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ABSTRACT

| To obtain an accurate cosmological inference from upcoming weak lensing surveys such as the one conducted by Euclid, the shear measurement
=> requires calibration using galaxy image simulations. As it typically requires millions of simulated galaxy images and consequently a substantial
() computational effort, seeking methods to speed the calibration up is valuable. We study the efficiency of different noise cancellation methods that
(Y) aim at reducing the simulation volume required to reach a given precision in the shear measurement. The more efficient a method is, the faster
we can estimate the relevant biases up to a required precision level. Explicitly, we compared fit methods with different noise cancellations and a
00 method based on responses. We used GalSim to simulate galaxies both on a grid and at random positions in larger scenes. Placing the galaxies at
() random positions requires their detection, which we performed with SExtractor. On the grid, we neglected the detection step and, therefore, the
T potential detection bias arising from it. The shear of the simulated images was measured with the fast moment-based method KSB, for which we
-, note deviations from purely linear shear measurement biases. For the estimation of uncertainties, we used bootstrapping as an empirical method.
Q We extended the response-based approach to work on a wider range of shears and provide accurate estimates of selection biases. We find that each
< method we studied on top of shape noise cancellation can further increase the efficiency of calibration simulations. The improvement depends on
(_\! the considered shear amplitude range and the type of simulations (grid-based or random positions). The response method on a grid for small shears
provides the biggest improvement. Here the runtime for the estimation of multiplicative biases can be lowered by a factor of 145 compared to the
« == benchmark simulations without any cancellation. In the more realistic case of randomly positioned galaxies, we still find an improvement factor
of 70 for small shears using the response method. Alternatively, the runtime can be lowered by a factor of 7 already using pixel noise cancellation
on top of shape noise cancellation. Furthermore, we demonstrate that the efficiency of shape noise cancellation can be enhanced in the presence of
blending if entire scenes are rotated instead of individual galaxies.

Key words. Gravitational lensing: weak — Methods: data analysis

1. Introduction weak lensing has the potential to be the most powerful method

. . alongside these four suggested methods if systematic biases can
According fo the dark'e'nergy task force, Weak. lensing is ON€ " pe controlled with sufficient accuracy. For Euclid (Laureijs et al.
of the four most promising methods to constrain the equation 2011), the Nancy Grace Roman Space Telescope (Spergel et al.
of state of dark energy (see Albrecht et al. 2006). In particular, 201 5): and other weak lensing surveys like the Kilo-Degree

* This paper is published on behalf of the Euclid Consortium Survey (KiDS) (de Jong et al. 2013), the Dark Energy Survey
** e-mail: Henning. Jansen@uibk.ac.at (Dark Energy Survey Collaboration et al. 2016), and the Hyper
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Suprime-cam (HSC) survey (Aihara et al. 2018), it is therefore
inevitable that calibration or validation of weak lensing shear
measurement algorithms is required. For this calibration, galaxy
image simulations are used, that are as close as possible to the
real images produced by those instruments (see Hoekstra et al.
2015, 2017). Recent image simulations for the aforementioned
surveys (see Li et al. 2023; MacCrann et al. 2022; Kannawadi
et al. 2019; Mandelbaum et al. 2018) therefore carefully adjust
their input parameters such that they match actual observations.
These image simulations require 10’—10'° simulated galaxy im-
ages to achieve the desired uncertainty levels on the biases (see
Euclid Collaboration: Martinet et al. 2019). Since that is com-
putationally expensive, efforts are put into reducing the required
simulated galaxies. The main approach used in several studies
(see Massey et al. 2007; Mandelbaum et al. 2014; Pujol et al.
2019) is shape noise cancellation. This cancellation aims to re-
move the noise introduced by the intrinsic shape distribution of
the input galaxy catalog. In most cases, this is done by consider-
ing an additional image with the same galaxy rotated by 90 de-
grees, but it is also possible to perform this cancellation in a full
ring (see Nakajima & Bernstein 2007). This kind of cancellation
does not work perfectly due to additional pixel shot noise on the
image and the pixelation itself. In particular, when the galaxies
are not isolated, blending also degrades the efficiency of this can-
cellation, as shown in Hoekstra et al. (2021). Still it has proven to
be useful in the simulations. In addition the pixel noise realisa-
tion on an image might make the galaxy look slightly rounder or
more elliptical for the considered shape measurement method.
Melchior & Viola (2012) show that pixel noise gives rise to
biases for the shear measurement. This is why already Euclid
Collaboration: Martinet et al. (2019) used another cancellation,
which utilised an inverted pixel noise realisation. Having two
images, where one has an inverted noise realisation, can poten-
tially help to cancel the previously discussed effect. The authors
referred to this cancellation as background noise cancellation,
while we use the name pixel noise cancellation in this paper. We
studied this method in more detail and worked out the benefits
of this method in different scenarios. In particular, we studied
the effects of cancelling also the shot noise from the galaxy it-
self and not just a white Gaussian noise field. These mentioned
cancellations are all applicable when determining shear bias pa-
rameters from the commonly used regression of measured shear
as a function of true input shear.

Another approach is suggested by Pujol et al. (2019, here-
after P18) requiring a different setup of the simulations, but po-
tentially for a large reward in terms of runtime improvement.
In this method, the biases were determined from the individ-
ual shear responses of galaxies. To obtain these responses, we
simulated each galaxy with two slightly differing shears. The in-
dividual responses are very noisy, but averaging over many of
those can yield reliable estimates of the systematic biases. As
this method, by definition, uses individual galaxies, it also makes
it very easy to study the effects of specific galaxy properties like
the Sérsic index or half-light radius on the biases. The authors’
original approach does not account for selection effects, so we
expanded their formalism based on ideas suggested in their pa-
per to also account for selection effects and larger shear intervals.
Also here we accounted for the complete pixel noise including
shot noise, while P18 only used a white Gaussian noise field.

This paper scrutinises all these methods in two fundamen-
tally different scenarios, with simulations roughly mimicking
Euclid observing conditions. As a first step, we simulated iso-
lated galaxies down to 24.5 mag on a grid. Most of the galaxies
in the input catalog are also in the output catalog as no detection
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step was needed and most of the galaxies have a signal-to-noise
ratio of more than 10, which was chosen as a selection criterion.
As a second step, we placed galaxies at random positions embed-
ded in a larger scene. We included galaxies down to 26.5 mag
in these scenes such that there is also blending by undetected
sources.

We summarise basic weak lensing formalism in Sect. 2. In
Sect. 3 we describe the methods studied in this paper to reduce
noise and speed up the simulations. Section 4 presents the setup
of the simulations in more detail. Section 5 describes the un-
certainty on the bias parameters, which is crucial for the subse-
quent efficiency comparison. In Sect. 6 we present our results
comparing the uncertainties of the different methods with their
respective runtimes. Finally in Sect. 7 we summarise our results
and briefly discuss the implications for future calibration simu-
lations.

2. Weak lensing formalism
2.1. Definition and measurement of shear

In weak lensing, we can linearise the lens mapping if the angular
scale of the lensed image is smaller than the scale on which the
tidal field varies (see Schneider 2006). This lens mapping is then
given by the Jacobian A defined as

—&2
1+ g1 :
Here « is the convergence describing the change of the apparent
size and g; denotes the component i of the reduced shear g, which
is defined as
8= ?

1-«’

A=(1—K)(1_g1 (1

—82

(@)

with the true shear y. In Eq. (2) the standard notation as a com-
plex number g = g; + igy is used. We can only measure the
reduced shear directly. Still in the case of weak lensing the con-
vergence is typically small such that the reduced shear is about
the size of the true shear. Therefore we refer to the reduced shear
as just the shear for the rest of the paper. The shear and ellipticity
in general are invariant under rotations of & radians. Therefore
we can characterise these quantities as spin-2 (see Castro et al.
2005). Assuming that the intrinsic ellipticities have no prefer-
ential alignment, the observed ellipticities €, give an unbiased
estimate of the shear:

3)

This equation only holds for specific definitions of ellipticity. For
a light distribution with elliptical isophotes, such an ellipticity
definition is

1-r
1+r°
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where r denotes the axis ratio b/a of the ellipse with b be-
ing the semi-minor axis and a being the semi-major axis (see
Schneider 2006). Still an ellipticity definition, for which Eq. (3)
holds, can also be found for non-elliptical galaxies. We per-
formed the ellipticity measurement with the HSM module from
the GalSim library (see Rowe et al. 2015). The HSM module
uses algorithms from Hirata & Seljak (2003) probed on real data
from Mandelbaum et al. (2005). It also has a specific version
of the KSB (Kaiser et al. 1995; Luppino & Kaiser 1997; Hoek-
stra et al. 1998) shape measurement method implemented, which
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uses weighted brightness moments to estimate the ellipticity and
correct for the PSF.

For simplicity we only studied the behaviour for the first
shear component g; and set g = 0. We find no significant corre-
lation between biases for the two shear components in our anal-
ysis such that an individual study of each component is valid.

2.2. Determination of shear bias

The biases of such a shear estimator can then be studied with
different methods. To first order a linear bias model as described
in Heymans et al. (2006) is used in this analysis. Such a linear
bias model has been used for the majority of weak lensing stud-
ies to date starting from Guzik & Bernstein (2005) and Huterer
et al. (2006). The difference between a shear estimator g and the
respective true shear g™ following this model is given by

gi— g;r”e =y g;r”e + ¢; + noise, ®))
where i = {1, 2}. The multiplicative part u is referred to in the fol-
lowing as the multiplicative bias parameter and the additive part
c as the additive bias parameter. In general if the biases for both
shear components are independent, Eq. (5) does not conserve
spin (see Kitching & Deshpande 2022). These parameters can
be determined by simulating galaxies with different but known
true shears and then fitting a straight line to the shear estimation
residuals against the true shear. In order for this bias estimate to
be precise, we need to simulate a large sample of galaxies per
constant input shear to average out the intrinsic ellipticities.

