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High-throughput experimental methods in neuroscience have led to an explosion of techniques formeasuring complex
interactions and multi-dimensional patterns. However, whether sophisticated measures of emergent phenomena can
be traced back to simpler low-dimensional statistics is largely unknown. To explore this question, we examine resting-
state fMRI (rs-fMRI) data using complex topology measures from network neuroscience. We show that spatial and
temporal autocorrelation are reliable statistics which explain numerous measures of network topology. Surrogate
timeserieswith subject-matched spatial and temporal autocorrelation capture nearly all reliable individual and regional
variation in these topology measures. Network topology changes during aging are driven by spatial autocorrelation,
and multiple serotonergic drugs causally induce the same topographic change in temporal autocorrelation. This
reductionistic interpretation of widely-used complexity measures may help link them to neurobiology.

Keywords: spatial autocorrelation, temporal autocorrelation, spatiotemporal, network neuroscience, resting-state
fMRI, complex networks

Introduction
As neuroscience data become more complex, so do the methods used to analyze them. Are sophisticated methods
necessary for sophisticated data? We focus here on network extensions to functional connectivity (FC)1, the ma-
trix of pairwise correlations across brain regions in resting-state fMRI (rs-fMRI). FC is a wildly successful tool
for understanding brain function2. Nonlinear methods from network neuroscience build upon the success of FC
by unlocking properties observable only at higher levels of abstraction3. In these methods, FC is interpreted as a
network using graph theory, where nodes represent brain regions and edges represent the correlation in activity be-
tween those regions over time. Network analysis enables the study of brain topology at a higher level of abstraction,
using statistics called “graph metrics” to look at properties such as clustering, modular organization, and regional
influence of brain-wide activity4.

Network neuroscience has profoundly influenced howwe understand the organization of rs-fMRI activity across
a variety of different domains3. One such example is aging, a complex process which impacts many regions of the
brain differently. A rich literature shows network topology reflects numerous changes in functional organization as
we age, including changes in local and global connectivity across the brain5,6. In addition to observational and cross-
sectional variation in network topology, causal pharmacological manipulations have also been shown to impact
within-subject topology, an essential ingredient for translational applications. For example, the psychedelic sero-
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tonergic receptor agonist lysergic acid diethylamide (LSD) causally impacts the modular organization and global
integration of brain networks7,8. However, because graph theoretical analysis involves several levels of abstraction,
it is unclear if the differences in topology within or across individuals are associated with differences in simpler
timeseries properties. This can make it challenging to draw neurobiological conclusions about the brain using
changes in MRI-derived graph metrics. Is it possible that lower-level factors, such as basic statistical properties of
rs-fMRI timeseries, may mediate the changes in network topology?

The basic statistical properties of rs-fMRI timeseries vary within and across individuals9. Two of these proper-
ties, spatial autocorrelation (SA) and temporal autocorrelation (TA), are highly present in neuroimaging data and
have striking consequences for the statistical analysis of data10,11. Qualitatively, SA captures the idea that two data
points have similar values if they are nearby in space, whereas TA captures the idea that they have similar values
if they are close in time. As a result, SA and TA represent statistical dependencies across variables, which often
manifest in ways that are difficult to predict. While many different methods exist to measure SA, we quantify it as
the rate at which similarity decays across space, detailed below. Likewise, despite many competing ways to measure
TA, we use the correlation coefficient of neighboring timepoints in a timeseries, also detailed below. SA and TA are
attractive features because they reflect a myriad of physical and biological mechanisms, including molecular11,12,
structural13,14, activity state15,16 and organizational17,18 properties of the brain. However, despite the importance
of SA and TA on the mechanistic and organizational level, and the known consequences for statistical data analysis,
it is largely unknown whether individual variation in SA and TA reliably relates to individual variation in more
complex measures, such as those from network neuroscience.

Here, we show that two simple timeseries statistics, spatial and temporal autocorrelation, explain a large fraction
of individual variation in network topology. We demonstrate that variation in SA and TA is reliable across subjects
and brain regions, and that individual variation in SA and TA corresponds to individual variation in graph metrics.

To understand the association between SA, TA, and graph metrics, we developed a spatiotemporal surrogate
timeseries model which is parameterized only by SA and TA. After fitting the model to timeseries from individual
subjects, we found a large similarity in graph topology between the subject- and model-derived networks, demon-
strating the direct influence of SA and TA on graph theoretical analysis. To examine how this impacts data analysis
in practice, we measure the changes in network topology with aging. Not only are SA and TA more sensitive to
age-related changes than graph metrics, but our model can decompose the age-related changes in graph metrics
into changes in SA and TA. They are also sensitive to age-related cognitive decline.

Finally, we show that TA captures within-subject variation and is causally linked to biological processes beyond
a graph theoretical framework. Causal pharmacological manipulations with two different serotonergic receptor
agonists show the same topographic patterns of decrease in TA, which graph metrics do not capture. Additionally, a
serotonin receptor antagonist shows an increase in TA along the same topographic pattern, demonstrating a common
but opposite effect from a common but opposite molecular mechanism of action. Overall, we show that SA and TA
are important properties of rs-fMRI with close ties to functional networks, offering a reductionistic perspective on
complex brain network topology.

Results
Low dimensionality of graph topology measures We found that many measures of graph topology are corre-
lated with each other across subjects in networks constructed from rs-fMRI. We analyzed multiple neuroimaging
datasets utilizing diverse methodologies implemented by different teams, focusing on the Human Connectome
Project (HCP) dataset19, with validation in the Yale Test-Retest (TRT)20 and Cambridge Centre for Ageing and
Neuroscience (Cam-CAN)21 datasets. In line with previous work, networks were constructed by thresholding the
FC matrix to maintain only the 10% strongest connections and ensuring that no nodes are disconnected from the
rest of the network. We used several graph metrics to quantify network topology: assortativity, global efficiency,
transitivity, modularity, mean clustering coefficient, and mean local efficiency. We also considered two nodal graph
metrics: degree and centrality (see Methods for details).

In all datasets, most graph metrics are highly correlated with most other graph metrics across subjects (Figure
1b)22,23. However, unweighted graph metrics, derived from binarized networks, are also highly correlated with
the mean (mean-FC), variance (var-FC), and kurtosis (kurt-FC) of FC (Figure 1b). This is surprising because the
FC binarization procedure destroys all explicit information about mean-FC, var-FC, and kurt-FC (see Methods
for proof). These observations were consistent across datasets (Figure ED1). Thus, some unobserved underlying
factors must influence both the statistical moments of FC and the topology of the unweighted graph. In what follows,
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we demonstrate that spatial and temporal autocorrelation are two such factors.

Spatial autocorrelation Spatial autocorrelation (SA) is the ubiquitous but often ill-defined phenomenon in neu-
roscience that nearby regions are more similar than distant regions18,24. In order to examine SA’s test-retest re-
liability, i.e. how well SA is preserved across different rs-fMRI sessions from the same subject, we developed a
method to quantify SA on a single-subject level by decomposing it into two components: the rate at which FC
falls off with physical distance (SA-λ), and the average correlation between two distant brain regions (SA-∞). Our
method bins FC by distance and finds the best fit SA-λ and SA-∞ for each subject’s FC vs distance curve (Fig-
ure 1c), using Euclidean distance to accommodate both hemispheres and subcortex (Equation 1) (see Methods).
Test-retest reliability is quantified with intraclass correlation coefficient (ICC), which compares the variability of
multiple observations of the same subject to the variability across all subjects, where 1 is perfect reliability and 0
is chance. Historically, different qualitative assessments have been assigned to ICCs25,26, with values from 0.5-0.7
usually being called “moderate” to “good”.

We found that SA is both reliable and correlated with graph metrics across subjects. Both SA-λ and SA-∞
have high test-retest reliability compared to graph metrics (Figure 1d) (SA-λ greater than all metrics, p<.01, SA-∞
greater than unweighted graph metrics, p<.05, bootstrap resampling). The effect cannot be explained by head
motion within the scanner (accounting for motion, partial correlation > .65, p < 10−10 for both SA-λ and SA-∞)
or global signal regression (Figure ED1), and is strongest in the HCP dataset, which had the smallest motion and
parcel size confounds (Figure ED2). Both SA-λ and SA-∞ are highly correlated with weighted and unweighted
graph metrics (Figure 1e). To test whether the combined influence of SA-λ and SA-∞ is greater than either one
alone, we constructed a linear model including SA-λ, SA-∞, and a constant term, training it on 50% of subjects
selected randomly to fit each graph metric. This model significantly predicts graph metrics on the held-out data
(Figure 1e). These results hold in all datasets (Figure ED1). Therefore, SA is reliable and topologically informative.

Temporal autocorrelation Temporal autocorrelation (TA) describes the smoothness, or memory, of the rs-fMRI
timeseries over time, and is known to vary heterogeneously across brain regions27,28, and influence both FC16,29

and graph topology30,31. We quantify TA for each parcellated region in each subject as the Pearson correlation
between adjacent time points of the region’s timeseries, i.e. the lag-1 temporal autocorrelation (TA-∆1) (Figure
1c). TA-∆1 is a simple non-parametric measure of TA. While TA-∆1 in theory only measures correlation across a
single timepoint in the timeseries, in practice, it was effective in measuring correlations at much longer timescales,
including parametric estimates of long-memory dynamics (Figure ED3)32. Since preprocessing methodology and
TR both influence TA-∆1, comparisons between TA-∆1 must be made within a single dataset. TA-∆1 can be
measured at either the level of individual regions or as an average of these at the whole-brain level, so we refer to
these as “regional TA-∆1” and “global TA-∆1”, respectively. We observed highest regional TA-∆1 in occipital and
parietal regions, and lowest in limbic regions (Figure 1f).

TA is reliable across subjects, both at the whole brain and regional level. At the whole brain level, we computed
each subject’s global TA-∆1 by averaging regional TA-∆1 across all regions, and found that global TA-∆1 is highly
reliable compared to graph metrics (Figure 1d). For each region, we also computed the reliability across subjects,
and found that median regional reliability was higher for regional TA-∆1 than for other nodal graph metrics (Figure
1g). The reliability of regional TA-∆1 varies heterogeneously across the brain (Figure 1h)33.

