
Recent advances on ISRU
technologies and study of
microgravity impact on blood cells
for deep space exploration

Giacomo Cao1,2,3*, Alessandro Concas1, Roberto Orrù1,
Roberta Licheri1, Elisa Sani4, Aldo Dell’Oro5, Giacomo Fais1,
Cristina Manis1,6, Alessia Manca7, Giuseppe Uras8,
Pierluigi Caboni6, Antonio Mario Locci1, Alberto Cincotti1,
Nicola Lai1, Terenzio Congiu9, Gavino Faa9, Massimo Pisu2,
Gavin Brelstaff2 and Antonella Pantaleo7

1Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, University of Cagliari, Cagliari, Italy,
2CRS4, Center for Advanced Studies, Research and Development in Sardinia, Cagliari, Italy, 3Sardinia
AeroSpace District (DASS), Cagliari, Italy, 4CNR-INO Istituto Nazionale di Ottica, Firenze, Italy, 5Istituto
Nazionale di Astrofisica (INAF), Osservatorio Astrofisico di Arcetri, Firenze, Italy, 6Department of Life and
Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, , Monserrato, Italy,
7Department of Biomedical Science, University of Sassari, Sassari, Italy, 8Department of Clinical and
Movement Neurosciences, Institute of Neurology, University of College London, London,
United Kingdom, 9Department of Medical Sciences and Public Health, University of Cagliari, Monserrato’s
Campus, Monserrato, Italy

The long-term solution to problems like overcrowding, fossil fuel depletion,
climate change, and decreasing natural resource availability could be
overcome through space colonization and human presence in space, as well
as the exploitation of extraterrestrial natural resources. In keeping with this, the
objective of this work is to analyze current advancements in technology
development for deep space exploration and colonization made by our
research team as well as by other organizations with which we are
collaborating. First, a method for producing tangible goods suited for industrial
or civil installations on the Moon, Mars, or asteroids, using in situ available regolith
as the main resource, is discussed. In this regard, a new process based on the
occurrence of self-propagating high-temperature synthesis (SHS) reactions was
developed for the fabrication of composite ceramics to be used as construction
materials. A theoretical analysis of the process using proper dimensionless
numbers is also described to offer potential explanations of the key
experimental evidences presented in the relevant literature. For instance, it is
found that free convection likely plays a crucial role to make SHS front velocity
higher under terrestrial conditions when the reaction ignition is carried out from
the bottom side, instead of the top side, of reacting mixture. Next, a method that
uses the atmosphere and regolith of Mars as raw feedstock to produce in situ
useful material such as oxygen, water, food, fuels and fertilizers, is considered. In
the next section, the potential for cultivating Spirulina platensis to provide
nourishment for the Martian crew is examined. The possible use of sintered
lunar regolith simulants such as JSC-1A is also considered for potential thermal
energy storage and solar energy harvesting applications, within the context of
resource exploitation. Sintered regolith simulant exhibited, compared to the native
material in powder form, superior solar absorptance, which makes it suitable for
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sunlight absorbers in architectures with a cavity-like solar receiver. Finally, a new
study is reportedwhich combines biochemical and biophysical approaches in order
to compare, under simulated microgravity and under terrestrial conditions, the
functioning and structure of red blood cells, over various intervals of time.
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1 Introduction

In-Situ Resource Utilization (ISRU) and In Situ Fabrication and
Repair (ISFR) technologies are essential components for space
exploration and colonization. ISRU technologies can provide life
support consumables, propellants, construction materials, and
energy, to a crew stationed on a moon, planet, or asteroid
(Sanders and Larson, 2011; Mason and Rucker, 2019; Schlüter
and Cowley, 2020; Baldry et al., 2022). ISFR technologies, in
contrast, aim to meet requirements related to the fabrication and
repair of materials and equipments, in situ, at the location where
they operate (MlYAZAKI and Osamu, 2002; Miyazaki and
Odawara, 2003; Moore et al., 2004; Bassler et al., 2006; Faierson
et al., 2010). To this end, an Italian task force comprised of the
University of Cagliari, the Italian Astrophysics Institute (INAF), the
National Research Council (CNR), the University of Sassari, and the
Center of Research, Development, and Advanced Studies in Sardinia
(CRS4), is currently engaged in research activities aimed at the
development of both ISRU and ISFR technologies.

The goal of this work in this context is to put together the
published results obtained by such task force in the field of deep
space exploration in a time span from 2012 to 2023. Briefly, the
results discussed in what follows regard: the possibility to use high
temperature self-propagating reactions to produce structural
elements on Mars and Moon; an ISRU process involving several
process units to produce food, fuel, oxygen, water, and other
consumables on Mars to sustain long-term crewed missions; the
optical characterization of lunar regolith for its possible utilization
as solar absorber; the use of microalgae to produce edible biomass
to feed the crew during the mission; the effect of microgravity on
erythrocytes. While the latter topic do not strictly regard the use of
ISRU and ISFR technologies, it deals with the possible effects on
the human body of microgravity conditions taking place during a
crewed mission on Moon or Mars, during which the above
technologies are used. For this reason, we considered to be
useful to include and discuss these results in the final part of
the paper.

