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Abstract—Shared control is a mode where the user input is
combined with a planned motion to achieve a common goal. In
navigation, a shared control approach could provide a potential
mobility solution for people who have a mobility impairment
and find traditional powered wheelchairs unsuitable. While state-
of-the-art work explored shared control navigation in simple
environments, it is still challenging to solve for dynamic, crowded
scenarios, in a way that is acceptable to users. Learning from
recent advances in robot navigation, we present a reinforce-
ment learning based framework, which allows navigation to be
achieved in a shared controlled way. Our approach was trained
and tested in a Unity3D based simulator. It achieved fewer
collisions, comparable completion time and relatively high user
agreement when compared with other state-of-the-art methods.

Index Terms—shared-control, reinforcement learning,
wheelchair

I. INTRODUCTION

A smart wheelchair is a type of robot that is normally
built on a standard powered wheelchair, with a collection
of sensors for perception and navigation purposes. Based on
the level of autonomy and the amount of assistance, the
work in this area can be classified into: fully autonomous
[1] and semi-autonomous [2] (including shared control [3],
[4]). Shared control is generally preferred by many users due
to their ability to maintain high user authority [5]. While
previous research in shared control navigation has focused on
simple environments, the challenge of crowds has recently
attracted attention. Traditional methods treat pedestrians as
obstacles, leading to “freezing robot” issues [6]. To address
this problem, it is important to understand the interactions
between pedestrians and the robot (or wheelchair). To this
end, deep reinforcement learning (RL) approaches have been
actively studied due to their reported high performance and
robustness to changes in the environment.

While prior work in crowd navigation has focused on fully
autonomous robots, we propose a shared control framework
that incorporates both imitation learning for generating diverse
driving policies and deep RL for navigation. Our approach
is evaluated through simulations, and we contribute both the
driving policy generation and shared control framework as
solutions to the problem.
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II. RELATED WORK

A. Navigation in Crowded Environments

Navigation of robots in crowded environments has been a
popular research topic for decades. Early approaches employed
‘social force’ models to capture attractive and repulsive inter-
actions between humans. However, these models did not take
into account potential human-robot cooperation. Recent works
have approached social-aware navigation in highly dynamic
human environments using either model-based [6] or learning-
based approaches [7]–[9].

Model-based methods initially used proxemic potential
functions to model human-robot interactions [10], [11], but
ignored human-robot cooperation. To address this limitation,
Trautman (2015) proposed Interacting Gaussian Process (IGP),
which modelled the robot as one of the agents, and subse-
quently modelled a joint distribution describing their interac-
tion [6]. However, hand-crafting the interaction function can be
challenging. On the other hand, learning-based methods have
started gaining more attention due to their ability in capturing
complex natural human-human and human-robot interaction
directly [7]–[9]. Tai et al. (2018) used imitation learning to
learn a direct map from sensor inputs or map data to the mo-
tion command [12]. Similarly, in [13], the interaction features
and the cost function are learned from demonstration by using
inverse reinforcement learning (IRL). The learning outcomes
for these methods are highly dependent on the scale and
quality of the demonstration, and it is normally difficult to then
generalize to other scenarios. Some other approaches, which
used RL and leverage agent-level information in presenting
the crowd structure, showed promising performance in both
simulation and real-world tests [7], [14].

B. Learning-based Shared Autonomy

While fully autonomous robots have their place, collabo-
rative work between humans and robots may be preferred in
many scenarios. However, there is limited research on using
deep RL in a control sharing setting. Reddy et al. (2018)
addressed this issue by decomposing the reward function into
two parts: one part captures general requirements such as
collision avoidance, while the other captures user-generated
feedback [15]. The control sharing is achieved by involving



user feedback in the reward function, and deep neural networks
are used to discover arbitrary relationships between user
controls and observations of the physical environment directly.
However, this method requires discrete human input during
training, which could be impractical and problematic when
continuous input is required.

To address this limitation, Schaff et al. (2020) proposed
a model-free, residual policy learning algorithm for shared
autonomy in a continuous action space [16]. They created a
surrogate user by behavior cloning and augmented this user
policy with a learnt residual policy. This approach eliminates
the need for continuous human input during training. Their
method was evaluated on continuous gaming tasks, such
as Lunar Lander, Lunar Reacher, and Drone Reacher, and
showed significant improvement in the performance of human
operators. However, as far as we know, such a method has not
been applied in shared-control wheelchair navigation.

