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A semianalytical approach

Vittorio Aita ,1 Mykyta Shevchenko ,2 Francisco J. Rodríguez-Fortuño ,1 and Anatoly V. Zayats 1

1Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, London WC2R 2LS, United Kingdom
2Department of Electronic & Electrical Engineering, University College London (UCL),

Torrington Place, London WC1E 7JE, United Kingdom

(Received 13 November 2023; revised 6 February 2024; accepted 7 February 2024; published 29 March 2024)

In the field of structured light, the study of optical vortices and their vectorial extension—vectorial vortex
beams—has garnered substantial interest due to their unique phase and polarization properties, which make
them appealing for many potential applications. Combining the advantages of vortex beams and anisotropic
materials, unique possibilities for electromagnetic field tailoring and manipulation can be achieved in nonlinear
optics, quantum and topological photonics. These applications call for a comprehensive modeling framework
that accounts for properties of both anisotropic materials and vector vortex beams. In this paper, we describe a
semianalytical model that extends the vectorial diffraction theory to the case of focused vortex beams propagating
through a uniaxial slab, considering both the cases of scalar and vectorial vortices in the common framework of
a Laguerre-Gaussian mode basis. The model aims to provide a comprehensive description of the methodology,
enabling the implementation of complex beam transmission through, reflection from, and propagation in uniaxial
anisotropic materials for specific applications. As a demonstration of its versatility, we apply the developed
approach to describe propagation of high-order vortex beams in uniaxial materials with various dispersion
characteristics, exploring the elliptic, hyperbolic and epsilon-near-zero regimes. We show how variations of the
medium anisotropy modify the beam structure due to the vectorial nature of their interaction, which results from
the different permittivities of the medium for transverse and longitudinal field components. The applicability
of the approach can be extended to artificially structured media if they can be described by effective medium
parameters. The developed formalism will be useful for modeling interaction of complex beams with uniaxial
materials, allowing a common framework for a large variety of situations, which can also be extended beyond
the electromagnetic waves.
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I. INTRODUCTION

Since their introduction [1], optical vortex beams (OVBs)
have been the subject of countless investigations and have
led to important advancements, including in-cavity generation
of OVBs, all-optical encryption techniques, orbital angular
momentum (OAM)-based particle manipulation, and beam-
shaping devices [2–7]. The feature that makes optical vortices
so interesting is their phase singularity, which is quantified
by their topological charge (�): an integer describing how
many times the phase wraps in a [0, 2π ] interval in a closed
loop around the beam center. A nonzero topological charge
makes the wavefront of OVBs helicoidal, with the number of
helices per wavelength distance determined by the value of
� and the handedness by its sign. Therefore, OVBs possess
an OAM of ±h̄� per photon. OVBs are important in optical
communications, quantum optics, and imaging, as they pro-
vide an additional degree of freedom for photons, introducing
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the possibility to encode more information in the same beam
using topological charge. The combination of copropagating
OVBs leads to nonuniform polarization patterns in the re-
sulting beam. In such, the so-called vectorial vortex beams
(VVBs), the phase singularities of OVBs translate in polariza-
tion singularities [8,9]. These singularities are in many cases
accompanied by strong longitudinal fields and often result in
unusual behavior, e.g., the violation of the optical theorem for
scattering [10] or formation of topological structures of light,
such as optical skyrmions [11].

As interesting as they are in a context of propagation
in free space or uniform media, when interacting with
anisotropic materials the behavior of OVBs and VVBs be-
comes even more complex, leading to potential opportunities
and applications with unique frontiers of beam shaping and
polarization control. The task of characterizing their propaga-
tion in anisotropic media is far from trivial due to the inherent
complexities arising from an interplay of the vectorial nature
and vortex structure of the beams and the anisotropic proper-
ties of the material. While purely numerical simulations may
provide the required information, the restrictions on the use of
periodic boundary conditions due to the final size of the beam,
results in significant demands on computational resources and
convergence issues. Therefore, the development of accurate
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and efficient modeling becomes imperative for studying and
controlling the behavior of VVBs in such scenarios, and ad-
vancing their applications.

In this paper, we develop a semianalytical approach which
can be applied to the propagation of focused OVBs and VVBs
through an anisotropic slab. The approach provides an ex-
tension of already examined cases of tightly focused beams
propagating in free space and isotropic materials [12–15].
Both OVBs and VVBs are considered, with the former mod-
eled as Laguerre-Gaussian beams of general order LG�p and
the latter as a superposition of orthogonally polarized OVBs
with opposite topological charges ±� [16]. Following a brief
introduction to the vector diffraction theory in multilayered
isotropic media, a detailed description of the methodology is
presented for an anisotropic uniaxial medium. Examples of
applications of the approach are given, exploring the cases
of Laguerre-Gauss beams of different orders, propagating
through various categories of uniaxial media. The developed
approach will be a useful tool for modeling the interaction of
complex beams with material systems of chosen optical prop-
erties. The cases covered by the developed method include
both isotropic and anisotropic (limited to uniaxial) materials
and allow the exploration of various dispersion regimes: ellip-
tic, hyperbolic, as well as epsilon near zero.

II. VECTORIAL DIFFRACTION THEORY IN ISOTROPIC
MULTI-LAYERED MEDIA

The physical problem behind this approach is set to find the
electric field of a focused beam in a given volume divided into
three domains, with the central one showing an anisotropic
dielectric permittivity. One choice could be to follow the very
general approach originally developed in Ref. [17] in the
framework of the vectorial diffraction theory. It consists of
an integral definition of the electric field at a fixed observa-
tion point, depending on the boundary electric and magnetic
fields at the surface of an arbitrarily shaped aperture. For the
majority of optical systems, the general approach can be sim-
plified considering the asymptotic condition of the far-field
diffraction, which can physically be thought of as the field
distribution located sufficiently far from the focusing element
of the system. Under this approximation, the Stratton-Chu
integral can be understood as the electric field at a point
�r in space originating from the superposition of an infinite
number of plane waves propagating from the aperture to the
point �r. If the aperture is considered to be a spherical pupil,
this approach can be reduced to the well-known Debye-Wolf
integral [18–20]:

�E(�r) = − ik e−ik f

2π f

∫∫
�

�E� ei �k·�r d�, (1)

where f is the distance between point �r and the pupil, �k =
k0�kr = ω/c�kr , with �kr being the relative wave vector in the
medium, and �E� is the electric field strength in the direction
� under which the pupil is seen from �r. The integration over
� corresponds to a summation of all the plane waves directed
to point �r. Considering a decomposition of the unknown field
into a superposition of plane waves with propagation prop-
erties dictated by the structure of the system, the angular

spectrum formalism can be developed, which is the basis of
the Richards-Wolf (RW) theory of vectorial diffraction [21].

