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A B S T R A C T

We propose a continuum model for pattern formation, based on the multiphase model framework, to explore
in vitro cell patterning within an extracellular matrix (ECM). We demonstrate that, within this framework,
chemotaxis-driven cell migration can lead to the formation of cell clusters and vascular-like structures in
1D and 2D respectively. The influence on pattern formation of additional mechanisms commonly included
in multiphase tissue models, including cell-matrix traction, contact inhibition, and cell–cell aggregation, are
also investigated. Using sensitivity analysis, the relative impact of each model parameter on the simulation
outcomes is assessed to identify the key parameters involved. Chemoattractant–matrix binding is further
included, motivated by previous experimental studies, and found to reduce the spatial scale of patterning to
within a biologically plausible range for capillary structures. Key findings from the in-depth parameter analysis
of the 1D models, both with and without chemoattractant–matrix binding, are demonstrated to translate well to
the 2D model, obtaining vascular-like cell patterning for multiple parameter regimes. Overall, we demonstrate
a biologically-motivated multiphase model capable of generating long-term pattern formation on a biologically
plausible spatial scale both in 1D and 2D, with applications for modelling in vitro vascular network formation.
1. Introduction

In vitro vascularisation of 3D engineered tissues is required for a
range of applications, including in vitro models of development and
disease e.g. vascularised tumours [1], and to support the rapid devel-
opment of blood supply to engineered tissues implanted in vivo, e.g. in
a thick skin graft [2,3]. Development of new strategies to fabricate
prevascularised engineered tissues is ongoing, and is commonly de-
scribed as one of the key challenges facing clinical application [4–7].
As engineered tissues are a complex combination of material properties
and cell types, fabricated under a wide range of culture conditions, un-
derstanding the cell-level mechanisms behind in vitro vascular network
formation and the interactions between network-forming endothelial
cells (ECs) and other therapeutic cell types is essential to inform
fabrication techniques.

Mathematical modelling of cell patterning, including of in vitro
vascular network formation, offers a valuable tool to aid in the iden-
tification of the key cues and mechanisms involved [8], and to enable
in silico trial and error of experimental conditions [9]. Where individ-
ual cell cues and mechanisms are difficult to isolate experimentally,
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mathematical modelling offers the opportunity to probe the individual
influence of each mechanism. Furthermore, computational techniques
such as sensitivity analysis offer a powerful and cost-effective way to
assess the relative importance of cell mechanisms and experimental
conditions.

A first step to using simulation to guide experimental methods is to
select a suitable mathematical framework that is capable of mimicking
the behaviours observed in vitro. Here, a continuous multiphase model
framework is proposed that has not been previously utilised to ex-
plore cell pattern formation within an engineered tissue environment.
Crucially, the multiphase model framework can resolve both exper-
imentally relevant boundary conditions and cell-level chemical and
mechanical cues, in order to fully support the mechanisms associated
with the migration of a cell phase within an engineered construct
such as a hydrogel or scaffold. The multiphase model framework has
been utilised in several studies of in vitro tissue culture and growth
modelling [10], and was first adapted for this application by Lemon
et al. [11,12]. A multiphase model approach has also been used to
vailable online 28 March 2024
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study tumour growth [13–17]. More recently, Dyson et al. [18] ex-
tended the multiphase model framework to consider in more detail the
mechanical effects of a fibrous collagen scaffold on cell migration and
tissue growth. The multiphase model framework has additionally been
demonstrated to capture chemotaxis-driven pattern formation, with cell
aggregation demonstrated in 1D, and in a 2D thin film limit [19].

The behaviours and responses of endothelial cells, which can form
vascular-like networks in vitro, have been investigated in a wide-range
f in vitro assays [20–24]. Vascular endothelial growth factor (VEGF)
s known to be essential for vascular network formation from knockout
n vivo mouse studies that showed deletion of the gene responsible for
EGF production led to improper blood vessel formation and lethal-

ty [25,26]. The mechanisms by which VEGF may facilitate endothelial
etwork formation are varied, including (i) influencing the direction of
C migration as a chemoattractant [27,28], (ii) accelerating the rate
f EC migration by chemokinesis [29], (iii) affecting the rate of EC
roliferation [30,31], and (iv) inducing/increasing EC production of
atrix metalloproteinases (MMPs), enzymes responsible for degrading
CM proteins in the matrix surrounding the cell [30,32].
In vitro studies have found that HUVECs (human umbilical vein

Cs) can form vascular networks alone without the addition of ex-
genous VEGF, particularly under low oxygen conditions [24,33,34].
erini et al. [24] measured detectable levels of VEGF produced by
oth HUVECs (0.24 ng/ml) and microvascular ECs (0.67 ng/ml) after
h. Moreover, the role of VEGF gradients for EC network formation
as confirmed by observing inhibition of network formation via the
ddition of either anti-VEGF, or via a saturating amount of exogenous
EGF [24]. Whilst the authors did not focus on the VEGF production
f the HUVEC cells, Muangsanit et al. [34] observed the formation of
ube-like structures after 4 days of culture in an aligned collagen con-
truct, in the absence of exogenous VEGF or co-culture. However, the
xtent of network formation was significantly greater in co-culture with
chwann-like cells, which may be due to additional VEGF secretion of
hese cells [34].

To accurately model the dynamics of VEGF, the bioactivity of
he scaffold material must also be considered. There is substantial
vidence that some extracellular matrix proteins can bind soluble pro-
eins, including growth factors [35]. In particular, it has been shown
hat fibronectin binds with VEGF [36], as does fibrinogen [37], fib-
in [38], and heparin [39]. Using VEGF bound to a collagen–fibrinogen
atrix, Chen et al. further demonstrated that matrix-bound VEGF

licited a stronger chemotactic response in endothelial cells than solu-
le VEGF [37]. Köhn-Luque et al. [40] demonstrated that exogenously
dded VEGF could bind to Matrigel pericellularly, and that this bind-
ng was co-localised with specific proteins including endothelial cell-
ecreted fibronectin and heparin. Using a hybrid computational model
f chemotaxis-driven cell migration, the authors further suggested that
he stronger response to bound VEGF could drive cell patterning [40].

Previous partial differential equation (PDE)-based vasculogenesis
odels have been predominantly based on a 2D assay in which en-
othelial cells are seeded on, as opposed to within, the extracelllar
atrix [8]. In these assays, the ECs have an initial ‘free migration’
eriod (∼ 9 hours [24,41]) in which they are detached from the matrix
nd do not have any mechanical interactions, whereas in a 3D envi-
onment there is no such initial period, and the cells are constrained
y the surrounding hydrogel from conception. Notable models were
ble to replicate some of the resulting network properties, with similar
ualitative behaviours as the initial cell density was varied [8,24,42].
n addition, the spatial scale of the in vitro network, determined by

intervessel separation, was observed to be of the order of 200 μm
and well matched by the numerical simulations [24]. However, inter-
actions with the matrix including drag and traction were either not
included [24], or included as a separate layer [42]. In comparison with
3D assays, the time-frame for patterning obtained in these models is
much shorter [23,34], and often vascular-like patterning is observed
2

transiently and would not persist to longer time-frames [42–45]. To
date, there is an absence of a continuous model of vasculogenesis with
a focus on mechanisms relevant to 3D in vitro culture, in which ECs are
seeded within a scaffold or hydrogel.

In this paper, the impact of several commonly proposed mechanisms
for vascular network formation are explored within the multiphase
model framework; these are assessed using computational techniques
including sensitivity analyses and parameter optimisation. Whilst sim-
ulation of the full 3D model will be of future value, we focus here on the
1D and 2D form of the model which are more amenable to the analysis
required for model selection. We demonstrate long-term cell cluster
formation, and a model form including VEGF–matrix binding is shown
to form cell clusters on a comparable spatial scale to in vitro vascular
network pattern size and structure. This is translated into 2D, where
VEGF–matrix binding is also found to be required to match the spatial
scale of vascular-like structures, and the impact of several possible
additional mechanisms on the resulting network are considered. Future
work may also consider the impact of total cell volume fraction, and an
evolving ECM to support the connectivity and stability of patterning
seen in more mature vascular networks.

In Section 2, an appropriate form of the multiphase model is pre-
sented, following an introduction of the model geometry and the as-
sumptions made on the VEGF dynamics driving pattern formation. Two
model forms are proposed: the ‘core model’, where VEGF is included
as a solute only, and the ‘binding model’, in which two forms of VEGF,
both matrix-bound and free, are included. The constitutive functional
forms for intraphase cell forces and solute reaction terms are then
motivated to complete the multiphase model. The more general binding
model is then nondimensionalised for a 2D Cartesian geometry in
Section 3 using parameter values motivated by literature, and boundary
and initial conditions are imposed based on experimental conditions.
A summary of the procedure for the computational implementation of
the model in Python is then given in Section 4, with further details
and verification of the numerical model available in Appendix A.2.
The computational analyses methods used are outlined in Section 4.1.
Results relating to the impact of the core model parameters and ad-
ditional common mechanisms are presented in Sections 5.1–5.5. In
particular, a steady state analysis of the core model is presented in
Section 5.4. In Section 5.6, the impact of the addition of VEGF–matrix
binding to the model is considered and shown to aid pattern formation
on a spatial scale relevant to vascular network formation in vitro. The
difference in spatial scale generated by the core and binding models in
1D and 2D is further demonstrated in Section 5.7, alongside additional
network-related metrics for the 2D case.

2. Model outline

The multiphase model is based on the concept that the engineered
tissue, commonly a cell-seeded hydrogel, is formed of three constituent
phases: cells, water (culture media), and an extracellular matrix. Here,
the hydrogel has been considered as being formed of a solid component
(matrix phase), and a liquid component (water phase). Each of these
phases is modelled based on their respective volume fraction at any
given point in space 𝐱 and at any given time 𝑡, the total of which
always sums to unity. Thus, defining 𝑛(𝐱, 𝑡) as the volume fraction of
the cell phase, 𝑤(𝐱, 𝑡) as the volume fraction of the water phase, and
𝑚(𝐱, 𝑡) as the volume fraction of the matrix phase, a no-voids constraint
𝑛 + 𝑤 + 𝑚 = 1 is imposed throughout our computational domain. For
simplicity, we assume that the matrix phase is rigid and uniform, such
that the volume fraction 𝑚 is a constant. The no-voids constraint in the
hydrogel can thus be written as

𝑛(𝐱, 𝑡) +𝑤(𝐱, 𝑡) = 𝜙, (1)

where 𝜙 = 1−𝑚 is a constant representing the available volume fraction.
The general governing equations presented for the multiphase model

below are derived following constitutive forms proposed by Lemon

et al. [11] and subsequent model development papers [12,46,47]. Both
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Fig. 1. Illustration of the 2D Cartesian model geometry, based on a top-down slice of a hydrogel in a well plate.
12,
cell and water phases are therefore modelled as continuous media,
where the evolution of the spatial distributions of cell and water phases
over time are governed by conservation laws of mass and momentum.
We assume that cell proliferation is negligible, consistent with vascular
network formation within a collagen hydrogel [33,48]. Hence, there is
no transfer of volume between the three phases.