Sheldon & Huff (2017) suggest a new formalism for the
shear bias determination based on shear responses. Assuming we
have an estimate e; for component i of the complex ellipticity e,
this estimate can be expanded in a Taylor series as

2
I n 6ei
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=

The authors define the shear response as

Yit.... (6)
y=0

dei

R," =
T oy

@)

=0

In a large enough sample, the average of the intrinsic ellipticities
given by the first term in the Taylor expansion vanishes such that

2
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The shear response matrix R is used by P18 to estimate the u
and c biases. In the following, we refer to the response method
as RM. We sometimes append a number to this abbreviation,
which stands for the maximum amplitude of the shear used in
that specific case. The response can be measured for individual
galaxies and is a 2 X 2 matrix

Rii R
R = , 9
(R21 Rzz) ©)
where the diagonal terms directly translate to the multiplicative
bias via

1 +u; =Ry, (10)

while the cross-terms express the correlation between the two el-
lipticity components. Following Kitching et al. (2023) these off-
diagonal terms represent a mixture of spin-O and spin-4 terms.
As we focus on g in this paper, only R;; is relevant for us and
the indices are dismissed in the following. The determination of
this response requires simulated images of the same galaxy with
a finite shear difference, as described later in Sect. 3.2.

While the additive bias c is just another fit parameter for the
linear regression technique, it is not as easy to determine from
the response method. Following Pujol et al. (2019, eq. 3) we can
determine individual additive biases via

obs
i

—Rigi—el, (1D
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where e% denotes the intrinsic ellipticity. The c-bias can then be
determined as the average of the @; for many simulated galaxy
images. This approach is biased since the response R; needs to
be calculable. Thus, we do not want to use this approach in our
study. Still, we can estimate the ¢ bias from ¢; = (e?bs) if the
input ellipticity vanishes on average. In Sect. 4.1, we describe
how this is ensured in more detail.

3. Methods to reduce the impact of noise

The measurement of shear is dominated by noise. The central
part of this noise is the shape noise due to the unknown intrin-
sic ellipticity of each galaxy. Furthermore an image taken by
a CCD camera contains pixel noise with at least three contri-
butions: read-out noise (here assumed to be Gaussian), Poisson
shot noise from the sky background, and Poisson noise coming
from the galaxies’ flux. In the case of Euclid, the dominant part
of the pixel noise is the contribution from the sky background,
which is why past simulations have often only considered this
stationary part. In this paper, however, we systematically include
all the noise sources mentioned above in our model as they affect
the shear bias estimation.

Due to its dominant role, it makes sense to think of methods
to mitigate noise and increase the efficiency of simulations. In
the following, we list possible methods studied in this paper.

3.1. Fit method

The fit method determines shear biases by fitting a model to the
estimated shears as discussed in Sect. 2.2. Here the idea is to
reduce the uncertainty on the estimated shears directly by can-
celling the most important noise components within groups of
simulated images. One is the shape noise induced by the intrin-
sic distribution of ellipticities. Typically the intrinsic ellipticity
is an order of magnitude larger than the shear signal. Thus in-
dividual shear estimates are dominated by this intrinsic shape.
The second essential component is pixel noise. One realisation
of this noise might make the galaxy look a bit rounder (or more
elliptical) than it actually is. In Fig. 1, the effect of pixel noise
is shown for one galaxy. The cancellation of these noise compo-
nents is discussed in the following.

3.1.1. Shape noise cancellation

One popular method to reduce the impact of intrinsic shapes is
shape noise cancellation (see Massey et al. 2007; Mandelbaum
et al. 2014; Pujol et al. 2019). This method uses a second im-
age of the same galaxy, which is rotated by 90 degrees with re-
spect to the original image. Without any noise and selection ef-
fects, this would cancel out the intrinsic shapes and the average
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Fig. 1. Effect of pixel noise on three simulated faint galaxies. While
the pixel noise realisation is added in the left panel, it is inverted in the
right panel. The pixel noise realisation clearly affects the apparent shape
(especially the shape of the faint galaxy on the top right).

measured ellipticity would be the shear. In reality this rotation
does not cancel out shape noise perfectly, but it still improves
the performance significantly. In a related effort, one can also
use more than two galaxies for the rotation. This method was
suggested by Nakajima & Bernstein (2007) as the ‘ring test’.
Our study focuses on the simplest case with just one 90 degree
rotated pair. Fenech Conti et al. (2017) find that for KiDS us-
ing four rotated versions improves the cancellation, but Euclid
Collaboration: Martinet et al. (2019) show that using more than
two versions does not yield further improvements under Euclid
conditions, which we adapted in this work.

3.1.2. Pixel noise cancellation

On top of shape noise cancellation, we want to evaluate what we
refer to as pixel noise cancellation. The idea is to build a second
version of each simulated image using an inverted noise field.
Using this cancellation, a noise field, which makes the galaxy
look rounder in one version, possibly has the opposite effect in
the second version. That way the impact of pixel noise on the
shear measurement might be reduced and the efficiency might be
increased. With the requirements of previous surveys, it would
have been sufficient just to subtract the exact same noise, which
was added before'. This procedure inherently assumes that the
noise is exactly symmetric. Usually this can be assumed since
the Poisson distribution approaches a Gaussian distribution for
high counts. To make sure that we do not introduce any addi-
tional bias at the level of the very tight requirements for Eu-
clid, we did not just subtract the noise realisation but inverted the
noise properly. For the Gaussian read-out noise, this can indeed
be done by just extracting the noise realisation and subtracting
it instead of adding it. For the Poisson noise, we wanted the in-
verted realisation to follow the same Poisson distribution. Since
the GalSim implementation of Poisson noise shows a chaotic be-
haviour when using the same seed with slightly different means,
we implemented the Poisson noise ourselves using the inverse
transform method. For the noise in one pixel, we generated a ran-
dom number U between zero and one and then summed up the
cumulative distribution function until it exceeded the drawn ran-
dom number. The inverse noise realisation can then be found by
doing the same for 1 — U. Thus, a positive noise realisation in the
90-th percentile of the Poisson distribution has a negative coun-
terpart in the 10-th percentile of the same distribution. Given
that the Poisson distribution is not exactly symmetric, these two

! Extracting the noise can be done by subtracting the image with noise
from the image without noise using GalSim (see Rowe et al. 2015).
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drawn realisations are not symmetric around the mean. There-
fore our implementation does in fact not exactly ‘invert’ the sign
of the noise.

This method requires that the galaxy is at exactly the same
position in the image. For shape noise cancellation, we are free to
change for example sub-pixel shifts between the pairs. However
it made the cancellation less effective, as we drew new noise
realisations anyway for the rotated stamp. But for pixel noise
cancellation, the counts in a pixel, which generated the noise
realisation in the first place, need to be still associated with their
noise realisation in the second version. Pixel noise cancellation is
relatively cheap, as no additional convolution is needed to build
a different version of the galaxy.

3.2. Response method

The shear response is determined by the difference of the ob-
served ellipticities for the same galaxy divided by the finite shear
difference between them. Thus this response can be estimated by
choosing a small interval around zero [-Ag, Ag] and simulating
one image for each margin of the interval. That way two images
are built and the response can be estimated as
R~ e;bs ~ Cobs
20g

where eqps denotes the measured ellipticity from KSB (see P18,
eq. 4). The + or — in superscript indicates that the shear has been
increased or decreased respectively. Averaging all individual re-
sponses can then give an estimate for the multiplicative bias, but
this would not include the selection bias, as a detection or se-
lection yields incomplete pairs for which the response can not
be computed. To include the selection bias, P18 suggest building
the response as

(12)

~ <e;)*—bs> B <e(:bs>

(R) Ty

(13)
The (eqps) enclose all measurements even if their respective part-
ner was not measured. This estimate inherently accounts for the
unavoidable selection bias and needs to be considered for the
comparison with other methods.

In their original paper, P18 used the same Gaussian noise
realisation for both images, which is crucial to stabilising the
method. Indeed we find that drawing an independent realisation
of the CCD noise for each image destabilises the method so that
it is not usable anymore. To keep the noise as similar as possible
within a pair, we used the same seed for the noise generation of
the images belonging to each other. Since the same seed with
slightly different means does not produce the same noise pattern
using the GalSim Poisson noise generator, we again used the
inverse transform method as described in Sect. 3.1.2 to generate
the noise. The mean of the distribution might then change due to
the different shear, which makes some pixel gain flux and others
lose flux. However, the noise realisation is still generated from
the same percentile of the Poisson distribution since the seed
fixes the random number used to generate the realisation.

As discussed later in this paper, the size of the used interval
starts to play a role for larger shears of several percent. Thus the
original response method with a Ag = 0.02 can not be used when
comparing to fit methods in an interval [-0.1, 0.1], as the recov-
ered biases would differ significantly. We therefore extended the
method using 11 differently sheared images evenly spaced be-
tween —0.1 and 0.1. In this way, we can estimate ten responses
covering the same interval as the other methods while keeping
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the Ag between two images small enough. A Ag which is too
large distorts the results as the selection effects are more impor-
tant for larger shear differences. P18 state the upper limit for Ag
in their analysis to be 0.05.