III. BACKGROUND

A. Imitation Learning

Imitation learning techniques aim to mimic human behavior
in a given task [17]. It is normally achieved by training a model
from a fixed set of observation-action samples (or trajectories)
obtained from some expert. One of the most popular imitation
learning techniques is behavior cloning (BC). BC uses super-
vised learning to directly learn a mapping between observa-
tions and actions. It has been widely explored in autonomous
driving [18], [19] and its performance depends on the amount
and quality of the training data due to compounding error.
Alternatively, researchers have been using IRL to learn a cost
function that prioritizes entire trajectories over others. While
these methods have been applied successfully in areas such
as robot navigation [13], it is computationally expensive as it
requires RL as the inner loop. In addition, IRL only provides
the cost function, which requires further techniques to generate
the policy.

Generative Adversarial Imitation Learning (GAIL) was pro-
posed in [20]. It introduces a framework that directly learns
policies from data, bypassing any intermediate IRL step.
This model-free imitation learning algorithm that is able to
handle complex and high-dimensional environments. Its work-
ing mechanism is similar to Generative Adversarial Network
(GAN) where a generator aims to confuse a discriminator D
that learns to discriminate between the true data distribution
and the one being generated. Specifically, GAIL achieves this
by finding a saddle point of this expression:

Eπθ
[log(D(s, a))] + EπE

[log(1−D(s, a))]− λH(πθ) (1)

where πE is the expert policy and πθ is the policy we want to
learn, characterized by θ. H(πθ) is the causal entropy of the
policy πE . During learning, GAIL uses Adam gradient-based
optimization to update the parameter w for the discriminator
D that increases equation (1), while performing trust region
policy optimization (TRPO) [21] with respect to θ to decreases
equation (1).

In general, GAIL is sample efficient for the expert data,
while it may requires heavy environmental interaction during
training. A typical way to improve the learning speed is to use
BC for initializing the policy parameters [20].

B. Reinforcement learning via PPO

Robot navigation can be considered as a sequential decision
problem, which can be modelled as Markov Decision Pro-
cess (MDP) or Partially Observed Markov Decision Process
(POMDP). The main components of MDP include states S,
actions A, transitions T , reward function R, and a discount
factor γ ∈ [0, 1], where the optimal policy maximizes the
expected future discounted return. However, in real life nav-
igation situations, many states such as the pedestrians’ goal
are not fully observable. In this case, the problem can be
modelled as POMDP by adding an additional set of possible
observations Ω and observation function O : S × Ω → [0, 1].
While POMDP is normally not tractable, an estimation can be
made through RL.

One of the most widely used policy-based algorithms, prox-
imal policy optimisation (PPO), has demonstrated promising
results [22] and has become a popular RL algorithm. In this
work, we decided to use PPO as our main RL algorithm
as it handles continuous action spaces, and directly modifies
the policy during training, which is suitable for navigation
applications. While many RL methods suffer from stability
issues, PPO guarantees stability during training by setting a
trust region [21].

C. Residual Policy Learning

Shared control navigation can also be formed as a POMDP
problem where the user’s goal (or short term intention) is
partially observed by the agent (wheelchair). State-of-the-art
data driven approaches infer the user’s goal using IRL [23],
[24] or hindsight optimization [25]. However, these methods
normally require a known user goal space or a transition
function which can be difficult to obtain. Recently, Silver et al.,
(2019) proposed Residual Policy Learning (RPL) [26], which
aims to improve non-differentiable policies using model-free
deep RL. The main idea of RPL is to learn a residual policy
πθ(s) from a residual function fθ(s) and augment on top of
some arbitrary initial policy π(s).

πθ(s) = π(s) + fθ(s) (2)

By evaluating the performance on a robot picking task, with
a hand designed policy and a model predictive controller
(MPC) as initial policies, [26] showed that RPL not only
improves on initial policies but is also more data-efficient
than learning from scratch. While this method could help with
imperfect controllers, it can also be combined with imitation
learning, where the user’s demonstration is imperfect. Schaff et
al., (2020) has applied residual policy learning in continuous
action space and evaluated it in simple gaming tasks [16].
Our work was inspired by their work, while we used imita-
tion learning for obtaining the user policy and extended the
application scenario to shared control navigation in crowds.