2.1. Model geometry and setup

The model geometry is based on a hydrogel in a well-plate, com-
monly utilised for experimental assays, illustrated in Fig. 1(a). In this
setup, a cylindrical hydrogel, shown in light pink, is cultured under
a layer of culture media, shown in dark pink. To focus firstly on the
impact of cell mechanisms on the model outcomes, as opposed to the
impact of experimental conditions, we take a simplified version of this
geometry. Considering a top-down view, we model a 2D horizontal slice
of the hydrogel using Cartesian coordinates. This 2D slice is illustrated
in Fig. 1(b), where the boundaries of the domain are the solid walls of
the well.

The scenario we wish to simulate is the evolution of the cell distri-
bution over time, given an initial distribution of cells 𝑛(𝐱, 0) = 𝑛0(𝐱),
assuming cells located at a boundary wall cannot move (no-slip) and
no-flux conditions also apply on the water phase at the boundary walls.

2.2. VEGF dynamics

The impact of the dynamics of the chemoattractant, VEGF, is in-
vestigated in this work. In what we refer to as the ‘core’ model for
vascular network formation, VEGF is included as a solute, 𝑐𝑢, in the
water phase, with possible dynamics including diffusion, production,
uptake, and degradation. In the extended ‘binding’ model, VEGF is
included in two forms: unbound VEGF, 𝑐𝑢, which is a solute in the water
phase, and bound VEGF, 𝑐𝑏, which is bound to, but does not affect the
volume fraction of, the extracellular matrix. This binding assumption
is based on experimental evidence that endothelial cells produce small
quantities of VEGF-binding matrix proteins, including fibronectin [40],
which leads to pericellular VEGF–matrix binding.

The main driver of cell motion in the model is assumed to be
the chemotactic response to the local VEGF concentration. Other key
mechanisms affecting the spatial and temporal profile of cell and
VEGF patterning include VEGF production and degradation, interphase
drag forces, as well as cell diffusion. We also investigate the impact
of additional commonly included mechanisms in models of vascular
network formation and/or multiphase models of engineered tissues:
VEGF uptake, cell–matrix traction, cell–cell aggregation, and cell–cell
contact inhibition. In Section 5.6, we investigate the extended binding
version of the model in which the chemotactic response of the cells to
each form of VEGF is allowed to differ.
3

2.3. Model equations

As stated earlier, the general model equations, and constitutive
terms selected here, are based on previous multiphase modelling works [
47], and the model assumptions outlined above.

The conservation of mass equation, governing the temporal and
spatial distribution of the cell volume fraction, takes the form of an
advection–diffusion equation
𝜕𝑛
𝜕𝑡

+ ∇ ⋅
(

𝑛𝐮𝐧
)

= ∇ ⋅ (𝐷𝑛∇𝑛), (2)

where 𝐷𝑛 is the cell diffusion rate and 𝐮𝐧 is the velocity of the
cell phase. Although relatively small, cell diffusion is retained to aid
numerical stability.

Due to the relatively short spatial scale (typically millimetres), in
comparison to a long timescale for cell motility (typically hours —
see Table 2), inertial effects are relatively small and hence neglected.
The general conservation of momentum equations for the cell phase,
governing the velocity field 𝐮𝐧, are therefore represented by a balance
between intraphase and external stresses resulting from the pressure
between phases, so that

∇ ⋅
(

𝑛𝝈𝑛
)

+ 𝐟𝑛𝑤 + 𝐟𝑛𝑚 = 0, (3)

where 𝜎𝑛 is the stress tensor for the cell phase, and 𝐟𝑖𝑗 represents the
interphase force of phase 𝑗 on phase 𝑖 noting that, by Newton’s third
law, 𝐟𝑖𝑗 = −𝐟𝑗𝑖. The cell phase is assumed to behave as a Newtonian
fluid, thus

𝜎𝑛 = −𝑝𝑛𝐈 + 𝝉𝒏

= −
(

𝑝𝑛 +
2
3
𝜇𝑛

(

∇ ⋅ 𝐮𝐧
)

)

𝐈 + 𝜇𝑛
(

∇𝐮𝐧 + ∇𝐮𝑇𝐧
)

where 𝑝𝑛 is the cell intraphase pressure, 𝜏𝑛 is the deviatoric part of the
stress tensor, and 𝜇𝑛 is the cell intraphase shear viscosity. Constitutive
forms of the intraphase and interphase forces are prescribed in the
following sections following Lemon et al. [11].

2.3.1. Cell intraphase pressure
The cell intraphase pressure, 𝑝𝑛, is split into multiple parts: a

water pressure component, 𝑝𝑤; the contribution of potential cell–cell
interactions, denoted 𝛱𝑛; the contribution of chemotaxis, denoted 𝛱𝑐 ;
and a final term to account for cell-matrix interactions, such that

𝑝𝑛 = 𝑝𝑤 +𝛱𝑛 +𝛱𝑐 + 𝑚𝜓𝑛𝑚,

where 𝜓𝑛𝑚 is the traction force between the cells and the matrix phase.
This constitutive form, commonly adopted in multiphase models [12,
46,47], is based on the concept that the cell phase will experience the
same ‘inactive’ pressure as the water phase, given that cells are mostly
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formed of water, with additional ‘active’ pressures due to interactions
with other cells, chemical solutes, and the extracellular matrix.

The cell–cell interaction pressures, 𝛱𝑛, can include: (i) cell–cell
ontact inhibition, e.g. 𝛱𝑖 = 𝛿𝑛𝑛2∕(𝜙 − 𝑛) [46]; and (ii) cell–cell
ggregation, e.g. 𝛱𝑎 = −𝜈𝑛. There are several possible forms for the
hemotaxis term, 𝛱𝑐 , including 𝛱𝑐 = 𝜒 exp

(

− 𝑐
𝑐𝑀

)

[47]. We consider
hemotaxis to act as a dominant cell intraphase pressure and include
t as a key mechanism; the possible influence of contact inhibition and
ell–cell aggregation is explored subsequently in Section 5.5. The form
f chemotaxis here is selected such that the chemotactic response is
igher in gradients of low VEGF concentration, such as in regions of
ow cell volume fraction [47]. Investigating the impact of the choice of
he chemotaxis functional form is left to future work.

The cell-matrix traction force, characterised by the parameter 𝜓𝑛𝑚,
is taken to be a negative constant to represent the cells’ affinity to the
ECM. Hence, we write 𝜓𝑛𝑚 = −𝜂, where 𝜂 is a positive constant.

2.3.2. Interphase forces
The interphase forces are split into two components: an interphase

pressure, 𝑝𝑖𝑗 , and a drag term, 𝛾𝑖𝑗 [11]. The general force exerted by
phase 𝑗 on phase 𝑖 is given by

𝐟𝑖𝑗 = 𝑝𝑖𝑗𝑗∇𝑖 − 𝑝𝑗𝑖𝑖∇𝑗 + 𝛾𝑖𝑗 𝑖𝑗
(

𝐮𝑗 − 𝐮𝑖
)

. (4)

The interphase pressures 𝑝𝑖𝑗 are similarly decomposed into a ‘contact-
independent’ pressure equal to the water pressure, 𝑝𝑤, and additional
‘active’ pressures. The only ‘active’ pressure between phases considered
here is the traction-induced pressure force between the cells and extra-
cellular matrix introduced previously, 𝜓𝑛𝑚 = −𝜂. Each interphase force
term can hence be written as

𝐟𝑛𝑤 = 𝑝𝑤𝑤∇𝑛 − 𝑝𝑤𝑛∇𝑤

𝐟𝑛𝑚 = (𝑝𝑤 − 𝜂)𝑚∇𝑛 − 𝛾𝑛𝑚𝑛𝑚𝐮𝐧,

where drag between the cell and water phase has been neglected,
motivated by its relative magnitude as discussed in [12], and the desire
to keep the conservation of momentum equations uncoupled.

Substituting these terms into (3) and applying the no-voids con-
straint, the conservation of momentum equation for the cell phase
becomes

− 𝑛∇𝑝𝑤 − ∇
(

𝑛𝛱𝑛 + 𝑛𝛱𝑐
)

+ ∇
(

𝑛𝜇𝑛𝝉𝒏
)

− 𝛾𝑛𝑚𝑛𝑚𝐮𝐧 − 𝜂𝑚∇𝑛 = 0, (5)

2.3.3. Water phase
A similar process to that of the cell phase can be applied to the water

phase. Defining 𝐮𝐰 as the velocity of the water phase, conservation of
total volume fraction implies
𝜕𝑤
𝜕𝑡

+ ∇ ⋅
(

𝑤𝐮𝐰
)

= 0, (6)

Inertia is once again neglected and the drag induced by the matrix
phase is assumed to be the dominant interaction on motion of the water
phase. Conservation of momentum for the water-phase thus yields

−𝑤∇𝑝𝑤 − 𝛾𝑤𝑚𝑤𝑚𝐮𝐰 = 0. (7)

which is characteristic of Darcy’s law [12], where the drag parameter
𝛾𝑤𝑚 acts as an effective viscosity of the water phase within the porous
matrix phase, with an effective permeability of 𝑚−1.

2.3.4. VEGF concentration
Unbound VEGF, 𝑐𝑢, is modelled as a solute in the water phase, for

which the general conservation of mass equation takes the form of the
following advection–diffusion–reaction equation,
𝜕(𝑐𝑢𝑤)
𝜕𝑡

+ ∇ ⋅
(

𝑐𝑢𝑤𝐮𝐰
)

= ∇ ⋅
(

𝐷𝑢𝑤∇𝑐𝑢
)

+ 𝑅𝑢, (8)

here 𝐷𝑢 is the diffusion coefficient for unbound VEGF, and 𝑅𝑢 is a
eaction term that is defined in subsequent Sections 2.3.5 and 2.3.6 for
he core and binding model respectively.
4

Bound VEGF, 𝑐𝑏, included in the binding model, is assumed to be
ound to the matrix phase, but has a negligible associated volume
uch that the matrix volume fraction remains constant. Hence, the
onservation of mass equation for bound VEGF takes the following
orm,
𝜕(𝑐𝑏𝑚)
𝜕𝑡

= 𝑅𝑏, (9)

where 𝑅𝑏 is a reaction term defined below in Section 2.3.6.