This reliability and heterogeneity suggests that regional TA-∆1 could be used to identify individual subjects
across the population. To identify subjects, we utilized a “fingerprinting” analysis34. For a given measure, such as
regional TA-∆1, we matched each session of each subject to the session with the highest Pearson correlation in that
measure across regions, selecting among all sessions from all subjects. Then, we counted the number of pairs for
which both sessions belonged to the same subject. We found that fingerprinting using regional TA-∆1 identified the
single matching session from the pool of 1765 sessions in over 62.4% of subjects, compared to 62.6% with a more
traditional fingerprinting analysis using FC (Figure 1i). While this is lower than reported in Ref.34, the number of
possible matches was nearly an order of magnitude larger in our dataset, and is consistent with previous findings35.
We compared this to fingerprinting using several nodal graph metrics, which were unable to match the performance
(Figure 1i). Similar results were obtained in other datasets (Figure ED1). We also tested whether this performance
is due to differences in parcel boundaries or reliable inhomogeneity within the parcel by comparing regional TA-∆1
to the parcel’s regional homogeneity. Regional homogeneity showed a moderate correlation with regional TA-∆1,
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and its ability to identify individual subjects through fingerprinting varied greatly between datasets, but had no
ability to identify subjects in the HCP dataset (Figure ED4). This indicates that regional TA-∆1 is reliable enough
to identify an individual subject from a population.

TA-∆1 is highly correlated with graph topology at the individual and regional levels. At the individual level, we
found a strong correlation between global TA-∆1 and graph metrics (Figure 1e). To test its influence in conjunction
with SA, we developed a linear model incorporating global TA-∆1, SA-λ, SA-∞, and a constant, training it on
50% of randomly-selected subjects to predict each graph metric. This model significantly predicted all graph
metrics (Figure 1e), and almost all graph metrics in the other datasets (Figure ED1). At the regional level, for each
subject, we computed the Spearman correlation between regional TA-∆1 and various graph metrics. We found
that both weighted and unweighted nodal graph metrics were highly correlated with regional TA-∆1 (Figure 1j).
Most notably, a node’s degree, or the total number of connections a node makes to other regions, was predicted by
regional TA-∆1 with a median correlation of 0.89 (Figure 1j), and this relationship was not driven by parcel size
(median partial correlation 0.83 between degree and regional TA-∆1, accounting for parcel size). Remarkably, this
implies that network hubs can be discovered without examining the topology of network31,36.

Multiple sources of temporal autocorrelation Heterogeneity in TA across brain regions can be shaped by mul-
tiple underlying factors. One such factor is the region’s intrinsic timescale, which measures the rate at which a
signal in a region decays over time. Intrinsic timescales vary from region to region and have been previously de-
scribed as a central factor of brain dynamics in both fMRI and electrophysiology27,28. If intrinsic timescale was the
primary driver of TA heterogeneity, regions with longer timescales would lead to higher TA. However, brain maps
of intrinsic timescale27,28 do not correspond well to our brain map of regional TA-∆1 (Figure 1f). This suggests
that other factors may be important in driving TA.

In addition to intrinsic timescale, the noise level of a brain region also influences its TA37. Decreasing the SNR
or increasing the noise level will decrease TA. More generally, adding white noise to any timeseries will cause its
TA to approach zero (see Supplement for proof). Thus, since different regions of the brain are affected by different
sources and quantities of noise, these differences may also influence TA. In the extreme case where noise is the only
driving factor of TA, all regions would have an identical slow intrinsic timescale, and different amounts of noise
in each region would determine the region’s TA. Consistent with the hypothesis that noise shapes regional TA, we
found that regions with the lowest regional TA-∆1 show the lowest reliability in regional TA-∆1 (Figure 1k). By
this logic, TA may influence FC by altering the fraction of shared variance between pairs of regions38.

In what follows, we used this principle to build a spatiotemporal model for generating surrogate timeseries
with regionally heterogeneous noise. We compare this with the “intrinsic timescale with SA” model whereby
intrinsic timescale is the primary driver of TA. The main practical difference between these models is that in the
spatiotemporal model, reductions in TA have a corresponding reduction in the local effect of SA (due to increased
noise), whereas in the “intrinsic timescale with SA” model, SA is independent of TA by construction. We also
compare the spatiotemporal model with models which utilize only SA or only TA, testing the importance of the
joint action between SA and TA. Finally, we compare the spatiotemporal model to several popular null models from
the graph theory literature.

Spatiotemporalmodel for surrogate timeseries Wedesigned a spatiotemporal surrogate timeseriesmodel which,
when fit to individual subjects, uses SA and TA to capture individual variation in network topology. The model
operates at the level of the parcellated timeseries, meaning that comparisons may be drawn at multiple levels of
the analysis pipeline (Figure 1a). Our model can be summarized in a small number of steps (Figure 2a). First, we
generate long-memory (1/ f α spectrum) timeseries which have uniformly high TA. Concurrently, we spatially em-
bed these timeseries according to brain geometry, introducing SA by increasing the correlation of nearby regions,
while preserving the frequency spectra. This is made possible with our correlated spectral sampling algorithm (see
Methods). Then, we add uncorrelated white noise with a region-specific variance, thereby lowering TA heteroge-
neously. The resulting timeseries can then be analyzed the same way as rs-fMRI timeseries. Thus, in our model,
all variation in graph topology must be caused by variation in SA and/or TA.

Our model contains two SA parameters which are fit on the single-subject level, corresponding to noiseless
SA-λ (SA-λgen) and noiseless SA-∞ (SA-∞gen). We also utilize the subject’s observed regional TA-∆1 to determine
the variance of noise to add. We fit SA-λgen and SA-∞gen through optimization to the distribution of eigenvalues
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of the FC matrix, a property which is not a graph metric yet is well-captured by the model (Figure 2b). This
parameterization ensures that all variation in graph topology must be caused by variation in SA and/or TA.

Model performance We evaluated the ability of our model to capture weighted and unweighted graph metrics
using surrogate timeseries. In principle, model fit could be assessed using several different criteria, such as the
model’s ability to capture as much variance as possible (e.g. using R2), or alternatively, by its ability to capture
individual variation (e.g. using Pearson correlation) (Table S1). Here, we assess model fit using Lin’s concordance,
a stricter criterion which is 1 only when the model captures both variance and individual variation, and zero or
negative when either assessment is poor. Figure 2c demonstrates a schematic comparison between Lin’s concor-
dance, correlation coefficient, and R2 on artificial data. An example subject’s FC matrix and network diagram
demonstrate that the spatiotemporal model is the only model we tested which produces the complex, asymmetric
patterns observed in the data (Figure 2d).

Our model captures important features of graph topology. The model exhibits a high Lin’s concordance to
the data for both weighted and unweighted graph metrics, indicating that it matches both the individual variability
as well as the precise values of the graph metrics (Figure 2e). The model-data match is close to the total reliable
variability, which we estimate using the Lin’s concordance between two independent sessions from the same subject
(Figure 2e). The high Lin’s concordance corresponds to a close fit to the diagonal of graph metrics plotted between
the model and the data (Figure 3). As expected, we also confirmed the model matches the SA and TA of the
original subjects (Figure ED5). Furthermore, it reproduces the degree distribution (Figure 2f), and also correlates
with several nodal graph metrics on the subject level (Figure 2g).

To test alternative ways that graph metrics might be related to timeseries properties, we fit several additional
models, depicted graphically in Figure ED6. First, we test whether both SA and TA are necessary within our model.
To do this, we fit the spatiotemporal model with TA set to zero (“SA only” model) as well as the spatiotemporal
model with an infinitely small SA-λ and a SA-∞ of zero (“TA only” model), and compared their performance to
the performance of our spatiotemporal model. Second, we designed a model to test the hypothesis that TA is deter-
mined by the region’s estimated intrinsic timescale in conjunction with SA (“Intrinsic timescale + SA”). This model
estimates a pink noise 1/ f α exponent for each region, as well as SA-λ and SA-∞ for the full brain, and then gener-
ates surrogates using correlated spectral sampling (see Methods). Third, we tested whether a full reconstruction of
TA at all scales, via the power spectrum amplitudes with randomized phases (“Phase randomization”), can match
our model’s performance. Likewise, given our findings related to mean-FC and var-FC, we tested a model which
matches these two statistics (“Zalesky matching”), previously shown to exhibit more brain-like network topology30.
Additionally, we tested a model which matches the network’s degree distribution (“Edge reshuffle”) due to its over-
whelming popularity in the graph theory literature. Finally, to confirm whether our excellent fit was driven by
our use of eigenvalues in the loss function, we also created an “eigensurrogate” method for creating surrogate FC
matrices. Eigensurrogates preserve the eigenvalue distribution of the FC matrix but randomize the eigenvectors,
thereby perfectly duplicating the linear dimensionality of the FC matrix. This tests the null hypothesis that an effect
is due to restrictions in dimensionality.

None of these alternativemodels capture network topology (Figure 2e, 3, ED5) or the degree distribution (Figure
2f) as well as the spatiotemporal model. These results are not affected by the use of geodesic instead of Euclidean
distance (Figure ED7). Across all other datasets, only the eigensurrogate model on the Yale-TRT dataset showed
more explanatory power than the spatiotemporal model (Figure ED8, Table S1). The ability of our spatiotemporal
model to generally fit the Yale-TRT and Cam-CAN datasets better than alternativemodels underscores its generality.

Linking autocorrelation to graph topology Our results show that SA and TA predict graph topology, but estab-
lishing this relationship mathematically is difficult due to the nonlinearity of constructing and analyzing a thresh-
olded graph. Instead, we attempt to provide an intuition of why SA and TA may influence topology by considering
their impact on individual edges. The impact of SA is relatively straightforward—SA increases the mean correla-
tion between nearby regions, and thus, increases the probability of an edge. However, it is not immediately clear
how TA might influence topology.

A statistical argument explains the high correlation between regional TA-∆1 and degree (Figure 1j)31,36, and
shows why strong TA creates hubs. Degree is determined by the number of correlations the node makes which
exceed the binarization threshold (Figure 1a). This means that even if the expected value of the correlation (nodal

5



Shinn et al.

mean-FC) is low, there may still be several correlations above the threshold if it has a high variance (nodal var-
FC). In other words, a high variance may increase the probability of crossing the threshold moreso than a high
mean. Thus, any process which increases a node’s variance should also increase the node’s degree. Two temporally
autocorrelated timeseries are expected to have a higher variance in their pairwise correlation31 (Supplement 1.5),
and this relationship is reflected in our data (Figure 1e,j). Thus, for individual nodes, one way that TA drives a
node’s degree is by increasing the var-FC. If region A is highly correlated with regions B and C, it is also more
likely that B and C are correlated with each other30. This means that high–TA-∆1 nodes in the graph are more likely
to share an edge31,39, creating a clustered network topology.