Fig. 1. (a) The simulated wheelchair (b) Crowds Scenario 1 (c) Crowds
Scenario 2 (d) Crowds Scenario 3

IV. METHOD

A. Problem formulation and setup

We tackle the challenge of providing personalized assistance
in shared control wheelchair navigation in crowds by dividing
the problem into two sub-problems: learning the user’s driving
style and achieving shared control navigation in real-time. To
evaluate the generalizability of our approach, we designed
three scenarios in Unity3D with realistic pedestrian dynamics
and collision avoidance. In these scenarios, we also accounted
for the human tendency to get distracted, by designing a
subset of pedestrians to ignore the wheelchair. Our simulated
wheelchair is governed by a differential PID controller that
considers non-holonomic constraints, with maximum linear
velocity of 1.3 m/s and maximum angular velocity of 0.785
rad/s. These values are set to be comparable with typical hu-
man walking speed to observe potential interaction behaviors
[27].

B. Learning user driving style

Ethics approval for the study was granted by UCL Ethics
Committee with ID 6860/011. 20 healthy participants from
the UCL Psychology participant pool were recruited, all of
them are over 18, with unimpaired vision and wrist mobility.
Each of them was given 10 minutes to get familiar with the
setup before performing the actual experiment. They were then
instructed to drive a simulated wheelchair with a joystick for
45 minutes in three simulated scenarios (15 minutes for each
scenario). Participants were asked to drive the wheelchair in
their own style and reach a goal (highlighted in yellow) in
each scenario (Fig. 1). Once the goal was reached, they were
brought to a new scenario generated in a random sequence
at a random starting position. During the data collection,
participants have the first-person view of the wheelchair.
We collected all the wheelchair data and environment data
during the experiment, at the frequency of 10Hz. A trial is
defined when the user completed all three scenes. In total,
32 valid trials have been completed which gave us 640 valid
trajectories.

We performed filter-based feature selection on the data.
By iteratively evaluating the silhouette value for K-means
clustering using different feature combinations, we found that
“The average distance to the nearest pedestrian”, “The average
linear velocity”, “The average angular acceleration” and “The
average collision number” gave us the best description of the
driving data. Principal component analysis was used to further
reduce the data’s dimensionality and produced two principal
components with explained variance > 99.5%. While one user
could potentially exhibit different driving styles, we assume
their driving is consistent throughout this experiment. This
allowed us to categorize the user data into two driving styles
“aggressive” and “non-aggressive” using K-means clustering,
with the result verified by silhouette coefficient > 0.6.

In the literature, behaviour cloning has been used to learn
user policies from human demonstrations [28]. When it comes
to the crowd navigation scenario, the high-dimensional states
make it impracticable to directly learn a motion output from
limited and potentially imperfect human demonstrations. As
a result, we use Generative Adversarial Imitation Learning
(GAIL) [20] to learn a user policy, which not only lever-
ages the information in the demonstration but also allows
exploration of other unvisited states. As pure GAIL could be
sample-inefficient during training, we initialize the parameters
with behaviour cloning of the recorded user data.

C. Shared control via reinforcement learning

For shared control navigation, continuous user input is
required throughout the whole process. This characteristic
differs from other works, where discrete user input is provided
as feedback [15]. In addition, continuous user input will
require extensive user interaction during training, the amount
of training time may take tens of hours based on the difficulty
of the task and the complexity of the scenario. It is simply
impractical for every wheelchair user to be supervised for that
long before they can actually use the wheelchair. Therefore,
we approached the problem using residual policy learning,
where the initial policy comes from a surrogate user that is
pre-trained offline. During training, the user input is sampled
from the surrogate user policy, which is augmented with the
robot states. The control sharing is then achieved by shaping
the rewards into two parts – one that takes care of user inputs
and the one that deals with motion planning.

In our work, the wheelchair must be able to assist the user
in avoiding static obstacles, navigating through crowds and
reaching their final goal. To form this as a RL problem, the
states S, action A and reward function R should be designed
carefully. While the states could be the raw sensor information,
this would create very high-dimensional states and require high
computational resources. Inspired by previous work in crowd
navigation [7], we used agent-level information in our state.
For static obstacles, we detected them using a Ray module
provided by Unity. For simplicity, only three rays were used,
with one pointing to the front of the wheelchair and the other
two pointing to each side. The angle between each ray is 60
degrees. Each ray is associated with three states:“hit the tagged



obstacle”, “no hit”, and “hit fraction”. This gives us 9 states
so in total.