2.3.5. Core model
Excluding VEGF–matrix binding, the possible VEGF dynamics in-

clude diffusion, production and uptake by endothelial cells, and cell-
independent degradation. The reaction term for the VEGF solute in the
core model, based on (8), is thus written as

𝑅(𝑛,𝑤, 𝑐) = 𝛼(𝑛,𝑤, 𝑐)𝑛 − 𝜅(𝑛,𝑤, 𝑐) − 𝛿𝑐,

here 𝛼(𝑛,𝑤, 𝑐) is a production function, 𝜅(𝑛,𝑤, 𝑐) is an uptake function,
nd 𝛿 is a constant degradation rate. Although uptake of VEGF (which
pans the ligand-receptor binding and internalisation process of VEGF
nto the cell) is required for a cell response, in our model we decouple
he two stages of the biological process and take uptake to represent
he removal of VEGF from the solvent only.

A Michaelis–Menten function of the form 𝜅(𝑛,𝑤, 𝑐) = 𝜅𝑛𝑤𝑐∕(𝑐 + 𝐾)
as previously been used to describe cellular uptake of VEGF in an an-
iogenesis model [49], where 𝜅 is the maximal uptake rate, and 𝐾 is the
oncentration of VEGF at which uptake is half-maximal. A Michaelis–
enten term has also been used to model production, for example for

ibronectin production by endothelial cells during angiogenesis [49]. As
he local concentration of fibronectin increases, the rate of production
lows, until it reaches a maximum rate. Alternatively, in a fluids-
ased mechano-chemical model of vasculogenesis, Tosin et al. [42]
onsider a production rate 𝛼(𝑛) with non-linear dependence on the
ell density. The authors assumed a production rate that reached a
inite maximum for 𝑛 = 0 and monotonically decreased for 𝑛 > 0,
eaching a negligible level once the local cell density represented a
izeable cluster. Following Tosin et al. [42], we select the functional
orm 𝛼(𝑛) = 𝛼(𝜙−𝑛) that exhibits the same behaviour when modelling a
ell volume fraction as opposed to cell density. Including these reaction
erms, the governing equation for VEGF in the core model is therefore
ssumed to take the form
𝜕(𝑐𝑤)
𝜕𝑡

+ ∇ ⋅
(

𝑐𝑤𝐮𝐰
)

= ∇ ⋅
(

𝐷𝑢𝑤∇𝑐
)

+ 𝛼𝑛(𝜙 − 𝑛) − 𝜅𝑛𝑤𝑐
𝑐 +𝐾

− 𝛿𝑐. (10)

.3.6. Binding model
To consider the simplest model of VEGF binding in the first instance,

ny diffusion, uptake, or direct production of bound VEGF 𝑐𝑏 is ne-
lected. There is some evidence that binding to the extracellular matrix
educes the rate of degradation of proteins including VEGF [37,40];
owever, this difference is neglected for now such that the rate of
egradation of bound and unbound VEGF is considered equal and
epresented by the same parameter 𝛿. The experimental analysis of
öhn-Luque et al. [40] is suggestive of VEGF-binding to specific local
ell-deposited ECM proteins such as fibronectin. A more complex model
ay consider secretion of fibronectin and VEGF-fibronectin binding,

ut to simplify the mechanism here, the pericellular location of the
EGF binding sites can be accounted for by choosing the binding rate

o be proportional to the local cell density.
The addition of a VEGF–matrix binding mechanism introduces three

ew parameters: the binding rate, 𝑘𝑏, the unbinding rate, 𝑘𝑢, and the
strength of the chemotactic response to bound VEGF, 𝜒𝑏. For clarity, the
strength of the chemotactic response to free (unbound) VEGF is denoted
𝜒𝑢 in both the core and binding model.

Including binding with the matrix, the reaction term for unbound
VEGF, 𝑅𝑢, can be written as

𝑅𝑢(𝑛,𝑤,𝑚, 𝑐𝑢, 𝑐𝑏) = 𝛼𝑛(𝜙 − 𝑛) −
𝜅𝑛𝑤𝑐𝑢 − 𝛿𝑐𝑢 − 𝑘𝑏𝑚𝑛(𝑐𝑢𝑤) + 𝑘𝑢𝑤(𝑐𝑏𝑚)
𝐾 + 𝑐𝑢
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Table 1
Variable and parameter definitions for the general and specified multiphase model.
Variable/parameter Definition

n Cell volume fraction
w Water volume fraction
m Matrix volume fraction
𝜙 = 1 − 𝑚 Available volume fraction
𝑐𝑖 (𝑖 = u, b) Unbound/bound VEGF concentration
𝐮𝐢 = (𝑢𝑖, 𝑣𝑖) (𝑖 = n, w) Cell/water velocity
𝐷𝑖 (𝑖 = n, u) Diffusion rate of cells/unbound VEGF
𝑅𝑖 (𝑖 = u, b) Reaction term for unbound/bound VEGF
𝜎𝑖 (i = n, w) Cell/water stress tensor
𝑓𝑖𝑗 (𝑖, 𝑗 = n, w, m, 𝑖 ≠ 𝑗) Interphase force exerted on phase 𝑖 by phase 𝑗
𝑝𝑖 (i = n, w) Pressure in cell/water phase
𝜇𝑛 Cell viscosity
𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝜏𝐧 Cell deviatoric stress tensor
𝑝𝑖𝑗 (𝑖, 𝑗 = n, w, m, 𝑖 ≠ 𝑗) Interphase pressure exerted on phase 𝑖 by phase 𝑗
𝛾𝑖𝑗 (𝑖, 𝑗 = n, w, m, 𝑖 ≠ 𝑗) Drag coefficient between phase 𝑖 and phase 𝑗
𝜓𝑛𝑚 Traction coefficient between cell and matrix phases
𝜂 (constant) traction pressure between cell and matrix phases
𝛿𝑛 cell-cell contact inhibition pressure
𝜈 cell-cell aggregation pressure
𝜒𝑖 (𝑖 = u, b) Chemotactic response to unbound/bound VEGF
𝛼 VEGF production rate
𝜅 VEGF uptake rate
𝐾 VEGF concentration at which uptake is half-maximal
𝛿 VEGF degradation rate
𝑘𝑖(𝑖 = 𝑢, 𝑏) VEGF-matrix unbinding/binding rate
s
t
c
𝑐

where 𝑘𝑏 and 𝑘𝑢 are the binding and unbinding rates respectively, and
the dependence of binding on 𝑛 represents the indirect coupling of the
ocal cell volume fraction with the local availability of binding sites
ia fibronectin production. The dependence on 𝑤 and 𝑚 in the binding
erms is due to the transfer of the VEGF from within the water phase to
ithin the matrix phase, and vice versa. On the other hand, the reaction

erm for bound VEGF, 𝑅𝑏, takes the form

𝑏(𝑛,𝑤,𝑚, 𝑐𝑢, 𝑐𝑏) = 𝑘𝑏𝑚𝑛(𝑐𝑢𝑤) − 𝑘𝑢𝑤(𝑐𝑏𝑚) − 𝛿𝑐𝑏.

ence, the full governing equations for unbound and bound VEGF are
𝜕(𝑐𝑢𝑤)
𝜕𝑡

+ ∇ ⋅
(

𝑐𝑢𝑤𝐮𝐰
)

= ∇ ⋅
(

𝐷𝑢𝑤∇𝑐𝑢
)

+ 𝛼𝑛(𝜙 − 𝑛) −
𝜅𝑛𝑤𝑐𝑢
𝑐𝑢 +𝐾

− 𝑘𝑏𝑚𝑛(𝑐𝑢𝑤) + 𝑘𝑢𝑤(𝑐𝑏𝑚) − 𝛿𝑐𝑢,
(11)

nd
𝜕(𝑐𝑏𝑤)
𝜕𝑡

= 𝑘𝑏𝑚𝑛(𝑐𝑢𝑤) − 𝑘𝑢𝑤(𝑐𝑏𝑚) − 𝛿𝑐𝑏, (12)

respectively.

2.3.7. Summary
The governing equations are now ((1), (2), (5)–(7), (10)) for the

core model and ((1), (2), (5)–(7), (11), (12)) for the binding model.
The variable and parameter definitions for the general and specified
models are given in Table 1. Given that the core model is a reduction
of the binding model, obtained when 𝑘𝑢 = 𝑘𝑏 = 0, 𝜒𝑏 = 0, and 𝑐𝑏 = 0,
nondimensionalisation and numerical verification are presented for the
binding version of the model only.

3. Dimensional analysis

3.1. Dimensional parameter values

The typical lengthscale is chosen to be based on the dimensions of
a 96-well plate, shown in Fig. 1(a). Given a diameter of around 6 mm,
and variable hydrogel height of 1–5 mm, we set the representative
lengthscale 𝐿 to be within this range at 3 mm. The representative
imescale is chosen to be related to the time under which network
ormation is observed in vitro, shown to span from a few hours [24],
o 24–48 h [49], to several days [50], dependent on the geometry and
xperimental conditions. A typical timescale of 𝑇 = 105 s, ∼ 27 h, is
5

a

chosen to match the order of the timescale of chemotaxis-driven pattern
formation, which is the focus of the model presented here.

Table 2 outlines the estimated timescales for the main processes
considered by the model. Excluding cell diffusion, each process con-
sidered is significant on the chosen length scale given a timescale
of interest of 24–96 h. Despite the significantly longer timescale and
consequently large Péclet number, cell diffusion is maintained in the
computational model to improve numerical stability. The remaining
cell- and solute-related parameters required for the model are discussed
below.

3.1.1. Cell-related parameters
Using Stokes flow, Lemon and King [12] estimated the magnitude

of the water-matrix drag and cell-matrix drag term, where the latter
was found to be several orders of magnitude larger. The estimate of
cell viscosity, 𝜇𝑛 = 1 × 104 N m−2 s, is based on experimental evidence
further reported by Lemon and King [12].

The strength of chemotaxis, 𝜒𝑖 (𝑖 = 𝑢, 𝑏), is modelled as a stress
within this framework and is not amenable to experimental derivation.
A key aim of this paper is to first ascertain possible dimensionless
values of 𝜒𝑢 such that chemotactic effects are dominant in the core
model. The cell-matrix traction constant 𝜂 is explored in a similar
fashion, as is 𝜒𝑏 in the subsequent binding model.

3.1.2. VEGF-related parameters
There is scant quantitative data regarding the concentration of

VEGF produced by endothelial cells. Serini et al. [24] measured de-
tectable levels of VEGF after 3 h in the range 0.24 ng/ml − 0.67 ng/ml;
imilarly Nomura et al. [58] quoted that HUVECs produced a concen-
ration of 0.15 ng/ml at 10% oxygen. Based on these estimates, the
oncentration of 1 ng/ml is taken as the scaling for VEGF concentration,
𝑀 .

