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The visual dimension of cities has been a fundamental subject in urban studies since the pioneering work of

late-nineteenth- to mid-twentieth-century scholars such as Camillo Sitte, Kevin Lynch, Rudolf Arnheim,

and Jane Jacobs. Several decades later, big data and artificial intelligence (AI) are revolutionizing how

people move, sense, and interact with cities. This article reviews the literature on the appearance and

function of cities to illustrate how visual information has been used to understand them. A conceptual

framework, urban visual intelligence, is introduced to systematically elaborate on how new image data

sources and AI techniques are reshaping the way researchers perceive and measure cities, enabling the study

of the physical environment and its interactions with the socioeconomic environment at various scales. The

article argues that these new approaches would allow researchers to revisit the classic urban theories and

themes and potentially help cities create environments that align with human behaviors and aspirations in

today’s AI-driven and data-centric era. Key Words: deep learning, human–environment interactions, place,
street-level imagery, urban visual intelligence.

I
mages have played a crucial and enduring role in

the study of cities, providing valuable insights

into the physical environment and influencing
urban design theories. This historical importance has

been essential in shaping our understanding of urban

spaces, their characteristics, and their impact on

individuals and communities.
From the nineteenth century onward, images

facilitated the aesthetic evaluation of urban spaces,

allowing researchers to observe, document, and assess
the design, beauty, and workings of urban settings

(Freestone 2011). Images also played a key role in

shaping and informing urban design theories that

emphasized the significance of aesthetic value in

urban environments and their impact on human
behavior (C. Mulford 1899; Cullen 1961; Nasar

1990; Robinson 1903).

Traditionally, the use of images for studying cities
relied on manual collection and careful observation

and analysis. Pioneers of the field, such as Lynch

(1960), used firsthand observations and photographs

from selected parts of a city to create perceptual maps.

Whyte (1980) hand-collected and manually analyzed
hours of video footage to study human behavior in

urban settings. Although these traditional methods

provide valuable insights, they are limited in terms of

scalability and feasibility over large areas or extended

periods (Sampson and Raudenbush 1999; Clifton, Livi
Smith, and Rodriguez 2007).

Recent advances in sensing technologies and the
growing availability of geo-tagged imagery have

begun to address these limitations. Social media plat-

forms and advanced sensing technologies enable

real-time image capture, vastly expanding the scope

and scale of urban research (Biljecki and Ito 2021).
The advent of powerful computer vision and

machine learning algorithms has further revolution-

ized the analysis of these vast image data sets

(Ibrahim, Haworth, and Cheng 2020). This transfor-
mation in data collection and analysis techniques

marks a significant revival and advancement in the

field of urban studies.
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Despite the wealth of available visual data, there

is still a challenge in distinguishing and effectively

using the different characteristics of each type of

visual data. Moreover, developing standardized meth-

ods to extract and interpret this information consis-

tently remains a challenge. Although numerous

studies have used visual data to analyze neighbor-

hood appearance, the methodologies for conceptually

quantifying the physical environment of urban

spaces are not yet fully established. Furthermore, it is

unclear how this quantification can be systematically

applied to deepen our understanding of the relation-

ship between humans and place and how it might

integrate or enhance classical theories and practices.
In this article, we examine theories and recent

empirical studies on the use of visual information to

understand cities. We introduce a conceptual frame-

work termed urban visual intelligence, which illus-

trates how the integration of images and artificial

intelligence (AI) can be used to (1) observe, (2) inter-

pret, (3) measure the physical environment of cities,

and (4) discover how they interact with human

behavior and the socioeconomic environment.

Historical Overview of Visual

Information in Urban Studies

The tradition of incorporating visual information

has been integral to modern urban studies since the

early days of city planning. Historically, planners

documented and measured physical environmental

attributes—such as shape, proportion, rhythm, scale,

complexity, color, order, elements, and hierarchy—

through photographs or sketches along the streets

and sidewalks (Wohlwill 1976). This practice of

using the formal attributes of the physical environ-

ment to create a pleasing sensory experience for citi-

zens traces back to Camilo Sitte. He advocated for

interpreting cities through visual art and architec-

ture, emphasizing the value of irregularity in urban

form over rigid symmetry, and proposing aesthetic

considerations as primary in city design (Sitte 1889).
This focus on designing the physical environment

to influence citizen behavior peaked with planning

utopias such as the Garden City and the City

Beautiful movements. Proponents of these philoso-

phies believe in the power of beauty, order, and

cleanliness in the public realm to shape civic spirit

and enhance the quality of life (Talen and Ellis

2002). Designers and theorists, including Frederick

Law Olmsted, Sr., Phillip Mackintosh, and F. W.

Fitzpatrick, recognized the aesthetic experience of

urban spaces as fundamental in urban design and

planning. They argued that visually pleasing cities

contribute to citizens’ satisfaction, comfort, and pride

(L. S. Mulford 1899; Wilson 1964; Nasar 1994;

Ahlfeldt and Mastro 2012). Despite a consensus on

the need for aesthetic appeal in cities, the debate

about what constitutes beauty in urban spaces per-

sists. Is beauty subjective, or can it be measured to

design spaces appealing to many?
In the twentieth century, urban planners shifted

focus from aesthetics to understanding the subjective

experiences evoked by urban environments. This

approach sought a deeper understanding of how

humans visually perceive and evaluate urban scenes

(Arnheim 1965). Researchers attempted to capture

how a city’s physical environment can elicit emotions,

informing our understanding of attractive and unat-

tractive environments. For example, Nasar (1998)

proposed a model explaining aesthetic responses from

human interaction with the surrounding environ-

ment. Similarly, Rapoport (1990) identified thirty-six

characteristics of aesthetically pleasing urban environ-

ments. These studies focused on the interplay between

people shaping their environment and the physical

environment’s impact on them. Their influence on

urban studies theories and practices was limited, how-

ever, due to challenges in quantifying and represent-

ing the physical environment on a large scale.
To overcome this limitation, Lynch (1960) intro-

duced “imageability” as a criterion for quantifying

and representing a place’s physical environment.