We confirmed this reasoning using a two-parameter “economical clustering” model23, which builds graphs
directly by probabilistically connecting nodes based on their distance and clustering topology (Supplement 2).
This model is known to reproduce several topological features of brain networks23,40, and is convenient because the
procedure for constructing networks is distinct from the rs-fMRI pipeline. We found that changes in SA and TA
correspond to an increased propensity for short and clustered edges, respectively, in the economical clusteringmodel
(Figure ED9). In other words, the parameters of a graph-level generative process known to reproduce topological
features of rs-fMRI networks are closely linked to the dimensions of network topology spanned by SA and TA.
Thus, SA and TA can be interpreted directly in terms of graph topology.

Spatial autocorrelation in healthy aging We have shown that our surrogate model can trace differences in graph
metrics among subjects down to differences in the SA and TA of the timeseries used to produce them. Therefore,
we ask if the opposite is possible: if graph metrics change across a population, is SA or TA responsible for those
changes in graph metrics? Due to the rich history of graph theoretical analysis of aging5,6, we looked for age-related
changes in graph metrics, and show that perturbations in the SA-∞ parameter, but not the SA-λ or global TA-∆1
parameters, lead to a change in graph metrics which mirrors that of aging.

We analyzed the Cam-CAN dataset, containing cross-sectional rs-fMRI data from over 800 subjects ranging
from age 18 to 90. The relationships between SA, TA, and graph metrics were unchanged despite the large varia-
tion in age (Figure ED1), and our surrogate model remained effective in this dataset (Figure ED8). Since motion
was highly correlated with age in this dataset (Figure ED2), we performed all analyses using partial correlation
controlling for motion. Several weighted and unweighted graph metrics are correlated with age (Figure 4), with
global efficiency, var-FC, and kurt-FC showing significant correlations. Age was positively correlated with SA-λ,
negatively correlated with SA-∞, and uncorrelated with global TA-∆1 (Figure 4a).

Our spatiotemporal model can be used to determine the extent to which SA-λ and SA-∞ govern the change in
network topology. Since both SA-λ and SA-∞ have significant partial correlations with age, we ran the model “in
reverse” to understand which of these two parameters mediated the effects of graph metrics on aging. To do this,
we perturbed each of these parameters in the direction predicted by aging. If graph metrics increase or decrease in
the same direction as they do across age, this provides evidence that the perturbed parameter mediates the effects
of aging. Since SA-∞ decreases with age, we perturbed the model by decreasing SA-∞gen to obtain predictions for
SA-∞-mediated aging. We found that all of the graph metrics which show significant correlation with age change in
response to this perturbation, and the direction of this change matches the direction of the change over age (Figure
4b). We also perturbed the model by increasing SA-λgen to obtain predictions for SA-λ-mediated aging. However,
graph metrics showed only a slight change in response to this perturbation, and the change was in the opposite
direction as age (Figure 4b). This suggests that the impact of aging on network structure is mediated by changes in
SA-∞ rather than SA-λ. In other words, the effect of aging on graph metrics is driven by the baseline level of SA
at long distances rather than the rate at which SA decays at short distances.

Since the global TA did not change with age, we asked whether this was also true on a regional level. We
computed the partial correlation of age and regional TA-∆1 across the brain (Figure 4c). regional TA-∆1 decreased
with age in the frontal subnetwork, but increased with age in cerebellar regions (Figure 4d), suggesting a differ-
ence in how these regions change over age. This difference may reflect age-related structural changes along an
anterior-posterior gradient41. Despite small effect size, this demonstrates that age-related changes in SA and TA
are consistent with age-related changes in graph metrics.

Subclinicalmarkers of dementia While SA and TA relate closely to network topology, are they useful in explain-
ing clinical symptoms beyond network topology? We explored the relationship of SA and TA with early symptoms
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of dementia, asking whether SA or TA predict cognitive decline beyond the effect of healthy aging. To assess cog-
nitive function, we used the Addenbrookes Cognitive Examination Revisited (ACE-R), a battery of cognitive tests
for dementia screening in subclinical populations. Because dementia was an exclusion criteria for participation in
the Cam-CAN study, we did not expect to find a relationship between dementia markers and SA or TA. We com-
puted the partial correlation across subjects of ACE-R score with SA-λ, SA-∞, and global TA-∆1, partial on age
and motion. Surprisingly, we found a significant negative partial correlation with SA-λ (r = −0.184, p < 10−5),
associating wider SA with reduced cognitive function (Figure 4e). There was also a weaker correlation with SA-∞
(r = 0.118, p = 0.002), but no significant relationship with global TA-∆1 (r = −0.067, p = 0.09) (Figure 4e).
Of all the graph metrics, only the weighted graph metric var-FC (r = −0.13, p = 0.001) showed a significant
relationship (others, p > 0.1). This highlights the sensitivity of SA-λ and SA-∞ compared to graph metrics. The
SA-λ-driven effect also contrasts with that of healthy aging, which was primarily driven by SA-∞. These findings
hint at a relationship of clinical symptoms with SA and TA42.

Pharmacological manipulation Lastly, we tested whether SA and TA causally reflect neurobiological processes.
In principle, it is possible that TA and SA are driven exclusively by noise, morphology, or other reliable artifacts,
instead of by differences in brain dynamics. Awithin-subject pharmacological study allows conclusions about acute
changes with a causal mechanism. Therefore, in two human pharmacological fMRI experiments, we measured
changes in SA and TA caused by manipulation of a neural circuit with the serotonin receptor agonists LSD7 and
psilocybin43. In both experiments, subjects were administered drug or placebo on separate days in a double-blind
methodology, and rs-fMRI was performed at early and late timepoints after each administration. The same basic
relationships between SA, TA, and graph metrics were preserved under the drugs (Figure ED10), despite a small
sample size less than 3% that of HCP.

We found that both LSD and psilocybin caused robust overall reductions in TA across cortex. LSD and psilocy-
bin reduced cortical TA at both early and late timepoints, in regional- and subject-averaged TA (Wilcoxon rank-sum
test p < 10−40 for all conditions) (Figure 5a). Subject-level drug effects on global TA-∆1 were not due to differ-
ences in within-scanner motion, and no effect of drugs on SA and graph metrics was detectable for this sample size
(Figure ED10).

Psychedelic effects of LSD and psilocybin are predominantly attributed to agonism of serotonin receptors, in
particular the 5-HT2A receptor7,43. A common serotonergic mechanism for LSD and psilocybin should produce
similar cortex-wide topographies of the change in regional TA-∆1. Indeed, we found significant positive correlation
among the cortical topographies for both drugs and both timepoints (Figure 5c).

Since both of these 5-HT2A agonists produced a specific topographic pattern of reductions in regional TA-∆1,
we predicted that a 5-HT2A antagonist would produce the same pattern but as an increase in regional TA-∆1 instead
of a decrease. In the LSD study, on a third visit, subjects were pre-administered ketanserin, a selective 5-HT2A
antagonist, before receiving LSD (LSD+Ket). We found that at the late timepoint, ketanserin strongly attenuated
the effect of LSD on regional TA-∆1 (Figure 5a). At the early timepoint, there was a cortex-wide increase in
regional TA-∆1 (Figure 5a). Furthermore, regions with the strongest decrease under LSD showed the strongest
increase with pre-administration of ketanserin (Figure 5b). These time-dependent changes in TA are consistent
with observed pharmacokinetics of ketanserin, which exhibits relatively fast decrease in plasma levels after initial
administration44.

We used these experiments to construct a cortical map of overall regional TA-∆1 modulation by serotonergic
drugs. To incorporate information from all experimental conditions, we used singular value decomposition (SVD)
to compute the first singular vector across all drug vs control contrasts from all participants. We found a single
map (Figure 5d, left) explained approximately 50% of the variance of individual subjects for each of the three
experiments at both timepoints (Figure 5d, top right). This map weighted negatively on the LSD and psilocybin
conditions and on the late LSD+Ket condition, but positively on the early LSD+Ket condition (Figure 5d, bottom
right), consistent with their correlational structure (Figure 5c). These findings demonstrate that TA is sensitive
to causal pharmacological perturbation by serotonergic drugs, showing that TA reflects meaningful differences in
neurobiology.

Discussion
Here, we have shown that spatial and temporal autocorrelation—as parameterized by SA-λ, SA-∞, and TA-∆1—
are highly reliable properties of rs-fMRI timeseries that correlate with, and are predictive of, network topology.
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When we use a model to generate surrogate timeseries with subject-matched SA and TA, the timeseries produce
networks that match the subject’s graph metrics. The surrogate timeseries model was also used to track age-related
changes in graph metrics, and SA and TA correlate with subclinical symptoms of dementia, even though graph
metrics are not sensitive enough to detect this change. Furthermore, causal pharmacological manipulations with
multiple serotonergic drugs modulate TA in a distinct and reliable pattern with a large within-subject effect size.
We anticipate comparable relationships with SA and TA will be present in other datasets stemming from a variety
of conditions, diseases, and pharmacological states. The high reliability, interpretability, effect size, clinical rele-
vance, and sensitivity to neurobiologymake spatial and temporal autocorrelation serious candidates for fMRI-based
biomarkers33,42.

What factors drive SA and TA? We showed SA and TA can be influenced by biological factors, such as aging;
pharmacological factors, such as serotonergic drugs; and methodological factors, such as motion, parcel size, and
noise. These findings are consistent with previous work in brain signal variability during aging45, as well as in
non-serotonin neuromodulators such as norepinephrine12,46, dopamine47, and acetylcholine48. They are also con-
sistent with methodological studies, showing the statistical considerations of SA and TA10,49 and the ability of null
models to form complex networks30,50. SA is particularly important for the emerging literature on diverse cortical
gradients47. Furthermore, SA and TA are influenced by local circuit connectivity and properties such as intrinsic
timescale27,51. The influence of confounding physiological processes on SA and TAmust be better understood52,53,
including the link between TA and signal variability54, especially related to aging45. The hemodynamic response
function imposes not only temporal but also spatial filtering to the BOLD signal55, which could contribute to
changes in SA and TA due to age56 or serotonergic drugs57. Since anatomical structure serves as a scaffold for
SA and TA13,14, our test-retest reliability and fingerprinting performance could reflect individual differences in
brain morphology58,59. Similarly, differences in functional network organization across participants could lead to
reliable misalignment between parcel boundaries60,61, which would contribute to the reliability we observed in re-
gional TA-∆1. Our results showed that the regional homogeneity within a parcel, associated with many of these
structural and functional differences, was positively correlated with regional TA-∆1 but had varied ability to explain
fingerprinting performance. In the HCP dataset, it could not explain fingerprinting performance at all, whereas in
the Yale-TRT dataset, it had better fingerprinting performance than regional TA-∆1. This suggests that the strongest
underlying influences on TA-∆1 vary across datasets, which may explain the difference in model performance be-
tween the HCP and Yale-TRT datasets. TA also has a complex relationship with methodological factors, such as
TR. On one hand, a shorter TR causes samples to be more closely spaced in time, meaning that for smooth 1/f-like
power spectra, TA will increase. On the other hand, shorter TR may also result in a noisier signal, causing TA to
decrease. These differences, as well as the influence of preprocessing strategy, must be studied systematically in
order to compare TA across studies with different TRs.