2 Manufacturing physical assets in
extraterrestrial environments

Until 2011, before Cao. et al. patent was filed (Cao et al., 2011)
and the related papers published (Corrias et al., 2012a; Corrias et al.,
2012b), only few works were addressed in the literature to the
development of processes for the fabrication of protection structures
making use of available in situ Lunar resources (Allen et al., 1994;
Toutanji et al., 2005; Martirosyan and Luss, 2006; Tucker et al., 2006;
Faierson et al., 2010). To this aim, Allen et al. (1994) proposed a

processing route where a regolith simulant was sintered by radiant
andmicrowave heating. Lunar regolith was also used for producing a
thermo-plastic material (Toutanji et al., 2005) and fiberglass
reinforced Lunar concrete (Tucker et al., 2006). The other
developed processes were based on combustion synthesis-type
reactions for the obtainment of ceramic composites using Lunar
regolith simulants in the starting mixture (Martirosyan and Luss,
2006; Faierson et al., 2010). Along these lines, Cao et al. (Cao et al.,
2011) developed an ISFR process for manufacturing physical assets
necessary for industrial and/or civil facilities on Mars, the Moon,
and/or asteroid, in addition to the kit of equipment and materials
required to achieve this goal. The resulting ISFR process includes the
operating stages shown schematically in Figure 1.

The first stage of the process is the regolith extraction from the
lunar or martian soil. This regolith is then enriched with a particular
component, such as iron oxide, which is widely present in Mars
minerals, that can be obtained in situ by magnetic separation. The
third step involves mixing the enriched regolith, when necessary,
with aluminum powder carried from Earth.

The following step, which represents the heart of the entire process,
involves self-propagating high temperature combustion reactions
occurring within the mixture formed by the previous step. These
reactions are able to propagate spontaneously, upon local ignition, at
high temperatures (generally above 1,800–2,000 K) in the form a
combustion wave (Merzhanov and Borovinskaya, 1972; Munir and
Anselmi-Tamburini, 1989; Varma et al., 1998a). They are particularly
known for being exploited to develop the technique known in the
literature as Self-propagating High-temperature Synthesis (SHS), which
allows to produce a wide range of advanced materials such as ceramics,
composites, intermetallics, solid solutions, functionally graded
materials, etc. (Merzhanov and Borovinskaya, 1972; Munir and
Anselmi-Tamburini, 1989; Merzhanov, 1995; Hlavacek and
Puszynski, 1996; Varma et al., 1998b; Cao et al., 2011; Corrias et al.,
2012b; Concas et al., 2012).

Also known as Combustion Synthesis, the SHS method, has
gained popularity due to its short reaction time, low energy
requirements, simple equipment, and capacity to produce
complex or metastable phases.

That reacting step is carried out in a specific reactor that serves
as the process core unit and is expected to be able to operate under
lunar and Martian conditions (low temperatures, microgravity, and
a rarefied atmosphere of CO2), thus allowing the manufacture of
structural elements of selected size and shape using appropriate
molds. Such aspects are of great practical importance because the
process involves a very simple reaction using a low external power
supply while yielding solid final products with suitable mechanical
properties for construction applications (Corrias et al., 2012a). The
experiments involved the use of simulants of Lunar (JSC) and
Martian (JSC and Mojave) regolith and a suitable reducing agent
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in the form of powders. Lunar JSC consisted mainly of ilmenite,
plagioclase, olivine and Ca-rich pyroxene, while the main
constituents of Martian JSC and Mojave Martian regoliths are
ilmenite and olivine, plagioclase feldspar, pyroxene, iron oxides
(magnetite, hematite). Further ilmenite was added to the lunar
regolith simulant, while additional hematite (Fe2O3) was
introduced in the mixture containing martian regolith simulants.
Then both lunar and martian enriched simulants were mixed with
Al powders which acted as reducing agent.

The resulting solid mixtures were compacted in the form of
cylindrical pellets (length and diameter of about 25 mm and 11 mm,
respectively) by means of a hydraulic press.

The pellets were then inserted in a reaction chamber wherein
vacuum (30 mbar) was previously created. Whitin the reactor, a power
supply provided the energy input necessary to ignite the redox reaction
between Al and ilmenite, for the case of Lunar regolith, or between Al

and hematite, for the case of Martian regolith, at one sample end. Very
high temperatures (generally above 1,526°C) were achieved in the
sample due to the high exothermic character of the redox reactions
described above (Corrias et al., 2012a). The high exothermicity of
reactions permits also the reactions to self-propagate along the pellet
until the combustion front achieves the opposite end of the sample. At
this point only reactions products are obtained in the form of cylindrical
pellets. Parallelepiped (14 mm × 17mm × 33mm) shaped specimens
have been also prepared (Corrias et al., 2012b). In the latter case, the
obtained products represent just the structural components shown in
Figure 2. The resultant structural elements, as shown in Figure 3, can be
used to construct civil and/or industrial facilities on the Moon or Mars.

Compressive strength values of the obtained SHS samples, in the
range of 25.8–27.2 MPa (Corrias et al., 2012a), are significantly
higher with respect to those (10–18 MPa) reported in the literature
for products resulting from the geothermite-based process proposed
by Faierson et al. (2010). Final validation of the regolith-derived
samples obtained by Cao et al. (Cao et al., 2011) requires a their
complete characterization, not only from the mechanical point of
view but also from the optical one, etc., which will be addressed in
future dedicated works.

The main stage of the patented process was also tested in
October 2010 in the framework of the 53rd parabolic flight
campaign held in Bordeaux, France with experiments performed
under microgravity conditions aboard a custom Airbus-300 during
thirty parabolas of three completed missions (Corrias et al., 2012b).

To highlight the possible effects of gravity on SHS reactions and
the related products, the synthesis of TiB2-xTiAl and TiB2-xTiAl3
composites was performed, other than under terrestrial conditions,
also at low-gravity during the 32nd ESA Parabolic Flights Campaign
(Bordeaux, March 2002). The main findings from such parabolic
flights experiments have been summarized in Section 3, along with
the relevant references, when introducing theoretical considerations.

3 Theoretical considerations on
combustion synthesis reactions

Several parameters are known to affect self-propagating high-
temperature reactions which are exploited in this work to obtain
physical assets from lunar and martian regolith (Munir and
Anselmi-Tamburini, 1989; Varma et al., 1998a). In particular,

FIGURE 1
Schematic flow-sheet of the process for manufacturing physical assets for civil and/or industrial facilities on Moon and Mars (adapted from Concas
et al.,2012, licensed CC-BY-4.0).