A general solution of the wave equation can be written as
the superposition of a number of plane waves with varying
wave vector �k [18,22–24]:

�E(x, y, z) =
∫∫ ∞

−∞
�A(kx, ky) ei(kxx+kyy) e±ikzzdkx dky, (2a)

�A(kx, ky) = 1

4π2

∫∫ ∞

−∞
�E(x, y, 0) ei(kxx+kyy)dx dy, (2b)

where the function �A(kx, ky; z), which is the angular spectrum
of �E(�r), is the weight of each plane-wave component prop-
agating at direction �k. It corresponds to the two-dimensional
Fourier transform of the field, calculated at a reference plane
(here z = 0). This plane can, in principle, be a plane orthog-
onal to an arbitrary direction, but it is usually conveniently
chosen to be orthogonal to the wave propagation direction. For
a uniform and isotropic medium, considering a time-harmonic
field, the propagation in real space can be calculated as a
product in reciprocal space:

�A(kx, ky; z) = �A(kx, ky; 0)e±ikzz (3)

kz ≡ k0

√
1 − k2

rx − k2
ry. (4)

This represents a powerful formalism for the computation
of an electromagnetic field, assuming its distribution can be
written in a reference plane. It can also be easily combined
with the description of multilayered media by including the
Fresnel coefficients describing the system in Eqs. (2). For the
simple case of multilayered media where all the interfaces are
planes parallel to each other and orthogonal to the propagation
direction, the boundary conditions can be solved to find the
Fresnel coefficients. In the scope of this paper, the discussion
is limited to a slab with three consecutive materials of uniform
dielectric media, but the formalism is not restricted to this sim-
plification. Within this assumption, the Fresnel coefficients are
(see, e.g., Ref. [25])

rs,p
I = e2ik1zz0

(
rs,p

12 + rs,p
23 e2idk2z

)
1 + rs,p

12 rs,p
23 e2idk2z

, (5a)

t s,p
I = ei(d (k2z−k3z )+z0(k1z−k3z )) t s,p

12 t s,p
23

1 + rs,p
12 rs,p

23 e2idk2z
, (5b)

rs,p
II = ei(2dk2z+z0(k1z+k2z )) rs,p

23 t s,p
12

1 + rs,p
12 rs,p

23 e2idk2z
, (5c)

t s,p
II = ei(d (k2z−k3z )+z0(k1z−k3z ))t s,p

12 t s,p
23

1 + rs,p
12 rs,p

23 e2idk2z
, (5d)

where the numeric subscript labels the medium (two number
pairs i j refer to the interface between medium i and j), so ri j

and ti j are the Fresnel reflection and transmission coefficients,
respectively, for the interface between the media ith and jth,
subscripts I and II refer to the slab interfaces located at z = z0

and z = z1, respectively, d = |z0 − z1| is the thickness of the
slab, and s and p refer to polarization of the field with respect
to the plane of incidence and the direction of �k. The electric
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field in the integration volume is piecewise, defined as

�E(�r) =

⎧⎪⎨
⎪⎩

�E1 = �Ei + �Er1 for z � z0

�E2 = �Et1 + �Er2 for z0 < z � z1

�E3 = �Et2 for z > z1,

(6)

where the labels i, r, t stand for incident, reflected, and trans-
mitted, respectively. Each term is then projected onto its s and
p field components, relating, according to Eqs. (2), its angular
spectrum to the incident field via the Fresnel coefficients from
Eqs. (5). The field inside the slab is then

�E2 = �Et1 + �Er2 = �Es
t1 + �Ep

t1 + �Es
r2 + �Ep

r2, (7a)

�A(s,p)
t1 = t s,p

I
�A(s,p)

I , �A(s,p)
r2 = rs,p

II
�A(s,p)

I . (7b)

A useful application of the angular spectrum formalism is
the study of focused fields, which has led to the RW theory
[18,21]. In simple terms, the field of a focused laser beam is
determined by the effect of the focusing system—a lens—
on the incoming beam, which is described by a boundary
problem at the interface corresponding to the lens. The fo-
cusing system is considered to be aplanatic and light comes
from a source at infinity, so the wavefront is assumed to be
planar in the plane of the lens. An implicit approximation
of this method comes from the use of the angular spectrum
formalism in the asymptotic regime: the reference plane is
located at infinity, where the wavefront is planar. Assuming
the beam is paraxial before the lens, the reference plane can
be chosen to coincide with the lens surface. Under asymptotic
approximation, the fields in the proximity of the lens can then
be formulated in the frame of geometrical optics with two
conditions to be fulfilled [26]: (i) the sine condition and (ii) the
intensity law. The latter is related to conservation of energy

FIG. 1. Schematics of a paraxial beam focused by a lens. The
incoming beam, considered in cylindrical coordinates (ρ, φ, z, shown
in green), is mapped onto a spherical co-ordinate frame (k, φ, θ ,
shown in blue) upon refraction through a lens. Each paraxial ray at
a height h = f sin θ from the optical axis corresponds to a refracted
ray propagating along the direction θ . The angle θ is limited by the
numerical aperture of the system to θmax.

upon propagation through the lens: the energy flux of each
ray needs to be constant and the power has to be the same on
both side of the lens surface. The former describes the lens
boundary as a sphere centered in its geometric focus, with
the focal length being its radius, and ensures a one-to-one
mapping of the rays incident on the lens to corresponding
refracted rays. The distance of each ray from the optical
axis—chosen parallel to the propagation direction—can be
written as h = f sin θ (Fig. 1). Therefore, independently of
the choice of coordinates in the half-space before the lens,
it can be mapped onto spherical coordinates on the sphere
surface. The angle θ is the refraction angle of the ray at the
distance h from the optical axis.