In general, SA and TA constrain the dimensionality of the neural signal, and these dimensionality constraints
may explain their link to network topology. Previous work has shown lower-dimensional subspaces capture net-
work topology23,40, and we showed SA and TA align with these dimensions through the economic clustering model.
These dimensions may map onto other aspects of network topology, e.g., a high degree backbone and a lattice-like
background39. Graph metrics provide complex non-linear projections of these dimensions, making it possible to
compare topological properties between networks. The eigensurrogatemodel tested the broader question of whether
another FC matrix with equivalent linear dimensionality could reproduce graph metrics. While it did not perform
as well as our timeseries-based model on most datasets, it performed surprisingly well and even outperformed
our model on the Yale-TRT dataset, emphasizing the role of constrained dimensionality in shaping network topol-
ogy. Variations on the eigensurrogate method, including constraints on the eigenvectors, could yield insights into
individual variation in brain topology.

Our present study used a parcellated analysis, which limits the precision with which SA can be measured. Our
methods for computing both SA and TA scale well for voxel- or vertex-level analyses, but fitting the spatiotemporal
model is computationally intractable for parcellations with many nodes. SA-∞ is conceptually similar to mean-FC,
which has known links to aging58,62. It is also similar to global signal, but it remains reliable even after global
signal regression, and thus may represent spatial inhomogeneities in the global signal. Nevertheless, even this
parcellated analysis is sensitive enough to reveal features inaccessible to graph theoretical analysis. For example, in
our pharmacological experiments, our sample size of less than 25 participants did not show significance in graph-
theoretical measures, but changes in TA revealed highly significant differences in functional organization.

Our work highlights the need to always study complex properties, such as graph metrics, alongside simpler
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properties, such as SA and TA. In future studies using graph metrics, specific hypotheses must guide the careful
interpretation of graph metrics in light of SA and TA. Our work also highlights that graph metrics derived from rs-
fMRI networks cannot be directly interpreted as signatures of regional communication or information processing.
Our results may extend more generally beyond graph theory to other analyses of FC, including both resting-state
networks32,42 and task-related changes15,16. The use of our spatiotemporal surrogate model—and of previously pub-
lished spatially-24,63 and temporally-informed30 null models—could be applied more generally to high-dimensional
statistics in neuroimaging. Our work also highlights the informativeness of SA and TA about biological processes
such as aging and serotonergic tone. Historically, SA and TA have been considered confounds that need to be cor-
rected for. Our results suggest that SA and TA should not be treated as confounds, but rather, as essential informative
properties of the connectome.
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Figure legends/Captions (for main text figures)
Figure 1
Spatial and temporal autocorrelation are important features of rs-fMRI timeseries. (a) Diagram describing the
connectomic pipeline and graph metrics. (b) Correlation across all subjects in the HCP dataset, with Bonferroni
FWER corrected two-sided p-values. (c) Schematic demonstrating the calculation of SA-λ and SA-∞ (top) and
global TA-∆1 (bottom). To compute SA-λ and SA-∞, FC values are binned across distances D and the curve
SA-∞ + (1 − SA-∞) exp(−D/SA-λ) is fit to the binned data. To compute global TA-∆1, the Pearson correlation
is taken between the timeseries and the timeseries shifted by one timepoint. (d) Test-retest reliability of graph
metrics, quantified by intraclass correlation coefficient (ICC). Error bars indicate 95% CI. Following each bar is a
string of three characters indicating significance: the first indicates significantly less than SA-λ, the second SA-∞,
and the third global TA-∆1, where # indicates p<.01, + indicates p<.05, and - indicates p>.05, by a two-sided
bootstrap resampling procedure. Inset scatterplots show correlation across subjects for two example sessions. (e)
Correlation across subjects between graph metrics and SA-λ, SA-∞, or global TA-∆1. “SA-λ + SA-∞” and “all”
indicate a cross-validated linear model with two or three terms, respectively, using N=334 unrelated subjects to
avoid relatedness confounds and Bonferroni FWER corrected two-sided p-values. (f) The brain map depicting
regional TA-∆1, averaged across all subjects. (g) Distribution of reliability for each brain region. (h) Reliability of
regional TA-∆1 is plotted across brain regions. (i) Mean fraction of subjects correctly identified by a fingerprinting
analysis. Points indicate identification performance on each of six possible test-retest pairs from the four sessions.
(j) Correlation across regions of regional TA-∆1 with nodal graph metrics for each subject. (k) The regional TA-∆1
for each region, from (f), is plotted against its reliability, from (h). For all subpanels, unless otherwise indicated,
N=883 subjects, * indicates p<0.05 and ** indicates p<0.01, and boxplots indicate the median, first/third quartiles,
and range, with outliers hidden for visualization.

Figure 2
A spatiotemporal model captures connectome topology. (a) Schematic of our spatiotemporal modeling frame-
work for surrogate timeseries with SA and regionally heterogeneous TA. (b) Log-log distribution of the eigenval-
ues of the FC matrix for an example subject (black) compared to the spatiotemporal model (red). (c) A schematic
demonstrating Lin’s concordance, our model fit statistic, on example data. Values close to one indicate both a
correlation and a close match in value (gray). Values close to zero either indicate no correlation (pink) or a large
squared error (brown). (d) Example FCmatrices (top) and graphs (bottom) for the original data (black) and for each
model (colors). Graphs are visualized using a force-directed layout, which positions topographically neighboring
nodes nearby. (e) Lin’s concordance between model and data for each model. Bars represent the mean across the
four scanning sessions, and points indicate the Lin’s concordance between the model and data for each session. For
comparison, black indicates Lin’s concordance between separate sessions from the same subject, where dots indi-
cate pairs of sessions. (f) Log-log degree distribution for each model compared to the data (black). (g) Distribution
of Lin’s concordance of nodal metrics between model and data for each region. Boxplots show median, first/third
quartiles, and range, with outliers hidden for visualization, N=883.

Figure 3
Correlation of model and data graph metrics for all models.

For each model, each subject’s empirical graph metrics are plotted against the graph metrics predicted by the
spatiotemporal model. These scatterplots depict the relationships summarized by Lin’s concordance in Figure 2e for
the HCP dataset. Spearman correlation (rs) and Lin’s concordance (Lin) are inset. * indicates Spearman correlation
two-tailed p<.05, and ** indicates p<.01.

Figure 4
Spatial autocorrelation links functional connectome topology to neurobiology during aging. (a) Partial cor-
relation of graph metrics with age is shown, controlling for motion. Asterisks indicate two-tailed significance of
partial correlation (p<.05, N=652). Error bars show 95% CI. (b) The spatiotemporal model can be perturbed to
test whether each SA parameter mediates aging. (top) Subject data predict global efficiency and kurt-FC decrease
with age, whereas var-FC increases with age. The SA-∞ and SA-λ parameters were separately perturbed in the
spatiotemporal model according to how they change with age. The mean predicted change of each metric with age
is shown if the age-related changes are due to SA-∞ alone (middle) or SA-λ alone (bottom). Error bars show stan-
dard error across 10 runs of the model. The direction (positive or negative) of the change with age corresponds to
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the data for SA-∞ but not SA-λ. (c) Partial correlation of regional TA-∆1 with age is shown for each region, partial
on motion. (d) Mean partial correlation of regional TA-∆1 with age across brain regions, partial on motion, N=646
subjects. Boxplots indicate the median, first/third quartiles, and outlier-excluded range of partial correlation distri-
bution. ** indicates p<.01 significant partial correlation, after Bonferroni FWER correction. (e) Partial correlation
of measures with the ACE-R assessment, partial on motion and age. Top: Partial correlation with SA and global
TA. SA-λ and SA-∞ are significant after Bonferroni FWER correction, and global TA-∆1 is not. Bottom: Var-FC
was the only weighted or unweighted graph metric which was significant after Bonferroni FWER correction. Error
bars show 95% CI. ** indicates p<.01, * indicates p<.05, two-sided Wilcoxon signed-rank test with Bonferroni
FWER correction.

Figure 5
Pharmacological administration of serotonergic drugs causes changes in TA. (a) Cortical maps showing the
mean difference in regional TA-∆1 between drug and placebo at early (left) and late (right) timepoints. Purple indi-
cates lower regional TA-∆1 in the drug than placebo conditions (LSD N=24, Psilocybin N=23). (b) Change in the
regional TA-∆1 mean across subjects. Boxplots show the median, first/third quartiles, and outlier-excluded range
of the distribution of regional TA-∆1 mean across subjects for different regions. * indicates p<.05, ** indicates
p<.01, two-sided Wilcoxon sign-rank test. (c) Similarity, measured by Spearman correlation, between “drug minus
placebo” cortical maps for each drug and timepoint. * indicates p<.05, ** p<.01, two-tailed permutation test cor-
recting for spatial autocorrelation11 and Bonferroni-Holm correction for FWER. (d) The first right singular vector
(SV) across all drug minus control contrasts for all subjects. Right top: variance explained by the first SV averaged
across each drug condition. Right bottom: the SV score averaged across each condition. Boxplots show the median,
first/third quartiles, and outlier-excluded range of the distribution. * indicates p<.05, ** p<.01, two-sided Wilcoxon
signed-rank test, N=646 subjects.
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Methods

Our research complies with all relevant ethical regulations, as approved by the Washington University institutional
review board, the Yale University institutional review board, the Cambridgeshire 2 Research Ethics Committee, the
Cantonal Ethics Committee of Zurich, and the Swiss Federal Office of Public Health, Bern, Switzerland.

Datasets We analyzed the following datasets, which comprise a diversity of preprocessing steps and experimental
methodologies, including different parcellations, sampling rates, spatial and temporal smoothings, covariate regres-
sions, and noise removal strategies. Preprocessing methodology for each dataset was intended to be as faithful as
possible to the “standard” pipeline of the dataset, showing the generality of our conclusions across preprocessing
strategies. Since data were not collected specifically for our study, we used the maximum possible sample size for
available data. Our team has substantial experience with these datasets7,20,43,64,65.