FIGURE 2
Photography of a typical structural element produced through
the proposed process.
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reaction stoichiometry, reactant particle size, green density (i.e., the
total mass of compacted powders before reaction divided by the
corresponding volume), cooling and heating rates, and gravitational
field strength, all have a significant impact on the SHS process
dynamics as well as on the morphology and properties of the final
product (Munir and Anselmi-Tamburini, 1989; Varma et al.,
1998a). For example, combustion front velocity is typically found
to decrease with an increase of particle size, whereas its dependence
on green mixture density is characterized by a maximum in
correspondence of an intermediate density level (Munir and
Anselmi-Tamburini, 1989; Varma et al., 1998a). This behavior is
caused by the influence of the latter parameters on the system
reactivity, together with the compact thermal conductivity.

In addition, stoichiometry influences the exothermicity of the
synthesis reaction and, consequently, the dynamics of the
combustion process (Munir and Anselmi-Tamburini, 1989;
Varma et al., 1998a).

The introduction of inert species, which are not directly involved
in the reaction process, causes heat subtraction and, as a result, a
reduction in combustion temperature. Other operational
parameters can be considered in the same way. In this regard,
gravity has been demonstrated to play a distinct and important role
in reactions involved in self-propagating high-temperature
processes (Shteinberg et al., 1991; Odawara et al., 1993; Yi et al.,
1996; Mukasyan et al., 1997; Mukasyan and Pelekh, 1997; Odawara,
1997; Merzhanov et al., 1998; Yi et al., 1998; Tanabe et al., 1999;
Merzhanov et al., 2000; Axelbaum, 2001; Lau et al., 2001; Medda
et al., 2001; Merzhanov et al., 2001; Mukasyan et al., 2001;
Merzhanov, 2002; Castillo et al., 2003; Mukasyan et al., 2005).

Indeed, combustion synthesis and associated structure
formation mechanisms include several stages, such as melting of
reactants and products, spreading of the melt, droplet coalescence,
convection and diffusion, buoyancy of solid particles, and the
solidification of liquid product, the majority of which are
impacted by gravity (Yi et al., 1996; Merzhanov, 2002).
Generated gaseous and liquid species are particularly subjected to
gravity-driven flow, convection or vapor transport (Beysens, 2022).
These phenomena are likely to have a significant effect on both the
stability of SHS reactions and products phase morphology
(Mukasyan et al., 1997; Tanabe et al., 1999).

It follows that investigating the impact of gravity on the
aforementioned phenomena is critical in order to determine the
detailed mechanism of structure formation and reaction evolution.
Low-gravity experiments can, in particular, reveal the general
mechanism of structure formation and combustion without the
confounding effect of gravity, in addition to facilitating a direct
comparison with data from comparable ground-based experiments.

Some general conclusions have been drawn based on the most
relevant experimental results reported in the literature on
combustion synthesis reactions conducted under low-gravity
conditions (Mukasyan et al., 1997; Mukasyan and Pelekh, 1997;
Lau et al., 2001; Merzhanov, 2002). For instance, the SHS reaction
wave under reduced gravity typically travels slower than the
corresponding observation on the ground. Furthermore, bottom
ignition of the sample produces under terrestrial conditions higher
combustion velocities than top ignition (Yi et al., 1996; Mukasyan
et al., 1997; Mukasyan and Pelekh, 1997; Tanabe et al., 1999;
Mukasyan et al., 2001; Merzhanov, 2002).

FIGURE 3
Implementation of the invented process on Moon and Mars (adapted from Concas et al., 2012, licensed CC-BY-4.0).
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Additionally, neither ignition configuration nor the gravitational
level have a significant effect on combustion temperature. On the
other hand, final products synthesized under low-gravity have finer
and more uniform microstructures than those synthesized under
normal gravity (Yi et al., 1996; Mukasyan et al., 1997; Lau et al., 2001;
Mukasyan et al., 2001; Merzhanov, 2002).

A thorough theoretical general analysis of potential effects of
gravity on combustion synthesis has been performed (Locci et al.,
2006) with the goal of elucidating the above experimental results.
The effect of gravity on heat and mass transport within the reacting
sample across different spatial scales was specifically
investigated—as shown schematically in Figure 4. The arrows
illustrate the potential paths by which gravity may affect
transport phenomena involved in combustion synthesis
processes, which ultimately determine the experimental results
observed.

The first step investigated the gravity contribution to heat
transfer inside the pellet region where the most relevant physico-
chemical phenomena typical of SHS are observed: the reaction zone.
The next step took into account the effect of gravity upon the rate of
product formation: this is dependent on heat and mass transport
phenomena occurring at the microscopic level, i.e., product grains
and/or reactant particles.

An explanation of the experimental behavior of combustion
temperature is derived combining the above analysis with that
relating to the effect of gravity-level on heat losses from the
pellet external surface, where the characteristic length can be
identified with the pellet size (macroscopic scale).

The experimental results for combustion front velocity were
subsequently analyzed by taking into account gravity effect on heat
transfer inside the reaction zone, on the product formation rate and
on combustion temperature. Gravity impact at the microscopic level
on heat and mass transfer was also considered to account for
differences in grain size obtained in products obtained under

distinct gravity-level environments (Yi et al., 1996; Mukasyan
et al., 1997; Lau et al., 2001; Mukasyan et al., 2001; Merzhanov,
2002). Finally, we clarified the role of the gravitational field in the
formation of product microstructures in terms of phase
distribution by describing mass transport phenomena pertaining
at both micro and macroscopic scales, as well as their effect on
phase segregation.