4. Simulated data

In this paper, we study the behaviour of different shear esti-
mation methods in two scenarios. We began with the easiest
case with galaxies on a grid without any blends. In the sec-
ond scenario, we then placed galaxies at random positions on
4000 x 4000 pixel large scenes. Thus we could also study how
blending affects the different methods. This treatment without
a grid also includes the usage of SExtractor in the detection
step as introduced by Bertin & Arnouts (1996). The highly sim-
plified simulations described in the following are solely used for
this study and should not be seen as representative of the images
expected from the Euclid VIS instrument.

4.1. Setup of the simulations

We constructed the simulations in this paper with GalSim, which
was first introduced in Rowe et al. (2015). In order to parallelise
the code, we used the Python library Ray, which was first intro-
duced by Moritz et al. (2017). The galaxies were drawn from the
GENMS catalog (Rix et al. 2004). This survey was conducted using
the Hubble Space Telescope (HST). We used a comparable se-
lection® as Tewes et al. (2019) and refer the reader to their paper
for the details. Using their selection criteria, we ended up with
9026 galaxies for the grid-based simulations with the faintest
galaxies having 24.5 mag and 36438 galaxies for the large-scene
simulations with magnitudes as faint as 26.5 mag. Only the mag-
nitude, the Sérsic index, and the half-light radius were taken
from the GEMS catalog. The absolute values of the intrinsic ellip-
ticities were drawn from a truncated Rayleigh distribution with
o = 0.25, where the ellipticity definition |e| = (1 — r)/(1 + 1)
was used. We truncated the distribution at |e| = 0.7 to avoid con-
volution problems with highly elliptical galaxies. Additionally
an orientation angle was drawn from a uniform distribution. In
this way, we avoided any correlation between the half-light ra-
dius and ellipticity used as input to our simulations. The galaxies
were drawn as single Sérsic profiles and made elliptical using
the area-preserving shearing of GalSim. We note that if accu-
rate absolute biases shall be determined, it is important to un-
derstand how galaxy properties and correlations from the source
survey (such as GEMS) translate into the simulations (see Kan-
nawadi et al. 2019; Li et al. 2023). We stress again that our
simulations described above are only created for the purpose of
comparing runtime improvements of different noise cancellation
approaches.

The PSF for the simulations was kept constant and mod-
elled to be Euclid-like. Adapting to the VIS bandpass from
550 to 900 nm (see Cropper et al. 2016), we generated several
monochromatic PSFs within this bandpass using the GalSim op-
tical PSF function. We then stacked those monochromatic PSFs
to obtain a single PSF, which is representative of the VIS band-
pass. This stack was built from a weighted sum of the individual
PSFs, where the weights were computed from a modelled Vega
spectrum taken from Kurucz (2011). The telescope properties re-
quired for the optical PSF function were taken from Tewes et al.

2 The single further restriction in this work is the lower limit on half-
light radius. We required the half-light radius to be at least one Euclid
pixel large, which corresponds to a little more than three GEMS pixels.

Fig. 2. Simulated PSF shown with a logarithmic grayscale. In the left
panel, the PSF is drawn on the native 01 scale of Euclid on a 32 x 32
pixel grid. In the right panel, the PSF is first convolved with a 0”1 filter
function and then drawn on a finer 160 X 160 pixel grid with a pixel
scale of 0702 as used for the measurements with a subsampling factor
of five.

(2019). In Fig. 2 the combined PSF can be seen on both the na-
tive pixel grid of Euclid and also on the finer grid used for sub-
sampled galaxy images. We systematically simulated the galaxy
images using the VIS native pixel scale. However to improve the
reliability of the GalSim KSB implementation on undersampled
galaxies, we then subsampled all images with a factor five by
subdividing each native pixel into 5 X 5 subpixels before apply-
ing KSB. Hereby the flux of one pixel is distributed evenly among
5 X 5 new pixels and therefore the total number of image pixels
is increased by a factor of 25.°

For the determination of the additive bias ¢, we needed to
make sure that the input ellipticities vanish on average. We intro-
duced a shape noise cancellation in the input catalog to ensure
that this holds. Since we drew an ellipticity and an orientation
angle, we could introduce this by drawing a galaxy with angle o
and the same galaxy with the same ellipticity but angle o + /2
once more. We did this for the response method on a grid and
also on random positions. In the case of random positions, we
used the same galaxies turned by 90 degrees on new random po-
sitions in consecutive images. That way the shape is not only
cancelled in the whole population of galaxies but also for each
galaxy of the input catalog itself. Following this setup, we are
able to estimate the additive bias without impacting the estimate
of the multiplicative bias.

4.1.1. Grid-based simulations

In the grid-based simulations, we built stamps of 64 x 64 pixels
in size with isolated galaxies. Apart from a randomly distributed
sub-pixel shift, these galaxies are centred within the stamp. No
detection step is needed for the grid-based simulations. How-
ever for more realism we applied a selection based on a mea-
sured signal-to-noise ratio larger than ten using the definition
from Tewes et al. (2019). We subsampled each stamp by a fac-
tor of five and then ran KSB via the GalSim shear estimate func-
tion directly on the subsampled stamp. Stamps for which the KSB
measurement fails were not considered for later analysis. We do
not require completeness for the cancellations. If not all versions
belonging to a cancellation could be measured, we still kept the
ones that were measured successfully. Otherwise the selection
bias would be artificially suppressed by the cancellations.

3 This manipulation of the pixel data is commonly used for KSB (see
e.g. Erben et al. 2001; Heymans et al. 2006; Hernandez-Martin et al.
2020) and can also be applied to real data.
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Fig. 3. Examples for the grid-based simulations, where both cancella-
tions are used. For better identification of individual pixels, galaxies
are drawn on 32 x 32 pixel stamps here. In the horizontal direction
shape noise cancellation is applied by rotating the galaxy by 90 de-
grees. Vertically pixel noise cancellation is implemented. As discussed
in Sect. 3.1.2, this only approximately corresponds to switching the sign
of the noise. The left panel shows a bright and extended galaxy for a bet-
ter visual impression, while the right panel shows a more typical galaxy
in the GEMS catalog.

Fit method Depending on the cancellation method used, each
galaxy has a certain number of stamps. For our shape noise can-
cellation, we made use of two stamps and for each stamp with
added noise there was one with noise inverted. That way we
ended up with four stamps per galaxy if both cancellations were
applied. Two practical examples can be seen in Fig. 3. Typically
galaxies are small as in the right panel. In the left panel, the
shape noise cancellation is easier to identify. Such panels con-
sisting of several stamps were then built for 20 different shears
evenly spaced from —0.1 to 0.1 and for each shear a different
galaxy sample was used.

Response method For the response method, one panel consists
of the same galaxy sheared n times. The original method uses
n = 2, but we extended this to n = 11 if the larger shear interval
was needed. Also a random sub-pixel shift was applied to the
galaxies, but this sub-pixel shift is the same in one specific panel.
In Fig. 4 an example for the n = 11 case can be seen. The original
method corresponds to only the |g| = 0.02 stamps, where the
shear difference is barely notable by eye.

4.1.2. Galaxies at random positions

The second experiment consisted of 4000 x 4000 pixel-wide
scenes containing galaxies from the GEMS catalog with m < 26.5,
where m denotes the magnitude in the F606W filter of the HST.
This magnitude cut was chosen such that the GEMS catalog is still
complete. As shown in Hoekstra et al. (2017) and more recently
in Euclid Collaboration: Martinet et al. (2019), one has to in-
clude galaxies as faint as magnitude 29 to obtain accurate bias
estimates because the estimate is affected by undetected blends.
Since we are mainly interested in uncertainties of biases rather
than their absolute value, we did not include the faintest galaxies
to save computing time.

As a first step, we added Poisson noise from the sky back-
ground and read-out noise to the empty image. Then galaxies
with a constant shear were drawn again on 64 X 64 pixel-wide
stamps and only Poisson noise due to their own flux was added.
These stamps were then added at random positions in the large
scene. As a result, some regions might contain many blends,
while others are less dense. If one stamp reaches above the mar-
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gins of the large image, only the overlap is added. One exam-
ple of a cut-out from one of the scenes generated in this way
is shown in Fig. 5. We generated several new realisations of
the random positions for each constant input shear. Hence for
our final simulation run described in Table 4, we used 2800
(= 140 x 20) different random position realisations for the fit
method. Statistical fluctuations of the amount of blending due
to the specific realisation of the random positions are therefore
suppressed. The mean density is chosen as 30 galaxies/arcmin®
brighter than magnitude 24.5 to match the expectations of Eu-
clid.

Once generated these scenes were analysed with
SExtractor to generate detection catalogs. We used the
default settings of SExtractor (Version 2.25.0)*. The positions
detected in this manner were then used to extract 64 X 64 pixel
large stamps. The extracted stamp’s size was chosen so that it
is large enough to cover the large galaxies and small enough to
minimise the impact of blending. Also this stamp size makes
comparing the results to the grid-based results easier. From this
point on, the procedure is the same as for the grid-based simula-
tions including selecting S/N ten and above. The detection steps
and the blends might of course change the biases. Using this
configuration of SExtractor and the extraction flags one and
two, which indicate an impact by neighbouring objects, we find
a blending fraction of 2.5% for the complete sample of galaxies.
Here we defined the blending fraction as the ratio of detected
objects, which had either one or both of the extraction flags
raised, to the total number of detected objects. Liu et al. (2023)
find the blending fraction to be about 10% for galaxies brighter
than 26 mag in the Euclid VIS band. Using their alternative
definition of blending defined as an overlap of two or more
Kron-ellipses, we find a blending fraction of 8.1% in our random
position simulations. Just as the authors we used apertures with
a size of 2.5 times the Kron-radius, which captures about 90%
of the light from the galaxy with a slight dependence on the
Sérsic index. As these two definitions of blending fractions can
be easily impacted by the SExtractor configuration and the
simulation details, we validate our blending fractions against
an alternative set of simulations that includes clustering, as
described in Sect. 6.5.