Parameters including VEGF production and uptake rates are highly
dependent on cell type, and again scant quantitative data is available.
VEGF production rates used in previous models in literature are often
quoted as per area per second, reflecting the 2D in vitro setup of the
assay being modelled. A crude conversion made from estimates from
other cell types, including from cells in the endoderm [56], and from
ADSCs in 3D culture [59], suggests a broad dimensional range of 𝛼 from
1×10−13 to 1×10−11 g ml−1 s−1. However, parameter analysis methods

re required here to determine a suitable range of values that may
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Table 2
Estimated timescales of relevant dynamic processes. Estimates are based on the hydrogel length scale L = 3 mm, and a typical
concentration of VEGF, 1 ng/ml. References are given for each estimate where applicable.
Process Estimated timescale Reference(s)

Cell diffusion 2.5 × 103 – 2.5 × 104 h [51–53]
VEGF diffusion in a hydrogel 250 h [24,40,54]
VEGF diffusion in media 25 h [55]
VEGF production 0.05 h [24]
VEGF half-life 0.1 h – 3 h [24,37,40,56,57]
Vascular network formation 9 h – 4 d [24,33,49]
Cell directed migration in a hydrogel 80 h [27,51]
g
i

E
E

w

3

f
u
c

𝑢

𝑢

lead to qualitatively different model outcomes, including the parameter
sweep presented in Section 5.1.

Köhn-Luque et al. [40] fit experimental data to a similar ODE model
of binding and unbinding of VEGF, based on an experimental assay
that observed the pericellular binding of exogenously added VEGF in
Matrigel. The ODE governing bound VEGF was in this case given by
𝜕(𝑏)
𝜕𝑡

= 𝑘∗𝑜𝑛𝑈𝑒𝑞 − 𝑘𝑜𝑓𝑓 𝑏, (13)

where 𝑏 is the concentration of bound VEGF, 𝑈𝑒𝑞 is the equilibrium
concentration of unbound VEGF, 𝑘∗𝑜𝑛 is the rate of binding, taking into
account the equilibrium concentration of binding sites, and 𝑘𝑜𝑓𝑓 is the
rate of unbinding. Comparing this with Eq. (12), and using the values of
𝑘∗𝑜𝑛 and 𝑘𝑜𝑓𝑓 determined by Köhn-Luque et al. [40], the values derived
for 𝑘𝑏 and 𝑘𝑢 are 𝑘𝑏 ≈ 0.05±0.01 s−1 and 𝑘𝑢 ≈ 3.7×10−3±3.97×10−4 s−1.
The impact of the experimental uncertainty will be considered via a
sensitivity analysis in Section 5.6.

3.2. Nondimensionalisation

A 2D Cartesian model is considered to approximate a top-down view
of the geometry, considered to be square for simplicity, as shown in
Fig. 1(b). The following dimensionless variables are used for nondi-
mensionalisation of the 2D Cartesian model, with nondimensionalised
versions denoted by an asterisk (*):

𝑥∗ = 𝑥
𝐿
, 𝑦∗ =

𝑦
𝐿
, 𝑡∗ = 𝑡

𝑇
, 𝑐∗𝑢,𝑏 =

𝑐𝑢,𝑏
𝑐𝑀

,

𝐷∗
𝑛,𝑢 =

𝐷𝑛,𝑢𝑇
𝐿2

, 𝑢∗𝑛,𝑤 =
𝑢𝑛,𝑤𝑇
𝐿

, 𝑣∗𝑛,𝑤 =
𝑣𝑛,𝑤𝑇
𝐿

, 𝛾∗𝑛𝑚 =
𝛾𝑛𝑚𝐿2

𝜇𝑛
,

𝜒∗
𝑢,𝑏 =

𝜒𝑢,𝑏𝑇
𝜇𝑛

, 𝜂∗ =
𝜂𝑇
𝜇𝑛
, 𝑝∗𝑤 = (𝑝𝑤 − 𝑝𝑎𝑡𝑚)

𝑇
𝜇𝑛
, 𝛼∗ = 𝛼𝑇

𝑐𝑀
,

𝜅∗ = 𝜅𝑇
𝑐𝑀

, 𝐾∗ = 𝐾
𝑐𝑀

, 𝑘∗𝑢,𝑏 = 𝑘𝑢,𝑏𝑇 , 𝛿∗ = 𝛿𝑇 .

After nondimensionalisation, dropping asterisks, the 2D Cartesian
model comprises nine coupled PDEs. The following dimensionless equa-
tions govern cell volume fraction, 𝑛, water volume fraction, 𝑤, water
velocity components, 𝑢𝑤 and 𝑣𝑤, water pressure, 𝑝𝑤, unbound and
ound VEGF concentrations, 𝑐𝑢 and 𝑐𝑏, and cell velocity components,
𝑛 and 𝑣𝑛:

𝜕𝑛
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝑛𝑢𝑛
)

+ 𝜕
𝜕𝑦

(

𝑛𝑣𝑛
)

= 𝐷𝑛

(

𝜕2𝑛
𝜕𝑥2

+ 𝜕2𝑛
𝜕𝑦2

)

, (14)

𝑛 +𝑤 = 𝜙, (15)

𝜕𝑤
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝑤𝑢𝑤
)

+ 𝜕
𝜕𝑦

(

𝑤𝑣𝑤
)

= 0, (16)

𝑢𝑤 = − 1
𝛾𝑤𝑚𝑚

𝜕𝑝𝑤
𝜕𝑥

, (17)

𝑣𝑤 = − 1
𝛾𝑤𝑚𝑚

𝜕𝑝𝑤
𝜕𝑦

, (18)

𝜕(𝑐𝑢𝑤) +
𝜕(𝑐𝑢𝑤𝑢𝑤) +

𝜕(𝑐𝑢𝑤𝑣𝑤) = 𝜕
(

𝐷𝑢𝑤
𝜕𝑐𝑢

)

+ 𝜕
(

𝐷𝑢𝑤
𝜕𝑐𝑢

)

6

𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝑝
+𝛼𝑛(𝜙 − 𝑛) −
𝜅𝑛𝑤𝑐𝑢
𝑐𝑢 +𝐾

− 𝑘𝑏𝑚𝑛(𝑐𝑢𝑤) + 𝑘𝑢𝑤(𝑐𝑏𝑚) − 𝛿𝑐𝑢, (19)

𝜕(𝑐𝑏𝑤)
𝜕𝑡

= 𝑘𝑏𝑚𝑛(𝑐𝑢𝑤) − 𝑘𝑢𝑤(𝑐𝑏𝑚) − 𝛿𝑐𝑏, (20)

− 𝑛
𝜕𝑝𝑤
𝜕𝑥

− 𝜕
𝜕𝑥

(

𝑛𝜒𝑢 exp(−𝑐𝑢) + 𝑛𝜒𝑏 exp(−𝑐𝑏)
)

− 𝜕
𝜕𝑥

(

𝜈𝑛2 +
𝛿𝑛𝑛3

𝜙 − 𝑛

)

+2
3
𝜕
𝜕𝑥

[

𝑛
(

2
𝜕𝑢𝑛
𝜕𝑥

−
𝜕𝑣𝑛
𝜕𝑦

)]

+ 𝜕
𝜕𝑦

[

𝑛
(

𝜕𝑢𝑛
𝜕𝑦

+
𝜕𝑣𝑛
𝜕𝑥

)]

−𝛾𝑛𝑚𝑛𝑚𝑢𝑛 − 𝜂𝑚
𝜕𝑛
𝜕𝑥

= 0, (21)

− 𝑛
𝜕𝑝𝑤
𝜕𝑦

− 𝜕
𝜕𝑦

(

𝑛𝜒𝑢 exp(−𝑐𝑢) + 𝑛𝜒𝑏 exp(−𝑐𝑏)
)

− 𝜕
𝜕𝑦

(

𝜈𝑛2 +
𝛿𝑛𝑛3

𝜙 − 𝑛

)

+ 𝜕
𝜕𝑥

[

𝑛
(

𝜕𝑢𝑛
𝜕𝑦

+
𝜕𝑣𝑛
𝜕𝑥

)]

+ 2
3
𝜕
𝜕𝑦

[

𝑛
(

2
𝜕𝑣𝑛
𝜕𝑦

−
𝜕𝑢𝑛
𝜕𝑥

)]

−𝛾𝑛𝑚𝑛𝑚𝑣𝑛 − 𝜂𝑚
𝜕𝑛
𝜕𝑦

= 0. (22)

All possible additional mechanisms are shown including contact inhi-
bition, 𝛿𝑛, cell–matrix traction, 𝜂, VEGF uptake, 𝜅, and cell–cell aggre-
ation, 𝜈. The estimates for the values of the dimensionless parameters
n the model are given in Table 3 where possible.

In order to solve the model, the water conservation of momentum
q. (17), (18) were substituted into the water conservation of mass
q. (16) to obtain a Poisson equation for water pressure, 𝑝𝑤,

𝜕𝑤
𝜕𝑡

− 1
𝛾𝑤𝑚𝑚

𝜕
𝜕𝑥

(

𝑤
𝜕𝑝𝑤
𝜕𝑥

)

− 1
𝛾𝑤𝑚𝑚

𝜕
𝜕𝑦

(

𝑤
𝜕𝑝𝑤
𝜕𝑦

)

= 0, (23)

hich is used in place of Eq. (16).

.3. Boundary conditions

Based on Fig. 1(b), no-flux conditions are applied on all boundaries
or the cell phase, water phase (including water pressure), and the
nbound VEGF concentration. No-slip conditions are also applied to the
ell phase on the boundaries. Thus we have the boundary conditions

𝑛 = 0, 𝑣𝑛 = 0, 𝜕𝑛
𝜕𝑥

= 0,
𝜕𝑐𝑢
𝜕𝑥

= 0,
𝜕𝑝𝑤
𝜕𝑥

= 0, at 𝑥 = 0, 1, and

𝑛 = 0, 𝑣𝑛 = 0, 𝜕𝑛
𝜕𝑦

= 0,
𝜕𝑐𝑢
𝜕𝑦

= 0,
𝜕𝑝𝑤
𝜕𝑦

= 0, at 𝑦 = 0, 1.

Equivalent no-flux and no-slip boundary conditions are adopted
when considering a reduced 1D version of the model, which is used
for benchmarking and as described in Section 4.1 for efficient pa-
rameterisation in order to exploit computationally expensive analysis
methods.