The above approximations lead to a modification of
Eq. (1):

�E(ρ, ϕ, z) = − ik f e−ik f

2π

∫ θmax

0

∫ 2π

0

�E∞(θ, φ) eikz cos θeikρ sin θ cos(φ−ϕ)︸ ︷︷ ︸
ei�k·�r

d�︷ ︸︸ ︷
sin θ dφ dθ, (8a)

�E∞ = [t s(�EL · n̂ϕ )n̂ϕ + t p(�EL · n̂ρ )n̂θ ]
√

n1

n2

√
cos θ, (8b)

where �EL is the electric field incident on the surface of the
lens. The integration in the reciprocal space has been limited
to the angle θmax corresponding to the half aperture of the
lens field of view (NA = n sin θmax), while φ assumes all the
possible values in the [0, 2π ] interval. The solution propagat-
ing along negative z has been discarded for obvious physical
reasons. The choice of spatial coordinates (x = ρ cos ϕ, y =
ρ sin ϕ) is made for simplifying the integral computation.
Because of the last exponential factor, it is in fact possible
to use the integral definitions of modified Bessel functions of
the first kind given by [21]

∫ 2π

0

(
cos(mφ)
sin(mφ)

)
eix cos(φ−ϕ) dφ

= 2π im Jm(x)

(
cos(mϕ)
sin(mϕ)

)
, (9)

which allows for an analytical solution for at least one of
the integrals, once the amplitude of the �E∞ components
are written as a combination of trigonometric functions. To
solve Eqs. (8), the �E∞ field distribution needs to be made
explicit. Focusing through isotropic multilayered media can
easily be implemented, following the procedure described in
Refs. [13,14].

III. VECTOR DIFFRACTION THEORY
IN UNIAXIAL MEDIA

In solving the boundary problem for an isotropic multilay-
ered medium, the conservation of the transverse component of
the wave vector (kx, ky) must be ensured, and its z component
can be represented through kx and ky, once the dispersion re-
lation in each medium is known. If the medium is anisotropic,
this is generally no longer the case. For this reason, we limit
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TABLE I. Modes of the electromagnetic field in a uniaxial mate-
rial under the assumption kry = 0.

Polarization Condition E field H field

s k2
rx + k2

rz = μεx �Es = Es
0

(0
1
0

)
�Hs = Es

0
cμ0μ

(∓krz

0
krx

)

p k2
rx
εz

+ k2
rz
εx

= μ �Ep = Ep
0√

μεx

( ±krz

0
∓ εx

εz
krx

)
�Hp = εxEp

0
ωμ0

√
μεx

(0
1
0

)

our discussion to the case of a uniaxial crystal with the optical
axis along the propagation direction (ẑ), so the electric field in
the (x, y) plane sees an isotropic medium. In this instance, the
permittivity tensor which describes the slab is given by

ε2 =
⎛
⎝ε2x 0 0

0 ε2x 0
0 0 ε2z

⎞
⎠. (10)

Each plane-wave component in the angular spectrum has to
satisfy the wave equation �k × �k × �E + με �E = 0 which, us-
ing Eq. (10) and reducing the system to a two-dimensional
problem (kry = 0), can be written as⎡

⎢⎣k2
rz − με2x 0 −krxkrz

0
(
k2

rx + k2
rz

) − με2x 0

−krxkrz 0 k2
rx − με2z

⎤
⎥⎦�E = 0.

(11)
The solutions for the electric field �E are then given by the
null space of the k matrix, which only exists when its deter-
minant is zero. This condition can be fulfilled in two cases,
corresponding to two possible s and p polarization modes. The
associated magnetic field can be obtained from Faraday’s law
[ �H = (1/ωμ0μ)�k × �E]. These two modes and their fields are
presented in Table I.

The solutions in Table I suggest the possibility to define a
basis with respect to the wave vector onto which the electric
and magnetic fields [27,28] may be decomposed:

ê±
s = 1√

μεx
(∓kry,±krx, 0), (12a)

ê±
p = 1

μ

(
±krxkrz

ε2x
,±krykrz

ε2x
,∓k2

rx + k2
ry

ε2z

)
. (12b)

The core difference between the iso- [27] and anisotropic
cases stems from the different solutions found for the k vec-
tor: upon propagation from region 1 to region 2 (Fig. 2),
an isotropic slab will make all the components of �k to
scale equally. In contrast, there is mixing of transverse and
longitudinal components of �k in an anisotropic slab. The de-
composition of the electric field into its s and p components
allows for an easy implementation of the angular spectrum
formalism for an uniaxial slab. Knowing the expressions for
kz from the modes found for a uniaxial dielectric, the Fresnel
coefficients in Eqs. (5) can be adapted for an anisotropic layer.

FIG. 2. Geometry of the three-layered system. Light is incident
from medium 1. Region 2 is filled with a uniaxial material.

IV. MODELING APPROACH

Equations (12) can be applied to an anisotropic slab fol-
lowing the same procedure as in the isotropic case described
above, with the Fresnel coefficients of the system included in
the integrals in Eqs. (8). Each field appearing in the piecewise
definition in Eq. (6) can be calculated once the explicit form
of �E∞ is fixed. We apply this semianalytical approach to both
cases of scalar optical vortices and vector vortex beams.

Both types of beams can be described as Laguerre-
Gaussian beams with a complex amplitude [29]:

|LG�,p| = w0

w(z)

√
2p!

π (p + |�|)!