Human Connectome Project (HCP) A total of 883 subjects aged 22-37 (459 female) from the Human Connectome
Project 1200 subject data release underwent four resting-state scanning sessions spread across two days. Subjects
provided informed consent and were compensated for participation. Resting-state scans lasted for 14.4 minutes with
a TR of 0.72 s (sampling rate of 1.39 hz). Data were preprocessed with the Human Connectome Project minimal
preprocessing pipeline. This includes distortion correction using the field map, realignment for head motion, and
registration to T1 images. Data were further denoised using ICA-FIX, a technique based on independent component
analysis to remove structured noise. A high-pass filter was applied at 0.01 hz. Data were parcellated into 360 regions
(180 per hemisphere)19 with multimodal surface matching based on MSMAll66, and with 2 mm FWHM surface
spatial smoothing constrained to the parcel. The first 100 timepoints were removed to ensure steady state, consistent
with prior work64. Because many HCP subjects are genetically related, we used a subset of 334 unrelated subjects
where indicated to avoid this potential confound. When using geodesic distance instead of Euclidean distance, we
used only the right hemisphere (180 regions).

HumanConnectome Project withGlobal Signal Regression (HCP-GSR) Subjects and scan parameters are identical
to the HCP dataset, but global signal regression was added as a preprocessing step before parcellation. Additionally,
we did not truncate the first 100 TRs, for a total of 1200 timepoints. 33 additional subjects were excluded due to
nonconvergence in the global signal regression pipeline for a total of 850 subjects.

Yale Test-Retest A total of 12 subjects (6 female) aged 27-56 were scanned on four different days, and six 6-minute
sessions were performed each day. Subjects provided informed consent and were compensated for participation.
Each subject was scanned on two scanners, two days on each scanner, on days spaced approximately one week apart.
Thus, half of the scanning sessions for each subject were performed on a different scanner. Scanning sessions lasted
6 minutes each with a TR of 1.0 (sampling rate 1.0 hz). Motion correction was applied, and images were spatially
smoothed to achieve uniform spatial smoothness of a 2.5mm Gaussian kernel67,68. Images were coregistered to
a common subject-specific space across days, and subsequently into MNI space, and parcellated using the Shen
parcellation69.

High pass filtering was performed by regressing out linear, quadratic, and cubic trends, and low pass filtering
was performed with a Gaussian kernel with cutoff frequency of 0.19 hz. Mean white matter, mean cerebrospinal
fluid, mean global signal, and a 24-parameter motion model were also regressed out of the data. No subjects,
sessions, or regions were excluded.

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) A total of 652 subjects aged 18-88 (326 female) were
scanned using a TR of 1.97 s (sampling rate 0.508 hz). Subjects provided informed consent and were compensated
for participation. We utilized the standard preprocessing pipeline and parcellation provided by the Cam-CAN
project21,70. In summary, scans underwent motion correction and slice time correction before coregistration to T1
images and normalization to MNI space with DARTEL. We utilized the default AAL parcellation provided by the
Cam-CAN project71. We also applied a second-order Butterworth low-pass filter at half the Nyquist frequency
(0.127 Hz) to account for high-frequency motion artifacts. We excluded six subjects and one cerebellar region due
to missing data, for a grand total of 646 subjects with 115 regions in the parcellation.

LSD dataset The study utilized a double-blind randomized design7. Subjects provided informed consent and were
compensated for participation. On each of the three days, N=24 participants aged 20-34 (5 female) received one of
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the following treatments: (a) placebo (179 mgMannitol and 1 mg Aerosil, orally) pretreatment followed by placebo
(179 mg Mannitol and 1 mg Aerosil, orally) treatment; (b) placebo (179 mg Mannitol and 1 mg Aerosil, orally)
pretreatment followed by LSD (100 µg, orally); and Ketanserin (40 mg, orally) pretreatment followed by LSD
(100 µg, orally) treatment. Pretreatment was given 60 minutes before the treatment. The “early” resting-state scan
occurred 75 min after treatment, and the “late” scan 300 min after treatment. Data were acquired with TR=2500
ms (sampling rate 0.4 hz). 25 subjects were enrolled in the study. One subject was excluded for technical faults in
the data for a total of 24 subjects.

We utilized the same preprocessing pipeline described in Ref.7, which is summarized below. First, the data
were subject to the HCP minimal preprocessing pipeline. This involved correction for field inhomogeneities, phase
encoding directions, and magnetic susceptibility artifacts, as well as motion correction and registration to structure
images with non-brain tissue masking. Data were high pass filtered (>.008 hz). Several nuisance variables were
regressed out: average signal in the ventricles, average signal in deep white matter, motion parameters, and the
mean timeseries across gray matter (i.e. the global signal), as well as the first derivative of each of these. Data were
motion scrubbed, identifying outlier frames as either frames with a summed framewise displacement over 0.5 mm,
or a RMS of differences in intensity of subsequent frames over 1.6 times the median. All outlier frames, the one
frame preceding them, and two frames following them, were excluded from analysis. Lastly, data for cortex were
parcellated into 360 regions according to the Glasser parcellation19. To ensure scrubbed frames did not impact
TA-∆1 calculations, TA-∆1 was computed only on consecutive segments involving no dropped frames, such that
TA-∆1 was a weighted average of the TA-∆1 of each consecutive segment, weighted by the degrees of freedom of
that segment. The long distance correlation parameter d was not computed on scrubbed data.

Psilocybin The study utilized a double-blind randomized design43, where 23 participants aged 20-40 (11 female)
were scanned two separate days. Subjects provided informed consent and were compensated for participation. On
each day, participants received either placebo (179 mg Mannitol and 1 mg Aerosil) or psilocybin (0.2 mg/kg),
administered orally. rs-fMRI was performed at three timepoints following psilocybin administration: “immediate”,
performed 20minutes after administration, “early” after 40minutes, and “late” after 70minutes. Data were acquired
with TR=2430 ms. 24 participants were enrolled in the study. One participant was excluded due to a missing scan,
for a total of 23 participants. This sample size was determined based on the prior LSD study7.

Data preprocessing was identical to that of the LSD dataset described above.

Estimating spatial autocorrelation We quantified spatial autocorrelation by decomposing it into two compo-
nents: the rate at which correlations decrease exponentially with distance (SA-λ), and the spatially-invariant level
of correlation to which it decays (SA-∞). This can be described quantitatively as

corr(xi, xj) = SA-∞ + (1 − SA-∞)e−Di, j/SA-λ (1)

where xi is the timeseries for region i, Di, j is the Euclidean distance between regions i and j, and corr is the Pearson
correlation. The quantities SA-λ and SA-∞ are constants and do not depend on i or j.

We estimated the parameters SA-λ and SA-∞ for each subject as follows. For each pair of brain regions, we
computed both their physical Euclidean distance (from the region’s centroid) as well as their Pearson correlation
coefficient. In this study, we used Euclidean distance rather than geodesic distance as our primary distance measure
because Euclidean distance is defined across cortical hemispheres and within subcortex. However, geodesic and
other distance measurements can be used instead, and produce similar results in practice (Figure ED7). We binned
each pair of brain regions according to their Euclidean distance, using 1 mm bins for the HCP, HCP-GSR, LSD,
and Psilocybin datasets, and 5 mm bins for the TRT and Cam-CAN datasets due to the fewer number of parcels. We
then computed the mean Pearson correlation of pairs in each bin to generate correlation vs distance curve (Figure
1a). We then found the least square fit of Equation 1 to this curve, optimizing with gradient descent, bounding SA-λ
between 0 and 100 and SA-∞ between -1 and 1. While it is possible to fit Equation 1 directly to the distance and
correlation of each pair without binning, our approach puts more weight on nearby and distant correlations, which
are less represented in the data but most critical for determining SA-λ and SA-∞.

To account for heteroskedasticity in SA-λ for the Cam-CAN dataset, we analyzed the logarithm of this parameter
for this dataset.
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Estimating temporal autocorrelation Our primarymeasure of temporal autocorrelation, TA-∆1, is a non-parametric
measurement computed by taking the Pearson correlation of neighboring timepoints in the parcellated timeseries,
i.e., for a timeseries x[t], we have corr(x[t], x[t + 1]). This measure is computationally efficient, and can be imple-
mented with only a few lines of code. However, TA-∆1 is not comparable across datasets due to differing TR.

For datasets which included motion scrubbing, we computed TA-∆1 only on consecutive regions without
scrubbed frames. More specifically, we split each timeseries into fragments at the location of the scrubbed frames.
Then, we computed TA-∆1 on each fragment and took the weighted average. More formally, for each timeseries
fragment xi of length `i, TA-∆1 was computed as

TA-∆1 =
∑
i

corr(xi[t], xi[t + 1])
`i − 1∑
j(`j − 1)

.

Estimating long memory dynamics fMRI timeseries are thought to show characteristics of a long memory
process. In other words, time points which are separated by a large lag show a high correlation72–74. These processes
are often characterized by their autocorrelation function (ACF). For a timeseries x, the autocorrelation function is
defined as

ACFx(k) = corr(x[t], x[t + k])

where corr is the Pearson correlation and k is the lag at which to evaluate the ACF. Long memory processes have
an ACF which decays slowly across lags, meaning that relatively high correlations exist even at large lags. In this
work, we use TA-∆1 as our primary measure of temporal autocorrelation, which is identical to the lag-1 term of
the ACF, ACFx(1).

To evaluate the ability of the first term of the ACF to predict higher terms of the ACF, we divided the data into
10 randomly selected subsets for the HCP and Cam-CAN datasets, and 12 subsets for the TRT data. We fit the
regression model

ACFx(k) = β0 + β1TA-∆1

to one of these subsets. Then, we evaluated the R2 of the model on each of the other subsets. Note that this is a more
“difficult” prediction than traditional k-fold cross validation, as it uses less training data to make the predictions.
We evaluated this fit on the remaining subsets.

As a more direct measure of long-memory dynamics, we analyzed the fractional integration constant d from
an ARFIMA model, frequently used to capture long memory dynamics. One attractive property of d is its close
relationship to other measures of long memory dynamics such as the Hurst exponent H—under specific conditions,
there is a one-to-onemapping75 given by H = d+0.5. Following previous work, we estimated d through a univariate
wavelet-based Whittle estimator76,77. We restrict our analyses of d to the HCP, TRT, and Cam-CAN datasets, since
they did not use motion scrubbing in their preprocessing pipeline. Under specific assumptions, the relationship
between d and TA-∆1 can be described analytically78,79. Consistent with prior work, TA-∆1 is representative of the
first and higher lag terms of the ACFHassai2012, 74,78,80.