A comprehensive analysis based on appropriate dimensionless
numbers (Locci et al., 2006) indicates that, during SHS the gas phase
natural convection has negligible effect on heat loss to the
surroundings off the exterior surface of the reacting pellet. Since
the rate by which chemical reactions release heat was found to be
insensitive to g-level, the finding above suggests that gravity is
unlikely to have significant influence on combustion temperature,
as is consistent with experimental evidence.

Sample porosity variations caused by pellet expansion, even if
slight, are expected to affect heat transfer within the reaction zone
(i.e., apparent thermal conductivity) (Shteinberg et al., 1991; Tanabe
et al., 1999) Thus, when occurring under reduced gravity, the SHS
reaction can be expected to exhibit a relatively slower combustion
front and an earlier quenching extinction.

Furthermore, under terrestrial conditions, the combustion front
exhibits a relatively higher velocity when ignition is performed from
the bottom side of the pellet instead of the top side, which is
commonly observed. This phenomenon can be reasonably
attributed to the occurrence of free convection within the molten
phase formed in the reaction zone. Indeed, such phenomenon
determines the preheating of the reactants present ahead of the
combustion wave, thus facilitating its propagation.

The next step of this activity will consist in the detailed
theoretical analysis of the SHS process proposed in the patent by
Cao et al. (Cao et al., 2011) and related papers (Corrias et al., 2012a;
Corrias et al., 2012b) for the obtainment of physical assets from
Lunar regolith under low-gravity conditions.

FIGURE 4
Schematic representation of the theoretical analysis performed on combustion reactions (adapted from Locci et al., 2006, with permission from
American Institute of Chemical Engineers).
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4 An ISRU process to sustain human
missions on Mars

While ISFR is specifically dedicated to fabrication and repair of
infrastructure and equipment, the objective of the general ISRU
approach is to utilize extraterrestrial resources to produce
consumables and create new services and so significantly decrease the
payload, cost, and risk-factor for near and mid-term space exploration.
The use of ISRU can thus represent a great boost to crewed missions of
Mars and Moon because it greatly increase the techno-economic
feasibility of the mission. When focusing on Mars resources, the ones
available for human use are carbon dioxide, argon, nitrogen, and
atmospheric traces of water vapor, in addition to water in the
regolith (Herri and Chassefière, 2012). In principle, suitable ISRU
processing technologies can convert these raw resources into useful
products or materials, furnishing numerous benefits for permanent
crewed missions. Moreover, the Environmental Control and Life
Support Systems (ECLSSs) enable waste recycling and the subsequent
production of usefulmaterials such aswater, oxygen, and food. Although
the ultimate goal of modern ECLSS systems is to achieve a closed loop
capable of meeting the crew’s primary needs (in terms of oxygen, water,
and food), experiments andmathematical simulations show that, to date,
only a small percentage of the required amount of these materials can be
produced by recycling wastes (Poughon et al., 2009). ECLSS systems,
which are routinely used on the International Space Station, (ISS) consist
of a collection of units to remove inorganic and organic catabolites (like
humidity, exhaust atmosphere, feces and other kinds of liquid or solid
waste) and so to allow astronauts to sustain physiological parameters in
the cabin or crew habitat. At the time when the second patent by Cao
et al. (2012) was filed no processes capable to produce consumables to
sustain crewedmissions onMars by integrating ECLSS with ISRU could

be found in the patent and scientific literature. The patent (Spacex. No
Title, 2023) here refers to a particular ISRU process that works
synergistically with an ECLSS. The purpose of this combination is to
ensure the crew’s self-sufficiency in meeting both energy and material
requirements for producing essential resources like oxygen, water, food,
as well as other consumables such as fertilizers and fuels. Starting from
the Martian atmosphere and soil, this technology (Cao et al., 2012) aims
to produce water for drinking and washing, breathable oxygen, as well as
energy, along with ammonia and hydrogen for propellants, ammonium
nitrate and nitric acid for fertilizers, and edible biomass (c.f. Figure 6;
Table 2).

Figure 5 depicts the basic idea of the filed patent regarding the
synergistic participation of ISRU and ECLSS. In this regard, the
ISRU plant is composed of two sections that interact: the biological
and the physico-chemical (c.f. Figure 6).

In the physico-chemical section, the juxtaposition and
combination of different plant units designed specifically to
function under Martian conditions permits a production of
oxygen, water, and propellants necessary for a crew of six, in
addition to suitable quantities of fertilizer for use by the
biological section. The optimal operating conditions, i.e., the ones
permitting to obtain the desired mass flows of consumables for the
crew, have been determined using relevant mathematical models.

The physico-chemical section main plant units are supplied by
water adsorption reactors (Williams et al., 1995), geodetic domes,
solid state compressors, water and CO2 electrolyzers, temperature
swing adsorbers (Rapp et al., 1997), magnetrons (Wiens et al., 2001),
electrosynthesis reactors, absorption mini-towers and catalytic
reactors (Ostwald, 1907), as well as photovoltaic panels for energy.

The biological section uses photobioreactors and greenhouses
to produce edible biomass and photosynthetic oxygen from

TABLE 1 Summary of employed resources and produced consumables with the proposed ISRU process for a specific design case [adapted from (Cao et al., 2012)].