(
2ρ2

w(z)2

)|�|/2

L�p

(
2ρ2

w(z)2

)
,

(13a)

arg
(
LG�,p

) = i(2p+�+1) arctan

(
z

zR

)
− ρ2

w(z)2

−i k
ρ2

R(z)
− i�φ, (13b)

where L�p represents the generalized Laguerre polynomi-
als [30], with � and p being their azimuthal and radial
orders, respectively, w(z) describes the beam lateral size
as a function of the z coordinate with w0 being its mini-
mum value, R(z) is the wavefront radius of curvature, and
zR = πw2

0/λ is the beam Rayleigh range. Following the pre-
scriptions of the angular spectrum formalism, the reference
plane is chosen as z = 0, so w(z) = w0, exp(ρ2/R) → 1, and
arctan(z/zR) = 0. Finally, to account for the limitation to the
field of view of the focusing element imposed by its finite size,
the apodization function fw(θ ) = exp[− 1

f 2
0

sin2(θ )
sin2(θmax )

] should be

introduced. Here, f0 = w0
f sin θmax

is a geometrical factor repre-
senting the ratio between the beam and the lens lateral sizes.
With this choice, the dependence on ρ is also modified so
ρ2 = w0 sin2(θ )

f0 sin2(θmax )
. With these approximations, the mode am-

plitude only depends on the variable θ , while its phase only
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on φ,
LG�p = C�p fw(θ ) �(θ ) (φ), (14)

where the factors � and  collect the terms depending on θ

and φ, respectively, and C�p all the constant factors:

C�p =
√

2p!

π (p + |�|)! , (15a)

�(θ ) =
(

2 sin2(θ )

w0 f0 sin2(θmax)

)|�|/2

L�p

(
2 sin2(θ )

w0 f0 sin2(θmax)

)
,

(15b)

(φ) =
(

x(φ)

y(φ)

)
, (15c)

where the two-dimensional vector (x, y) is needed for the
description of vectorial vortices. The electric field incident on
the lens (�EL) can then be written in a general way as

�EL = C fw(θ ) �(θ )(x(φ),y(φ)), (16)

where the exact definition of (x, y) depends on the type of
vortex.

A. Scalar vortex

In the case of a scalar vortex, x = E0x exp(−i�φ), y =
E0y exp(−i�φ), and the dependence on φ is the same for both
components resulting in a uniform state of polarization (SOP).
The beam polarization can then be completely described by
the coefficients (E0x, E0y), which represent the projections
of the SOP on the polarization basis {|H〉, |V〉}, where |H〉
and |V〉 correspond to horizontal (x-direction) and vertical
(y-direction) polarization states, respectively. Denoting these
projections as 〈H|ψs〉 and 〈V|ψs〉, the scalar SOP |ψs〉 can be
obtained as

|ψs〉 = |H〉〈H|ψs〉 + |V〉〈V|ψs〉. (17)

B. Vector vortex

Vectorial vortices can be modelled as a superposition of
LG beams with opposite values of �, the same value of p, and
orthogonal circular polarizations. As a consequence of this,
the dependence on θ of both components of �EL is the same,
while the phase terms have different dependencies on φ. After
introducing the circular polarization basis [16],

|R, �〉 = |H〉 − i|V〉√
2

ei�φ, (18a)

|L, �〉 = |H〉 + i|V〉√
2

e−i�φ, (18b)

the vectorial SOP |ψv〉 can be written as the sum of orthogonal
circular scalar vortices,

|ψv〉 = |R, �〉〈R, �|ψv〉 + |L, �〉〈L, �|ψv〉, (19)

where the projections on the helicity basis [Eqs. (18)] are
E0R = 〈R, �|ψv〉 and E0L = 〈L, �|ψv〉. To consistently label
SOPs in Eqs. (17) and (19), the coefficients E0R, and E0L in
|ψv〉 can be expressed in terms of E0x and E0y, so

|ψv〉 = E0x + iE0y√
2

|R, �〉 + E0x − iE0y√
2

|L, �〉. (20)

Within this notation framework, assuming � = 0, both
|ψs〉 and |ψv〉 return uniform SOPs, expressed with the
two-dimensional Jones vector (E0x, E0y)T. For example,
(E0x, E0y)T = (1, 0)T gives the SOP |H〉 and (1,−i)/

√
2 cor-

responds to |R〉. Values of � 
= 0 will otherwise produce scalar
SOPs from |ψs〉 and vectorial ones from |ψv〉.

Examples of various SOPs are shown in Fig. 3. The SOPs
corresponding to � = 0, which can be equivalently obtained
as scalar vortices or degenerate vectorial ones, are presented
as points on the surface of the sphere. Each point (E0x, E0y) on
the Poincaré sphere can also represent a vectorial polarization
state, if a value of � 
= 0 is chosen. For example, the point
associated with |H, 0〉, which in a scalar case corresponds to
a horizontal SOP, instead represents a radial beam |H, 1〉 for
� = 1. SOPs belonging to the same series show the same local
polarization distribution along their horizontal central line. In
Fig. 3, for each point on the sphere, the SOP of the vectorial
vortices obtained for � = ±1, ±2 and the same values of
(E0x, E0y) are also shown.

Consistent with the above polarization description, the
functions x and y for vectorial SOPs can also be rewritten
in terms of E0x and E0y:

x(φ) = 1√
2

[E0x cos(�φ) − iE0y sin(�φ)], (21a)

y(φ) = 1√
2

[E0x sin(�φ) + iE0y cos(�φ)]. (21b)

C. Electric-field evaluation

Adopting the same piecewise definition of the electric field
as in Eq. (6), the electric-field distribution can be calculated
as

�Ei(�r) = − ik f e−ik f

2π

∑
α=s,p

∫ θmax

0

∫ 2π

0

�E(α)
∞ (θ, φ) ei�k+

α ·�r sin θ dφdθ, (22a)

�Er j (�r) = − ik f e−ik f

2π

∑
α=s,p

∫ θmax

0

∫ 2π

0
r (α)

j (θ ) �E(α)
∞ (θ, φ) ei�k−

α ·�r sin θ dφdθ, (22b)

�Et j (�r) = − ik f e−ik f

2π

∑
α=s,p

∫ θmax

0

∫ 2π

0
t (α)
j (θ ) �E(α)

∞ (θ, φ) ei�k+
α ·�r sin θ dφdθ, (22c)
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FIG. 3. Poincaré sphere representation of the polarization states. The Stokes vectors S1, S2, and S3 are used as the coordinate axes of the
polarization space. Scalar polarization states are represented on the surface of the sphere as black arrows, while vectorial SOPs, calculated
according to Eq. (19) with values of topological charge ±1 and ±2, are shown in correspondence to the scalar SOPs having the same values of
(E0x, E0y). The number below each circle indicates the topological charge of the SOP above it. The two-dimensional vectors indicate the value
of (E0x, E0y ) used for the corresponding series of SOPs. Similar SOPs can be obtained for the southern hemisphere of the Poincaré sphere
with the only difference of a π/2 rotation of the pattern. North and south poles represent uniform circular polarization of opposite handedness
regardless of the topological charge.

where the subscript j labels the region of space and α labels
the s and p components of each vector. The term �E∞ is ob-
tained substituting Eq. (16) into Eq. (8b), once the functions �

and  in Eq. (16) have been determined for the chosen beam
type. Upon substitution of �k± and the Fresnel coefficients,
the expressions depending on polarization (i.e., s or p) and
layer (i.e., being it isotropic or uniaxial) are obtained. The
calculations, limited to the analytical integration over φ, have
been coded in WOLFRAM MATHEMATICA, while the final steps
have been carried out in MATLAB [37].