FC and graph construction We defined the FC matrix ρi, j as the matrix of Pearson correlation coefficients
ρi, j = corr(xi, xj) between each pairwise combination of regional timeseries xi and xj .

We constructed unweighted, undirected graphs from model or data FC matrices using standard techniques3,81.
We first constructed a spanning tree backbone to ensure connectedness by transforming each element of the FC
matrix ρi, j by

√
2(1 − ρi, j)—an operation which turns the correlation similarity measure into a distance82—and

then applying Kruskal’s algorithm to find the minimum spanning tree83. We iteratively added the strongest edges
in the FCmatrix to the spanning tree until the graph contained 10% of all possible edges (proportional thresholding).
This produced an unweighted, undirected graph with a fixed number of edges.

Quantifying reliability We quantify univariate reliability using the intraclass correlation coefficient (ICC). ICC
measures the reliability of a particular scalar measure across subjects37,84. Let N be the total number of subjects,
M be the number of sessions per subject, and γmn be some scalar measure of interest for session m of subject n.
Similar to an ANOVA, ICC decomposes the variance across subjects into variance from a common source, σ2

γ ,
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and noise, σε , by assuming that γ can be decomposed into a subject-specific term γn and a noise term εn,m, i.e.,
γmn = γn + εn,m. Then, the ICC is defined as the fraction of variance explained by the subject-specific term, i.e.,

ICC =
σγ

σγ + σε
.

In theory, there are generalizations of ICC which can accommodate additional sources of variance. Here, we
use the simplest form, ICC(1,1)37. Significance compared to zero and confidence intervals were computed using
the formulas from Ref.85. Significant differences between ICC values was computed using bootstrapping. Data
distribution was assumed to be normal but this was not formally tested.

We quantify multivariate reliability using fingerprinting, similar to that performed in Ref.20,34,86. Let γmn be
a vector describing some measure (e.g. regional TA-∆1) from a single session m ∈ {1 . . . M} for subject n ∈
{1 . . . N}. For each session m of each subject n, we compute

Γ(n,m) = argmax
n′

(
max

m′,(n,m),(n′,m′)
corr(γmn , γ

m′

n′ )

)
,

where corr is Pearson correlation. The fingerprinting performance is given by

1
N M

∑
m,n

IΓ(n,m)=n,

where I is the indicator function. Under this measure, chance performance is (M − 1)/(N M − 1). For regional
measures, the length of vector γmn was equal to the number of regions in the parcellation R. For FC, the length of
γmn was R(R − 1)/2, i.e. the number of distinct elements in the FC matrix.

In the HCP and HCP-GSR datasets, subjects were scanned four times over two days. For computing ICC, we
used M = 4. For fingerprinting, in order to obtain error estimates and increase the difficulty of fingerprinting, we
performed fingerprinting on each possible pair of sessions 1-4 (M = 2, performed six times, instead of M = 4
performed once). This means each session had only one correct match of the 1765 sessions in the pool, compared
to 1 correct match for 126 in the pool in Ref.34. In the TRT dataset, subjects were scanned in six sessions across
four different days for a total of 24 sessions per subject. Likewise, we used M = 24 to compute ICC. By contrast,
we performed fingerprinting for each session independently (i.e. M = 4 performed six times instead of M = 24
performed once), so subjects had 3 correct matching sessions out of 47 in the pool. Without such increases in
difficulty on these datasets, fingerprinting performance was near 100%. We could not compute ICC or perform
fingerprinting on the Cam-CAN dataset, since only one rs-fMRI session was acquired per subject.

Regional homogeneity Regional homogeneity estimates how similar a voxel’s timeseries is to its neighbors87.
Here, since we used a parcellated analysis, we tested the homogeneity of the voxels within a parcel. Following stan-
dard practice, we defined regional homogeneity as the Kendall’s W of timeseries within a parcel. More concretely,

ReHo =
12

k2(n3 − n)

n∑
i=1

©«
k∑
j=1

ri, j − kTn/n
ª®¬

2

where ri, j is the rank of the i’th timepoint in the j’th voxel, k is the number of voxels in the parcel, n is the number
of timepoints, and Ti is the i’th triangular number.

Lin’s concordance Lin’s concordance88 measures howwell one variable reproduces another variable. In general,
there are multiple ways for variables to be related to each other. On one hand, they can be correlated with each
other, meaning that that variation in one corresponds to variation in the other. This is generally quantified using
the Pearson correlation coefficient. On the other hand, it is possible for two variables to have very different values
while still being highly correlated. In this case, there would be a high Pearson correlation coefficient while also
having a high mean squared error. Lin’s concordance addresses this issue by modifying the definition of Pearson’s
correlation to account for differences in the values of the variables, returning its maximum only if the data have
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both a high Pearson correlation and a low mean squared error. In other words, it measures the scaled distance of
the sample from the unity line in the scatterplot. Lin’s concordance is defined for two samples x1 and x2 as

2cov(x1, x2)

var(x1) + var(x2) + (x̄1 − x̄2)2

where x̄ is the mean of x. Alternatively, it can be formulated as a reweighted version of the Pearson correlation,
using the equivalent definition

corr(x1, x2)
2
√
var(x1)

√
var(x2)

var(x1) + var(x2) + (x̄1 − x̄2)2
.

Like Pearson correlation, Lin’s concordance can take values ranging from -1 to 1. It is 1 if and only if the
variables are identical. It is close to zero if there is no correlation, or if the means or variances of the two populations
differ. This can be seen in the second definition based on Pearson correlation, where the weight on the Pearson
correlation becomes 1 as the means and variances of x1 and x2 approach each other. Likewise, Lin’s concordance
is negative if the means and variances are similar but the Pearson correlation is negative.

Weighted graph metrics We consider three weighted graph metrics: the mean (mean-FC), variance (var-FC),
and kurtosis (kurt-FC) of the FC matrix. Each is calculated by finding the corresponding statistic (mean, variance,
or kurtosis) of the upper triangular portion of the FC matrix, excluding the diagonal. In other words, for the FC
matrix M , this is the mean, variance, and kurtosis of the setM = {mi, j : i < j}.

Note that the thresholding procedure destroys all explicit information about mean-FC, var-FC, and kurt-FC. To
understand why, recall that the thresholding procedure keeps a fixed fraction of edges. Thus, if we threshold an FC
matrix, the number of edges only depends on the fixed fraction of edges we keep. For an FC matrix of size N , if
we keep q fraction of edges, then the moments are identical to those of the binomial distribution: mean-FC of the
thresholded matrix is q, the variance is q(1 − q), and the kurtosis is 1/pq − 6. Therefore, no explicit information
remains about mean-FC, var-FC, or kurt-FC after thresholding.

Because TA can be measured for individual nodes, we also consider how it impacts local topology. To do this,
we also define the corresponding nodal graph metrics for each which operates on rows of the FC matrix instead of
the upper triangle: nodal mean-FC, the mean of the row; nodal var-FC, the variance of the row; and nodal kurt-
FC, the kurtosis of the row. We exclude self-connectivity (i.e. the diagonal of ones in the FC matrix) from these
calculations. Thresholding does not destroy nodal mean-FC, nodal var-FC, or nodal kurt-FC.

Unweighted graph metrics We consider six popular graph metrics to quantify the topology of the connectome4:

Assortativity Assortativity is a preference of high-degree nodes, or hubs, to connect to each other. Mathematically,
this is the Pearson correlation between the degree of nodes connected by edges89.

Clustering coefficient The clustering coefficient for a single node is the average relative number of triangles around
a node. For adjacency matrix A, the nodal clustering coefficient for node i is

1(∑
j

Ai, j

) ((∑
j

Ai, j

)
− 1

) ∑
j,k, j,k

Ai, j Aj,k Ai,k .

The clustering coefficient for the network is the average of the nodal clustering coefficients.

Global efficiency The global efficiency is related to the average topological distance between nodes. Mathemati-
cally, it is the mean of the inverse of shortest path lengths between each pair of nodes, i.e.

1
N(N − 1)

∑
i, j,i,j

1
si, j

,

where si, j indicates the shortest path between nodes i and j and N is the number of nodes90.

Local efficiency Local efficiency, similar to clustering, is the mean global efficiency on the subgraph of each node’s
nearest neighbors90.
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Modularity Modularity quantifies the ability to break a network into “communities” such that the number of edges
within the community is maximized and outside the community is minimized. Let Ci be some community assign-
ment of node i, and δ be the Kronecker delta function. We can compute the quality of the community assignment
Ci with the equation ∑

i, j,i,j

(2Ai, j − 1)(2δ(Ci,Cj) − 1).

The first term in the sum is 1 if the neurons are connected and -1 if they are not, and the second term is 1 if they
are in the same community and -1 if they are not. Thus, this can be maximized if connected nodes fall into the
same community and unconnected nodes do not. The modularity is defined as the maximum value of this function
across all potential community assignments {Ci}i, rescaled to fall between -0.5 and 191

Transitivity The transitivity is the total number of number of 3-way reciprocal connections compared to the total
possible number of such connections, i.e.,

1∑
i

(∑
j

Ai, j

) ((∑
j

Ai, j

)
− 1

) ∑
i, j,k,i,j,k

Ai, j Aj,k Ai,k

Note that this is distinct from local efficiency because it considers the network as a whole rather than considering
each node i individually and then averaging.

In addition to considering these graph metrics, we also consider two nodal graph metrics:

Degree The degree is a nodal metric which measures the total number of edges connected to a node, i.e.,

degree(i) =
∑
j

Ai, j

Centrality Betweenness centrality is a nodal metric which measures the faction of shortest paths between all pairs
of nodes in a network which pass through the given node. It does not have a closed form equation and must be
computed using an algorithm92.

Graph metrics linear model To quantify the impact of SA and TA jointly, we utilized a linear model. We fit the
“SA-λ + SA-∞” model

metric = β1SA-λ + β2SA-∞

or the “All” model
metric = β1SA-λ + β2SA-∞ + β3TA-∆1

on 50% of the data, randomly chosen from all sessions. Shown in Figure 1e and Figure ED1 is the Spearman
correlation of the 50% held-out data with the predictions of this linear model. We used Spearman correlation
instead of R2 for fair comparison SA-λ, SA-∞, and global TA-∆1 individually. Because the fit uses held-out data,
the correlation with the linear model does not necessarily need to be higher than the correlation with any of the
individual factors in the model. Since many HCP subjects are related, we used only 334 unrelated subjects to avoid
the relatedness confound in our analysis, meaning there were 167 subjects in the training and test sets.