This concept, developed by Lynch, shifted the focus

from a purely aesthetic perspective to one emphasiz-

ing human cognition, underscoring the importance

of meaning in understanding how people navigate

and comprehend urban environments (Lynch 1984).

In his seminal work, The Image of the City, Lynch

proposed a framework consisting of three categories:

identity (distinct visual objects), structure (recogniz-

able patterns and relationships between objects), and

meaning (emotional values and character of a place;

Lynch 1960). Although Lynch initially concentrated

on identity and structure, he acknowledged the

importance of “meaning.” This aspect received less

emphasis in his early analysis, however.
It was Nasar (1998) who further explored the

“meaning” aspect of urban environments, enriching

Lynch’s framework. Nasar’s work provided a more
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nuanced understanding of urban spaces, emphasizing

the cognitive impacts alongside physical attributes.

This evolution in urban studies was also mirrored in

Milgram’s (1970) approach to mapping New York

City. His method of measuring city recognizability

through small-scale experiments, as discussed in

Milgram (1970), paralleled this shift toward integrat-

ing cognitive experiences with urban environments.

Collectively, these advancements marked a signifi-

cant evolution in the field, offering a more holistic

understanding of urban spaces.
In the late twentieth century, there was a philo-

sophical shift toward people-centered and place-

based urban design. Designers and planners started

prioritizing the performance, vitality, and usage of

spaces as alternative measures of urban design quality

(Gehl 1971). Scholars typically collected informa-

tion on urban space utilization using simple techni-

ques like pen and paper and photographic images.

For example, William H. Whyte’s “The Street Life

Project” used conversations, photographs, and video

analysis to observe public space usage (Whyte 1980).

Similarly, Gehl (1971) documented elements foster-

ing liveliness and social interaction in urban spaces

in his influential book, Life Between Buildings. These
studies have profoundly influenced twenty-first-cen-

tury urban design practices.

These works have been pivotal in shaping urban

studies and design, but it is crucial to recognize

the dynamic nature of our world. The rapid

changes in urban environments need a reexamina-

tion of these studies in diverse contexts and times

to effectively address contemporary issues.

Moreover, there is a growing concern among

researchers about the limitations of these studies,

particularly regarding small sample sizes and sub-

ject selection biases. Such limitations could lead to

a skewed understanding of urban spaces, reflecting

varying preferences across different populations

and over time (Nasar 1998).

Framework of Urban Visual Intelligence

Cities generate an enormous amount of data

through hybrid sensing techniques such as crowd-

sensing and ad hoc sensor deployments. With the

advent of urban big data and AI-driven approaches,

researchers can now analyze and quantify the

physical environment, socioeconomic conditions,

and human dynamics in unprecedented ways. These

tools enable observation of the interaction between

human behavior and the physical environment

across spatial and temporal scales.
To leverage these opportunities, we propose the

framework of urban visual intelligence. This frame-

work is designed to assess and integrate current

data and AI-based approaches, specifically targeting

the challenges that traditional methods in urban

studies have faced. At the heart of this framework

is the strategic employment of AI tools for the

analysis of large data sets. This approach not only

offers a novel perspective but also seamlessly

merges modern methodologies with both long-

standing and emerging issues in urban studies,

thereby transforming our understanding and analy-

sis of urban environments.
As illustrated in Figure 1, the urban visual intelli-

gence framework proposes four levels for studying

urban environments using street-level imagery: vista,

scene, place, and city. Each hierarchical level addresses

a different challenge: (1) observing the urban physical

environment at a human scale; (2) deriving semantic

information from street-level imagery; (3) quantifying

the physical environment of a place; and (4) under-

standing the fine-grained interactions between physical

and socioeconomic environments.
Vista. The first level emphasizes the importance of

street-level imagery for observing the physical envi-

ronment. It focuses on individual images or vistas,

capturing the urban environment from a human

perspective.
Scene. The second level builds on the vista level

by applying advanced techniques, including deep

learning and computer vision, to analyze semantic

information derived from street-level imagery. This

involves extracting details about the physical envi-

ronment, such as measuring tree coverage or sky visi-

bility in a given scene.
Place. The third level focuses on localized areas

within a city, using collections of images to create

comprehensive, quantitative representations of a

place. This is crucial for characterizing the structure

and perception of a specific area.
City. The final level extends the study to a

broader scale, integrating insights from the preceding

levels. It focuses on a comprehensive understanding
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of the interactions between the physical environ-

ment of places and broader human dynamics and

socioeconomic characteristics.
The framework starts with the focused observation of

individual images (vistas), progresses to understanding

scenes, delves into a detailed analysis of specific areas or

places within a city, and finally expands to encompass

the city as a whole. This structure ensures a comprehen-

sive understanding of urban environments at various

scales, from the most detailed to the most expansive.

Observing the Urban Physical Environment at a
Human Scale

Street-level imagery, as highlighted in the first

level of the urban visual intelligence framework, is

increasingly becoming an important data source for

studying cities. With the rapid adoption of mobile

Internet technologies and the growing use of Web

mapping services and crowdsourcing platforms, geo-

tagged images are being produced at an unprece-

dented rate, covering every corner of cities

(Goodchild 2007). This data source, with its exten-

sive spatial coverage, has become invaluable for

observing large-scale urban environments (Ibrahim,

Haworth, and Cheng 2020; Biljecki and Ito 2021;

Duarte and Ratti 2021; Liang, Zhao, and Biljecki

2023). In 2023, the Camera and Imaging Products

Association reported that 1.72 trillion photos were

taken using digital cameras on mobile phones.1

Figure 2 illustrates three primary sources of street-
level imagery for city analysis. The first category
includes map service images, such as those from

Google Street View, which offer stable update fre-
quency, broad coverage (spanning more than 200

countries), and uniform standards, enabling compara-
tive analysis across locations (Anguelov et al. 2010;