The procedure followed for each of the fields appearing in
the piecewise definition of Eq. (6) is described below, using
the x component of the field �Et1 as a mock example. The
incident field is assumed to be a generic VVB with SOP given
by the normalized (E0x, E0y)T components. (In the following,
the electric field taken as an example will be simply labeled
as �E for simplicity of notations.) In the first step, the field in
the lens plane (�E∞) is divided into its s and p components
[Eq. (8b)] and the projections on the basis vectors are calcu-
lated:

Es
∞(θ, φ) = �EL(θ, φ) · n̂ϕ (θ, φ) = (E0y cos[(1 − �)φ] − E0x sin[(1 − �)φ])�(θ ), (23a)

Ep
∞(θ, φ) = �EL(θ, φ) · n̂ρ (θ, φ) = (E0x cos[(1 − �)φ] + E0y sin[(1 − �)φ])�(θ ). (23b)

They are then multiplied by the unit vectors given in Eqs. (12), according to the studied case, to obtain the full vector
�Es,p

∞ . After that, for each component of the angular spectrum, the factors solely depending on θ are collected together,
yielding

Es
∞,x(θ, φ) = C0

√
cos θ sin θ �(θ ) Es

∞(θ, φ) sin φ �(θ, φ; ϕ), (24a)

Ep
∞,x(θ, φ) = C0

√
cos θ sin θ �(θ ) E p

∞

√
μ1ε1(cos 2θ − 1)

2μ2ε2z
+ 1 cos φ �(θ, φ; ϕ), (24b)
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with �(θ, φ; ϕ) = exp[i
√

ε1μ1ρk0 cos(φ − ϕ) sin θ ], C0 =
C

√
μ1ε1. In the above expressions, the term

√
cos θ comes

from the intensity law, while the term sin θ (which is in ad-
dition to the one contained in �) comes from the Jacobian of
the integration variables transformation. In the next step, the
integration over φ is carried out applying Eq. (9) and upon
simplification of the trigonometric functions of φ, when nec-
essary. With WOLFRAM MATHEMATICA, it is indeed possible
to integrate Bessel functions of the first kind automatically
and by means of Eq. (9), but this is no longer possible if

the order of the Bessel function is kept arbitrary. This would
imply the need of specifying the desired order of the Laguerre
polynomial before completing the first integration. For this
reason, the code also includes a list of substitutions used to
apply Eq. (9) to a wide set of combinations of trigonometric
functions, returning the corresponding combination of Bessel
functions. The list has been built using all the possible com-
binations found in the calculations to ensure the possibility to
write a general solution for any arbitrary beam LG�p. Upon
completion of this step, the field spectral components become

Es
∞,x(θ ; ϕ) = πCk0i−� sin(θ )

√
cos(θ )�(θ )

√
μ1ε1[(E0x cos[ϕ(� − 2)] − E0y sin[ϕ(� − 2)])J2−�(

√
ε1μ1ρk0 sin θ )

+ i2�(E0x cos �ϕ − E0y sin �ϕ)J�(
√

ε1μ1ρk0 sin θ )], (25a)

Ep
∞,x(θ ; ϕ) = πCk0i−� sin(θ )

√
cos(θ )�(θ )

√
μ1ε1

√
(cos(2θ ) − 1)(μ1ε1)

2μ2ε2z
+ 1[(E0y sin[ϕ(� − 2)] − E0x

× cos[ϕ(� − 2)])J2−�(
√

ε1μ1ρk0 sin θ ) + i2�(E0x cos �ϕ − E0y sin �ϕ)J�(
√

ε1μ1ρk0 sin θ )]. (25b)

The components are then rearranged, collecting the Bessel functions involved. The resulting expressions are used in five
integrands with which all the field components can be reconstructed:

I1 =
∫ θmax

0
J�(k0

√
ε1μ1ρ sin θ ) fw(θ )

√
cos θ sin θ (cos θ + 1) �(θ ) ζ

(s,p)
i,± (θ ) η

(s,p)
i (θ ) dθ, (26a)

I2 =
∫ θmax

0
J2−�(k0

√
ε1μ1ρ sin θ ) fw(θ )

√
cos θ sin θ (cos θ − 1) �(θ ) ζ

(s,p)
i,± (θ ) η

(s,p)
i (θ ) dθ, (26b)

I3 =
∫ θmax

0
J2+�(k0

√
ε1μ1ρ sin θ ) fw(θ )

√
cos θ sin θ (cos θ − 1) �(θ ) ζ

(s,p)
i,± (θ ) η

(s,p)
i (θ ) dθ, (26c)

I4 =
∫ θmax

0
J1−�(k0

√
ε1μ1ρ sin θ ) fw(θ )

√
cos θ sin2 θ �(θ ) ζ

p
i,±(θ ) η

p
i (θ ) dθ, (26d)

I5 =
∫ θmax

0
J1+�(k0

√
ε1μ1ρ sin θ ) fw(θ )

√
cos θ sin2 θ �(θ ) ζ

p
i,±(θ ) η

p
i (θ ) dθ. (26e)

The explicit form of � depends on the beam type. The
functions ζ (θ ) and η(θ ) represent quantities whose explicit
expression depends on the medium (labeled by i), polarization
(s or p), and propagation direction (±ẑ). The value of these
two functions for each material are given in Table II. The
former (ζ ) is the propagation factor and the latter (η) is a
general representation of the Fresnel coefficients needed in
each case. It is worth noting that in the case of the integrals I4

and I5, only the contribution of the p component of the field
is important. Finally, the numerical integration is performed
in MATLAB [37]. Similar procedure can be applied to obtain
the magnetic field, retrieving its angular spectrum from the
electric field one.