Correlated spectral sampling The spatiotemporal model relies on generating spatially autocorrelated timeseries,
each with a given power spectrum. We introduce the correlated spectral sampling algorithm to produce a set of
timeseries related by a given covariance matrix, where each timeseries has a given power spectrum.

Diverse methods of generating timeseries which exhibit both TA and SA already exist, such as vector autore-
gressive (VAR) and Ornstein-Uhlenbeck processes. These models directly simulate timeseries in the time domain,
introducing TA and SA locally. However, prior research demonstrating powerlaw dynamics in fMRI data72–74 sug-
gests that VAR and similar models are inadequate for our purposes, as they are unable to model complex power
spectral properties. More complex variants of these models, such as VARFI and FIVAR, are able to capture long
memory dynamics, but they are unable to simulate from arbitrary power spectra76.
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Instead, we seek to generate power spectra which represent the tradeoff between long-memory dynamics, i.e.
filtered 1/ f α noise for frequencies above 0.01 hz, and optional white noise, with a flat power spectrum. To in-
troduce SA in our method, we spatially embed these timeseries with a given covariance matrix C. In our case, C
is given in Equation 2. The usual method of spatially embedding timeseries with a given covariance matrix C is
to multiply them by the matrix square root of C, equivalent to sampling from a multivariate normal distribution.
However, this process involves the linear combination of distinct timeseries, which changes their power spectra,
destroying the desired power spectrum. To avoid this confound, we introduce the correlated spectral sampling
algorithm, a generalization of Ref.93, which is able to produce correlated timeseries with arbitrary power spectra.
Correlated spectral sampling can alternatively be seen as a generalization of phase randomization to obtain specified
correlational structure.

Algorithm: Correlated spectral sampling Let N be the number of desired timeseries, and let T be the
even length of the desired timeseries. Given an N×N correlation matrixCi, j and a set of power spectra
|Xi[k]|2, we seek to generate a set of timeseries {x1[t], . . . , xN [t]} such that each timeseries xi[t] has
a specified estimate of the power spectrum |Xi[k]|2 and the correlation matrix of the resulting time-
series has expected value Ci, j . Correlated spectral sampling operates by generating a set of complex
frequency-domain coefficients in the domain [−T/2 + 1,T/2], introducing SA and TA independently,
and then performing an inverse discrete Fourier transform to create the desired set of timeseries.

1. Pick the desired power spectra estimates {|X1[k]|2, . . . , |XN [k]|2}, representing the desired tem-
poral structure, and N×N correlation matrixC, representing the desired spatial structure. These
choices must satisfy the requirement that the matrix

Σi, j =
Ci, j

sim(|Xi[k]|, |Xj[k]|)

is positive semi-definite, where sim denotes cosine similarity, i.e.,

sim(|Xi[k]|, |Xj[k]|) =

∑
k

|Xi[k]| |Xj[k]|√∑
k

|Xi[k]|2
√∑

k

|Xj[k]|2
.

2. For each region n ∈ {1, . . . , N}, and for each frequency k in the positive sub-Nyquist Fourier
domain, 1 ≤ k ≤ T/2, sample two vectors from a multivariate normal distribution aR

n [k], a
I
n[k] ∼

N(0, Σ).
3. Set aI

n[T/2] = 0 for all n. Because T is even, by way of symmetry the frequency-domain coeffi-
cients of the Nyquist frequency must be real. Set aI

n[0] = 0 so that the resulting timeseries will
be real.

4. Form the complex frequency-domain coefficients by letting cn[k] = |Xi[k]|(aR
n [k] + iaI

n[k]) for
0 ≤ k ≤ T/2, and cn[−k] = cn[k] for 0 < k < T/2.

5. Perform an inverse discrete Fourier transform for each cn[k] to obtain the timeseries xn[t].

Each of the resulting timeseries xi[t] will have a frequency spectrum approximately equal to |Xi[k](aR
n [k] +

iaI
n[k])|

2 = |Xi |
2, the desired temporal structure. The proof of this algorithm is given in Supplement 1.1.

Relationship between TA-∆1 and power spectra In addition to correlated spectral sampling, defining the spa-
tiotemporal model requires us to determine the precise relationship between TA-∆1 and the power spectrum, with
a specific focus on the case when the original timeseries is mixed with white noise.

Suppose we have a finite timeseries x[t] with discrete Fourier transform X[k]. Then, its TA-∆1 is

corr(x[t], x[t + 1]) =
1∑N−1

k=1 |X[k]|
2

N−1∑
k=1
|X[k]|2 cos(2πk/N).
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A proof is provided in Supplement 1.2. Importantly, for a fixed length timeseries with a 1/ f α power spectrum,
this formula implies a bijective relationship between α and TA-∆1 in the domain α ∈ [0, 2].

Additionally, adding white noise will cause a change in the power spectrum, and hence, will change TA-∆1.
For a finite timeseries y[t] = x[t] + w[t] where w[t] ∼ N(0, σ) of length N ,

E[corr(y[t], y[t + 1])] =
1

Nσ2 +
∑N−1

k=1 |X[k]|
2

N−1∑
k=1
|X[k]|2 cos(2πk/N).

A proof is provided in the Supplement 1.3. Note that this formula implies that, as the amount (or variance) of
white noise is increased, the TA-∆1 approaches zero.

Spatiotemporal model The spatiotemporal model generates surrogate timeseries which can be analyzed like rs-
fMRI timeseries. It takes two parameters—the noiseless SA-λ (SA-λgen), and the noiseless SA-∞ (SA-∞gen)—and
also uses two pieces of information from the data—the TA-∆1 φi from each region i, and the Euclidean distance
Di, j between the centroids of each pair of regions i and j.

The model operates in two basic steps. First, we generate random timeseries which are both spatially and
temporally autocorrelated. For this first step, all timeseries have uniformly high TA, and SA is determined by the
parameters SA-λ and SA-∞. Using correlated spectral sampling, we generate N high-pass filtered (cutoff frequency
0.01 hz, 4th order Butterworth filter) Brownian noise timeseries (frequency spectrum 1/ f 2) of length T such that,
for timeseries xi[t] and xj[t], we have

E(corr(xi[t], xj[t])) = SA-∞gen + (1 − SA-∞gen)e−Di, j/SA-λgen (2)

where corr is the Pearson correlation, similar to Equation 1. The matrix consisting of all such expected correlations
between regions i and j forms the matrix Ci, j required by correlated spectral sampling, such that

Ci, j = E(corr(xi[t], xj[t])).

For non-negative SA-∞gen, Ci, j will be positive semidefinite.
Second, we reduce the temporal autocorrelation of each timeseries to match that of the original data. Brownian

motion timeseries have high TA and adding white noise to a timeseries reduces TA, so we add white noise to each
timeseries x[i] until the TA-∆1 of the timeseries is equal to the empirical TA-∆1 φi. Thus, we have to choose
a distinct amount of noise to add to each timeseries such that corr(xi[t], xi[t + 1]) = φi. We update xi[t] ←
xi[t] + N(0, σ2(φi)) for some function σ2(φi) given by

σ2(φ) =
1

N2φ

N−1∑
k=1
|X[k]|2 (cos(2πk/N) − φ) . (3)

where N is the length of the timeseries. The derivation of this formula is provided in Supplement 1.3. The function
σ2(φi) is defined for φi > 0, and the variance of a random variable must be non-negative, so φi is truncated such
that φi ≥ 0.0001 and σ2(φi) ≥ 0. Note that SA-λgen and SA-∞gen are parameters of the underlying process, and
differ from the SA-λ and SA-∞ of the generated timeseries due to the addition of noise. The resulting timeseries
exhibit a spatial embedding given by the parcel centroid distances Di, j and parameters SA-λgen and SA-∞gen, and
have regional TA-∆1 equal to the original timeseries.

Model variants We test several variants of the model to determine the importance of three key components of
the model: added uncorrelated noise, TA, and SA.

TA only This model modifies the spatiotemporal model to remove the spatial embedding. Specifically, it fixes the
parameters SA-λgen and SA-∞gen to 0, such that corr(xi[t], xj[t]) = Ii=j where I is the indicator function. It takes
no parameters.

SA only We generate random multivariate Gaussian noise with mean zero and covariance matrix

Ci, j = SA-∞gen + (1 − SA-∞gen) exp
(
−Di, j/SA-λgen

)
similar to Equation 1. It takes two parameters, SA-λgen and SA-∞gen. Unlike the spatiotemporal model, E(SA-λ) =
SA-λgen and E(SA-∞) = SA-∞gen.
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Intrinsic timescale with SA In our spatiotemporal model, we make sure timeseries have the desired TA-∆1 by
generating timeseries with uniformly high TA-∆1, and then adding different magnitudes of white noise to each
timeseries to match TA-∆1 to the original timeseries. In this model, we do not add white noise to the timeseries.
To match TA-∆1 to the original timeseries, we generate timeseries directly with matched TA-∆1. This is possible
because correlated spectral sampling does not require the timeseries’ power spectra to be identical. Thus, we achieve
this diversity in TA-∆1 by assuming each timeseries has a filtered pink noise (1/ f α) temporal dynamics. Then, for
each timeseries i, we find an exponent αi such that the high pass filtered 1/ f αi spectrum has expected TA-∆1 φi.

The success of this procedure requires us to choose αi such that the high pass filtered 1/ f αi spectrum has TA-∆1
equal to φi. The mapping φi → αi can be determined by numerically inverting the αi → φi mapping implied by
Supplement 1.2. High pass filtering is performed at the level of the power spectrum by multiplying the square of
the amplitude response of the filter by the power spectrum. Additionally, in this model, it is possible to determine
the SA-λgen and SA-∞gen parameters directly from the data, without the need to fit parameters, using correlated
spectral sampling. As in the “SA only” model, E(SA-λ) = SA-λgen and E(SA-∞) = SA-∞gen.

Thus, in summary, this model makes the following modifications to the spatiotemporal model: (1) rather than
simulating random walks (1/ f α where α = 2), the spectral exponents αi for each region i are chosen such that the
resulting TA-∆1 is equal to each region’s TA-∆1 value; and (2) no noise is added to the powerlaw timeseries.

Homogeneous TA-∆1 To allow SA and TA to be independently manipulated, we developed a homogeneous variant
of the spatiotemporal model which treats TA as a parameter. Rather than use TA-∆1 values computed from the
original timeseries, this model uses a single fixed value of TA-∆1, TA-∆

gen
1 , for all regions. For simplicity, we fixed

SA-∞gen to be the mean SA-∞ across all networks. Thus, the model takes two parameters: TA-∆gen1 and SA-λgen.