Figure 1. Framework of urban visual intelligence. The framework outlines key aspects related to the urban physical environment. It

focuses on using visual intelligence technologies to observe, measure, and represent physical environments and explore their interactions

with socioeconomic dimensions at various levels and scales.
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Goel et al. 2018). The second category consists of

crowdsourced photos from platforms like Flickr and

Mapillary, a form of volunteered geographic informa-

tion (VGI; Goodchild 2007). As the volume of

crowdsourced photos increases, it is anticipated to

overtake map services as the primary source of

street-level imagery due to its denser spatiotemporal

coverage. The third category features custom image

collections captured by individuals or researchers for

specific studies. These custom collections, which can

include a time series of images, are valuable for

tracking changes in the physical environment and

individual activities, complementing mapping serv-

ices and crowdsourced imagery.
Compared to traditional urban study data sources,

street-level imagery offers several advantages, includ-

ing easy accessibility, extensive spatiotemporal cov-

erage, and objective, standardized views from

embedded vantage points (Rzotkiewicz et al. 2018;

Ibrahim, Haworth, and Cheng 2020; Biljecki and Ito

2021). Additionally, street view imagery provides a

distinct perspective compared to satellite imagery.

Whereas satellite imagery presents an aerial view,

street view imagery captures a human-level perspec-

tive, more closely aligned with people’s experiences

and perceptions of cities. This perspective is particu-

larly useful for examining visual cues at the human

scale, offering valuable insights for urban planning

and design. The recent standardization of images

across cities and the advancement of visual analytic

methodologies have further enhanced the utility of

street-level imagery.
Street-level imagery has become one of the most

valuable data sources for studying physical environ-

ments (Cinnamon and Jahiu 2021; N. He and Li

2021). Its applications extend across various research

fields, including physical environment auditing (L.

Zhang et al. 2020; S. Chen and Biljecki 2023; T.

Zhao et al. 2023), public health (Nguyen et al.

2018; H. He et al. 2020; Keralis et al. 2020), urban

mobility and transportation (Lu et al. 2019; Hong,

McArthur, and Raturi 2020; Mooney et al. 2020),

energy estimation (Z. Liu et al. 2019; Sun, Han,

et al. 2022; K. Zhang et al. 2022), and real estate

(Law, Paige, and Russell 2019; E. B. Johnson,

Tidwell, and Villupuram 2020; Kang, Zhang, Peng,

et al. 2020), among others.

Deriving Semantic Information from Street-Level
Imagery

How can semantic information be derived from

street-level imagery in a scene? The second level of the

urban visual intelligence framework focuses on using

deep learning and computer vision techniques to inter-

pret semantic information from street-level imagery.

Deep Learning and Computer Vision.

Traditionally, field surveys have relied on manual

visual data analysis, a time-consuming and labor-

intensive process that limits the scope of research.

Although image processing techniques have been

developed for mass analysis, they have predomi-

nantly focused on basic features such as color and

texture, not complex information like objects and

styles. Understanding high-level information is

essential in linking a city’s appearance to human

behavior.

Recent advancements in deep learning and com-

puter vision have enabled the extraction of high-level

features like semantic objects and scene understanding

Figure 2. Sources of street-level imagery.
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from images, overcoming traditional image processing

limitations. Deep neural networks have empowered

models with learning capabilities, interpretation, and

decision-making akin to the human brain. The influ-

ence of deep learning spans various domains, including

speech recognition (e.g., Wav2Vec; Baevski et al.

2020), natural language understanding (e.g., generative

pre-trained transformer [GPT] models; Brown et al.

2020), strategic game playing (e.g., AlphaGo; Silver

et al. 2016), and sophisticated image recognition and

segmentation tasks (Radford et al. 2021).
A significant area of improvement is image seg-

mentation, where models now delineate and classify

different parts of an image with remarkable accuracy,

crucial for autonomous driving (Kirillov et al. 2023).

Additionally, large language models (LLMs) like

ChatGPT have broadened natural language process-

ing capabilities (Radford et al. 2021), enabling more

intuitive, human-like AI interactions. These LLMs

can generate coherent text, perform complex lan-

guage tasks, and engage in meaningful conversations,

showcasing deep learning’s potential in understand-

ing both visual and textual content.

Geospatial Artificial Intelligence. Leveraging

the progress in AI, geospatial artificial intelligence

(GeoAI) technologies enrich classical methods by inte-

grating spatial effects, focusing on factors such as spatial

dependency, distance decay, and scale effects (Gao,

Hu, and Li 2024; Zhu et al. 2020). Such integration

shifts the focus from viewing samples in isolation to

understanding their complex interrelations within a

spatial context (Zhu et al. 2020). GeoAI integrates

these spatial dimensions into analytical models,

enhancing the capacity to interpret and predict geo-

graphic phenomena (Mai et al. 2023). By accounting

for the spatial arrangement of objects and their interac-

tions, it provides a more holistic understanding of

urban environments. This spatial awareness is crucial

when studying cities, where the arrangement of build-

ings, roads, and public spaces significantly affects

human behavior and environmental dynamics.

Large-Scale Image Data Sets. Large-scale image

data sets play a crucial role in deep learning, offering

vast, labeled images to help models comprehend

complex input–label relationships. A prime data set

should cover a wide range of categories with exten-

sive variety and depth, providing numerous images

per category to capture its diversity (B. Zhou,

Lapedriza, et al. 2017).

Creating a training set involves manual annota-

tions, data association, and data generation. Manual

annotation, streamlined by online platforms like

LabelMe and Amazon Mechanical Turk, requires

labeling images or marking object outlines (Russell

et al. 2008; Sorokin and Forsyth 2008). Emerging

AI-assisted labeling methods are simplifying this pro-

cess (L. Chen et al. 2020). Data association connects

images with labels based on patterns like occurrence

or location. For example, house photos from real

estate sites can be correlated with prices. In situa-

tions where direct label matching is not feasible, an

alternative approach involves extracting information

directly from the images. This method is particularly

useful in tasks such as analyzing street scenes to

identify font types on signage (Ma et al. 2019).