Input to the ISRU plant Unit Value Use

Mars atmosphere kg/h 122,3 Feeding of chemical and biological section

Mars regolith kg/h 5,393 Feeding of chemical and biological section

Solar radiation MW 19,18 Powering of the entire ISRU plant

Output from the ISRU plant Unit Value Use

Oxygen kg/h 41,66 Air revitalization and/or combustion

Water kg/h 3,85 Drinking and/or washing

Ammonia kg/h 2,00 Propellant and/or fertilizer

Mixture of CO + CO2 kg/h 78,86 Propellant

Nitric acid kg/h 0,13 Fertilizer and/or leaching solution

Ammonium nitrate kg/h 0,25 Fertilizer

Hydrogen kg/h 0,04 Propellant and/or precursor for water production

Buffer gas kg/h 0,03 Air revitalization and/analytical instrumentation

Nutrient solution kg/h 100,00 Greenhouses irrigation and/or water production

Edible biomass kg/h 0,09 Food for crew members feeding

Dehydrated regolith kg/h 5265,0 Manufacturing of assets for industrial or civil facilities

Energy MW 2,11 Self-sustainment of ISRU plant
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natural resources (e.g., CO2 from the regolith and atmosphere) or
products synthesized from the physico-chemical section. Table 1
shows examples of the quantities of energy and consumables
produced by the ISRU plant in relation to a given design case
which consumes the amount of natural resources reported in the
same Table.

To assess the economic and technical feasibility of such a
process, the payload of the entire ISRU plant must be calculated.
Table 2 shows a summary of the payload of such a plant.

In this regard, it should be noted that, SpaceX claims to be owner
of technology, including a Starship spacecraft and Super Heavy
rocket–collectively referred to as Starship–that is capable to carry
both crew and cargo to Earth orbit, the Moon, Mars and beyond for
a total payload of 150 metric tonnes fully reusable and 250 metric
tonnes expendable (Spacex. No Title, 2023). So the complete ISRU
plant could be on Mars with two missions.

The next step of this activity will consist in the experimental
implementation of the process proposed by the patent to verify
whether it can be actually and profitably carried out on Mars.

5 Edible microalgae on Mars by
exploiting in situ-available resources

Only a few papers or patents (Miyajima, 2017; Abney et al., 2018;
Miyajima, 2019; Nangle et al., 2020) address the technological
development needed to integrate ECLSS and ISRU systems to
support crewed missions to Mars of the type described above. In
particular, they involve simulations that typically depend on
assumptions about the performance of the ISRU-ECLSS system
that do not accord well with experimental data obtained by
apparatus designed to operate under Martian-like conditions. In

FIGURE 5
Schematization of baseline concept for the synergic combination of ISRU and ECLSS systems (adapted from Concas et al., 2012, licensed CC-BY-4.0).

FIGURE 6
Schematic flow-sheet of the invented ISRU process (adapted from Concas et al., 2012, licensed CC-BY-4.0).

Frontiers in Space Technologies frontiersin.org07

Cao et al. 10.3389/frspt.2023.1146461

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2023.1146461


this scenario, the multi-disciplinary field of bioengineering
techniques involving microalgae, macroalgae, fungi, and bacteria
is now firmly established in the implementation of regenerative
ECLSS (Belz et al., 2014; Revellame et al., 2021; Verseux et al., 2021),
and some studies have confirmed the possibility to use
microorganisms to transform available resources on Mars, such
as the atmosphere and regolith, into practical supplies. For instance,
Santomartino et al. (2022) described the latest developments in the
principles of space biomining, suggesting that selected
microorganisms could be used not only to extract structural
metals, mineral nutrients, water, and oxygen but also to recycle
waste and support regenerative life support systems (Rapp, 2018).
Noteworthy is that food production could reasonably be guaranteed
using the In-situmaterials (Eichler et al., 2021; Revellame et al., 2021;
Verseux et al., 2021; Kasiviswanathan et al., 2022; Caporale et al.,
2023). However, most In-situ Resource Utilization (ISRU)
technologies proposed to date rely on physico-chemical methods
that produce oxygen and propellants from the Martian atmosphere
and regolith, but do not generate foodstuffs (Rapp, 2018; De Man,
2019). In-situ food production remains the main bottleneck for
crewed missions, since what ECLSSs can contribute is fairly limited
compared to the needs of a crew of six astronauts, which is estimated
to be 3,000 cal sol−1 (Cao et al., 2021; Fais et al., 2022a) (and
references therein). Thus, ISRU technologies are required for
food production on Mars. Although some studies explore the
cultivation of crops, fungi, and algae on Mars, few papers address
the conversion of Martian resources into edible biomass under
conditions similar to those found on Earth. There is even less
literature addressing the use of resources available in the Martian
environment to support the growth of cyanobacteria and microalgae
(Verseux et al., 2016). Moreover, there are few experimental studies
related to the production of edible biomass frommicroalgae in space
that consider the effect of microgravity, which is 0.3 g on Mars (Fais
et al., 2022a). However, it has been experimentally demonstrated,
aboard the International Space Station (ISS), that it is possible to
perform the extraction of rare earth elements from basaltic rocks
through bioleaching under microgravity and Mars gravity
conditions. The three microorganisms used, Spirulina desiccabilis,
B. subtilis, and C. metallidurans, proliferated within a miniaturized
space biomineral reactor, thus demonstrating not only the
possibility of growing microorganisms under conditions different
from Earth’s gravity but also the efficacy of microbe-mineral
interactions in promoting self-sufficient human presence beyond

Earth (Cockell et al., 2020). Therefore, in order to investigate the
possibility of cultivating microalgae and cyanobacteria under
microgravity conditions, using some of the resources present on
Mars, and following the paradigms described above. A novel process
to grow edible microalgae on Mars by exploiting in situ available
resources has been proposed. Newly developed experimental
apparatus has allowed the growth of Spirulina platensis (S.
platensis) a cyanobacterium called under conditions of
microgravity (Cao et al., 2021; Fais et al., 2022a), inside heated
and pressurized domes. This offers opportunity to assess the use of
cyanobacteria and microalgae as potential food sources within the
structure of crewed missions on Mars by relying on ISRU
technologies. This method also uses a simulant of the urine
produced by the crew members, that can be considered a
potential constituent of the alga’s growth medium. The
corresponding ISRU-ECLSS process is pictured in Figure 6, and
is subject of a recent patent proposal by Cao et al. (2012).