3.4. Initial conditions

The hydrogel is assumed to contain an initial cell distribution at
rest, with no bound or unbound VEGF present, given that the culture
media used for the hydrogel preparation does not contain VEGF. Thus
we have the initial conditions
𝑛(𝑥, 𝑦, 0) = 𝑛0(𝑥, 𝑦), 𝑢𝑛(𝑥, 𝑦, 0) = 0, 𝑣𝑛(𝑥, 𝑦, 0) = 0,

0 (24)

𝑤(𝑥, 𝑦, 0) = 0, 𝑐𝑢,𝑏(𝑥, 𝑦, 0) = 0, and 𝑤(𝑥, 𝑦, 0) = 𝜙 − 𝑛 (𝑥, 𝑦).
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Table 3
Dimensionless parameter values where estimates can be made. The dimensionless values are obtained by nondimensionalisation
of the model parameters as written in Section 3.2.
Parameter Definition Dimensionless value

m Matrix volume fraction 0.03
𝜙 Available volume fraction 0.97
D𝑛 Cell diffusion rate 1 × 10−4

D𝑢 Unbound VEGF diffusion rate in hydrogel 0.1
𝛾𝑤𝑚 Water-matrix drag 1.6 ×10−2

𝛾𝑛𝑚 cell-matrix drag 𝛾𝑤𝑚 < 𝛾𝑛𝑚 ≤ 105

𝛼 VEGF production rate 100 - 1 × 104

𝜅 VEGF uptake rate 0 ≤ 𝜅 ≤ 𝛼
𝐾 VEGF concentration at which uptake is half-maximal 0 – 1
𝑘𝑏 VEGF-matrix binding rate 5 × 103

𝑘𝑢 VEGF-matrix unbinding rate 370
𝛿 VEGF degradation rate 0.3 – 400
𝜒𝑢,𝑏 chemotactic response to unbound or bound VEGF 0 – 500
𝜂 cell-matrix traction strength 0 – 100
𝜈 cell-cell aggregation strength 0 – 100
𝛿𝑛 cell-cell contact inhibition 0 – 100
a
p

The way in which a random initial cell distribution, constituting
% of the total hydrogel volume, was implemented numerically is
escribed in Section 4.2.

. Numerical methods

The 1D and 2D Cartesian model equations were solved numerically
n Python by discretising the model equations using the finite-difference
ethod. The algorithmic approach taken to solve the coupled equations
ithin each timestep is outlined in Appendix A.1. The numerical model
as verified by using 1D analytical solutions, verifying the grid and

ime convergence, and monitoring conservation of the cell volume
raction. These convergence plots for the 2D numerical model are
resented in Appendix A.2. The full code to solve the 1D and 2D core
nd binding models and generate the results figures is openly available
n GitHub.

Here, the main computational techniques used to analyse the model,
ensitivity analysis and parameter optimisation, are introduced. Ad-
itionally, Section 4.1.1 outlines how the 1D and 2D metrics were
uantified. Section 4.2 outlines how the initial condition was set.

.1. Computational analysis methods

To assess the capabilities of the core model to simulate cell pattern-
ng, the computational analyses focused on (i) identifying qualitatively
istinct cell distribution outcomes, and (ii) assessing the timing and
tability of pattern formation. The overall aim of the analyses was to
dentify a suitable model that was capable of qualitatively matching
n vitro data, including the temporal and spatial scale of pattern for-
ation. Additionally, the analyses sought to minimise the number of
arameters required in the model to meet these conditions. To exploit
omputational techniques whilst minimising computational expense,
nitial analyses were conducted on the 1D version of Eqs. (14)–(22),
ssuming no 𝑦-dependence. Such model reduction is justified as the 1D
odel retains the likely mechanisms of cluster formation. Indeed, the

onclusions of these 1D analyses are shown to translate well to the 2D
odel throughout Section 5.

.1.1. Output metrics
In the 1D model, patterning arises in the form of cell clusters. Here,

he number of cell clusters formed within the domain is considered to
e the main outcome metric of interest. Additionally, cluster spacing
nd cluster width are related to characteristic pattern size in 2D,
nd can be observed in vitro and qualitatively matched [42]. Hence,
hough not independent from the number of clusters, these are useful
econdary metrics that can be used to assess biological plausibility of
7

he model. In the following analyses, the number of cell clusters was
calculated by applying a low threshold to the cell volume fraction
distribution, and then identifying the number of discrete objects.

In 2D, patterning arises as vascular-like structures that may form
a network. In this case, the spacing between clusters or the diame-
ter of ‘voids’ created by connected mesh-like patterning can be used
to assess the spatial scale of patterning. To determine vessel width
and spacing, several 1D slices of the 2D simulation output in each
dimension are taken and treated in the same manner to the 1D model,
using methods in scipy.signal to identify peaks and determine
vessel widths. These metrics are utilised to compare the character-
istic spatial scale of each model in Section 5.7. Additional suitable
metrics here include the average number of branches per node, aver-
age branch length, the number and diameter of network loops (lacu-
nae), and the connectivity of the network. Presented in Section 5.7,
these metrics were quantified by skeletonising the image using skim-
age.morphology.skeletonize after taking a low threshold, con-
structing a network from the skeleton using sknw, and importing
into networkx for network analysis. For the loop (lacunae) diam-
eters, the loops were identified in networkx and their coordinates
exported to an array for minor axis length measurement using skim-
age.measure.regionprops.

4.1.2. Sensitivity analysis
A sensitivity analysis can determine both the model tolerance to

variation in parameters, i.e. robustness, and the parameters which
have the most influence over a particular model outcome. Sensitivity
analysis can play an important role in model selection by identify-
ing parameters that have negligible impact on model outcomes, and
hence are superfluous. It is beneficial to reduce the number of key
parameters as more complex models require significantly more data
than may be plausible, as well as to avoid over-fitting of the model.
Additionally, this technique can be used to determine which changes
in experimental variables have the most significant impact on vascular
network formation in the model.

In Python, an open source library SALib provides a sensitivity
analysis framework for any user-developed function [60]. SALib runs
two functions: parameter space sampling (SALib.sample), and an
nalysis of the variation of model outputs with respect to the sampled
arameter inputs (SALib.analyze). Here, the Sobol method was

selected to provide the most detailed information for total, first-order,
and second-order parameter interactions [61]. The resulting Sensitivity
indices (Si) are a measure, between 0 and 1, of a parameter’s influ-
ence on the outcome metric. Very small values, comparative to the
magnitude of the confidence level of the index, can be assumed to be

negligible.

https://github.com/georginaalbadri/Math_Biosciences_GAB
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Table 4
Dimensionless parameter bounds for the core model parameters used for computational
model analysis.

Core parameter Minimum value Maximum value

𝜒𝑢 100 500
𝛾𝑛𝑚 0.1 10
𝛼 1 × 103 1 × 104

𝛿 10 100

4.1.3. Particle swarm optimisation
Parameter optimisation is an umbrella term for computational

methods that seek to find an input parameter value, or set of input
values, that produce an optimal model outcome as determined by a
user-defined metric. Here, a particle swarm optimisation (PSO) algo-
rithm has been selected which, given a metric to minimise, can find the
optimal global or local point of the parameter set through an iterative
procedure. In Python, the open source module PySwarms offers an
implementation of this algorithm for any user-defined function and
metric [62].

4.2. Initial cell distribution

A random initial cell distribution was generated using the numpy
function random.normal, which takes an input of the mean value,
standard deviation, and size of the grid. This function uses a ran-
dom number generator, the seed of which can be fixed using ran-
dom.seed(), to generate a sequence or array of random numbers
taken from a normal distribution as specified by the function inputs. To
control the spatial scale of the variability in the initial cell distribution,
this function was used alongside numpy.repeat to set the spatial
ariability to be on the same scale as the width of a single cell or cluster
f cells.

A sensitivity analysis was conducted which indicated that the rel-
tive standard deviation nor spatial variability of the initial condi-
ion have a significant impact on the simulation outcome (results not
hown). However, the random seed used to generate the initial cell
istribution did have a significant effect on the simulation results.
ence, it is appropriate to treat the model stochastically, running
nalyses on model statistics over many random initial conditions, as
pposed to individual outcomes.

. Results and discussion

.1. Effect of core model parameters on cell cluster formation

We consider four parameters of the ‘core’ model as identified by
iterature review to be most essential for the model: 𝛼, the VEGF pro-
uction rate; 𝛿, the VEGF degradation rate; 𝜒𝑢, the chemotaxis strength;
nd 𝛾𝑛𝑚, the cell-matrix drag. To verify that the parameter bounds
nformed by intuition and literature review are suitable for a sensitivity
nalysis, a manual parameter sweep was first conducted on a subset
f parameter samples to gain some preliminary information about the
egions of the parameter space that may lead to qualitatively distinct
ell distribution outcomes. The dimensionless parameter bounds used
or the following analyses are given in Table 4.

To conduct the parameter sweep, 768 parameter samples were gen-
rated using a Saltelli sampler (compared to 6144 for the full sensitivity
nalysis), and the model was run for each sample until 𝑡 = 2 (∼ 54 h),
ecording the number of clusters observed. The profile of a subset of
his data, for samples in which two or more clusters were observed at
= 2, is presented in Fig. 2. The histograms presented as marginal plots
llustrate the values of each parameter present in this subset, where

clear skew towards high or low values of each parameter can be
dentified for each of the core parameters. The scatter plots are used to
8

llustrate potential relationships between two parameter values, with
Table 5
Total Sensitivity index for each of the core parameters, based on number of cell clusters
formed, at 𝑡 = 1, 2, 3, and 4 respectively. The parameter bounds used are given in

able 4.
𝑡 [-] 1 2 3 4

VEGF degradation rate 0.67 0.76 0.81 0.84
VEGF production rate 0.55 0.58 0.59 0.58
Chemotaxis strength 0.40 0.35 0.31 0.29
Cell-matrix drag 0.34 0.25 0.23 0.2

Table 6
Dimensionless parameter values found to maximise the number of cell clusters formed
at 𝑡 = 2 and 𝑡 = 4 respectively, using the particle swarm optimisation method.
𝑡 [-] 2 4

average no. of clusters 5.0 5.4
VEGF degradation rate 99.6 90.0
VEGF production rate 7.41 × 103 8.92 × 103

Chemotaxis strength 367 401
Cell-matrix drag 4.16 3.91

a regression line plotted for each. The two parameter relationships
presented here were chosen based on their correlation coefficients,
and represent a positive relationship between VEGF production rate
and degradation (𝑟 = 0.64), and between chemotaxis strength and
cell-matrix drag (𝑟 = 0.29) respectively.

In Fig. 3, the parameter samples are labelled based on the specific
number of clusters produced. Fig. 3(a) illustrates the values of VEGF
production rate and VEGF degradation rate for which either 2–3, 3–4,
or more than 4 clusters were produced. Likewise, Fig. 3(b) illustrates
the values of chemotaxis strength and cell-matrix drag which produce
different numbers of clusters. Both plots suggest reasonably clear focus
regions in the parameter space that yield a large number of clusters
from model simulations.