Key urban image data sets in urban studies and

geospatial analytics include Places2 (B. Zhou,

Lapedriza, et al. 2017) and ADE20K (B. Zhou,

Zhao, et al. 2017). The Places2 data set, with

approximately 10 million labeled images, represents

various place types like residential neighborhoods,

highways, and parks, aiding deep learning models in

classifying scene types from street view images. The

ADE20K data set, containing more than 20,000

labeled images, covers a diverse range of visual

object categories such as plants, sky, vehicles, and

buildings. Researchers are also compiling additional

data sources to link images with ground-truth data

for specific applications, like describing scene attrib-

utes (G. Patterson and Hays 2012), classifying archi-

tectural styles (Xu et al. 2014; Sun, Han, et al.

2022), tracking neighborhood change (Naik et al.

2017), and detecting informal settlements (Ibrahim,

Haworth, and Cheng 2021).
In the era of large-scale models, the sheer volume

of data required for training presents a challenge for

manual image annotation. An emerging solution for

large-scale visual tasks is leveraging LLMs to acquire

knowledge, followed by applying multimodal transfer

to adapt this knowledge to the visual domain, thus

facilitating the execution of visual tasks.
Computer Vision Tasks for Urban Image

Inference. The availability of large-scale image

data sets has enabled the development of complex

computer vision tasks with greater depth. In urban

contexts, these models are employed for scene classi-

fication, object detection, and semantic segmenta-

tion, each differentiated by their final model layers,

as illustrated in Figure 3. Scene classification
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(Figure 3A) assigns a label to the overall image,

using architectures like ResNet (K. He et al. 2016),

GoogLeNet (Szegedy et al. 2015), DenseNet (G.

Huang et al. 2017), and the Vision-Transformer

series (Z. Liu et al. 2021). Object detection (Figure

3B) identifies and classifies objects, marking their

positions with bounding boxes, using models such as

Faster R-CNN (Ren et al. 2015), SSD (W. Liu et al.

2016), and the YOLO series (Ge et al. 2021).

Semantic segmentation (Figure 3C) divides the

image into segments, creating pixel-level masks for

each object, employing PSPNet (H. Zhao et al.

2017), Mask RCNN (K. He et al. 2017), HRNet (J.

Wang et al. 2020), and the Deeplab series (L.-C.

Chen et al. 2018).
Scene Analysis and Understanding. Extracting

elements from a scene is a common method used

in analyzing physical environments. This analysis

can be achieved through object detection or

semantic segmentation. Object detection models

provide details about detected objects along with

their bounding boxes, facilitating the counting of

different objects within an image. Conversely,

semantic segmentation models predict the catego-

ries of objects for each pixel, allowing for the

calculation of object proportions within a scene.

Both types of models offer quantitative methods for

scene measurement.
A notable example of semantic segmentation is the

Treepedia project,2 which uses Google Street View to

map tree canopies. This method offers a scalable alter-

native to manual surveys across thirty global cities

(Seiferling et al. 2017). Other studies have integrated

green canopy measurements with satellite imagery-

derived green indexes to analyze how perceptions of

the physical environment are influenced by different

camera angles (R. Wang, Helbich, et al. 2019;

Laumer et al. 2020; Biljecki et al. 2023).
Deep learning models have also been used to clas-

sify various street elements, including the sky, road,

buildings, vegetation, vehicles, and pedestrians (F.

Zhang, Zhang, et al. 2018; B. Zhou et al. 2019).

High-quality imagery can be used to classify intricate

aspects such as street signs, abandoned houses, side-

walk cracks, broken windows, and deteriorating walls

(Less et al. 2015; Zou and Wang 2021). For exam-

ple, Miranda et al. (2021) used Google Street View

to assess urban features attractive to pedestrians in

Boston, quantifying elements like urban furniture,

sidewalk dimensions, facade complexity, and visual

Figure 3. Three typical computer vision tasks in urban applications: (A) scene classification, (B) object detection, and (C) semantic

segmentation.
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enclosure.3 These metrics aid urbanists in identifying

pedestrian-friendly environments (Z€und and

Bettencourt 2021).
Computer vision also extends to image classifica-

tion. Using 10 million social media photos and

semantic labels, B. Zhou, Lapedriza, et al. (2017)

developed a model to classify place types (e.g.,

neighborhoods or bus stations) and attributes (e.g.,

man-made or sunny), setting a standard for under-

standing place functionality (Xiao, Fang, and Lin

2020; Ye et al. 2020). Similarly, Hu et al. (2020)

demonstrated that deep learning could classify street

canyons from Google Street View images, eliminat-

ing the need for manual measurement and streamlin-

ing environmental analysis.
Scene inference models are capable of extracting

nonvisible details like crime rates (Khosla et al.

2014), property values (Law, Paige, and Russell 2019),

and changes in human activity (F. Zhang, Wu, et al.

2019). For instance, a model by Khosla et al. (2014)

predicts unseen aspects of a scene, such as proximity

to grocery stores or hospitals. The models are trained

using an end-to-end learning process, where a single

model directly maps inputs to outputs without inter-

mediate steps or feature engineering. This process

allows the model to autonomously learn the complex

relationships between the initial input image and the

final output labels, such as crime rates and housing

prices, based on a nonlinear correlation between built

environments and socioeconomic factors.