Eigensurrogate model Due to our use of eigenvalues for fitting, we developed the eigensurrogate model to test
whether eigenvalues alone are capable of reproducing a phenomenon (Figure ED6). This tests the null hypothesis
that an effect can be explained by its linear dimensionality. Unlike most of the other models we considered, this
produces surrogate FC matrices instead of surrogate timeseries.

We first performed an eigendecomposition of the correlationmatrix (FCmatrix), and then applied the procedure
of Ref.94. Briefly, we sampled a random set of eigenvectors, and then applied a series of rotations to set ones on
the diagonal. We used the method as implemented by Scipy in the numerical Python stack.

Since this model creates surrogate FC matrices, we produced timeseries by sampling the maximum entropy
timeseries which would produce such a correlation matrix. To do this, we numerically computed the matrix square
root and multiplied it by a N × T matrix of standard normal iid random variables. This is equivalent to sam-
pling each timepoint independently from a multivariate Gaussian distribution. In principle it is possible to create
temporally-autocorrelated timeseries from this model (multiplying by temporally-autocorrelated timeseries instead
of iid standard normal random variables), but since it operates at the level of the FC matrix, all methods of gener-
ating timeseries from the eigensurrogte method will produce an identical FC matrix.

Null models We also test several popular null models.

Phase randomization The power spectrum amplitude of individual timeseries is preserved, but the phases are
randomized (Figure ED6). This procedure is described in detail in Ref.95. A Fourier transform was performed on
each region’s timeseries. Each element of the complex-valued Fourier transform was randomly rotated on the unit
circle, and the inverse transform was performed on the phase-randomized spectra.

Note that we used distinct random phases for each timeseries, contrary to many neuroimaging studies which use
the same phase for a given frequency across all timeseries. This is because using the same phase for each timeseries
preserves all cross-correlations between timeseries. In practice, this means that the surrogate FC matrix is identical
to the original FC matrix, and hence, it produces a identical graph.

Zalesky matching This model matches the mean and the variance of the correlation matrix (Figure ED6), and is
described in full in Ref.30. Briefly, it matches the first two moments by iteratively computing correlation matrices
from timeseries of different durations with different ground-truth correlations. The process continues until the
timeseries duration is found which maximally reproduces the mean and variance of the correlation matrix.
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Edge reshuffle We preserve the degree of each node while scrambling the edges (Figure ED6). This is accom-
plished by an iterative algorithm described in detail in Ref.96. Two edges from a graph were selected at random,
and the connections were swapped. This swap was iterated k times, where k was chosen here to be 5 times the num-
ber of edges in the network. The result is that each node has the same number of connections, but those connections
are randomized.

Models not considered Despite our parameterization based on the TA-∆1 we do not report on timeseries gener-
ated using autoregressive (AR) or vector autoregressive (VAR) models. These models have two limitations within
this context. First, they do not reproduce the observed long-memory processes observed within rs-fMRI time-
series. Second, when fitting data using these models, the TA-∆1 parameter fits to values very close to 1, resulting
in parameter degeneracy.

Likewise, we did not directly fit the economical clustering model to data. Due to the variability in individual
instantiations of this model and the lack of smoothness of the parameter space, this model is incompatible with
our numerical fitting algorithm, thus preventing the use of comparable methodology to perform the fitting. These
issues, combined with the long execution time of the model, made such individual level fitting infeasible.

We did not consider models in which only one of SA-λ and SA-∞ is fit and the other is fixed. These two
parameters were fit by optimizing a function to the subject’smeasured SA.However, wewere unable to get consistent
and interpretable fits to this function when only one of these two parameters was fit. In other words, fixing one of
these parameters precludes reliable estimation of the other.

Lastly, we only considered approaches which operate at the level of the parcellated timeseries. This excluded
approaches such as scrambling using a 3D Fourier transform.

Model fitting procedure Due to the fact that uncorrelated random noise was added after the spatial embedding
in our model, the SA-λgen and SA-∞gen parameters in the spatiotemporal model were not identical to the observed
SA-λ and SA-∞. We derived a mathematical method for directly matching the spatiotemporal model’s SA-λgen and
SA-∞gen parameters to the data without the use of fitting, but technical constraints prevented an implementation of
the procedure (Supplement 1.4). Therefore, we could not directly estimate the model based on observed SA-λ and
SA-∞.

Instead, the spatiotemporal model’s SA-λgen and SA-∞gen parameters were fit to the eigenvalue distribution of
each individual subject’s FC matrix. A predicted FC matrix was generated by the model, and this procedure was
iterated until a match was obtained in the eigenvalue distribution. The model was fit using differential evolution97, a
gradient-free global heuristic search method, to the mean squared error between the sorted eigenvalue distributions
of the subject and model FC matrices. Eigenvalues were non-negative due to the positive-semidefiniteness of the
correlation matrix. The model was implemented in such a way that they preserved smoothness with respect to
the parameters, meaning that for a given random seed, small perturbations of the parameters caused only small
changes in the timeseries, and hence in the structure of the graph. Optimization was performed on the mean
objective function from two random seeds. All reported statistics and metrics about the models come from a single
instantiation of the model using a different random seed than either seed used during fitting. Parameters for the
“SA only” model were also fit using the same procedure.

Most alternativemodels had no parameters (“TA only”, “Phase randomization”, “Zaleskymatching”, and “Edge
reshuffle”). For the “Noiseless” model, parameters could be fit directly using correlated spectral sampling. This
formalism is not guaranteed to converge for all subjects. When correlated spectral sampling was unable to produce
valid timeseries, we excluded these subjects from the analysis. Results were qualitatively similar when parameters
were fit to the eigenvalue distribution as described above which forced parameters into valid regimes.

Economical clustering model As described previously, the spatiotemporal model produces timeseries for each
brain region—graphs can then be constructed by processing these timeseries the same way as subjects’ rs-fMRI
timeseries. While the spatiotemporal model can be called a “generative model” by most definitions, within the
graph theory literature, the term “generative model” often refers to models which construct graphs directly through
the iterative addition of nodes or edges23,40,98. The economical clustering (EC) model is one such model which
is popular for studying brain networks23,40. In this model, connections between nodes are determined by one
parameter governing the impact of distance and one for the impact of clustered topology. The probability of an
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edge forming between two brain regions is proportional to the product of the Euclidean distance between the regions
raised to some power (the distance parameter), and the fraction of shared neighbors between them raised to some
power (the clustering parameter). Full model details are provided in Ref.23.

To compare the two models, we simulated the EC model across a spectrum of distance and clustering parame-
ters, and then fit a spatiotemporal model to the simulated networks. Because our spatiotemporal model takes two
SA-related parameters and obtains TA on a regional level directly from the data, we compared the EC model to the
homogeneous variant of the spatiotemporal model, which includes one SA parameter and one TA parameter. We
used the ECmodel to simulate 10 networks per combination of parameters, fitting the homogeneous spatiotemporal
model to each of these 10 networks. Since the ECmodel produced graphs rather than FCmatrices, we could not use
our previous approach of fitting by eigenvalues, nor could we derive an analytic approach to parameter estimation.
Thus, we fit using the objective function from Ref.40. Full details are provided in Supplement 2.

Spatial correction for brain map similarity To assess the similarity between brain maps, the presence of spatial
autocorrelation can induce a high false positive rate. To correct for this, we perform a permutation test using
an SA-preserving surrogate method11. To compare a target brain map to a reference map, we generate 10000
surrogate brainmaps whichmatch the spatial autocorrelation of the referencemap. Then, we compute the Spearman
correlation between the target map to the reference map, as well as between the target map and the surrogate maps.
The p-value of the two-tailed test is determined as the fraction of correlations with the surrogate maps which are
at least as extreme in absolute value as with the reference map. For cases in which maps cannot be designated as
a target or reference map, we perform this procedure twice, once with each map taking the role of the reference
map and the other as the target map, and compute the two-tailed p-value as the total number of target-to-surrogate
Spearman correlations which as at least as extreme in absolute value as the Spearman correlation between the two
maps.

Singular value decomposition We computed a cortical map of serotonergic modulation using singular value
decomposition (SVD), which bears many similarities to principal component analysis (PCA). For a data matrix M,
we can rewrite M as

M = UΣVT

where Σ is a diagonal matrix, and the rows of U and V form orthogonal bases. The diagonal elements of Σ are
called “singular values”, the rows of V are called “singular vectors” (each element of which is a “loading”), and the
projection of M onto V (or, equivalently, UΣ) are the “scores”. Note also that the product MT M = VΣ2VT , so Σ2

and V are the eigenvalues and eigenvectors, respectively, of MT M . If M is centered, then MT M is the covariance
matrix, and SVD is equivalent to PCA, meaning Σ2 gives the variance explained of each component. But in our
case, since M is not centered, variance explained of the first k components is computed as

var

(
k∑
i=1

σiuivTi

)
.

To compute the variance explained by experimental condition, we find the variance explained by each experiment
from each subject individually, and then average across the experimental condition.

Ethics declaration All participants provided written informed consent statements before participation in the
study. The HCP data were acquired using protocols approved by the Washington University institutional review
board. The Yale-TRT data were collected with approval by the Yale University institutional review board. The
Cam-CAN data were collected with approval by the Cambridgeshire 2 Research Ethics Committee. The LSD and
Psilocybin data were collected with approval by the Cantonal Ethics Committee of Zurich, and the Swiss Federal
Office of Public Health, Bern, Switzerland, authorized the use of LSD and Psilocybin in humans.

Data availability TheHCP data are available at: https://www.humanconnectome.org/study/hcp-young-adult.
The Yale-TRT data are available at: http://fcon_1000.projects.nitrc.org/indi/retro/yale_trt.html.
The Cam-CAN data are available at: https://www.cam-can.org/index.php?content=dataset. The LSD
data and Psilocybin data are available upon request.
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Code availability We prepared a software package which allows the principal analyses in this paper to be per-
formed quickly and easily. The “spatiotemporal” Python package, which can be installed through pip or downloaded
at https://github.com/murraylab/spatiotemporal, offers a more user-friendly way of applying the analyses
described here.

The raw source code used to perform the analyses in this paper can be downloaded at:
https://github.com/murraylab/spatial_and_temporal_paper. Codewas implemented using the standard
Python stack99,100 and other libraries101,102. Source code was checked for correctness using software verification
techniques103.
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