The S. platensis strain was selected over others due to its protein
content and higher nutritional power, which make it a food suitable
for astronauts. Indeed, various studies have indicated S. platensis to
be a superfood, and it has been called the “food of the future” due to
its elevated nutritional value (Jung et al., 2019). A variety of foods are
now manufactured from it (Fais et al., 2022b).

Because of its high protein content and rapid growth in mineral
constituted environments, space industries and agencies have
developed an interest in incorporating such strains into research
programs by utilizing the ISRU-ECLSS process (Montague et al.,
2012). On a dry weight basis, S. platensis consists of up to 70%
complete protein with high digestibility and elevated biological
value, 20% carbohydrates and 10% lipids. S. platensis has
antioxidant activity in line with its carotenoid, and Vitamin E
content, as well as anti-inflammatory, antitumor, and
immunostimulant activity (Fais et al., 2022b).

The growth of S. platensis has been investigated inside a specially
developed device that simulates microgravity and a pure CO2

atmosphere. The culture medium contained a mixture of
appropriate quantities of regolith leachate and urine simulants. The
goal was to evaluate potential food production on Mars using in situ
available resources (Cao et al., 2021; Fais et al., 2022a). The results
obtained demonstrated that the chosen strain grew better under
simulated Martian conditions (with the in situ produced growth
medium) than under terrestrial conditions adopting an optimal
growth medium (c.f. Figure 7). Indeed, under Earth conditions,
biomass productivity was around 0.048 g L−1 day−1, while on Mars,
productivity was around 11 g L−1 day−1. With about 15 m3 of culture
that productivity value could meet the protein requirements of a six-
member crew. While several factors might have influenced this result,
the most important included the CO2-rich atmosphere which prevents
carbon starvation and microgravity that might have reduced
aggregation and settling, thus allowing a better nutrient diffusion
toward single cells. On the other hand, this latter effect should be
confirmed by dedicated experimental activity, since a work retrieved in
the literature reports the if there are different components in the
solution with different molecular weights, microgravity can lead to
“segregation” and “stratification” if proper mixing is not provided
(Bechini et al., 2021).

Scope exists for further research to better understand those
aspects, and to evaluate the effects of low temperatures and cosmic

TABLE 2 Summary of the payloads for the proposed ISRU system for a specific
design casea [adapted from (Cao et al., 2012)].

Element Unit Payload

Dome for the chemical physical section kg 86

Dome for the biological section kg 118

Dome for the biological-photobioreactor section kg 300

Plant units for the chemical physical section kg 73,809

Plant units for the overall biological section kg 11,056

Total kg 85,369

aPhotovoltaic plant is not considered in the evaluation of the overall payload.
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radiation prevalent on Mars, which were not examined in the study.
Note, in this regard the cultivation of algae might theoretically be
achieved inside pressurized, heated inflatable domes located within
an open pond, the creation of which would necessitate the
excavation and lining of the soil. Such a design would mean a
lower payload being needed for the pond’s realization.

6 Optical characterization of lunar
regolith simulant

So far, we have focused on novel ISRU technologies to support
human missions onMars. Other targets of space exploration include

the Moon and asteroids, whose surfaces are devoid of atmosphere.
The surface of the Moon, due to its high solar irradiance, provides
favorable conditions for harvesting solar energy, given an
appropriate site (Kaczmarzyk et al., 2018).

However, the long duration of lunar nights makes energy storage
a significant issue. Thermal energy storage (TES) may be the best
option for collecting energy for future extraterrestrial colonies or
robotic stations. The most natural TES candidate material appears to
be regolith, once it has been processed into bulk bodies to improve
its thermal properties (Fleith et al., 2020; Palos et al., 2020).

In the latter regard, the technologies and components potentially
required for solar energy storage on the Moon and related stages
(heat transport, conversion to electricity, etc.) has been recently
analyzed in the literature (Palos et al., 2020).

Along these lines, and from an ISRU standpoint, we have
developed an assessment procedure for the optical
characterization of a simulant of lunar regolith in order to
estimate the potential of pristine and sintered real regolith for
thermal energy storage and solar energy harvesting.

The composition and thermal stability of a sieved simulant JSC-
1A regolith was initially investigated (Licheri et al., 2022).

Then powders were first processed for 3 min at 700°C and 900°C
(heating rate: 100°C/min), in a 20 Pa vacuum, under 15 MPa
mechanical pressure, using an efficient hot-pressing technique
known as Spark Plasma Sintering (SPS) (Licheri et al., 2022). SPS
was also used by Zhang et al. (2020) for the consolidation of FJS-
lunar soil simulants. In our work, the preparation of sintered
samples from JSC-1A Lunar regolith was carried out using a
515 model SPS apparatus (Fuji Electronic Industrial Co., Ltd.,
Kanagawa, Japan). The latter equipment is able to apply electric
current intensities and mechanical load levels up to 1,500 A and
50 kN, respectively.

The disks obtained, which had relative densities of about 86
(700°C) and 98% (900°C), were then characterized in terms of
microstructure and composition. No additional phases were
detected after SPS as compared to the original regolith. This was
despite some variations in their relative quantities, especially for the
glassy part, on the increase of sintering temperature from 700°C to
900°C. For samples sintered at 700°C and 900°C, there has been
extensive evaluation and discussion of optical properties including
integrated solar absorptance, spectral emittance/absorptance, and
integrated thermal emittance estimated from −173°C to 1,026°C
(Licheri et al., 2022).