Quantifying the Physical Environment of a Place

The term place encompasses a broad spectrum of

elements, ranging from individual cognition to per-

ceptual dimensions. In this study, we focus on the

aspects of a place’s physical environment. We define

the physical environment of a place as the aggregate

of all visible natural and built elements within an

urban landscape. This includes natural features such

as trees, water bodies, and parks, as well as built

structures like buildings, roads, and bridges. Dynamic

elements such as human activity and vehicular

movement are also integral to this definition, con-

tributing to the character and functionality of urban

spaces.
Quantifying the physical environment of a place

poses challenges due to its complexity and inherent

subjectivity. Although AI has been instrumental in

objectively evaluating a place’s visual aspects, there

remains a gap between algorithmic measurements

and the human-centric essence of places (Tuan

1979). Recent research has, however, made strides

in modeling various dimensions of a place, including

human activities, cognitive regions, and semantics

(Gao et al. 2017; Purves, Winter, and Kuhn 2019).

This has resulted in the development of formal com-

putational representations of a place, essential for

interdisciplinary research (Janowicz et al. 2022).

In this context, our focus is on the quantitative

analysis and representation of a place’s physical envi-

ronment. We explore this through three perspec-

tives: place identity, place structure, and place

perception. These dimensions play are pivotal in

determining a place’s “imageability,” a concept cru-

cial in geography and urban planning (Lynch 1960;

Morison 2002; M. E. Patterson and Williams 2005).

Our aim is to shed new light on classic theories,

such as those of Lynch, by incorporating recent AI

and big-data-driven urban studies.
Place Identity. We use place identity to denote a

place’s unique or common attributes, distinct from

the psychological construct of place identity

(Lewicka 2008). This focuses on aspects of

“imageability” in urban spaces as proposed by Lynch

(1960).
Assessing the identity of a place is important to

understand how people interact with their surround-

ings. Visual identity, representing a place’s unique or

common attributes, plays a key role in its recogni-

tion. Traditionally, measuring place identity and

similarity relied on subjective, qualitative insights,

which lacked uniformity and scalability. AI, how-

ever, has revolutionized this process through repre-

sentation learning (RL), a data-driven, quantitative

approach. RL allows machines to autonomously

identify essential features of a place, often encoded

in numerical vectors.
For example, in RL, visual identity and similarity

can be assessed using a classification task handled by

a computer vision model. The model learns to recog-

nize unique features of street-level images and clas-

sify the origin of the place. The misclassification

rate essentially indicates similarity between places,

with high misclassification suggesting similarity and

high accuracy indicating distinctiveness. Confidence

scores produced by the model for each image help

rank the most representative scenes of a place.

Higher scores reflect greater certainty and a more

robust representation of place identity.
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Several studies have used this approach to mea-

sure place identity and similarity. For instance,

Doersch et al. (2012) used an automated approach

to identify the unique architectural features of cities.

F. Zhang, Zhou, et al. (2019) trained a deep learning

model to recognize places among eighteen cities

globally, measuring the visual similarity and distinc-

tiveness of these cities and identifying unique visual

cues. For indoor spaces, F. Zhang et al. (2016) ana-

lyzed corridors and spaces in large interconnected

buildings on the MIT campus to understand visual

elements of indoor design and human cognition.

This method has also proven useful in routing, as

shown by Z. Wang et al. (2019), who evaluated the

legibility of two train stations in Paris using a com-

puter vision model. Furthermore, L. Liu et al. (2016)

used 2 million geotagged photos of twenty-six cities

to reproduce the Image of the City, demonstrating

how digital techniques can enhance our understand-

ing of places across cities. Other studies have

extended this digital approach to many other cities

in recent years (Salesses, Schechtner, and Hidalgo

2013; Filomena, Verstegen, and Manley 2019; Y.

Huang et al. 2023).
Place Structure. Place structure, as conceptual-

ized by Lynch (1960) in The Image of the City, refers
to the physical layout and organization of urban

spaces, which is crucial in shaping how people per-

ceive and remember their environment. This con-

cept includes identifying and understanding key

elements such as paths, edges, districts, nodes, and

landmarks, forming a coherent and memorable image

of the city (Lynch 1960).
Recent advancements, as highlighted in works by

G. Patterson and Hays (2012) and F. Zhang, Zhang,

et al. (2018), offer complementary perspectives on

organizing scene elements into hierarchical catego-

ries. For instance, F. Zhang, Zhang, et al. (2018) cat-

egorized common urban objects into a hierarchical

tree based on conceptual relationships, grouping

“tree,” “flower,” and “grass” under “vegetation.” This,

along with categories like “waterbody” and “sky,”

forms a “natural” supercategory. This structure allows

for qualitative and quantitative analysis of a place’s

“structure” through element presence and abundance

measured using a deep learning model.
Place Perception. Understanding how humans

perceive their surrounding environment is crucial for

assessing urban design quality. This topic, central to

disciplines like human geography, urban planning,

and environmental psychology, has been enriched by

the use of street-level imagery and deep learning

techniques (Lynch 1960; Tuan 1977; Nasar and

Jones 1997). These technologies have opened new

avenues for quantifying human perception, particu-

larly through crowdsourced information, which

allows for the analysis of preferences and perceptions

on a massive scale. A prominent example is the

Place Pulse platform, which collects online ratings

to assess human perception (Salesses, Schechtner,

and Hidalgo 2013). This platform has collected

more than 1 million ratings on various aspects of

Google Street Views from 80,000 volunteers across

fifty-six cities in twenty-eight countries, surpassing

the scope of traditional survey methods.
Platforms like Place Pulse have facilitated research

on how humans visually evaluate their environments

(Ordonez and Berg 2014; Dubey et al. 2016). Such

studies revisit and extend classic urban theories

about the relationship between the physical environ-

ment and human perceptions, which were previously

constrained by the limited scale of sample sizes and

geography. For example, F. Zhang, Zhou, et al.