Fit method We generated up to four versions of the same large
scene to use the different cancellation methods. We generated a
second version of the scene with the same background noise for
shape noise cancellation. The cancellation can then be imple-
mented in different ways. One option is to keep the position of
the galaxy centres constant and rotate them by 90 degrees. In the
following, this is referred to as local shape noise cancellation.
Still rotating the galaxies on fixed positions changes the relative
blending. Therefore shape noise cancellation is likely to be less
efficient. Another option is to rotate the whole scene before ap-
plying shear. We refer to this as global shape noise cancellation
in the following. Thus the positions and the galaxies themselves
are rotated by 90 degrees. That way the relative blending stays
the same apart from the differences due to the shear. The blend-
ing level is given by the reference scene and is therefore compa-
rable between the two cancellation approaches. Still the benefit
of the global cancellation is that it preserves the relative align-
ment of the galaxies. Thus two blended galaxies in the reference
frame stay blended in the rotated version, while isolated galax-
ies stay isolated. The local cancellation creates new blends in the

4 Essential settings are: DETECT_MINAREA = 5, DETECT_THRESH =
1.5, DEBLEND_NTHRESH = 32, DEBLEND_MINCONT = 0.005
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Fig. 4. One panel for the response method expanded over the full shear range of the fit methods from —0.1 to 0.1. The legend above indicates the
applied shear g; for each stamp. The shear difference Ag is 0.02 from stamp to stamp. One can observe the virtually identical noise pattern in each
stamp, which only differs due to the Poisson noise of the galaxy itself as described in Sect. 3.2.
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Fig. 5. Cutout of 400 x 400 pixels from an exemplary larger scene.
All galaxies visible here do have the same constant shear applied.
The scene contains galaxies down to 26.5 mag and has a density of

30 galaxies (m < 24.5 mag)/arcmin® as expected for Euclid.

rotated version while de-blending others. As a result, the shape
noise cancellation is destroyed for more galaxies than it is the
case for the global cancellation. The change in blending fraction
compared to the reference scene is a noisy quantity for both types
of shape noise cancellation, because we draw a new pixel noise
realisation for the two versions of the scene. Since we use many
different realisations of random positions, the effect of slightly
varying blending fractions in the different versions of a scene is
negligible. A drawback of the global cancellation is that it suffers
from spatial variations of detector effects. Spatial variations of
the quantum efficiency, the PSF, and other effects, like bad pixels
would also have to be rotated. In particular a global cancellation
with variable shears in the field likely causes issues and requires
further exploration. We compare both of these approaches. An
example of the difference between the two options can be seen in
Fig. 6. To use both cancellations discussed in this paper, we gen-
erated one additional scene for each of the two scenes used for
shape noise cancellation. These two additional scenes carry the
same noise as their respective partner, except that it is inverted
instead of added. Thus, one run of the fit method with both can-
cellations consists of 20 (different shears) X 4 (scenes per shear)
4000 x 4000 pixel images. Our analysis, later on, is based on
several of such runs combined.

Response method For the response method, we need to gen-
erate two or eleven (depending on the shear interval of interest)
differently sheared versions of the same scene. These scenes are
identical in background noise and read-out noise and thus solely

differ in the Poisson noise of the galaxies’ light distribution. This
was again generated from the same seed utilising the inverse
transform sampling. One run here consists of a compilation of
almost the same scene but slightly different shear. This can also
be repeated several times for better statistics.

4.2. Definition of runtime

The comparison of different methods to estimate the shear biases
must be based on a definition of efficiency. A good proxy for effi-
ciency is the time needed by the simulations to end up at a certain
level of uncertainty. As the runtime of a simulation depends of
course on the exact implementation (e.g. parallelisation) and the
available number of CPU cores, a generic method to compare
runtimes is useful. For our setup, the largest contributions to the
overall runtime come from

— the drawing of each stamp (which includes the convolution
with the PSF);

— the KSB measurement;

— the noise generation (dominated by the inverse transform
sampling for Poisson noise);

— and the generation of a 4000 x 4000 pixel image from indi-
vidual stamps.

The latter is only relevant for the simulations with galaxies at
random positions. All the components were then timed many
times and the resulting average was used to define relative run-
times in units of one convolution. On a particular single-CPU
setup, we find that one convolution takes on average 0.14 s, one
measurement takes 0.017 s, one noise generation takes 0.013 s,
and building one large image takes 19.4 s. We normalised these
times to one convolution and approximated from the times given
above that noise generation and measurement of one stamp take
1/4 the time of a convolution and building a large image takes
140 times longer than a convolution. Expressing the latter as an
image assembly time per galaxy yields 3% of a convolution per
galaxy, which shows that this step is very efficient. With the rela-
tive runtimes it is possible to calculate theoretical runtimes only
depending on the number of convolutions, the number of KSB
measurements, and the number of 4000 x 4000 pixel images a
simulation run needs. In the following, all runtimes refer to this
definition of a theoretical runtime. We want to emphasise that
even this theoretical runtime only holds for our specific setup,
as for example the stamp size changes the time KSB takes com-
pared to a convolution. Still the potential efficiency improvement
for most of the methods is insensitive to the exact runtime differ-
ences between the main contributors listed above because most
of the methods require all of the steps from the convolution to the
ellipticity measurement. Adding shape noise cancellation for ex-
ample always takes twice as long as using no cancellation since
the same steps are also required for the rotated galaxy. Only the
improvement of pixel noise cancellation is sensitive to the run-
time difference between a convolution and the other contributors
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Fig. 6. Options for the shape noise cancellation on random positions. The left panel is shown for reference. The middle panel shows the shape
noise cancellation with constant positions but rotated galaxies. The right panel implements the cancellation by rotating the whole scene before
shearing by 90 degrees. The zoomed frames show the same pair of close-by galaxies in each version. The figure illustrates the benefit of the global
cancellation, which keeps the galaxies distinct, while the local cancellation creates a blend.

since this cancellation does not require an additional convolu-
tion. As long as the convolution with the PSF is the dominant
part of the runtime, pixel noise cancellation has this advantage
compared to the other methods.

5. Uncertainty estimates

To assess the efficiency of different methods later on, the uncer-
tainties on u and ¢ need to be defined. This definition can be-
come non-trivial depending on the method used and we discuss
our treatment in the following.

5.1. Grid-based simulations

The gridded setup makes it possible to identify a measurement
with an input galaxy unequivocally. This simple mapping be-
tween measurement and input galaxy has some advantages in
uncertainty determination.

5.1.1. Fit method

We determined uncertainties for each point of the fit method us-
ing the bootstrap method generating 1000 samples. The boot-
strap was done over the galaxy population and not over the in-
dividual measurements to account for the purposely introduced
correlation due to the cancellation. Afterwards y and its respec-
tive 1 o uncertainty were determined using an implementation of
the Levenberg—Marquardt algorithm (Marquardt 1963), which
minimises the sum of squared residuals for (non-)linear func-
tions. We judge the goodness of fit by utilising the y? statistic.
Hereby y? is given as

N Xi— 2
2 _ i — Mi
X_Z( (o] ),

i=1

4

where N denotes the number of measurements, y; is the expec-
tation value at position i given by the model to fit, and o7 is the
uncertainty of the measurement i. Further )(fe 4 18 defined as

XZ

N-M’
where M denotes the number of fit parameters. The expectation
value of this sze 4 for a good fit is one. We use the estimated

2 _
Xred =
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uncertainties from the bootstrapping directly for the fitting and
do therefore not enforce a rescaling of the o to yield a sze g of
one.

This kind of fitting with absolute error bars is also consis-
tent with a fitting, where the given error bars are only used for
weighting. Thus estimating the uncertainties via bootstrapping
for each data point is robust. Additionally we tested that an es-
timate with MCMC allowing for a constant fraction, by which
we over- or underestimated our error bars, leads to consistent re-
sults. The uncertainty estimate is consistent in all these cases, so
we are very confident in their value. In the following, we use the
bootstrapping ansatz as this can be consistently done for all the
methods.

5.1.2. Response method

The response method is treated similarly. Again we can boot-
strap over the galaxy population, where one galaxy might have
two or eleven associated measurements depending on the cho-
sen interval. The average response was calculated from Eq. (13).
Each galaxy has then an ¢, and an e, assigned to it. Then we
can bootstrap those simultaneously by drawing galaxies (e.g. if a
galaxy is included in the (e}, ) calculation then it is also included
in the (e, ) calculation) and build responses from these samples.
The standard deviation of those responses gives our uncertainty.

In the case of eleven versions of the same galaxy, there are
two ways to estimate the multiplicative bias. One is to assign
all but the version with the smallest shear to the e, - and all but
the version with the largest shear to the e, . Then one can pro-
ceed using Eq. (13) again. The problem here is that the inner
nine versions are included in both eq,s and therefore get a too
large weight. This problem can be solved by determining the bias
using a linear fit just like in the fit method. We simultaneously
measured y and ¢ by fitting the model from Eq. (5) to all galaxies
and 11 input shears. The fitting was not done for each individ-
ual galaxy since that would be very noisy again. Since the same
galaxies are included in each point used for the fit, we need to
account for the correlation in the uncertainty estimate. This was
done by bootstrapping the fit. We built bootstrap samples from
the galaxies and fit for each bootstrap sample. The standard de-
viation of the fit parameters is taken as an uncertainty estimate.
Effectively the response method is equivalent to a fit method with
the same galaxies and noise for each input shear. We used this
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method to estimate the bias and its uncertainty for the response
method on the large shear interval.