Consequently, the final state of the robotic wheelchair is set
as [sw, so, su], where sw = [gx, gy, vr, wr, pix, piy, pivx, pivy].
gx, gy is the position of the goal, vr, wr represents the velocity
of the wheelchair. p stands for the pedestrian-related informa-
tion. In this paper, i takes range from 0 to 9 which includes
the 10 nearest pedestrians within 5 m of the wheelchair. This
value is set by considering the range of the people tracker
which gives us a local density about 1p/m2. If fewer than 10
people are detected around the wheelchair, the position values
are padded with the maximum range and the velocity values
are filled with 0. All values are wheelchair-centric. During
training, the wheelchair and environment related states are
determined by the simulator, while su = [vu, wu] are inferred
from the surrogate user model. To better capture the human-
robot interaction and the user intention, we used a window of
3 time-steps (0.3 s) for the states (i.e. state input at time t will
be observations at time t − 2, t − 1, t) and a recurrent neural
network. The final action is the desired linear and angular
velocities for the next time step.

The key to achieving shared control via RL is shaping the
reward. Inspired by [15], [16], we divided the reward function
Rt into two parts, one part Rt

r solves basic robot navigation
requirements such as: avoid collisions (Rt

c); reach the final
goal (Rt

g); and encourage smoother trajectories by penalizing
sudden large changes in angular velocity (Rt

com); while the
other part (Rt

u) rewards solutions that most closely follow the
user’s intention. Fig. 2 shows a high-level summary of our
proposed approach.

Rt = (Rt
r) + (Rt

u) (3)

Rt
r = Rt

g +Rt
c +Rt

com (4)

Rt
g =

{
rd ∗ (

∥∥pt−1
r − g

∥∥−
∥∥pt

r − g
∥∥) Otherwise

rg if
∥∥pt

r − g
∥∥ ≤ 2

(5)

Rt
c =


0 Otherwise
rc if

∥∥pt
r − pt

i

∥∥ ≤ 0.66

rcc ∗
∥∥pt

r − pt
i

∥∥ if
∥∥pt

r − pt
i

∥∥ ≤ 1.5

(6)

Rt
com = −0.01 ∗ |wt| (7)

Where pt
r, pt

i are the position vectors of the robot and
pedestrians at time t, and g represents the position of the goal.
In our implementation, rd = 5, rg = 50, rc = -20,rcc = -2.

In terms of the user, we use a function to evaluate the
consistency of the wheelchair motion candidate with the
surrogate user policy output.

Ru = ra ∗ expλ∗(∥v
t
r−vt

u∥2
+∥wt

r−wt
u∥2

) (8)

Parameter λ controls how closely the user input and the
final motion are correlated. Through trial and error, we found
λ=-0.5 gives us a reasonable trade-off. ra is set to 0.5.

V. EXPERIMENT VALIDATION

A. Implementation details

All training and testing in the simulator are implemented in
Unity 3D 2019.3.14f, with mlagents version 15. The laptop has
Intel® Core™ i7-9750H CPU @ 2.60GHz × 12, with graphics
card GeForce RTX 2070 with Max-Q Design/PCIe/SSE2. All
the training hyperparameters are listed in Table I and II.

Parameter Value
Algorithm GAIL

Gamma 0.99
Num layers 2
Normalize true

Hidden units 128
Learning rate 0.003
Use actions False

Use vail False
behaviour Cloning 10000 steps

TABLE I
IL HYPERPARAMETERS

Parameter Value
Algorithm PPO

Time horizon 128
Batch size 1024

Beta 0.005
Buffer size 4096

Epsilon 0.2
Lambda 0.95

Learning rate 0.0005
Num layers 2
Normalize true

Hidden units 256
Gamma 0.99

TABLE II
RL HYPERPARAMETERS

The imitation learning was performed using GAIL without
extrinsic rewards in all scenarios. The user policies converge
after approximately 60k steps. In terms of the final shared
control policy, we adopted a curriculum learning strategy
due to the complexity of the task. During some initial trials,
we noticed that populating all the human agents at the very
beginning of the training may result in undesirable behaviours,
which include the wheelchair wandering around in the free
area or colliding with obstacles immediately to end the
episode, as it expects more negative cumulative reward during
the trip to reach the goal. Therefore, we break down the learn-
ing objectives by first training the wheelchair to reach the goal
in a human-free environment. After that, we keep populating
crowds until the local density reaches 1p/m2. During training,
the wheelchair starting position was random generated. For
each scenario, we used 5 random seeds and report a 95%
confidence interval for the final averaged cumulative return.

The final policy converged after about 400k, 200k, and 600k
steps for the three scenarios. Training S3 requires the longest
time as it consisted of the most crowd patterns.