A sensitivity analysis was also conducted on these four core pa-
rameters, using the number of clusters formed as the output metric.
The analysis was based on the average simulation output over 10
random initial conditions. The same 10 random seeds are used in the
computational analysis throughout this paper. Table 5 presents the total
Sensitivity index for each parameter at 𝑡 = 1, 2, 3 and 4 respectively.
The decrease in Si over time for chemotaxis strength and cell-matrix
drag suggests that these parameters play a role in the timing of cluster
formation, but are less influential over the number of clusters formed
long-term. The most influential parameters on cell clustering are hence
related to VEGF production and degradation, as their Si values increase
and/or remain high.

5.2. Spatial scale of core model cell cluster formation

In the parameter sweep presented above, the maximum number
of clusters obtained for the parameter range used was 4.7, suggesting
that it is uncommon for 5 or more clusters to be produced in this
domain by the core four-parameter model within the parameter bounds
given. Given that this domain has equivalent dimensional length 𝐿 =
3 mm, a much higher number of clusters would be expected if this
model were to represent the scale of capillaries. To verify the maximum
number of clusters the core model is able to produce, and for which
parameter values, a particle swarm optimisation (PSO) algorithm was
utilised to maximise the average number of clusters produced within
the parameter bounds of Table 4.

The optimal parameter values found by PSO to maximise the aver-
age number of clusters at 𝑡 = 2 and 𝑡 = 4 are presented in Table 6. These
indicate that generally 5–6 clusters can be achieved with relatively high
rates of VEGF production and degradation, given the prescribed limits.

Fig. 4(a) illustrates an example of cell clustering produced by the
core model using the optimised parameter values given in Table 6, in

which 5 clusters are present at 𝑡 = 2. Here one can observe that the
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Fig. 2. Scatter plots showing regression lines for the correlation between parameter values in the data subset that leads to two or more clusters. The Pearson correlation coefficients,
denoted 𝑟, are labelled in boxes on the plots. The marginal plots give the distribution of each parameter value in the data subset as a histogram.
Fig. 3. Scatter plots where each point is labelled based on the number of clusters formed with those parameter values in the parameter sweep dataset. A KDE (kernel density
estimation) contour has been added for each subgroup to highlight the parameter space inhabited by each group.
Table 7
Persistence of total number of clusters averaged over 10 initial conditions. Parameter
values used were taken from Table 6 (𝑡 = 4 column).
𝑡 [-] 2 4 10 20

No. of clusters 5.9 5.5 5.1 4.6

typical spacing between vascular components is at least 350 μm, which
is larger than the typical intercapillary distances required for optimal
metabolic exchange that are observed in vitro and in vivo [24]. Fig. 4(b)
presents an example of the 2D model output also at 𝑡 = 2 using these
parameter values. The spatial scale of the 2D cell structures is similar
to the 1D clusters, and this is explored further in Section 5.7.

5.3. Long-term behaviour of cell clusters

Based on the optimised parameter values given in Table 6, Table 7
shows the average number of clusters seen at longer time points up
to and including 𝑡 = 20. Though the model is currently intended to
model initial pattern formation, not long-term cell behaviour, Table 7
demonstrates that patterning driven by autologous chemotaxis in this
model can support long-term cell cluster formation.
9

To illustrate the long-term dynamics of the cell clusters, Fig. 5
presents four examples of cluster persistence, merging, and dissipation
that can take place, based on four different random initial conditions.
Each example shows the cell volume fraction along the 1D geometry,
with time on the 𝑦-axis up to 𝑡 = 20. In Fig. 5(a), 5 clusters are observed
to form between 𝑡 = 2.5 and 𝑡 = 5, before a cluster merging event
takes place around 𝑡 = 5 to 𝑡 = 7.5. After 𝑡 = 7.5, four clusters persist
appearing stable. Additional analysis is required to conclude whether
the system in this case has reached a steady state. Similar merging
events take place in Figs. 5(b) and 5(c). In Fig. 5(d), five clusters persist
beyond 𝑡 = 20, however there is some displacement of the clusters’
positions, indicating that a steady state is not obtained.

5.4. Steady state analysis of core model

To understand better these initial findings in terms of optimal
core parameters, an analysis of the core model in the steady state is
performed. We start with the nondimensional governing Eqs. (14) to
(22) without any additional mechanisms (𝜅 = 0, 𝐾 = 0, 𝜂 = 0, 𝜈 = 0
and 𝛿𝑛 = 0). By assuming 𝜕

𝜕𝑡 = 0, 𝑢𝑛 = 0, and 𝑢𝑤 = 0, these equations
reduce to
𝜕

(

𝐷𝑢(𝜙 − 𝑛)
𝜕𝑐𝑢

)

+ 𝛼𝑛(𝜙 − 𝑛) − 𝛿𝑐𝑢 = 0, (25)

𝜕𝑥 𝜕𝑥
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𝑛

Fig. 4. Example cell cluster and pattern formation for the optimised parameter values given in the first column (𝑡 = 2) of Table 6, shown at 𝑡 = 2. Dimensionless 𝐿 = 1 corresponds

to 3 mm. The same random initial condition was used to generate all 1D and 2D example plots.
Fig. 5. Examples of cell cluster persistence and cluster merging over time, using optimised parameter values given in the second column (𝑡 = 4) of Table 6. Four initial conditions
were chosen to reflect the range of long-term behaviours observed.
𝑛

𝜕
𝜕𝑥

(

𝑛𝜒𝑢 exp (−𝑐𝑢)
)

= 0, (26)

with 𝑝𝑤 constant throughout the domain. To make further progress, it
is realistic to assume that the cell population occupies a small volume
fraction, so that 𝑛 = 𝜖�̂�(𝑥) with 𝜖 = 0.05≪ 1 (also used numerically). A
cell cluster lengthscale 𝑋 ∼ 1, yet to be determined, is also defined
based on 𝑥 = 𝛺𝑋 with 𝛺 ≪ 1. Applying these assumptions and
combining (25) and (26) yields the following leading-order nonlinear
ODE for 𝑛(𝑋):

̂′′ −
(�̂�′)2

+ �̂��̂�2 − 𝛿�̂� (𝐸 + ln �̂�) = 0, (27)
10

�̂�

where �̂� = 𝛼𝜖𝛺2∕𝐷𝑢, 𝛿 = 𝛿𝛺2∕𝐷𝑢𝜙, and 𝐸 = 𝑐𝑢(𝑋) − ln �̂� is a constant
on the cell cluster lengthscale. A linearised analysis of this equation for
small perturbations in cell concentration (𝐴 ≪ 0) suggests a solution of
the form

̂ ≈ �̂�0 + 𝐴 cos
[

(

�̂��̂�0 − 𝛿
)1∕2𝑋

]

, (28)

so long as 𝑛0 ∼ 1 satisfies �̂��̂�0−𝛿 ln �̂�0 = 𝛿𝐸, and
(

�̂��̂�0 − 𝛿
)1∕2 is restricted

to discrete values that satisfy the no-flux boundary conditions at 𝑥 = 0
and 1. Setting our stretched lengthscale to encompass a single cluster
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Fig. 6. Cell cluster solutions from the steady-state analysis for the following parameter
values: �̂� = 4000, 𝛿 = 1000, �̂�0 = 1, 𝜖 = 0.05. This shows the solutions obtained by varying
the boundary condition �̂�(0).

(𝑋 ∼ 1) suggests

𝛺 = 2𝜋
(

𝐷𝑢
𝛼�̂�0𝜖𝜙 − 𝛿

)1∕2

as a nondimensionalised cell cluster lengthscale based on VEGF pro-
duction and degradation rates. Using the optimal values at 𝑡 = 2 from
Table 6 with 𝜖�̂�0 = 0.05 yields 𝛺 ≈ 0.12 which, in dimensional units, is
comparable to that observed in the computational results (∼ 350 μm).
As the perturbations become larger and nonlinear, numerical compu-
tations of (27) indicate that the cluster width remains approximately
constant and equal to 𝛺 (Fig. 6). The gaps between clusters, however,
become larger as the nadir approaches zero, thus reducing the overall
number of clusters that can exist within the fixed domain.

Fig. 7(a) shows an attempt to replicate the numerical results (shown
in Fig. 7(b)) based on the optimal parameters at 𝑡 = 2 in Table 6; two
important observations can be made from this comparison. The first is
that the perturbation required to reproduce the cluster pattern obtained
numerically is close to the maximum perturbation threshold that can
yield a periodic solution; this could have implications on controlling
this process. The second observation is that, while the analysis repro-
duces the cluster shapes and gap spacing very well, the computational
model produces clusters of slightly differing amplitudes, particularly
those adjacent to the walls. On closer examination of the numerical
results, the cause of the differing amplitudes is almost certainly down
to the fact that the computations at 𝑡 = 2 have not yet fully reached
a steady state. As a result, the mean cell volume concentration �̂�0 is
not uniform across the domain, as assumed in the steady-state analysis,
generating differing cluster heights locally around a location 𝑎 for
(𝑥 − 𝑎)∕𝛺 ∼ 1. The distinctly larger amplitudes close to the boundaries
(near 𝑥 = 0 and 𝑥 = 1) are very likely caused by cell accumulation
as a consequence of the no-flux boundary conditions, leading to larger
values of �̂�0 locally.

5.5. Impact of additional mechanisms on cell cluster formation

Given the limits of the core model investigated, in which the min-
imum spatial scale of patterning was found to be ∼ 350 μm, some
common additional mechanisms are considered to determine their po-
tential impact on this patterning scale. These include: (i) VEGF uptake,
(ii) cell–matrix traction, (iii) cell–cell aggregation, and (iv) cell–cell
contact inhibition (previously all set to zero).

The first additional mechanism, VEGF uptake, is characterised by
two parameters (see Section 2.3.5): an uptake rate, 𝜅, and the VEGF
11
Table 8
Dimensionless parameter values of the additional model parameters used to determine
which additional parameters may play a role in cell clustering, and the average number
of clusters formed over 10 initial conditions at 𝑡 = 2 when each additional parameter
is activated individually. The values for other parameters used are as in Table 6
(𝑡 = 2 column). The number of clusters formed in the core model without additional
parameters was 5.9 (Table 7).

Parameter First value No. of clusters Second value No. of clusters

𝜅 2 × 104 5.8 5 × 104 5.4
𝜂 100 5.3 200 1.9
𝜈 3 5.9 6 5.9
𝛿𝑛 100 5.6 200 5.5

Table 9
Dimensionless parameter bounds for the VEGF–matrix binding model parameters used
for parameter sweep.