Table III presents the expressions obtained for the electric
field �Et1 in both cases of OVBs and VVBs, where the de-
pendence on the coordinates (ρ, ϕ, z) have been omitted for
simplified notations. It is worth noting that, when calculat-
ing the field for a VVB, the three θ integrals (I1, I2, and
I4) need to be evaluated, while the five integrals are needed
for a scalar vortex. This is related to the presence of the
φ-dependent phase factor of the LG modes, which is lost in the

superposition of orthogonal circular vortices with opposite
topological charge, needed for VVBs.

D. Longitudinal field example

This semianalytical approach introduces an extension of
the RW theory of vectorial diffraction to an anisotropic
medium. The advantage of a semianalytical model, compared
to fully numerical studies, is the possibility to handle closed
expressions for the fields and retrieve the related fundamental
information from the functions describing their components.
For example, it is interesting to look at the longitudinal field
component Ez generated by focusing. In both cases of OVBs
and VVBs, this field solely depends on the p polarization
component of the angular spectrum, since it only contains the
integrals I4 and I5. While the spatial distribution of the lon-
gitudinal field depends on the results of the integration and on
all the factors contributing to it, it is possible to understand the
general trends directly from the integrands. In particular, I4

and I5 contain the terms ξ1±�(ρ, θ ) = J1±�(k0
√

μ1ε1ρ sin θ ),
which are calculated for each value of ρ over all the range of
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TABLE II. Functions ζ
(s,p)
i,± (θ ) and η

(s,p)
i (θ ) in the integrals Eq. (26) calculated in the medium i, for either s or p polarization and propagation

along ±ẑ direction. Labels of the Fresnel coefficients have the same meaning as previously introduced.

ζ
(s,p)
i,± (θ )

Medium 1 ζ
(s,p)
1,± (θ ) = ζ1,±(θ ) = exp(±i k0z cos θ

√
ε1μ1)

Medium 2 ζ s
2,±(θ ) = exp(±i k0z

√
ε1μ1(cos 2θ−1)

2 + ε2xμ2x ), ζ
p

2,±(θ ) = exp(±i k0z
√

ε1μ1(cos 2θ − 1) ε2x
2ε2z

+ ε2xμ2x )

Medium 3 ζ
(s,p)
3,± (θ ) = ζ3,±(θ ) = exp(±i k0z

√
ε1μ1(cos 2θ−1)

2 + ε3μ3)

η
(s,p)
i (θ )

Reflection Transmission

Medium 1 rs
I rp

I cos θ

Medium 2 rs
II rp

I

√
[ε1μ1(cos 2θ − 1)]ε2x t s

I t p
I

√
[ε1μ1(cos 2θ − 1)]ε2x

Medium 3 t s
II t p

II

√
ε1μ1(cos 2θ − 1) + 2ε3μ3

values of the integration variable θ , so the field at any point
in space depends on the superposition of all the plane waves
entering the field of view of the objective.

The integrals I4 and I5 in the case � = ±1 contain the
Bessel function J0. This is, in fact, the only function of the
set being nonzero-valued when its argument is zero, which
implies that only the terms containing this function will have a
nonzero integral in the spatial points corresponding to ρ = 0.
Comparing the maps of ξ�(ρ, θ ) for � = 0,±1 (Fig. 4), it is
evident how J0 is the only case where for small values of ρ, the

integral is nonzero. Looking at the same maps for higher val-
ues of ρ, it is expected that the value of the integrals will show
regions of different signs for the increasing distance from the
origin.

Considering the case of scalar OVBs, the z component of
the focused field contains the Bessel function J0 for � = −1
and this appears together with the function J2, making more
detailed predictions quite cumbersome at this stage, given all
the complicated dependencies appearing in the integrals and
the general dependence on the SOP. On the other hand, when

TABLE III. Expression of the electric field �Et1 in Eq. (22c) for OVB and VVB. The vector components (x, y, z) are given for both cases
of a scalar (OVB) and vectorial (VVB) vortex beams of generic polarization state (E0x, E0y ) and topological charge �. Some terms appearing
in the field components have been gathered in extra factors, whose definition is given in the bottom part of the table. All the integrals are
labeled with a superscript showing the medium they are calculated in and the polarization component they refer to. In each integral, the Fresnel
coefficients in η represent transmission coefficients, according to Table II.

Electric field in medium 2, propagating in the positive z direction

C0 [E0x ( f 10
ϕ − i f 20

ϕ )(
√

2I1p
1 + 2

√
ε2xε2zμ2I1s

1 ) + i−2�

2 (iE0x + E0y )(i f 12
ϕ + f 22

ϕ )(
√

2I1p
2 − 2

√
ε2xε2zμ2I1s

2 )+
x − 1

2 (E0x + iE0y )( f 13
ϕ − i f 23

ϕ )(
√

2I1p
3 − 2

√
ε2xε2zμ2I1s

3 )]

OVB C0 [E0y( f 10
ϕ − i f 20

ϕ )(
√

2I1p
1 + 2

√
ε2xε2zμ2I1s

1 ) + i−2�

2 (iE0x + E0y )( f 12
ϕ − i f 22

ϕ )(
√

2I1p
2 − 2

√
ε2xε2zμ2I1s

2 )+
y − 1

2 (iE0x − E0y )( f 13
ϕ − i f 23

ϕ )(
√

2I1p
3 − 2

√
ε2xε2zμ2I1s

3 )]

z C0
2 i−2�ε2x

√
ε1μ1√

ε2z
( f 10

ϕ − i f 20
ϕ )[(E0x − iE0y )(−i f 01

ϕ + f 02
ϕ )I1p

4 + i2�(−iE0x + iE0y )( f 01
ϕ − i f 02

ϕ )I1p
5 ]

x C0[ (E0x f 10
ϕ − E0y f 20

ϕ )(
√

2I1p
1 + 2

√
ε2xε2zμ2I1s

1 ) − i−2�(E0x f 12
ϕ − E0y f 22

ϕ )(
√

2I1p
2 − 2

√
ε2xε2zμ2I1s

1 )]