(2018) explored the impact of street features on

human perceptions in Beijing and Shanghai by ana-

lyzing 1 million street views through image segmen-

tation. Their work evaluated the effects of physical

disorder, such as litter, graffiti, and building condi-

tions, on people’s feelings, providing a method to

measure the “sense of place” in expansive urban

areas. Similarly, Saiz, Salazar, and Bernard (2018)

harnessed the widespread sharing of photographs

online to gauge how people value the aesthetic

aspects of their environment. They demonstrated

that street-level imagery could be a scalable tool for

measuring subjective attractiveness, enhancing our

comprehension of how individuals perceive urban

spaces.
Moreover, researchers have used human percep-

tions derived from deep learning to assess the social

and economic dynamics of cities. Studies have lever-

aged street-level imagery from Google Street View

to measure changes in the physical appearance of

neighborhoods. Naik et al. (2017) connected

changes in the physical appearance of five U.S. cit-

ies with economic and demographic data to docu-

ment the underlying factors that predict

neighborhood improvement. Additionally, F. Zhang

et al. (2020) characterized places by their physical

appearance and popularity, uncovering many
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inconspicuous yet frequented restaurants in Beijing.

These establishments, often situated in less visually

appealing alleyways of old neighborhoods, are popu-

lar social areas, highlighting the complex relation-

ship between appearance and social activity in urban

settings.

Understanding the Fine-Grained Interactions
Between Physical and Socioeconomic
Environments

Exploring the interplay between the physical

environment and the socioeconomic context is cru-

cial for a variety of disciplines. This fourth level of

the urban visual intelligence framework focuses on

studying these interactions in detail. It underscores

fields such as public health, transportation, and

urban economics. These are not the only domains

explored using visual information, but they represent

significant areas where the framework’s applications

are particularly innovative.

Public Health. Environmental health studies

have traditionally relied on field surveys and ques-

tionnaires to gather data about the physical environ-

ment (Takano, Nakamura, and Watanabe 2002;

Lawlor et al. 2003; Gull�on et al. 2015). Although

useful, these methods often face limitations in cross-

place comparisons and capturing a human perspec-

tive. Street-level imagery and visual intelligence

offer a complementary view, enhancing these estab-

lished methods.
The physical environment significantly affects

health outcomes, encompassing both physical aspects

such as obesity and psychological factors like mental

health (Mehrabian and Russell 1974; Ulrich 1984;

Lee et al. 2012). Street-level imagery has been

instrumental in quantifying visual elements associ-

ated with health, such as green spaces, sidewalks,

and urban infrastructure, alongside food advertise-

ments and indicators of physical disorder (J. Chen

et al. 2023). For instance, the presence of greenery

has been linked to active behaviors like walking and

cycling, its effects on children’s body weight, mental

well-being, soundscapes, and perceived safety (James

et al. 2015; X. Li, Zhang, and Li 2015; Lu, Sarkar,

and Xiao 2018; Svoray et al. 2018; Kang et al. 2019;

Lu et al. 2019; Kruse et al. 2021; J. Huang et al.

2023; T. Zhao et al. 2023). Comparisons between

greenery metrics from street view and remote sensing

imagery have highlighted the unique advantage of

street-level perspectives in capturing the eye-level

greenery experience (Villeneuve et al. 2018; Helbich

et al. 2019; Larkin and Hystad 2019; Lu et al. 2019;

Kang, Zhang, Gao, et al. 2020).
Empirical studies have also uncovered correlations

between visual aspects derived from street imagery

and health outcomes. Streets with visual enclosure

have been associated with higher quality environ-

ments, and the presence of pedestrian infrastructure

like sidewalks and crosswalks correlates with

increased walkability and enhanced mental health

(Vargo, Stone, and Glanz 2012; Yin and Wang

2016; Nguyen et al. 2018; R. Wang, Lu, et al.

2019). Features such as food and beverage advertise-

ments have been used to identify environments con-

ducive to obesity (Feuillet et al. 2016; Roda et al.

2016; Egli et al. 2019), and other visual cues have

served as proxies for various health-related metrics.
Transportation and Mobility. Street-level imag-

ery serves as a valuable asset for comprehending the

transportation context and its implications, informed

by physical environmental features. These features

facilitate virtual audits, aiding the identification of

traffic hot spots and potential congestion areas (Qin

et al. 2020; Tanprasert et al. 2020). This subsection

concentrates on how attributes of roads and their

surroundings extracted from street imagery inform

transportation behavior.
Research using image-derived features has investi-

gated transportation patterns. Characteristics such as

traffic lights, speed bump density, and pedestrian

crossings have been related to traffic volumes and

route preferences (Verhoeven et al. 2018; den

Braver et al. 2020). Additionally, attributes like the

presence and condition of bicycle lanes, sidewalks,

and road surfaces have been analyzed in relation to

pedestrian safety incidents (N. S. Johnson and

Gabler 2015; Isola et al. 2019; Kwon and Cho 2020;

Mooney et al. 2020).
Deep learning models offer a nuanced approach to

studying the connections between the physical envi-

ronment and urban mobility. The visual appearance

captured in images can reveal insights into function

and land use (Y. Liu et al. 2012; Yuan, Zheng, and

Xie 2012; Fan, Zhang, and Loo 2022). These models,

through end-to-end training, can discern nonlinear

associations between environmental aspects and

movement patterns. For instance, F. Zhang, Wu,

et al. (2019) inferred hourly human activity levels

from street view images, effectively predicting urban
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mobility fluctuations. Other studies have predicted

spatial trends in cycling and walking through points

of interest and street imagery (L. Chen et al. 2020;

Hankey et al. 2021).

Computer vision and deep learning are promising

avenues for researchers aiming to design physical envi-

ronments that influence urban navigation. Mirowski

et al. (2018), for example, applied deep reinforcement

learning to enable agents to navigate cities solely based

on street view images. This research demonstrates the

potential of visual cues in the physical environment to

aid individuals in navigating the city.
Additionally, Salazar-Miranda et al. (2023) pre-

sented a framework for real-time analysis of street

activities using computer vision to classify pedestrian

behaviors and transportation modes. This study lev-

erages camera-equipped buses in Paris to capture

diverse street activities, assisting in city planning

and testing safety interventions.
Urban Economics. The physical appearance of a

city offers insights into its socioeconomic fabric.