5.2. Random position simulations

Defining uncertainties on the randomly positioned galaxy simu-
lations has to be done differently than before since it is not pos-
sible anymore to identify complete cancellations or responses of
individual galaxies.

5.2.1. Fit method

For the fit method, we simulated several scenes per shear each
giving a shear estimate by taking the mean of all observed el-
lipticities. Knowing also how many measurements went into the
shear estimate of one scene, we could afterwards determine the
combined shear estimate via a weighted average of all the indi-
vidual estimates. The uncertainty of this combined estimate can
then be obtained by bootstrapping over the individual estimates
(again accounting for the weights). This uncertainty estimate is
quite noisy for the fastest runtimes, where only a few scenes are
being accounted for. Hence we left out the uncertainty estimates
in our analysis, which were based on less than ten scenes.

5.2.2. Response method

For the response method (e;’bs’i>, where the index i denotes the

number of the run, can be found for each of the runs and later
on combined into one larger (¢°°>*) to build the response as de-
scribed in Eq. (13). Recall that one run refers to one compilation
of scenes with slightly different shear, but essentially almost the
same noise (so either a combination of two or eleven scenes).
We used multiple runs for better statistics. The uncertainty was
determined by bootstrapping (¢°**) and (e°*~) simultaneously
to account for the correlation and building responses from these
samples. To do so we drew random indices with repetition and
then built the bootstrap samples by taking the (e?bs’i) at the

drawn indices to form new large (¢°®>*) and build the response
from these. The standard deviation of those responses is taken as
the uncertainty. In the large shear interval with eleven versions
we also employed the linear fit again and determined the uncer-
tainty by bootstrapping the fit as described in Sect. 5.1.2.

6. Results
6.1. Non-linearity of the shear measurement

In both, grid-based and non-grid-based simulations, the original
response method using only small shears yields different results
than the fit method spanning a larger shear interval. The non-
linearity of the shear measurement is clearly evident in Fig. 7.
Fitting the same data allowing for an additional antisymmetrised
quadratic term, describes the visible behaviour better and yields
a better’ sze 4- To describe the antisymmetric behaviour we fit the
function

(&™)~ g\ = algllgl +ugl +c. (15)

> We find that allowing for an additional g, component of the shear,
the )(fed can be further optimised towards unity. For each galaxy, we
randomly assign an additional g, component binned similarly to the g,
component. This increases the input ellipticity variance along the g,
axis, yielding a better x2 ;.
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Fig. 7. Non-linearity in the shear measurement. The standard linear-fit
method is shown in the upper panel, using gridded simulations with
160000 galaxies. The orange line indicates the fit. On the y-axis the
difference between the average observed — or measured — shear and the
true input shear is plotted. The lower panel shows the same data, but this
time allowing for a quadratic term in the fit (fitting the function shown
in Eq. 15). Here the additional parameter « describes the coefficient of
the quadratic term. The linear fit has 18 degrees of freedom, while the
quadratic fit has 17.

The non-linearity can also be seen in Fig. 8, where we com-
pare the multiplicative bias values of the different methods and
specifically study the small shear interval as well by conduct-
ing the fit with 20 points in the interval [-0.02,0.02] (see the
point ‘both 0.02’). This point contains three times more galax-
ies than the ‘both’ point for the larger shear interval does. Still
the uncertainty is way larger, illustrating the low efficiency of
the fit method when using smaller shear ranges. Thus we need
to conduct our accuracy comparison also dependent on the shear
range. This behaviour is expected because the fit methods in the
simplest form aim to estimate the slope

_ Ay

m= - (16)
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Using error propagation, the uncertainty on m also depends on
the Ax. Intuitively the signal-to-noise ratio on a shear estimate is
lower at smaller shears.

This non-linearity explains why the original response
method (i.e. without fit) is always slightly less biased in the re-
sult tables than the other methods. The overall reason for the
non-linearity, on the other hand, is not well understood, but it is
plausible that the success rate of a KSB measurement depends on
the shear. We find a slight tendency that the measurement suc-
cess rate of KSB decreases with increasing amplitude of the shear.
Additionally the fraction of complete cancellations decreases for
larger shear, while the fraction of incomplete cancellations in-
creases in return. The effect of higher-order terms in the shear
bias was also studied recently by Kitching & Deshpande (2022).
We find that including a quadratic term in the shear bias im-
proves the X?e 4 @ lot as seen in Fig. 7. As Kitching & Deshpande
(2022) discusses, this behaviour might be caused by a projection
of the total g;-g» plane, but a detailed analysis of this effect is be-
yond the scope of this paper. The non-linearity can be neglected
as long as the shear range is not too large and the comparison of
methods is made in the same interval. For the comparison done
in this paper it is a substantial effect, which we accounted for
by expanding the shear range of the response method up to the
range of the fit method.

6.2. Compatibility of methods

Before we can compare the efficiency of different methods, we
need to show that they can provide similar results in terms of u
and c. We do not want to have a method that yields smaller sta-
tistical errors but is not capable of providing the correct biases.
We used the fit method without any cancellation as a benchmark
for the comparison. The reference efficiency for all methods was
therefore determined by looking only at fully independent ver-
sions of galaxies without any cancellations. In the case of Fig. 3,
this corresponds to considering only the top left version of all
galaxies. For shape noise cancellation, we considered the top
two versions and for both noise cancellations then all four. This
was done analogously also for the simulation setup with larger
scenes. Here we also took only one of the four different realisa-
tions of a scene into account for the reference efficiency.

6.2.1. Grid simulations

The comparison is shown for the grid-based simulations in both
Table 1 and Fig. 8. Note that we differentiate in both the table
and the plot between the two ways to estimate the multiplica-
tive bias for the response method in the large shear interval (see
Sect. 5.1.2). The direct approach using the responses is shown
with a blue triangle, while the fitting approach is shown in red.
The figure shows two important aspects of our study. Firstly us-
ing the same range of shears for the simulation leads to compat-
ible results for every method. Hence we can compare the time
it takes for a certain method to reach some accuracy. Secondly
we can observe the non-linearity in the shear measurement that
we discussed in the previous section. Changing the interval from
[-0.1,0.1] to [—0.02,0.02] changes the multiplicative bias esti-
mate. That is why we always denote the interval used for the
response method in the following. The fit method always uses
[<0.1,0.1] if not stated otherwise.
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Fig. 8. Comparison of the multiplicative bias estimates from the dif-
ferent methods discussed in this paper on the grid. ‘Both 0.02 stands
for the fit method using both cancellations, but in the smaller shear in-
terval. The triangle symbol indicates the bias of the response method
calculated without fitting. On the x-axis ‘RM’ indicates estimates using
the response method.

6.2.2. Random positions

The same compatibility can be seen in the simulations with ran-
domly positioned galaxies. This is shown in Table 2 and Fig. 9.
The absolute value of the multiplicative bias becomes larger.
Comparing the difference between grid and random positions
with Euclid Collaboration: Martinet et al. (2019, table 1), we
can attribute about a third of this shift to the inclusion of fainter
galaxies and the other two-thirds to the additional detection step
and in particular blending between brighter galaxies. The detec-
tion step, which we left out for the grid, leads to a detection
bias for the fainter galaxies as shown in Hoekstra et al. (2021).
Despite this shift, the methods are still compatible within their
uncertainties. Only the methods using the smaller input shear in-
terval deviate, which is likely due to the non-linearity again. For
both types of simulations, we observe that the fit method and the
response method yield consistent biases when the same shear
intervals are employed and the bias of the response method is
estimated by fitting (in the case of larger shears, see Sect. 5.1.2).
As for the grid simulations, biases are shifted towards more posi-
tive values (hence they are less negative) due to the non-linearity
at larger shears.

6.3. Uncertainty behaviour

In this section we want to study how the uncertainties develop
using the different methods as a function of their runtimes. To
do so, we assumed the simple dependence

— -0.5
0-# - atrun ’

a7
where 0, denotes the uncertainty on the multiplicative bias and
tan 18 the theoretical runtime defined previously. The same be-
haviour does also hold for the uncertainty of the additive bias.
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Table 1. Method comparison on the grid.

Method U oy c o simulated galaxies relative
[1073]  [1073] [107%] [1074] [10°] runtime
No cancel 12.85 296 54 1.8 3.2 1.0
Shape 10.64  0.86 7.8 0.5 6.4 2.0
Both 11.10  0.55 7.7 0.3 12.8 24
RM 0.1 (resp.) 8.74 0.78 8.3 1.2 10.6 33
RM 0.1 (fit) 1134 0.69 8.1 1.2 10.6 33
Both 0.02 6.53 1.40 7.0 0.2 38.4 7.5
RM 0.02 6.84 0.85 7.4 0.7 6.4 2.0

Notes. We list the total number of simulated galaxies (including additional versions for the cancellations) for each method in the second last
column. The relative runtime is always compared to the case without any cancellation. Only galaxies brighter than 24.5 magnitudes fulfilling the
S/N larger than ten criterion are considered here. The RM in the first column denotes the response method. If the method is followed by a float
number, this denotes the used shear interval. For the differentiation between response (resp.) and fit approach for RM 0.1 see Sect. 5.1.2.

Table 2. Method comparison on random positions.