B. Qualitative Evaluation

Through initial user policy training using GAIL, we ob-
tained two surrogate user models with different driving styles
(aggressive and non-aggressive). We evaluated the user policy
generated by these models, and compared it with the final
shared policy given actual user input from a self-identified
non-aggressive user. Fig. 3 shows the robot and pedestrian
trajectories in a simple passing and crossing cases (which is a
part of S3). We can see that the non-aggressive surrogate user
model well represented the actual user driving style, while
differ itself from the aggressive user model.



Fig. 2. A summary of our proposed approach. The state input s̃ to the neural network is a combination of the robot(wheelchair) information,
environment(crowds) information and the predicted input comes from the surrogate user. The final shared control policy for the wheelchair is achieved
by residual policy learning and is guided by the initial user policy obtained from imitation learning.

Fig. 3. Trajectories for simple passing and crossing cases. Color alpha shows
the moving direction (start from transparent). Red represents the robot while
blue represents the pedestrians. (a) Passing (b) Crossing

C. Quantitative Evaluation

1) Metrics: We used three basic metrics to evaluate the
safety and assistance for the proposed RL-based shared control
navigation design. These are defined as:

• C: Number of collisions (with pedestrians). This metric
is just the count of collisions that occurred in the scenario
and was reported by the simulator.

• Tc : Task completion time. The time that user required
to reach the goal position from the starting position.

Tc = tend − tstart (9)

• A: Agreement. We define agreement in terms of the
deviation of the direction of the user’s command from
the direction of the final shared control’s command.
Mathematically, it is calculated as:

ai = 1− θ(ziu)⊖ θ(zisc)

π
(10)

A =

∑N
i=0 ai ·∆ti∑N

i=0 ∆ti
(11)

where θ(z) = tan−1( v
w ), v and w are the translational and

rotational velocities, ai is the normalised agreement at time
step ti. N is the number of samples available in which data

from the measured user input ziu coincide in time with the
final shared control output zisc, and ∆ti is the duration of the
user’s input command.

We tested the performance of our approach (RLPSC) with
one user giving input through a joystick, in all three simu-
lated crowd scenarios (See Fig. 1), with local crowd density
≥ 1p/m2. It was compared with our previous work which
instead uses a velocity-based probabilistic shared control
(GVDWAPSC) [29]. In addition, direct user input without any
assistance was used as a baseline. The user was first given 10
minutes to get familiar with the setup, and was asked to self-
identify their preferred driving style. Then the user drove the
wheelchair (no assistance) in three simulated scenarios for 10
minutes. The collected data was used to determine the suitable
assistance model, which turned out to be “non-aggressive”
and was consistent with the user’s self-identification. During
testing, the wheelchair started at a random position which was
kept the same across different methods. The user drove the
wheelchair to the goal and complete one trial. Each method
was tested for 5 trials in each scenario and Fig.4 gives a
summary of the evaluation results.

It can be seen that although both RLPSC and GVDWAPSC
had one collision, they reduced the number of collisions
with pedestrians substantially compared to the one without
assistance. While the learning-based methods achieve collision
avoidance by setting negative rewards, they do not guarantee
collision-free behaviour, especially in challenging scenarios.
On the other hand, while the velocity-based PSC required
longer to reach the goal, potentially due to “freezing” when
the crowd density increases, the RL-based method had a
similar completion time to the no-assist one. This implies
that the proposed method is promising in learning crowd
interactions, and moves the wheelchair in a safe and socially-
compliant manner. In terms of the agreement, both RLPSC
and GVDWAPSC had a similar value at about 0.88, which
shows good control sharing performance in general.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a RL based shared control
approach for wheelchair navigation in crowds. To address
the challenge of involving humans in the training loop, a



Fig. 4. Performance results for RLPSC, GVDWAPSC and NO ASSIST: (a) User-wheelchair agreement (b) Time to complete (c) Number of collision.

surrogate user was trained by GAIL that learns the driving
style from the collected user data. The final shared control
policy combined the predicted user input, the wheelchair state,
as well as agent-level crowd information, and was trained to
provide suitable driving assistance. The performance of our
proposed RL method has been evaluated in simulated circular
crowds, 1D crowds and 2D crowds scenarios and showed
promising navigation performance, while obtaining relatively
high user agreement when compared with other state-of-the-art
approaches. In future, we would like to collect data, evaluate
the model performance and its usability in various challenging
crowd scenarios on actual wheelchair users. In addition, while
we assumed agent-level state input for simplicity, we are
interested in exploring end-to-end RL, where the raw sensor
inputs could be used directly to map to the navigation decision,
and test our approach in real world.
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