Advances in street-level imagery and deep learning

have led to a surge in studies characterizing the

physical environment’s nuanced relationship with

social and economic outcomes like income, housing

prices, and crime (Ibrahim, Haworth, and Cheng

2020; Fan et al. 2023).

Crime is a prominent socioeconomic dimension

that has been extensively studied using street-level

imagery and deep learning techniques (H. Zhou et al.

2021). Research has sought to align community safety

perceptions with actual crime statistics. F. Zhang et al.

(2021) introduced a “perception bias” metric to mea-

sure the discrepancy between perceived safety from

Google Street View images and actual violent crime

rates while also considering socioeconomic influences.

Kang et al. (2023) expanded this measure by surveying

residents’ sense of safety in their neighborhoods.
The visual quality of neighborhoods has proven to

be an effective predictor of real estate values and

housing appreciation (Kang et al. 2021; Yang et al.

2021; Qiu et al. 2022). Elements captured in images,

such as vehicle types, can predict demographics and

political leanings (Gebru et al. 2017), and business

amenity typefaces can be proxies for neighborhood

income (Ma et al. 2019). Time-sequenced street view

images allowed Naik et al. (2017) to track urban

changes, linking infrastructure improvements to edu-

cational and density metrics, with better looking

neighborhoods showing more substantial progress.

Computer vision models trained on street-level

imagery can predict socioeconomic characteristics,

capturing the intricate interplay between the physi-

cal environment and socioeconomic factors. Such

models have been applied to study job–housing pat-

terns, social and environmental inequities, and urban

deprivation (Suel et al. 2019; Suel et al. 2021; Yao

et al. 2021). A comprehensive study by Fan et al.

(2023) used a computer vision model on 27 million

street view images from U.S. counties, proving that

visual features can precisely estimate neighborhood

socioeconomic profiles. These estimations, which

provide more explanatory power than traditional

demographics or point of interest data, have shown

consistency across different regions, confirming their

reliability and wide applicability in diverse urban

settings.

Discussion

Urban Visual Intelligence: Navigating the Edges of
Sight and Insight

Although our proposed framework aims to address

several fundamental issues, the adoption of the new

data sources and methods introduces its own set of

emerging challenges. Visual data alone might not

fully encapsulate the complexity of urban life (Batty

2021). The following subsections discuss the chal-

lenges in this process, from the detailed analysis

within single locations to the application of findings

across diverse urban contexts, and the need to con-

sider subjective interpretations and cultural aspects

in the analyses.

Challenges in Within-Place and Between-Place

Inference. In urban analysis, within-place inference
is the process of extracting and interpreting informa-

tion from images to understand various aspects of a

specific place (Batty 2021). Traditional modeling

approaches often struggle to capture the complex,

nonlinear relationships inherent in a place. In con-

trast, deep learning and computer vision models

excel in these environments, offering nonlinear

modeling capabilities.
Conversely, between-place inference concerns the

applicability of a model trained in one place and

applied to another. This type of inference questions

the adaptability and transferability of trained models

across different urban settings, presenting a multifac-

eted challenge involving the heterogeneity of place,
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cross-domain generalizability, and spatial variability.

From the perspective of human geography, the het-

erogeneous nature of place and varying cultural per-

ceptions can significantly affect model performance.

For example, a model trained on visual appearance

from Asian countries might underperform in

Western settings, owing to differences in urban

design and human activity patterns (F. Zhang, Wu,

et al. 2019). In GIScience, the challenge of

between-place inference is compounded by spatial

heterogeneity and nonstationarity. Such spatial vari-

ability often limits the ability of models to make

consistent predictions across different locations

(Goodchild et al. 2020; Goodchild and Li 2021;

Kedron et al. 2021; W. Li, Hsu, and Hu 2021).

Furthermore, in computer science, ensuring that a

model’s performance is consistent across different

domains involves addressing the domain shift chal-

lenge. Domain shift refers to the discrepancies in data

distribution when a model, trained in one context, is

applied to data from another context (Qui~nonero-
Candela et al. 2009; Neyshabur et al. 2017; M.

Wang and Deng 2018). Such discrepancies can lead

to reduced model accuracy because the patterns rec-

ognized in the training data might not be present or

might manifest differently in the new data set.
These factors underline the importance of devel-

oping models that can adapt to new, varied data dis-

tributions to maintain their efficacy in diverse

applications.
Challenges in Interpreting the Subjective and

Culturally Significant Aspects of Place. The

essence of a place transcends its physical attributes

to include cultural significance and subjective inter-

pretation, which together cultivate a unique cultural

landscape. This is manifested in the varied experien-

ces one might have when comparing visits to the

Eiffel Tower in Paris with its replicas, or in the dif-

fering cultural narratives attached to architecturally

similar rows of brick houses in Edinburgh and

Boston.
Such uniqueness of place aligns with the princi-

ples of nomothetic geography and idiographic sci-

ence (Warntz 1989), emphasizing the singularity of

each location. This perspective challenges the gener-

alizing nature of deep learning models, which typi-

cally infer broad rules from specific instances.

Consequently, AI models often encounter difficulties

in capturing the full scope of complex cultural land-

scapes through visual data alone.

Moreover, perceptions of place are deeply per-

sonal, shaped by an individual’s experiences, life

stages, and preferences, contributing to a distinctive

“sense of place” (Tuan 1977). The Temple Mount

in Jerusalem, for instance, embodies various religious

significances for different groups, illustrating subjec-

tive interpretation. Additionally, the practice of

spatial ethnography, such as the examination of

“time-sharing” within busy sidewalk environments

(Kim 2015), illustrates how a place’s meaning can

shift with time. A deep learning model might count

the number of people on a sidewalk, but it cannot

grasp the subtle variations in how these spaces are

perceived and used by different demographic groups

throughout the day or year.

Addressing these interpretative challenges requires

innovative methods that integrate personal experien-

ces, cultural context, and subjective perception.