Method u oy c O simulated area  relative
[1073] [1073] [107%] [107%] [deg?] runtime
No cancel -21.30 1.74 5.7 1.1 69.14 1.00
Shape local -21.83 093 7.2 0.6 2 x 34.57 1.00
Both local -22.59 0.65 7.0 0.4 4 x 34.57 1.22
Shape global -23.81 0.88 7.8 0.5 2 x34.57 1.00
Both global -2354 054 8.0 0.3 4 x 34.57 1.22
Both 0.02 (g) -27.83 2.36 6.0 0.3 4 x 34.57 1.22
RMO.1 (resp.) -25.02 1.10 10.5 2.1 11 x4.94 0.79
RM 0.1 (fit) -2191 1.06 10.1 2.1 11 x4.94 0.79
RM 0.02 -27.42 1.19 5.5 0.9 2 x24.69 0.71

Notes. The relative runtime is given for this specific example where we used 11200 (= 140 x 20 X 4) scenes for the fit method, 4400 (= 400 x 11)
scenes for the response method in the large shear interval, and 4000 (= 2000 x 2) scenes for the response method in the small shear interval. It is
always compared to the runtime of no cancellation. In the second last column, we list the simulated area that went into each method. Indicated is
always the unique area multiplied by the required additional versions for each method. The RM in the first column denotes the response method.
The estimate for Both 0.02 also used global (g) cancellation. If the method is followed by a float number, this denotes the used shear interval. For
the differentiation between response (resp.) and fit approach for RM 0.1 see Sect. 5.1.2.

We expect this behaviour as the uncertainty scales with the in-
verse number of measurements and the number of measurements
scales linearly with our runtime definition for a sufficiently large
number of galaxies.

6.3.1. Grid simulations

On a grid, the uncertainty behaviour can be seen in Fig. 10. The
runtime improvements deduced from the fitting results for the
grid-based simulations can be seen in Table 3. The improvement
in runtime can then be calculated by squaring the improvement
of the fitted parameter a. Thus the definition of runtime improve-
ment (RI) in our case is

)2

where i denotes the method used for comparison. The table adds
the total galaxy number improvement (GI). This quantity de-
scribes how many fewer galaxies need to be simulated with the
respective method to reach the same precision as no cancellation.
The total number includes all possible versions for the different
cancellation methods. Thus using for example shape noise can-
cellation and pixel noise cancellation requires only a quarter of
the total number of galaxies to be unique. The GI is independent

RI = (ano cancel (18)

ai

of the runtime difference between convolution and other contrib-
utors to the runtime that are described in Sect. 4.2. Therefore the
GI can be used as a lower limit of the efficiency improvement
if different shape measurement algorithms than KSB are consid-
ered. For every method but both cancellations, RI and GI are the
same.

For the multiplicative bias, we find that adding pixel noise
cancellation on top of shape noise cancellation can reduce the
runtime by another factor of about 2 compared to only shape
noise cancellation. The improvement of the response method
compared to no cancellation depends on the shear interval used.
This is because the fit method uncertainty depends on the shear
interval used, while the response method uncertainty is largely
insensitive to it. In the small shear interval, it can provide an ad-
ditional factor of 10 improvement in runtime compared to both
cancellations in the fit. P18 find that the number of images can
be reduced with the response method by a factor of 82 compared
to shape noise cancellation and by a factor of 650 compared to
no cancellation (assuming two sheared versions for the response
method). They made the comparison in terms of simulated im-
ages and not in terms of runtime. Assuming that both are related
linearly, we find a factor of 23 in a number of images compared
to shape noise cancellation and a factor of 145 compared to no
cancellation. Thus we do not exactly reproduce the values they
found. Considering that we are using a completely different es-
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Fig. 9. Comparison of the multiplicative bias estimates from the differ-
ent methods discussed in this paper for galaxies on random positions.
The triangle symbol indicates the bias of the response method calcu-
lated without fitting. On the x-axis ‘RM’ indicates estimates using the
response method.

timation of the uncertainties and a more realistic noise descrip-
tion, it is unsurprising that the estimated improvement deviates
from their results. They also used a Gaussian distribution of the
input shears with o = 0.03 such that the shear range is not en-
tirely identical to our analysis. We also note that matching the
shear interval of the response method to the fit method leads to a
worse uncertainty behaviour again (compare RM in the different
shear intervals). This is caused by the need to estimate multiple
responses for the same galaxy. Hence there is more shot noise
due to the galaxy population in the RM 0.1 method compared to
RM 0.02 at the same runtime.

For the additive bias, the improvements of the fit method are
always the same as they were for the multiplicative bias. Only the
response method shows a significant difference. The response
method is not effective at all currently when it comes to additive
bias estimation. This originates from the need to simulate the
same galaxy several times with slightly different shear. Since the
additive bias is taken to be the mean of all observed ellipticities,
the information gained from simulating the same galaxy multiple
times is less than from simulating different galaxies. Thus the ef-
ficiency worsens when using eleven versions for the large shear
interval. P18 find larger improvement factors but took the addi-
tive bias as the mean of individual additive biases, which does
not account for selection as discussed before. Thus the response
method can not efficiently be used for additive bias estimation.

Nonetheless, we find two methods here that can reduce the
multiplicative bias’s runtime significantly compared to the com-
monly used shape noise cancellation. Using pixel noise cancel-
lation on top of shape noise cancellation helps in every shear
interval to reduce the runtime by at least a factor of 13, com-
pared to a factor of 6 for shape noise cancellation only. In a large
shear interval, the response method can not yield more improve-
ment than both cancellations. In fact, its uncertainty behaviour
with runtime is worse than that for both cancellations. But in a
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Table 3. Efficiency comparison for the grid-based simulations.

Method u-bias c-bias
RI o GI RI  op Gl
Shear interval [-0.1,0.1]
Shape 6.0 0.1 6.0 62 0.1 62
Both 128 0.2 7.7 139 03 83
RM 4.6 0.1 4.6 0.7 0.01 0.7
Shear interval [—0.02, 0.02]
Shape 6.3 0.1 6.3 6.3 0.1 6.3
Both 149 03 8.9 149 03 9.0
RM 1456 27 1456 34 0.1 34

Notes. This table includes galaxies with input magnitudes brighter than
24.5 and a selection of S/N ten and above. RM stands for the response
method, RI for runtime improvement, and GI for the total galaxy num-
ber improvement. The uncertainty for the runtime improvement is listed
as ORjp.

smaller shear interval, the response method improves the runtime
by more than one order of magnitude. This can be very useful for
redshift-dependent blending as discussed in Li et al. (2023) since
the additive bias can also be calibrated empirically (see Hoekstra
2021). Since galaxies are not on a grid in the sky, we also check
what this behaviour looks like for randomly positioned galaxies.

6.3.2. Random positions

The uncertainty behaviour for galaxies at random positions is
shown in Fig. 11. The general trend is the same as for the grid-
based simulations. In larger shear intervals, the response method
does not further improve the efficiency compared to using both
cancellations. For small shear intervals, there is still a very sig-
nificant improvement in runtime using the response method.
This is also supported by the detailed fit results shown in Table 4.
In this table, we added the area improvement (AI), which works
analogously to the total galaxy number improvement (GI) for the
grid-based simulations. It describes how much less area needs to
be simulated with the respective method to reach the same preci-
sion as no cancellation. This area includes all possible versions
for the different methods. Thus using for instance shape noise
cancellation and pixel noise cancellation requires only a quarter
of the total simulated area to be unique. Since it does not depend
on the runtime differences between convolution and other con-
tributors to the runtime that are described in Sect. 4.2, it gives a
lower limit for the efficiency improvement if other shape mea-
surement methods than KSB are considered. For all methods but
both noise cancellations, RI and Al are the same.

In general, all methods are not as efficient anymore as they
were on a grid. We attribute this to blending and the inclusion of
fainter galaxies, but also due to the additional detection step us-
ing SExtractor, which has been left out on a grid. Nonetheless
the advantages of either adding pixel noise cancellation or even
using the response method are still present for the multiplicative
bias estimation. The efficiency of the additive bias estimation is
also here very poor for the response method. Only the fit method
can provide improvements for the additive bias estimation. We
also see that the global shape noise cancellation (and especially
the global shape noise cancellation with pixel noise cancella-
tion) is more efficient than the local one. This is expected since
the relative blending in the global case stays constant, as previ-
ously mentioned. Thus if the purpose of the simulation allows it,
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Fig. 10. Uncertainty behaviour for the different methods for grid-based simulations. The runtime, which is used here, is always the theoretical
runtime from Sect. 4.2 normalised to its maximum value in the respective figure. Here the large shear interval is normalised to a theoretical runtime
of 13.2 x 10° and the small shear interval to 14.4 x 10°, respectively. Solid lines show fits to the data described in Sect. 6.3. The left and right
panels differ by the used shear interval, which is indicated in each column title.

Table 4. Efficiency comparison for galaxies at random positions.

Method u-bias c-bias

RI orr Al  RI ogr Al

Shear interval [-0.1,0.1]
Shape local 36 03 3.6 3.8 02 3.8
Both local 63 06 39 68 05 42
Shape global 3.8 03 38 41 03 4.1
Both global 84 06 5.1 9.5 06 5.8
RM 37 03 37 03 0.02 03
Shear interval [—0.02, 0.02]

Shape local 37 02 37 3.8 02 3.8
Both local 69 03 42 171 04 43
Shape global 4.3 0.3 43 42 03 42
Both global 109 11 66 105 0.7 64
RM 695 33 695 1.7 0.1 1.7

Notes. This table includes galaxies with input magnitudes brighter than
26.5, and the same S/N larger than ten selection. RM stands for the re-
sponse method, RI for runtime improvement, and Al for area improve-
ment. The uncertainty for the runtime improvement is listed as og;.

global cancellation should be used. If that is not possible, the lo-
cal cancellation can provide a seven times faster bias estimation
than without any cancellation.