VVB y C0 [(E0x f 10
ϕ + E0y f 20

ϕ )(
√

2I1p
1 + 2

√
ε2xε2zμ2I1s

1 ) + i−2�(E0x f 12
ϕ + E0y f 22

ϕ )(
√

2I1p
2 − 2

√
ε2xε2zμ2I1s

1 )]

z −4C0 i1−2�√ε1ε2xμ1
√

ε1ε2zμ1(E0x f 11
ϕ + E0y f 21

ϕ )I1p
4

Factors appearing in the expressions above

C0 = i�πCk0

√
ε1μ1

2
√

ε2xε2zμ2

f 01
ϕ = cos ϕ f 02

ϕ = sin ϕ

f 10
ϕ = cos �ϕ f 11

ϕ = cos[(1 − �)ϕ] f 12
ϕ = cos[(2 − �)ϕ] f 13

ϕ = cos[(2 + �)ϕ]
f 20
ϕ = sin �ϕ f 21

ϕ = sin[(1 − �)ϕ] f 22
ϕ = sin[(� − 2)ϕ] f 23

ϕ = sin[(2 + �)ϕ]
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FIG. 4. Maps of the integrands ξ�±1 plotted for � = −2, 0, 2. The color scale is the same for all panels.

assuming � = 1 for a VVB on a higher-order Poincaré sphere,
the z component only contains the Bessel function J0 and two
particular cases can be highlighted. The z component of the

VVB field when the dependence on the coordinate ϕ is made
explicit is

EVVB
z (ρ, ϕ, z) = −4iε2z

√
μ1ε1C0 J1−�(k0

√
μ1ε1ρ sin θ )

√
cos θ sin2 θ,

×(E0x cos[(1 − �)ϕ] + E0y sin[(1 − �)ϕ]), (27a)

{� = 1 ⇒} = −4iε2z
√

μ1ε1C0 J0(k0
√

μ1ε1ρ sin θ )
√

cos θ sin2 θ E0x, (27b)

so the only contribution to the longitudinal field can come
from the component of the beam on the state |H, 1〉 [(E0x, 0),
in this case]. This state of polarization represents a radial
beam, which is known for its nonzero longitudinal field,
whose intensity can be strongly increased by tight focusing
[13,31,32]. On the other hand, if the initial SOP is given
by (0, E0y), which corresponds to an azimuthal beam, the
longitudinal field will be zero in every point of the real space.

V. APPLICATION EXAMPLES

The approach described in the previous section provides
the possibility to simulate the focusing of different types of
optical vortices and their propagation through a three-layered
medium. The required inputs are (i) E0x, E0y, �, p, w0, and λ

to completely characterize the beam; (ii) the permittivities of
each layer, to describe its optical behavior; and (iii) the numer-
ical aperture and the location of the geometrical focus of the
lens with respect to the interfaces, to characterize the focusing
features of the system. We consider several archetypal cases
to demonstrate the versatility of the developed approach: a
standard Gaussian beam, obtained as a Laguerre-Gauss beam
with both indices set to 0 (LG00); a high-order scalar vortex
(LG15,0); a scalar vortex with a nonzero radial index (LG10,2);
and a vectorial vortex whose constituent vortices are given by
LG±10,2 beams, referred to as the VVB10,2 (Fig. 5). The beams
are focused with an objective of numerical aperture of 0.9 in
all cases. All the scalar beams have been simulated assuming
horizontal polarization (i.e., the electric field parallel to the x̂
direction), hence only one of the initial electric field compo-
nents is nonzero (E0y = 0). The vectorial vortex is calculated
with the same prescription, so its polarization state can be
thought of as a higher-order equivalent of the horizontal scalar
polarization: scalar and vectorial SOPs are located at the same

point of the Poincaré sphere, but obtained for different val-
ues of topological charge. Any other state on the Poincaré
sphere is obtained by a careful selection of E0x, E0y and �

(cf. Fig. 3).

A. Free space

The simplest case to model is the propagation of the fo-
cused beam in free space, where all the permittivities are set
equal to one (Fig. 5). The size of the spatial mesh used in the
calculations has been expanded to fully appreciate the spatial
variations of the transverse and longitudinal field compo-
nents, over a macroscopic distance. Given the strong focusing
regime, even a simple Gaussian beam develops a nonzero
longitudinal field, which shows a two-lobed shape, aligned to
the polarization direction. Although nonzero, the longitudinal
field intensity is considerably smaller than the transverse one:
the maximum value of the former is approximately 0.6% of
the latter. If a nonzero topological charge is introduced, an
immediate rise in the longitudinal field strength is observed.
Its maximum becomes in fact the 26% of the transverse field
for the scalar LG15,0 vortex, reaching 35% for LG10,2. Com-
mon to all scalar vortices, not limited to the three presented
here, the symmetry of the longitudinal field intensity distribu-
tion is affected by a focusing-induced astigmatism, which is
manifested in a prolate shape of the beam. This is different
from a vectorial beam, where the interference between the
copropagating vortices of opposite topological charges results
in a cylindrically symmetric shape. Together with a higher
degree of symmetry, the intensity of the longitudinal field
relative to its transverse counterpart is also increased by the
vectorial nature of these types of beam: the longitudinal field
maximum becomes approximately 50% of the transverse one,
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FIG. 5. Vortex beam focusing in free space with NA = 0.9: (a) Gaussian beam, (b) scalar vortex beam LG15,0, (c) scalar vortex beam LG10,2,
(d) vectorial vortex beam VVB10,2. Colour maps represent the intensity of the (T) transverse and (L) longitudinal electric field components,
calculated in both (left) transverse (x − y) at z = 0 and (right) longitudinal (x − z) at y = 0 planes. The line plots are the cross sections of
the corresponding maps along the x or y axes. The SOP of each type of beam is shown in brackets, according to the basis used for scalar and
vectorial beams.

making these beams appealing for applications where a strong
longitudinal field is needed.