According to thermophysical property literature results, the
optical properties of regolith are altered by powder sintering in a
process-dependent manner (c.f. Figure 8). Sintering temperature, in
particular, has been shown to raise spectral emittance/absorptance
when compared to pristine powders.

On the other hand, thermal emittance and integrated solar
absorptance at all temperatures under consideration were
increased. As discussed in detail in Licheri et al. (2022), the
discrepancies in the optical properties of regolith simulant before
and after being processed by SPS are due to the different
morphological, structural and compositional characteristics of
such samples. Indeed, as previously mentioned, the original
pristine powders are transformed by SPS into 86 (700°C) and
98% (900°C) dense samples. In addition, while negligible changes
from the compositional viewpoint are observed when the powders

FIGURE 7
Synergic effects of all the operating conditions that would take
place on Mars according to the process on the time evolution of
Spirulina platensis concentration strain that grows better under
simulated Martian conditions than under terrestrial conditions
adopting an optimal growth medium called Zm in air and on Earth
gravity 1g (A) and on the biomass productivity after 22 days of
cultivation (B) – (adapted from Fais et al., 2022, with permission from
Acta Astronautica). Notations: Mm40_CO2_μg growth in a medium
consisting for 40%v of Martian Medium under CO2 atmosphere and
microgravity; Zm_Air_1 g refers to the growth in pure Z-medium
under air and Earth gravity.
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are processed by SPS at 700°C, a reduction in the content of the
glassy phase is obtained at 900°C. All these changes apparently affect
the optical behaviour of these samples.

Analogously to sunlight receivers on Earth, the ideal material to
be employed on the Moon should possess high solar absorptance
and low thermal emittance, i.e., superior spectral selectivity. Based
on the obtained results both sintered pellets showed superior solar
absorptance and thermal emittance compared to original regolith in
powder form. The latter one displayed its maximum thermal
emittance (0.80) at 26,85°C, while such parameter decreased to
0.73 at −173,15°C and 0.69 at 826,85°C. Absorptance values of
samples sintered at 700°C and 900°C were 0.88 and 0.92,
respectively, with emittance values in the range 0.87–0.96 (700°C)
and 0.91–0.93 (900°C).

Accordingly, the higher solar absorbance makes sintered
regolith blocks more suitable to be employed for sunlight
absorbers in architectures with a cavity-like solar receiver. In
particular, the sintered sample produced at 900°C is found to be
the most promising candidate for operating temperatures below
726,85°C, due to the correspondingly highest solar absorptance and
lowest thermal emittance. On the other hand, the opposite situation
is encountered at operating temperatures above 726,85°C, with the
SPS specimen produced at 700°C which is preferable, due to its
relatively lower thermal emittance.

The results obtained might open up promising avenues for ISRU
applications of lunar regolith.

The next steps of this work will involve different aspects. One of
the most relevant will be related to the possibility to produce by SPS
larger components from lunar regolith, also characterized by
geometrical shapes different from the simple cylindrical ones
produced and characterized in Licheri et al. (2022). In this
regard, it should be noted that the obtainment of larger samples
is strictly related to the maximum electric current that the employed
SPS apparatus is able to provide. Indeed, while the current intensity
applied by the equipment used in Licheri et al. (2022) could not
exceed 1500 A, powerful SPS machines available on the market are
capable to guarantee significantly higher current levels (above

10,000 A), thus allowing for the production of larger sized-
components. In addition, more complex shapes can be obtained
using suitably designed powders containers (die/punches), also
taking advantage of appropriate sacrificial materials (Manière
et al., 2016). The scale-up of the process and the fabrication of
complex shape components based on lunar regolith will be both
highly facilitated by the use of mathematical models of the SPS
process as that recently developed in the literature by Locci et al.
(2020).

7 Red blood cells behavior under
microgravity conditions

Exposure to microgravity during space flight is known to involve a
variety of health risks to the human body, increasing vulnerability to
secondary conditions like radiation effects and physiological changes
such as muscle atrophy, lysis, neocytolysis, metabolic variations, and
hydrostatic pressure changes (Schimmerling, 1995; Schcolnik-Cabrera
et al., 2014; Buonanno et al., 2015). Microgravity conditions and
radiation can stimulate a variety of stressors in astronauts during
spaceflight with negative consequences for their health (Garrett-
Bakelman et al., 2019; Afshinnekoo et al., 2020). Oxidative stress
(Stein and Leskiw, 2000), due to a disequilibrium between oxidant
and antioxidant species (Pizzino et al., 2017; Tsamesidis et al., 2020), is
the primary cause of cellular damage in astronauts.

Previous studies (Pantaleo et al., 2016; Remigante et al., 2021)
were designed to present up-to-date information on band three
protein, with a focus on its functional role in oxidative stress
conditions and oxidative stress-related disease. The resultant
reactive oxygen species (ROS) primarily include hydrogen
peroxide (H2O2), superoxide anion (O2

−), as well as free radicals.
A rise in oxidants leads to the imbalance towards oxidizing species
known to be responsible for a variety of pathologies in humans and
are a cause of ageing.

FIGURE 8
Absorptance spectra of sintered specimens obtained from lunar
regolith simulant and the reference powder sample (adapted from
Licheri et al., 2022, with permission from Acta Astronautica).

FIGURE 9
Random Positioning Machine (RPM, Fokker Space, Netherlands).
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In particular, astronauts face a number of health issues upon
their return to Earth, including a 20% decrease in bone density,
muscle atrophy, cognitive, immune system and endocrine
disorders–as well as cardiovascular dysfunction (Hughes-Fulford
et al., 1998). Significant variations in phospholipids were observed in
samples of blood from Russian cosmonauts (Ivanova et al., 2006). A
rise in phosphatidylcholine level is associated with a rise in
membrane rigidity.