Parameter Minimum value Maximum value

𝜒𝑢 0 500
𝜒𝑏 0 500
𝛾𝑛𝑚 0.1 10
𝛼 1 × 103 9 × 103

𝛿 10 100

concentration at which uptake is half-maximal, 𝐾. The second, cell-
matrix traction, is an additional interphase force in Eqs. (21) and
(22), characterised by the traction force parameter 𝜂. The final two,
aggregation and contact inhibition, are included as cell intraphase
pressures in the additional pressure term 𝛱𝑛 shown in the general
Eq. (5), and expanded in Eqs. (21) and (22). These two mechanisms
are characterised by the parameters 𝜈, a cell–cell aggregation pressure,
and 𝛿𝑛, a cell–cell contact inhibition pressure.

To determine the impact that each of these parameters has on the
spatial scale of pattern formation in the model, the number of cell
clusters produced under the same core parameter regime and initial
conditions was determined for a range of values of these additional
parameters. The dimensionless parameter values considered for each
are shown in Table 8. Table 8 also presents the average number of
cell clusters formed in each case, averaged over the same 10 initial
conditions as used previously. While these additional parameters exert
some influence on the number of clusters formed, they are unable
to increase the number of clusters any further and hence reduce the
spatial scale of patterning observed. Fig. 8 further illustrates the limited
influence of each of these parameters, using a fixed initial condition and
core parameter values, in both 1D and 2D.

5.6. Impact of VEGF-matrix binding on patterning scale

Motivated by reducing the spatial scale of pattern formation, we
consider the inclusion of VEGF–matrix binding on cell cluster and
pattern formation. Given that parameter values for the binding rates
𝑘𝑏 and 𝑘𝑢 are fixed, based on [40], the binding model is treated as
an alternate model choice to the core model analysed so far, and may
require different core parameter values.

Similarly to the core model, a parameter sweep was first conducted:
a Saltelli sampler was used to generate 896 parameter samples using
the dimensionless parameter bounds given in Table 9. The VEGF–
matrix binding model achieved a much higher average number of
clusters, up to 10, compared to the maximum average of 4.7 observed
the core model.

Fig. 9 presents three notable relationships between parameters in
this subset, based on correlation coefficient values. Compared to the
core model, VEGF production rate and degradation rate are less closely
linked, and there is no evident correlation between the magnitude
of these parameters and the number of clusters formed (Fig. 9(a)).
Though the values of degradation rate in this subset are skewed toward
higher values, plotted as a marginal histogram in Fig. 9(b), it is evident
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Fig. 7. Example cell cluster and pattern formation for the optimised parameter values given in the first column (𝑡 = 2) of Table 6, shown at 𝑡 = 2. This shows the computational
result obtained side-by-side with a steady-state analysis solution using the same parameters. Plot (a) also shows a second solution (red line) obtained from (27) using a slightly
higher value of �̂� at 𝑥 = 0 which fails to produce any periodic behaviour.
Table 10
Dimensionless parameter values found to maximise the number of cell clusters produced
by the VEGF–matrix binding model at 𝑡 = 2 and 𝑡 = 4 respectively, using the particle
swarm optimisation method.
𝑡 [-] 2 4

average no. of clusters 9.3 8.0
VEGF degradation rate 82.1 33.2
VEGF production rate 8.74 × 103 4.11 × 103

Cell-matrix drag 8.90 6.81
Chemotaxis strength (bound) 424 497
Chemotaxis strength (unbound) 13.6 90.4

from the scatter and kernel density estimate (KDE) plot that as the
chemotaxis strength for bound VEGF increases, there is a greater spread
of degradation rates. This suggests that for high bound chemotaxis
strength values, the model is less sensitive to the VEGF degradation
rate.

Finally, Fig. 9(c) demonstrates the spread of values for bound and
unbound chemotaxis strength in this subset. The marginal histograms
show that there is a skew towards high values of bound chemotaxis
strength, but not unbound chemotaxis strength, suggesting the model
is less sensitive to the latter in the binding model. The scatter/KDE plot
suggests that the highest number of clusters, greater than 8, generally
requires a relatively high bound chemotaxis strength and relatively low
unbound chemotaxis strength.

To verify the maximum number of cell clusters that can be formed in
the 1D binding model, a parameter optimisation using particle swarm
optimisation was conducted. The parameter values found to maximise
the number of clusters forming, averaged over 10 initial conditions as
in the core model analysis, are given for 𝑡 = 2 and 𝑡 = 4 in Table 10.
At both 𝑡 = 2 and 𝑡 = 4, the optimal parameter values were found to
be for relatively low unbound chemotaxis strength, and relatively high
chemotaxis strength to bound VEGF, as suggested by the parameter
sweep findings in Fig. 9. Moreover, the parameter values found for
VEGF production and degradation rate for 𝑡 = 4 support that high
values for these parameters are not strictly necessary for a large number
of clusters to form unlike in the core model.

The findings of the above parameter sweep and particle swarm
optimisation appear to suggest that including VEGF–matrix binding
leads to a more robust simulation outcome against variation in VEGF
production and degradation rates. To investigate this hypothesis, a
sensitivity analysis was performed on the VEGF–matrix binding model
parameters based on the chemotaxis, cell-matrix drag, production and
degradation upper and lower bounds given in Table 9, as well as the
12
Table 11
Total Sensitivity indices for each of the parameters in the extended VEGF–matrix
binding model, based on the number of cell clusters formed, at 𝑡 = 1, 2, 3, and 4
respectively.
𝑡 [-] 1 2 3 4

VEGF degradation rate 0.63 0.61 0.63 0.64
VEGF production rate 0.49 0.46 0.45 0.41
Chemotaxis strength (unbound) 0.52 0.32 0.26 0.26
Chemotaxis strength (bound) 0.50 0.39 0.36 0.32
Cell-matrix drag 0.23 0.24 0.22 0.19
Rate of binding 0.08 0.08 0.09 0.09
Rate of unbinding 0.11 0.12 0.12 0.13

upper and lower bounds for the rate of binding and unbinding given by
Köhn-Luque et al. [40]. The results of the sensitivity analysis are shown
in Table 11, where the influence of the strength of chemotaxis to bound
VEGF at 𝑡 = 4 is higher than for the strength of chemotaxis to free VEGF.
All other parameters exhibit a similar influence as in the core model,
though the Si values for VEGF production and degradation are lower
than those obtained for the core model ( Table 5) as predicted. The
low Si values for the rates of binding and unbinding confirm that the
experimental upper and lower bounds are sufficiently narrow that the
uncertainty in these parameters do not overshadow the impact of the
other model parameters on the model outcome.

Fig. 10 illustrates cell clustering produced by the VEGF–matrix bind-
ing model using the optimised parameter values in Table 10. Fig. 10(b)
both confirms the ability of the extended VEGF–matrix binding model
to generate connected vascular-like structures on a biologically relevant
timescale, and indicates that the VEGF–matrix binding model can better
match the spatial scale of vascular network formation as indicated by
the 1D analysis.

Motivated by findings in previous chemotaxis-driven models [24,
41], Fig. 11 presents the binding model with alternate initial cell
volume fraction (0.04 or 0.06 compared to 0.05). For the higher cell
volume fraction, a more connected structure is generated, moving
towards a ‘swiss cheese’ pattern as opposed to disconnected vascular-
like segments. This patterning also required a longer time to form (t =
3 as opposed to t = 2). However, initial cell volume fractions greater
than 0.06 prevented vascular-like patterning (data not shown).

5.7. Quantification of spatial scale and connectivity

Here we present statistics for cluster (1D) and vessel segment (2D)
spacings to compare to the patterning size seen in vitro on the order of
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Fig. 8. Examples of the impact of additional parameters in 1D and 2D, each shown at 𝑡 = 2. The core parameter values used were fixed based on Table 6, and the same initial
condition was used to generate each example.
200 μm. We further consider additional network-related metrics in the
2D case to assess branching, connectivity, and lacunae presence and
diameter. The computational methods used to obtain these metrics a
outlined in Section 4.1.1.
5.7.1. Patterning spatial scale

To confirm the typical spatial scale of the core and binding models,
the width and spacing of each cell structure formed were assessed
for each 1D model over 10 random initial conditions. In Fig. 12,
the distribution of metrics in the 1D core model is compared with
the metrics in the 1D binding model. This demonstrates a significant
reduction in both metrics (p < 0.001), particularly in cluster spacing
13
which is of the most interest. For the 1D binding model, the average
cluster spacing was found to be 229 μm, of the same order of vessel
separation observed in vitro [24].

Fig. 13 makes a similar comparison for the 2D core and 2D binding
models, with clear reduction in both metrics for the binding model
(p < 0.001). Compared to 1D, each metric average appears slightly
larger, likely due to the method employed to determine these metrics.
In 2D, the metrics were determined by taking several 1D slices in
each dimension, however this does not guarantee to pass through the
most narrow part of each network segment, nor capture the smallest
separation of segments, leading to the larger spread of measurements
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Fig. 9. Labelled scatter and kernel density estimate (KDE) plots showing the parameter values in the sweep that obtained either 4–6, 6–8, or more than 8 clusters at 𝑡 = 2. The
relationships between VEGF production rate, VEGF degradation rate, and both chemotaxis strength parameters are included as these had the highest correlation coefficient in the
data subset. The marginal plots give a histogram distribution for each of these parameters in the data subset.

Fig. 10. Example cell cluster and pattern formation for the VEGF–matrix binding model with the optimised parameter values given in the first column (𝑡 = 2) of Table 10, shown
at 𝑡 = 2. Dimensionless L = 1 corresponds to 3 mm. The same random initial condition was used to generate all 1D and 2D example plots.
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Fig. 11. Example pattern formation for the VEGF–matrix binding model, for average cell volume fraction of (a) 0.04 at 𝑡 = 1.5, (b) 0.05 at 𝑡 = 2, and (c) 0.06 at 𝑡 = 3. The
parameter values used are given in the first column (𝑡 = 2) of Table 10. Dimensionless L = 1 corresponds to 3 mm. The same random initial condition was used to generate all
1D and 2D example plots.
Fig. 12. Spatial metrics for 1D core and 1D binding model, using optimised parameter
values. The metrics were extracted from 10 simulations given random initial conditions.
The mean values are given, and the asterisks denote significance.

for the 2D metrics. The additional impact of initial cell volume fraction
on these metrics is shown in Appendix B.

5.7.2. 2D network metrics
In 2D, it is more appropriate to treat the vascular-like patterning

as a network to quantify branching, average branch length, network
connectivity, and the size of any lacunae. Fig. 14 illustrates the increase
in the number of branches per node, and decrease in branch width, as
the network becomes more complex with the addition of VEGF–matrix
binding. No lacunae were identified in any of the core model outputs
analysed, and the binding model outputs had an average of two lacunae
per network and maximum of six, with average diameter of 300 μm.

