang, and Y. Teng, “Sharded
blockchain for collaborative computing in the internet of things: Com-
bined of dynamic clustering and deep reinforcement learning approach,”
IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16494–16509, 2022.

[32] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, (New York, NY, USA), p. 212–219,
Association for Computing Machinery, 1996.

[33] W. Chao, C. Lin, J. Hui-Hui, and H. U. Feng, “Ecc fault attack algorithm
based on grover’s quantum search algorithm with 0.1π phase rotation,”
Journal on Communications, 2017.

[34] T. Liu, J. Xia, Z. Ling, X. Fu, S. Yu, and M. Chen, “Efficient federated
learning for aiot applications using knowledge distillation,” IEEE Internet
of Things Journal, vol. 10, no. 8, pp. 7229–7243, 2023.

[35] Y. Liu, X. Xing, H. Cheng, D. Li, Z. Guan, J. Liu, and Q. Wu, “A
flexible sharding blockchain protocol based on cross-shard byzantine fault
tolerance,” IEEE Transactions on Information Forensics and Security,
vol. 18, pp. 2276–2291, 2023.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358011

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 16,2024 at 10:28:51 UTC from IEEE Xplore. Restrictions apply.