6.4. Binned comparison

In addition to looking at the uncertainty behaviour for realistic
scenes, we can also study the behaviour as a function of magni-
tude. In this section, we repeat the analysis in bins of input mag-
nitude. The runtime improvement is always defined compared

to no cancellation in the same magnitude bin. We focus here on
the results of the multiplicative bias. The analysis of the additive
bias shows a similar qualitative behaviour and is shown in Ap-
pendix A. Additionally we can also compare the absolute biases
in different magnitudes bins just like we did it for the whole sam-
ple in Sect. 6.2. This is a further validity check for the methods
that we present in Appendix B.

6.4.1. Grid simulations

The grid simulations make it trivial to bin in input magnitude.
We extend the magnitude range from 20.5 to 25.5, which in-
cludes fainter galaxies than our previous grid analysis. This in-
terval is binned in five bins with a width of one magnitude. The
results can be seen in Fig. 12. We see the general trend of all
methods becoming less effective for fainter galaxies. This is ex-
pected since signal-to-noise ratios are smaller for fainter galaxies
and magnitudes correlate with the size of the galaxies.

Fit method The slope of this decrease with magnitude in effi-
ciency is almost the same for the two cancellation methods so
that using both cancellations always stays superior to using only
shape noise cancellations.

Response method Especially in the larger shear interval, we
observe that the response method has a slower decline of the run-
time improvement with magnitude than the fit method. While be-
ing the least efficient method for very bright galaxies, it becomes
more efficient than shape noise cancellation for the faintest
galaxies. This is probably due to the fact that pixel noise domi-
nates the images of the faintest galaxies and the response method
handles this kind of noise differently from the fit method. Hints
of this flatter decrease can also be seen for the smaller shear in-
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Fig. 11. Uncertainty behaviour for the different methods for galaxies at random positions. Here both panels are normalised to a theoretical runtime

of 46 x 10°. The figure is otherwise similar to Fig. 10.
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Fig. 12. Magnitude-binned runtime improvement of the multiplicative bias for the grid-based simulations. The position of the points marks the
center of each bin. The runtime improvement is always compared to the fit method without any cancellation. Error bars are smaller than the

symbols and therefore omitted for better visibility.

terval, but the response method stays the most efficient method

here anyway for all magnitudes.

6.4.2. Random positions

On random positions, this behaviour looks different. Firstly
matching between the detection catalog from SExtractor and
the input catalog is required to bin in input magnitudes. This
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position-based matching is of course not perfect, but at the im-
plemented level of blending it works sufficiently well. It en-
ables us to bin based on input magnitudes, which minimises
magnitude-related selection biases. Still for real survey data only
measured magnitudes are available. Therefore we also perform
the same analysis with a binning based on the SExtractor
MAG_AUTO magnitude. The magnitude range for these simula-
tions spans from 20.5 to 26.5. We use six bins with each bin be-
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Fig. 13. Magnitude-binned runtime improvement of the multiplicative bias for the galaxies on random positions in the large shear interval. In the
left panel, the data is binned in mayro from SExtractor, while the input magnitude is used for the binning in the right panel to point out the
differences. The position of the points marks the center of each bin. The runtime improvement is always compared to the fit method without any
cancellation. For this figure no signal-to-noise cut is applied. Error bars are smaller than the symbols and therefore omitted for better visibility.
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Fig. 14. Magnitude-binned runtime improvement of the multiplicative bias for the galaxies at random positions in the small shear interval. In the
left panel, the data is binned in mayro from SExtractor, while the input magnitude is used for the binning in the right panel to point out the
differences. The position of the points marks the center of each bin. The runtime improvement is always compared to the fit method without any
cancellation. For this figure, no signal-to-noise cut is applied. Error bars are smaller than the symbols and therefore omitted for better visibility.

ing one magnitude wide. The last bin from 25.5 mag to 26.5 mag
is usually very noisy as only very few of these galaxies pass the
signal-to-noise ratio cut. To show the behaviour at faint magni-
tudes more clearly, we removed the signal-to-noise ratio cut for
the binned analysis of the random position simulations shown

in Fig. 13 (large shear interval) and Fig. 14 (small shear inter-
val). In general, the type of magnitude used to define the binning
seems to have the largest impact on the brightest bin. Binning in
SExtractor’s mayto worsens the improvement in the bright-
est bin compared to the binning against input magnitudes. For
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fainter galaxies, the binning has less impact and the improve-
ment factors agree again. Since the brightest bin contains the
fewest galaxies, it is the most sensitive to wrong bin assignments.
Especially when these wrong bin assignments destroy the can-
cellation by assigning only a part of the galaxies belonging to
the cancellation to the wrong bin. Additionally blending scenar-
ios can only be correctly binned in mayTo. Our nearest neighbour
assignment can only pick up the magnitude of one of the blend-
ing partners, which results in a fainter magnitude than the total
magnitude of the blended object. Thus blended objects tend to be
in the brighter bins in mayro. This wrong assignment of blended
objects worsens the runtime improvement, because blending typ-
ically results in a noisier measurement. Furthermore, we observe
that all methods again become less efficient for fainter galaxies,
as seen on the grid.

In Fig. 15 the blending fractions in different magnitude bins
can be seen. It becomes evident that the brightest bins are more
affected by blending and therefore also by objects scattering up
into brighter bins as described before. Still this only affects the
exact binning. The total number of detected galaxies is nearly the
same for both magnitude definitions. Thus the difference blend-
ing makes for the runtime improvement can only be quantified
by comparing Tables 3 and 4. There one can read off that the
amount of blending implemented in our simulations lowers the
runtime improvements by at most a factor 1.5.

Fit method For the fit methods, we observe that the global
shape noise cancellations are always more effective than their
local counterparts for magnitudes brighter than 24.5. At fainter
magnitudes, global and local cancellations have roughly the
same efficiency. This behaviour is observed for both mayro and
mgems binning, which is why it is likely not related to wrong
bin assignments due to the blending. Shape noise cancellation is
not significantly faster than no cancellation in the two faintest
bins, making it irrelevant if this cancellation is performed glob-
ally or locally. Since both cancellations include shape noise can-
cellations, we observe the same behaviour. Still using both can-
cellations is in every magnitude bin more efficient than only
shape noise cancellation. This behaviour can be observed for
both shear intervals.

Response method The response method on the large shear in-
terval is the least effective method for the brightest galaxies. For
magnitudes fainter than 23.5, it becomes about as effective as
shape noise cancellation and also yields a similar performance
at fainter magnitudes. This trend is also reflected in the com-
bined results, where we see that the response method is less ef-
fective than both noise cancellations, but just as effective as only
shape noise cancellations on this shear interval (see Table 4). In
the smaller shear interval, the response method constantly dom-
inates the runtime improvement over the fit method.

6.5. Comparison with Flagship

Our simulation setup, which cuts the magnitude distribution at
26.5 mag and uses randomly positioned galaxies, is only a sim-
plified picture of the expected images from Euclid. To quan-
tify the impact of more realistic clustering and the inclusion of
fainter galaxies into the simulation, we made use of the Flag-
ship simulation mock galaxy catalogue (Euclid Collaboration:
Castander et al., in prep.), which was obtained from CosmoHub
(Carretero et al. 2017; Tallada et al. 2020). The catalogue was
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Fig. 15. Magnitude-binned blending fraction as seen using the ran-
dom position simulations and the positions from the Flagship catalogue.
Dashed lines show blending as defined by the raising of SExtractor
flag one or two, while solid lines indicate the blending as an overlap of
the Kron-ellipses of neighbouring galaxies.

generated by painting galaxies to an N-body simulation (Pot-
ter et al. 2017), which only includes dark matter. This painting
was done using a combination of a halo occupation model and
abundance matching. The morphology of the galaxies was then
modelled with a similar approach as followed in Hoffmann et al.
(2022). We use from this catalogue both the galaxy positions on
the sky and the galaxy morphology. Instead of single-Sérsic pro-
files, we adopted the double-Sérsic profile description available
in the Flagship catalogue. Apart from the more realistic posi-
tions and the adapted morphology, we setup the simulations in
the same way as the random position simulations. In particular
the noise properties, the PSF, and the detection configuration of
SExtractor are the same.

6.5.1. Blending fractions

We adapted the blending fraction definitions from Liu et al.
(2023). Thus the blending fraction is defined as the ratio of de-
tected objects that are classified as blends to the total number
of detected objects. If one galaxy is blended is determined in
two ways. One option is to check if SExtractor raised one or
both of the extraction flags one and two, which indicate an im-
pact from neighbouring objects. The second option is to check
if the Kron-ellipses, which SExtractor determined, overlap. In
Fig. 15 we show both of these definitions binned against magay,
for our random position setup and for galaxies placed accord-
ing to the Flagship catalogue. We find that the blending frac-
tion within Flagship is always higher than for random positions
for the relevant magnitudes up to 24.5, which shall be used for
the cosmological analysis of Euclid. For the complete sample
we find blending fractions of 2.5% (8.1%) for random positions
and 4.7% (10%) for Flagship, defined via the SExtractor flags
(Kron-ellipses). Thus by placing galaxies randomly we underes-
timate the blending fraction by about 2% compared to a realisti-
cally clustered case.
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Table 5. Efficiency comparison for galaxies positioned according to the
Flagship mock galaxy catalogue.

Method p-bias c-bias

RI ORI Al RI ORI Al

Shear interval [-0.1,0.1]

Shape local 35 03 35 30 03 30
Both local 58 06 35 53 04 32
Shape global 3.5 03 35 36 03 36
Both global 72 04 43 73 05 44
RM 25 02 25 01 001 0.1

Notes. This table includes galaxies with input magnitudes brighter than
26.5, and the same S/N larger than ten selection. RM stands for the re-
sponse method, RI for runtime improvement, and Al for area improve-
ment. The uncertainty for the runtime improvement is listed as og;.