B. Isotropic lossy slab

The simulated system can be made slightly more com-
plicated by the introduction of a single interface, which can
be obtained using the same values of permittivities for two
consecutive layers. For the sake of brevity, from here on
we are only reporting the results for a more general case
of a double interface and limited to the beams LG10,2 and
VVB10,2. Any of the regions of the system (Fig. 2) can be
isotropic and lossy (complex values of permittivity are sup-
ported in the developed approach), so the first case considered
is a lossy dielectric (Fig. 6, yellow frames) with permittivity
ε2x = ε2z = 2.25 + i5 × 10−2. The results are similar to the
previous case of free-space propagation with the main differ-
ence being a reduction of the overall intensity of the beam
along the propagation direction, equally damping both the
transverse and longitudinal components of the beam. How-
ever, the reflection at the slab boundaries results in the field
intensity redistribution across the beam cross-section for both
field components.

C. Uniaxial slab: Elliptic dispersion

The central layer can also allow anisotropy, as long as there
is a single optical axis and it is aligned with the ẑ direction
of the reference frame, which coincides with the normal to
the interfaces. Depending on the sign of the permittivity com-
ponents, Re(ε2x ) and Re(ε2z ) of Eq. (11), this case describes
different dispersion regimes. When their product is positive,
the dispersion regime is a conventional elliptic one, inheriting
the name from the shape of the k-surface characteristic of
this case (Fig. 6, purple frames). The permittivities have been
chosen to be ε2x = 2.25 + i5 × 10−2, ε2z = 1.9 + i5 × 10−2.
In this case, the transverse field, affected by ε2x, shows the
same behavior as in the previous case of a lossy isotropic
dielectric. The differences from the isotropic case are visible
in the shapes of the intensity distributions of the beam profiles,
augmented by a variation of the standing wave pattern ob-
tained upon multiple reflections inside the anisotropic slab. On
the other hand, a smaller real part of Re(ε2z ), which introduces
anisotropy, produces a stronger longitudinal field inside the
slab as a consequence of the conservation of the longitudinal
component of the electric displacement vector. The imaginary
parts have been kept the same as in the case of an isotropic
dielectric in order to avoid overlapping different effects:
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FIG. 6. Propagation of (a) LG10,2 and (b) VVB10,2 beams focused with NA = 0.9 in a three-layered system. The central layer is (a) yellow
frames, isotropic (ε2x = ε2z = 2.25 + i5 × 10−2); (b) purple frames, elliptic (ε2x = 2.25 + i5 × 10−2, ε2z = 1.9 + i5 × 10−2); (c), blue frames,
hyperbolic (ε2x = 2.25 + i5 × 10−2, ε2z = −1.9 + i5 × 10−2) medium; while the first and third layers are chosen as free space (ε1 = ε3 = 1).
The description of the content of the panels is the same as in Fig. 5. The multiplication factors refer to the panel they are shown in.

different values for Im(ε2x ) and Im(ε2z ) would produce differ-
ent damping rates for transverse and longitudinal components
and interplay between them [36].

D. Uniaxial slab: Hyperbolic dispersion

If eventually Re(ε2x )Re(ε2z ) < 0, the second layer has a
hyperbolic dispersion (Fig. 2, blue frames). The chosen per-
mittivities for this case are ε2x = 2.25 + i5 × 10−2, ε2z =
−1.9 + i5 × 10−2, where again the transverse component
matches the value used for an isotropic dielectric and all
the imaginary parts are kept the same. The model reliably
reproduces the effects of negative refraction, phenomenon
known to happen in hyperbolic materials [33–35]. The beam
is, in fact, being refocused to a point outside of the uniaxial
slab, and its lateral dimensions are strongly modified inside it.
The modifications of the field intensity distributions are also
clearly visible similar to the previous cases but with stronger

damping of the longitudinal field and stronger divergence of
the transverse field inside the slab, which are connected be-
cause of the inter-relation between longitudinal and transverse
fields in the beam, resulting in their redistribution [7,36].

The described approach is obviously not limited to the
case of natural materials and can be applied to structured
materials if the effective medium considerations can be used
to describe optical properties through an effective permittivity.
For example, depending on the constituent materials and geo-
metric parameters, plasmonic nanorod-based metamaterials or
metal-dielectric multilayered metamaterials may exhibit ellip-
tic or hyperbolic dispersion regimes, or an epsilon-near-zero
regime, when a permittivity tensor component approaches
zero. The developed approach can be used for simulations
of reflection, transmission and absorption spectra, and reveals
how the polarization and intensity distributions of a beam are
modified by a particular dispersion regime of the metamaterial
[36].
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VI. CONCLUSIONS

The developed semianalytical model for the vectorial
diffraction theory in anisotropic uniaxial media can be ap-
plied to a wide range of situations, including focused optical
vortices, both scalar and vectorial, and their propagation
through a dielectric slab, whose optical behavior can be either
isotropic or uniaxial, exploring physically interesting disper-
sion cases, such as hyperbolic and epsilon near-zero regimes.
The presented approach allows for a comprehensive investiga-
tion of various parameters, including the objective numerical
aperture, the material permittivity, the slab thickness, and
the beam state of polarization. Moreover, by exploiting the
Laguerre-Gauss basis for the description of the vortices, this
approach can address crucial aspects of optical wave prop-
agation in complex media with regard to orbital angular
momentum physics.

The possibility to model such systems can assist the ex-
ploration of a wide range of applications, such as optical
communication, imaging systems, and laser beam shap-
ing, where the propagation of an optical vortex through an

anisotropic slab can play a crucial role. The simulations de-
scribed here are provided as an open-source software package
called INFOCUS (Interaction of FOcused Complex beams
with Uniaxial Slabs) [37].

In addition to the variety of cases the presented model can
be applied to, there are still many potential extensions that
could be implemented for future improvements, for instance,
extending the model to include the possibility to change the
angle of incidence of the incoming beam or, on the material
side, including cases described by a more complicated dielec-
tric tensor like, for example, chiral media.

All the data supporting the findings of this paper are
presented in the Results section and are available from the
corresponding author upon reasonable request.
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