Changes in the physicochemical properties (permeability and
microviscosity) of the erythrocyte plasma membrane can affect
oxygen transfer efficiency, the structure of haematoporphyrin and the
state of the haemoglobin. Furthermore, thin layer chromatography along
with densitometric analysis of stained dots has been applied to determine
composition of lipid and phospholipid in erythrocyte membranes.
Although this technique provides data about the entire lipid class, it
does not cater for the identification of specific molecules within that
class–so it remains difficult to clarify the biochemical mechanisms
involved (Ivanova et al., 2006).

However, existing studies have mostly focused on data collected
post-spaceflight, with very little data describing changes occurring
during the actual flight. Regarding red blood cells (RBCs),
spaceflight is known to cause oxidative stress (Rizzo et al., 2012),
though the exact role of microgravity is not yet known, and there is
evidence of variation in blood homeostasis such as
pseudopolycythemia or space anaemia (Alfrey et al., 1996).

Astronauts exhibit a diminution in plasma volume and thus a
rise in erythrocyte relative volume during the early days of low
gravity conditions (Kunz et al., 2017; Trudel et al., 2022). The
adaptive response of the body to such conditions is a decrease in
erythropoietin synthesis and an increase in erythrocyte clearance
(Charles et al., 1994). Consequently, haemoconcentration occurs
due to a rise in haematocrit, which is aided by a rapid fall in
erythrocyte selective counting and haemolysis (Risso et al., 2014).

Following from the considerations above and the high cost
of space experiments, there is a rising demand for the
development of technologies to secure near zero-gravity
environmental conditions, nearer to Earth (Unsworth and
Lelkes, 1998).

Onboard the ISS: a g-force between 10−3 and 10−6 is used to
simulate microgravity conditions, resulting in a weightless
environment (Dinarelli et al., 2018). International space
agencies have developed and validated such conditions using
3D-clinostats and random positioning machines (RPM)
(Dinarelli et al., 2018; Kiss et al., 2019; Clary et al., 2022)–(c.f.
Figure 9). These instruments generate a rapid rotation along three
axes, to obtain zero gravity (Herranz et al., 2013; Wuest et al.,
2015).

The few studies that have been conducted to investigate the
behavior of RBCs under simulated micro-gravity, show that the cells
rapidly respond to the environment, first as a metabolic adaptive
response and then as fixed morphological and structural alterations,
resulting in alterations or modulations of functionality (Serova et al.,
1993; van Loon, 2007; Herranz et al., 2013; Wuest et al., 2015;
Dinarelli et al., 2018).

The literature provides no existing data concerning the changes
to RBCs under microgravity conditions, so a novel approach has
recently been presented (Manis et al., 2022). It aims to better
understand changes related to cell membrane components,
through the applications of various biophysical and biochemical
techniques, such as confocal microscopy and scanning electron
microscopy (SEM), as well as the potential exploitation offered
by chromatographic and mass spectrometry. It proposes to fully
evaluate the function and structure of RBCs under normal and
under 3D-clinostat-delivered microgravity.

Investigations using confocal microscopy SEM, TAC, ROS,
GSH, MDA, and GSH analysis, and lipid profile evaluation reveal

FIGURE 10
Evaluation of extracellular ROS level (A), TAC (B), GSH (C), and MDA (D) on plasma samples exposed to simulated microgravity (μg) and earth gravity
conditions (1 g) at different time points (adapted from Manis et al., 2022, licensed CC-BY-4.0).
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that samples under simulated microgravity showed remarkable
changes in RBC membrane stiffness and cytoskeletal architecture
(c.f. Figure 10)–while no such changes are observed, over time, at
normal gravity.

The above studies has added to our understanding of the
biological mechanisms involved in red cell morphology and
membrane property changes, and makes a significant
contribution to our understanding of human cell behavior in
microgravity.

Work is being done to analyze additional cell types, with a
focus on those that could be important for future human
missions, and to involve researchers and institutions at the
international and national level in order to reinforce
cooperation in this critical field of inquiry within the context
of deep space exploration.

The outcomes and future directions of this research are
concerned with the basic investigation of the intrinsic
mechanisms that underpin the conduct of various types of
human cell in conditions of microgravity, and ought thus to be
able to yield useful contributions to the understanding and potential
prevention of those classical health risks associated with astronauts
operating in scenarios of deep space.

8 Concluding remarks

Interplanetary travel and exploration are becoming more
concrete, through the plans formulated by international space
agencies on deep space exploration missions. It is also quite well
recognized that, in the absence of space programs, we would not
have, for example, GPS, solar cells, accurate weather forecasting,
or the ultraviolet filters used in cameras and sunglasses. If
something happened on the Earth, such as a heavy asteroid
impact, continuous climate changes, economic insecurity or
viral pandemics stressing the world resources, our species of
eight billion humans could be wiped out. Thus, the colonization
of other bodies in the solar system (or constructing suitable
habitats in orbit) by harnessing novel ISRU and ISFR
technologies present a way to create a “backup” of humanity
to survive whatever happens to the Earth. The scientific and
technological activities and results reviewed in this work may be
seen as a useful contribution to make that possible and sustain
people independently of Earth. Such results can be summarized
as follows: a novel technique based on SHS reactions has been
proposed to produce structural elements from Mars and Moon
regolith; a process which exploits regolith and atmosphere for
the production of different consumables to sustain crewed
missions on Mars has been designed; optical properties of a
pristine and sintered lunar regolith simulant were evaluated in

view of the possible utilization of such material as solar
absorber; the possibility to produce microalgae on Mars has
been demonstrated by performing experiments under
microgravity using astronauts’ urine, regolith leachate and
atmospheric CO2 simulants; the effects of microgravity on
the growth and viability of erythrocytes is experimentally
investigated.
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