6.5.2. Runtime improvements

To test the impact that this more realistic clustering has on the
runtime improvements, we use our pipeline to study the run-
time improvements for our Flagship-based image simulation. We
conducted this analysis only for the large shear interval since a
similar behaviour is expected for the smaller shear interval as
well. In Table 5 the improvements in runtime and area for this
new simulation setup are listed. Comparing this with Table 4 we
find that all runtimes improvements worsen a little. In absolute
terms we find that pixel noise cancellation is more affected than
only shape noise cancellation. Also limiting the Flagship cata-
logue to magnitudes 26.5 and brighter, we find very similar run-
time improvements to our random position simulations. Thus we
conclude that the reason for the worsening are mainly the addi-
tional faint galaxies, which are not detected, but add correlated
noise in the background. This mostly affects the pixel noise can-
cellation, since this additional form of correlated noise by faint
galaxies does not get cancelled. In relative terms the response
method worsens the most, which we attribute mostly to the ab-
sence of the variant of shape noise cancellation we described in
Sect. 4.1. The shape noise cancellation we used for the response
method on random positions used newly drawn random posi-
tions for the rotated galaxies, which made it a softer version of
the cancellation compared to local and global cancellation. For
the Flagship simulations we omitted this since the shapes and
orientations at a certain position in the sky are given by the cata-
logue. We nevertheless see that our qualitative statements about
the most efficient methods still hold. Here we find that both can-
cellations, especially with the ‘global’ scene rotation, still pro-
vide the best runtime improvement. Thus including clustering
and fainter galaxies has only a minor impact on the estimated
runtime improvements. Most of the difference that the inclusion
of these additional effects causes, is likely absorbed in the simul-
taneous worsening of the reference efficiency.

7. Summary and conclusions

This paper presents two possibilities to improve the efficiency of
shear bias calibration simulations, which are indispensable for
the scientific analysis of upcoming cosmic shear surveys. One of
the methods is pixel noise cancellation, which can be used on top
of shape noise cancellation in order to reduce the uncertainties
of bias estimation via a fit. This cancellation uses images with
an almost exactly inverted noise field in order to cancel noise in
the shape estimates caused by the pixel noise realisation. This

method is computationally cheap as no further convolution is
needed to build the pair image used for cancellation. This ad-
vantage can only be fully exploited if the generation of a galaxy
image (including the convolution) dominates the runtime com-
pared to the measurement of a galaxy. The advantage therefore
depends on the shape measurement methods used for the analy-
sis. A completely different approach follows P18 in their sugges-
tion to use responses for the bias estimation. We use their ideas
to expand their formalism to account for selection bias. We ad-
ditionally adapt the method to accurately use Poisson noise and
make it applicable for larger shear intervals. We compare these
two methods with the commonly used fitting of a linear function
without any cancellation and the fit using shape noise cancella-
tion. The performance of each method depends on both the cho-
sen shear interval and the type of simulation. Hence we present
results in two shear intervals [—0.1,0.1] and [-0.02,0.02] for
both grid-based and random-position simulations.

In both kinds of simulations, we find that pixel noise cancel-
lation and the response method are very useful for multiplica-
tive bias estimation. Their efficiency is almost the same in the
large shear interval, while in small shear intervals the response
method has the advantage. The fit naturally depends on the given
shear interval, while the response method is largely insensitive
to it. Consistently all methods are less effective in the second
kind of simulation, where galaxies are placed randomly. We find
the largest improvement for the response method on small shear
intervals compared to using no cancellation. In this case, the
method can improve the runtime by a factor of 145. In the same
shear interval for randomly positioned galaxies, this factor de-
creases to 70. Still, this improvement by two orders of magnitude
can be beneficial for future bias constraints. In the larger shear
interval, we find improvement factors of 13 (grid) and 8 (random
positions) for both cancellations and factors of 5 (grid) and 4
(random positions) for the response method. For the additive bias
estimation, only the fit method is useful. There the additive bias
improvement is the same as the multiplicative bias improvement.
The additive bias estimation with the response method is just as
good or even worse than using no cancellation. That is because
no information for the additive bias can be gained from simulat-
ing the same galaxy multiple times with almost the same noise.
Implementing pixel noise cancellation for the response method
might help improve the capabilities of additive bias estimation.
This idea is left for further work. Also an empirical additive bias
estimation as suggested in Hoekstra (2021) might be possible. In
that case, the response method would not need to be capable of
accurately determining the additive bias.

Our studies of the runtime improvement as a function of
magnitude also show that there is no reason not to use pixel noise
cancellation on top of shape noise cancellation in any case. It is
always at least as efficient as shape noise cancellation, but mostly
more efficient. We also find that the advantage of the response
method on the small shear interval does not largely depend on
the magnitude of the galaxies. This method provides the largest
runtime improvement for every magnitude bin on the grid and at
random positions. It is solely on the larger shear interval that one
must carefully decide if using the response method makes sense.

Another intriguing effect that we find is the significant de-
pendency of the absolute multiplicative bias estimate on the cho-
sen shear interval. For the particular KSB shape measurement
method used in this study, the multiplicative bias seems to be
higher for small shear intervals. This behaviour hints at non-
linear bias terms, that are not accounted for by the simple fitting
of a linear function. Allowing for an additional quadratic term
in the fit, the multiplicative bias changes by an absolute value of
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8 x 1073, Very recently, this effect of quadratic terms has also
been studied by Kitching & Deshpande (2022). Thus, our cur-
rent methods of shear bias estimation might not be complete and
we may need to quantify biases in the full g;-g, plane.

With our findings of potential efficiency improvements for
the random position simulations, we highly recommend using
pixel noise cancellation. This kind of cancellation is relatively
easy to implement and can already reduce the simulation volume
needed to reach desired requirements regarding bias uncertain-
ties. Especially in the case of small shear fields, it also makes
sense to consider using the response method. Although harder
to implement, improving more than two orders of magnitude in
runtime can be worth it.

When moving to simulations including clustering, we want
to highlight the need to quantify the dominant contribution to the
runtime for a particular shape measurement method and simula-
tion pipeline in order to decide if it is worth to implement pixel
noise cancellation also on top of shape noise cancellation. This
is because our simulations with positions drawn from the Flag-
ship catalogue (including clustering) have shown that the area
improvements for these simulations are very comparable with
and without the additional pixel noise cancellation for our se-
tups with local shape noise cancellation at least. However since
Euclid has a complex PSF that has to be simulated with a higher
degree of detail as conducted in our work, it might well be that
the PSF generation and convolution becomes a more dominant
contribution to the overall runtime, in which case the addition of
pixel noise cancellation would provide larger runtime improve-
ments.

In the interest of repeatability and transparency, we make the
code publicly available®. These scripts are not a product of the
Euclid Consortium Science Ground Segment. They are created
exclusively for the present analysis and made public for repro-
ducibility of the results presented in this paper. We also provide
the scripts and data to generate each plot in this paper under the
same address.
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Appendix A: Binned improvements additive bias

The binned improvements can also be studied for the additive bias. In Fig. A.1 these are shown for the grid simulations and in
Fig. A.2 and Fig. A.3 for random positions.
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Fig. A.1. Magnitude-binned runtime improvement of the additive bias for the grid-based simulations. The position of the points marks the center
of each bin. The runtime improvement is always compared to the fit method without any cancellation. Error bars are smaller than the symbols and
therefore omitted for better visibility.
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Fig. A.2. Magnitude-binned runtime improvement of the additive bias for the random position simulations in the large shear interval. In the
left panel, the data is binned in mayro from SExtractor, while the input magnitude is used for the binning in the right panel to point out the
differences. The position of the points marks the center of each bin. The runtime improvement is always compared to the fit method without any
cancellation. For this figure, no signal-to-noise cut is applied. Error bars are smaller than the symbols and therefore omitted for better visibility.
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Fig. A.3. Magnitude-binned runtime improvement of the additive bias for the random position simulations in the small shear interval. In the
left panel, the data is binned in mayro from SExtractor, while the input magnitude is used for the binning in the right panel to point out the
differences. The position of the points marks the center of each bin. The runtime improvement is always compared to the fit method without any
cancellation. For this figure, no signal-to-noise cut is applied. Error bars are smaller than the symbols and therefore omitted for better visibility.

Appendix B: Binned absolute biases

In order to test if the different methods yield accurate bias estimates, we compare the outcome of the absolute bias measurements
for each method in each bin. For the multiplicative bias these comparisons can be seen in Fig. B.1 and Fig. B.2 for the large and the
small input shear interval, respectively. For the additive bias they are shown in Fig. B.3 and Fig. B.4. We observe that the methods
are compatible in every magnitude bin, ensuring that every method can be used to determine the biases. The decision of which
method to choose only depends on the efficiency of the method.
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Fig. B.1. Absolute multiplicative bias comparison in the large shear interval. The general trend of the multiplicative bias at different magnitudes is
presented in the main plot. An additional zoomed version of each magnitude bin is shown to better compare the bias estimates since the error bars
are too small to be visible in the main plot. For the left panel, no signal-to-noise cut is applied.
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Fig. B.2. Absolute multiplicative bias comparison in the small shear interval. The general trend of the multiplicative bias at different magnitudes
is presented in the main plot. An additional zoomed version of each magnitude bin is shown to better compare the bias estimates since the error
bars are too small to be visible in the main plot. For the left panel, no signal-to-noise cut is applied.
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Fig. B.3. Absolute additive bias comparison in the large shear interval. For the left panel, no signal-to-noise cut is applied.
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Fig. B.4. Absolute additive bias comparison in the small shear interval. For the left panel, no signal-to-noise cut is applied.
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