Where the network is not strongly connected, i.e. not every node
can be reached from every other node, we can consider average node
connectivity: for each pair of nodes, we take the maximum number
of disjoint paths connecting them, and take the average for all pairs
of nodes in the graph. Fig. 15 shows that this average connectivity
is slightly higher in the binding model, but significantly higher with
an increased average cell volume fraction (0.06 compared to 0.05).
Indeed, 8 out of 10 networks produced with the higher initial cell
density were strongly connected, which was not true of any of the
networks with the lower cell density. Further analysis may be beneficial
to optimise cell volume fraction alongside the model parameter values,
and assess their interdependence.
15
Fig. 13. Spatial metrics for 2D core and 2D binding model, using optimised parameter
values. The metrics were extracted from 10 simulations given random initial conditions.
The mean values are given, and the asterisks denote significance.

6. Conclusion

In this paper, we have demonstrated the potential for the multiphase
model framework to be used to simulate cell patterning in 1D and 2D,
including the formation of cell clusters and of vascular-like structures.
We have investigated cell mechanisms commonly included in models
of vascular network formation and more general multiphase models,
with a focus on the influence of each parameter on the spatial and
temporal scale of patterning. Using sensitivity analysis, four core pa-
rameters were identified and demonstrated to enable the formation of
cell clusters and vascular-like structures in 1D and 2D respectively, on a
biologically plausible timescale (2 to 4 days). A steady-state asymptotic
analysis reinforced the findings of the numerical core model results,
particularly in terms of the expected cluster width and cluster spacing
being strongly influenced by VEGF production and degradation rates.
Additional model mechanisms, including cell–matrix traction, VEGF
uptake, cell–cell aggregation, and cell contact inhibition, were not
found to favourably reduce the spatial scale of cluster formation. Al-
ternatively, the addition of VEGF–matrix binding as a model extension
was found to match the spatial scale of patterning as observed in vitro,
with significantly smaller pattern spacing compared to the core model.
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Fig. 14. Number of branches per node and length of branches for 2D core and 2D binding model, with initial cell volume fraction of either 0.05 or 0.06, using optimised parameter
values. The metrics were extracted from 10 simulations given random initial conditions.
Fig. 15. Average connectivity of networks in the core and binding models, with
average cell volume fraction of either 0.05 or 0.06, using optimised parameter values.
The metrics were extracted from 10 simulations given random initial conditions.

In this analysis, we have demonstrated that the combination of
analyses methods employed here: parameter sweep, sensitivity analysis,
steady-state asymptotics, and parameter optimisation is an efficient
way to guide the optimisation of the 2D vascular network formation
model. Furthermore, the sensitivity analysis identified an increase in
robustness of the binding model to some of the core parameters,
particularly for VEGF production and VEGF degradation.

Future analysis may include the application of some of these com-
putational techniques, including parameter optimisation, to the 2D
model directly. Additionally, the analysis would benefit from a much
deeper look at persistence of the vascular-like structures in 2D, and
the stability of metrics observed over a longer time point. To adapt
the model presented here to long-term behaviour, it is likely that
additional stabilising mechanisms such as a temporal-dependence on
the cell-matrix interactions, driven by augmentation of the matrix
distribution by the cells, may be required to match in vitro findings. Cell
matrix degradation is often observed in the initial stages of network
formation, aiding cell migration, and then an increase in deposition
of ECM components including laminin and collagen IV is observed in
16
the latter stages [63,64]. Whereas collagen is seen to increase cell mi-
gration, these basement membrane proteins serve to stabilise capillary
structures. A first, simplified model of this behaviour may consider cell-
derived deposition of proteins that directly replace the existing collagen
matrix, such that two main proteins constitute the constant 𝑚, each
with different mechanical and chemical properties.

The impact of initial or average cell volume fraction (equal in the
absence of proliferation), was considered briefly here and shown to
positively affect the connectivity of the resulting 2D network. The sensi-
tivity of the network properties to the cell volume fraction, particularly
in relation to variable parameter values, would be of value to assess.
Here, cell volume fraction was not considered as a variable alongside
the parameter values, and hence the sensitivity and optimisation of the
parameter values are limited to a particular initial cell volume fraction.

Overall, this study has demonstrated potential for the multiphase
model to capture key in vitro behaviours at the time points consid-
ered, which makes it a prime candidate for further development to be
utilised alongside experimental studies. In particular, the wide range
of experimental variables associated with in vitro vascular network
formation can be quantitatively assessed computationally by sensitivity
analysis, as well as analytically via asymptotic analysis, to determine
the most influential on the emerging network structure and topology.
The adoption of computational analyses, such as demonstrated here,
has the power to significantly reduce the experimental load towards
in vitro development of vascularised engineered tissues and accelerate
research in this area towards clinical application.
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Appendix A. Numerical methods and verification

A.1. Model solver

Backward-time and central-space (BTCS) finite differences have
been applied to the model equations, and boundary conditions imple-
mented by adopting a forward- or backward-space difference on the
boundary, as appropriate. With the BTCS method, it has been previ-
ously shown that upwinding is not required for advection terms [65].
For further confirmation, a version of the code where upwinding was
used for Eq. (14) was tested and found to produce near-identical results
to the BTCS method.

The resulting set of coupled matrix problems were solved algo-
rithmically within each timestep with use of Python’s inbuilt linear
algebra solvers. Listing 1 gives an outline of the algorithmic approach
to the numerical implementation to solve each matrix problem in
sequence. In order to decouple the equations, the assumption is made
that the cell velocity components 𝑢𝑛 and 𝑣𝑛 do not change significantly
between timesteps, verified to be true for the timestep size used for the
simulations. This enables the cell volume fraction equation to be solved
first, and enables decoupling of the two cell momentum equations to
solve 𝑢𝑛 and 𝑣𝑛 separately.

1

2 def Timestep(cell, solute, bound_solute ,
water, grid, dt):

3

4 " " "
5 Updates all variable distributions to

advance the model by a single timestep.
6

7 Inputs
8 ----------
9 cell : Cell object

10 solute : Solute object
11 water : Water object
12 grid : Grid object
13 dt : timestep (float)
14

15 " " "
16

17 # update cell distribution
18 cell.distribution = cell_solver(cell,

grid)
19

20 # use no voids constraint to update
water distribution

21 water.distribution = phi - cell.
distribution

22

23 # update water pressure
24 water.pressure = pressure_solver(water,

grid)
25

26 # update water velocity
27 water.velocity = water_velocity_solver(

water, grid)
28

29 # update unbound and bound VEGF
distribution (where applicable)

30 solute.distribution = solute_solver(
solute, bound_solute , cell, water, grid)

31
17
32 # update cell velocities
33 cell.velocity = cell_velocity_solver(

cell, solute, bound_solute , grid)
34

35 # check for volume conservation and
consistency

36 if negative values occur in cell, water,
or solute distributions:

37 raise ValueError(’Negative volume
fraction in cell, water or solute
distributions’)

38 assert (water.distribution + cell.
distribution + m).all() == 1

39 assert sum(cell.previous_distribution)
== approx(sum(cell.distribution))

40 return

Listing 1: Algorithm for sequential application of matrix solvers within
each timestep.

A.2. Numerical verification

The grid- and time-step convergence for the BTCS implementation
is verified here for the 1D and 2D Cartesian binding models. By com-
paring numerical solutions to a ‘ground truth’ solution, approximated
by a highly accurate numerical solution obtained by using a very fine
grid and/or very small timestep, it is expected that errors in the BTCS
scheme are of order 2 in space and of order 1 in time. The numerical
scheme was tested and convergence plots are presented here using
parameter values identified as optimal for pattern formation in the
binding model, given in Table 10 in Section 5.6. These parameter values
are selected as they represent the most extreme values in terms of the
complexity of the simulation results, and so are most suitable to test
the robustness of the numerical implementation.

Figs. A.16(a) and A.18(a) show that the error related to grid size is
of order 2 in both the 1D and 2D Cartesian model implementations
as expected, where the red line has gradient 2. Figs. A.17(a) and
A.19(a) show that the error related to increasing timestep size is of
order 1 as expected, where the red line has gradient 1. Due to lower
computational expense, it is possible to run the 1D model on a finer
grid, to obtain a more accurate ground truth solution against which
the errors are calculated. The ground truth solution adopted for the 2D
grid convergence plot (Fig. A.18(a)) is based on a coarser grid, hence
the errors for solutions with grid sizes close to the ground truth grid
size tend towards negative infinity on the log scale, and the error curve
bends downwards slightly. However, it is clear accumulative errors
relating to increasing grid spacing and timestep are relatively small;
the maximum cell volume fraction conservation error seen during
verification testing was 0.035%.

Appendix B. Impact of initial cell volume fraction on cluster for-
mation

B.1. 1D core model

See Fig. B.20.

B.2. 1D binding model

See Fig. B.21.
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Fig. A.16. 1D Cartesian code convergence plots (grid spacing). The red line in Fig. A.16(a) is of gradient 2 through one of the data points. The parameter values used are those
found by parameter optimisation, given in Table 10. The grid spacing ranged from 𝑑𝑥 = 2.5 × 10−4 to 𝑑𝑥 = 6.7 × 10−4. The timestep was fixed at 𝑑𝑡 = 0.002, and the errors were
calculated at 𝑡 = 0.2.

Fig. A.17. 1D Cartesian code convergence plots (timestep). The red line in Fig. A.17(a) is of gradient 1 through one of the data points. The parameter values used are those
found by parameter optimisation, given in Table 10. The timestep ranged from 𝑑𝑡 = 1 × 10−4 to 𝑑𝑡 = 1 × 10−3. The grid spacing was fixed at 𝑑𝑥 = 3.3 × 10−4, and the errors were
calculated at 𝑡 = 0.2.

Fig. A.18. 2D Cartesian code convergence plots (grid spacing). The red line in Fig. A.18(a) is of gradient 2 through one of the data points. The parameter values used are those
found by parameter optimisation, given in Table 10. The grid spacing ranged from 𝑑𝑥 = 5 × 10−3 to 𝑑𝑥 = 1.25 × 10−2. The timestep was fixed at 𝑑𝑡 = 5 × 10−4, and the errors were
calculated at 𝑡 = 0.1.

Fig. A.19. 2D Cartesian code convergence plots (timestep). The red line in Fig. A.19(a) is of gradient 1 through one of the data points. The parameter values used are those
found by parameter optimisation, given in Table 10. The timestep ranged from 𝑑𝑡 = 1 × 10−4 to 𝑑𝑡 = 1 × 10−3. The grid spacing was fixed at 𝑑𝑥 = 8.3 × 10−3, and the errors were
calculated at 𝑡 = 0.1.
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Fig. B.20. Impact of initial cell volume fraction on the number of clusters and cluster spacing observed in the 1D core model. The parameter values are those found in optimisation
and given in Table 6.
Fig. B.21. Impact of initial cell volume fraction on the number of clusters and cluster spacing observed in the 1D binding model at 𝑡 = 2. The parameter values are those found
in optimisation and given in Table 10.
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