LLMs offer a promising solution. Trained on exten-

sive textual data, LLMs acquire a broad understand-

ing of cultural nuances and can tailor outputs based

on individual input. This ability to apply knowledge

from linguistic contexts to visual data interpretation

promises to deepen AI models’ grasp of complex cul-

tural landscapes, leading to richer and more nuanced

decision-making.
Challenges in Analyzing Uncertainty in Street-

Level Imagery. Street-level imagery is subject to

various uncertainties that can affect the accuracy of

the results (Biljecki et al. 2023). These uncertainties

range from the modifiable areal unit problem

(MAUP) and ecological fallacy to measurement

issues and temporal changes.
The MAUP arises during the aggregation of

point-based measurements into larger spatial units

(Fotheringham and Wong 1991). In the context of

street-level imagery, this issue is prevalent due to

the nonuniform distribution of images, often con-

strained by road networks and the geographic spread

of social media contributions. As a result, the aggre-

gation process might obscure the true diversity of an

area by presenting a misleadingly uniform character-

istic along a street.
Another known challenge is the ecological fal-

lacy, which occurs when aggregated data conclusions

are applied to individual elements. For example,

deducing that every segment of a street is equally

aesthetically pleasing based on its overall high

beauty rating ignores the potential for significant

variations among individual segments.
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Whereas ecological fallacy highlights errors in over-

generalizing group data to individuals, measurement

uncertainty presents a different challenge that affects

the scale at which urban features are perceived. This

type of uncertainty arises from the variability in cam-

era angles and distances in street-level imagery, which

can alter the apparent proportions of visual elements,

leading to potential misinterpretations in subsequent

computer vision analyses. For example, images that

capture only the lower sections of tall buildings fail to

convey their full architectural context, resulting in a

partial and potentially misleading representation.
Temporal changes introduce yet another layer of

complexity. Just as measurement uncertainty can

skew the perception of static images, the dynamic

nature of urban environments means that features

such as vegetation and pedestrian activity can vary

widely over time. Most existing studies rely on data

sets like Google Street View, which are updated

infrequently, thus limiting the ability to analyze

changes that occur over shorter periods. The advent

of more granular and frequently updated data sour-

ces, like LiDAR point clouds and platforms such as

Mapillary, is beginning to provide researchers with

the tools needed for a more detailed and current

exploration of urban spaces (Miranda et al. 2022).

Promising Avenues of Inquiry and Future Work

The integration of street-level imagery with deep

learning presents exciting opportunities for urban stud-

ies. This section outlines potential research directions.
Discovering Hidden Visual Cues. Street-level

imagery is rich in visual cues that offer insights into

urban life. It captures elements such as written lan-

guage in street names, business signs, and advertise-

ments, which help identify points of interest and

indicate linguistic or ethnic compositions. These

images can also reveal subtle indicators of social dis-

order and psychosocial stress, such as the presence of

graffiti, litter, and broken windows, which have been

linked to neighborhood social disorder (Sampson

and Raudenbush 2004).
Integrating Visual with Multimodal

Information. Recent advances in LLMs have signifi-

cantly improved AI’s capacity for understanding and

organizing knowledge. Initially focused on text, these

models are expanding to include visual and other modal-

ities. For example, integrating visual information with

text, sound, location, and other multimodal data can

enhance AI’s understanding of urban environments.

This integration allows AI systems to draw deeper con-

nections between visual aspects and the broader cultural,

social, and geographical contexts of cities, leading to

more informed urban analysis and decision-making.

AI-Driven Generation of Urban Scenes. AI

techniques in scene generation, such as variational

autoencoders (VAEs), generative adversarial networks

(GANs), and diffusion models, offer exciting possibili-

ties for creating new urban environments. These mod-

els can generate realistic urban scenes based on both

objective features and subjective perceptions, such as

attractiveness and safety (Bau et al. 2020). Practical

applications include urban design, scenario planning,

and conceptualizing future cities (B. Zhao et al. 2021;

Wu and Biljecki 2022). A notable example is a plat-

form that allows users to create custom street scenes,

integrating elements like land use and building density

(Noyman and Larson 2020).

Development of Interpretable and Reliable AI

Models. Developing interpretable and reliable AI

models is crucial for urban studies. Such models can

enhance scientific research by providing better pre-

dictions of human activities and socioeconomic pro-

files. For practitioners and policymakers, these

models can identify confounding factors in causal

analysis, aiding in the formulation of more informed

policies. The interpretability of these models is

essential for understanding and applying their find-

ings in practical urban planning contexts.
Understanding the Hidden Laws of Cities.

Investigating the fine-grained characteristics of urban

environments through street-level imagery could

shed light on spatial laws governing cities. Research

could explore the existence of a fundamental spatial

unit in urban spaces, examining how the computa-

tional representation of physical features varies with

spatial scales. Understanding these patterns might

reveal a consistent spatial scale that effectively rep-

resents the physical aspects of urban environments.

Conclusion

This article examined the role of AI and visual

data in urban studies, highlighting their impact

on enhancing the analysis of urban environments.

The integration of these technologies facilitates a

more detailed understanding of urban dynamics,

both physical and socioeconomic, thus contributing

to the evolution of urban theory and practice. The
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urban visual intelligence framework introduced

serves as a conceptual model for guiding research in

this domain. It advocates for the analysis of urban

spaces through a lens that incorporates technological

advancements in AI and visual data analysis, also

drawing on established urban theories.
The overview of current work underscores the

potential of AI to augment traditional urban analysis

methods, enabling a deeper and more granular exam-

ination of urban phenomena. It also identifies chal-

lenges, though, particularly in ensuring that the

interpretation of data adequately reflects the cultural

and subjective nuances of urban life.
Looking ahead, the successful application of urban

visual intelligence will depend on its ability to harmo-

nize detailed, data-driven analysis with an understand-

ing of the qualitative, human aspects of urban spaces.

This approach promises to broaden the scope and depth

of urban studies, offering insights that are both techni-

cally robust and contextually rich.
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