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ABSTRACT Limited power and computational resources make the employment of complex classical
encryption schemes unrealistic in resource-limited networks, e.g., the Internet of Things (IoT). To this
end, physical layer security (PLS) has shown great potential in securing such resource-limited networks.
To further combat the power scarcity in IoT nodes, radio frequency (RF) based energy harvesting (EH)
is an attractive energy source while relaying can enhance the energy efficiency and extend the range of
data transmission. Additionally, due to deploying low-cost hardware, imperfections in the RF chain of IoT
transceivers are common. Against this background, in this paper, we investigate an untrusted EH relay-aided
secure communication with RF impairments. Specifically, the relay simultaneously receives the desired
signal from the source and the jamming from the destination in the first phase. Hence the relay is unable to
extract the confidential desired signal. The resultant composite signal is then amplified by the relay in the
second phase by using the energy harvested from the composite signal followed by its transmission to the
destination. Since the destination is the original source of the jamming, its effect can be readily subtracted
from the composite signal to recover the original desired signal of the source. Moreover, in the face of
hardware impairments (HWIs) in all nodes, maintaining optimal power management both at the source and
destination may impose excessive computations on an IoT node. We solve this problem by deep learning
(DL) based optimal power management maximizing the secrecy rate based on the instantaneous channel
coefficients. We show that our learning-based scheme can reach the accuracy of the exhaustive search
method despite its considerably lower computational complexity. Moreover, we developed an optimization
framework for judiciously sharing HWIs across the nodes, so that we attain the maximum secrecy rate. To
derive an efficient solution, we utilize a majorization-minimization (MM) algorithm, which is a particular
instance in the family of successive convex approximation (SCA) methods. The simulation results show
that the proposed HWI aware design considerably improves the secrecy rate.

INDEX TERMS Deep learning, Energy harvesting, Hardware impairments, Majorization-minimization,
Physical layer security, Untrusted relaying

I. INTRODUCTION

THE potential of the Internet of Things (IoT) in revo-
lutionizing smart cities, healthcare, transportation, etc.

is widely acknowledged. However, providing connectivity
among numerous wireless devices on a massive scale faces
significant challenges [1], [2]. To be specific, acquiring a
permanent power source for these devices is not viable, e.g.,

due to their mobility, hence they tend to depend on batter-
ies. Moreover, frequent recharging and battery replacement
would be inappropriate in most applications such as in toxic
environments or wireless body area networks, where medical
devices are implanted into a patient’s body [3]. Accordingly,
we have to acquire a sustainable energy source for IoT
devices. Another issue is that of the hardware quality in these

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3381951

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



SHAHIRI et al.: DEEP LEARNING AIDED SECURE TRANSMISSION IN WIRELESSLY POWERED UNTRUSTED RELAYING

networks. As the massive deployment of devices is required
in most IoT applications, utilizing nodes relying on low-
cost hardware becomes inevitable. This leads to relatively
high imperfections in the RF chain of the IoT nodes [4].
Another challenge is in the realms of security. Classical
encryption schemes are computationally demanding [5] and
do not fit well into the low energy-dissipation requirements
of IoT devices. Physical layer security (PLS) techniques rely
on low-complexity security protocols which fit well into
IoT networks [6]–[8]. Additionally, the implementation of
complex optimization algorithms is quite a challenge owing
to the limited resources of IoT networks [9]. Moreover, ar-
tificial intelligence (AI) methods, particularly deep learning
(DL), are eminently suitable for low-complexity near-real-
time resource allocation [10], [11]. In this contribution, we
design a security protocol for tackling the aforementioned
challenges.

Energy harvesting (EH) is capable of extending the life-
time of energy-constrained wireless nodes [12]. This tech-
nique gleans energy from the surrounding radio frequency
(RF) signals to recharge the batteries [13], [14]. Very re-
cently, EH applications were studied in numerous use cases,
e.g., reconfigurable intelligent surfaces (RIS) [15], multi-
ple input multiple output (MIMO) communications [16],
distributed antenna systems [17], relay networks [18], etc.
Moreover, in the context of PLS, numerous studies have
simultaneously considered the security and energy efficiency
of IoT nodes [3], [19]–[21]. Specifically, the authors of [3]
considered a simultaneous wireless information and power
transfer-based (SWIPT-based) amplify and forward (AF)
relaying scenario in the presence of an eavesdropper. The
relay harvests energy both from the transmitted RF signals
of the source and from friendly jammers to glean sufficient
power. In [19], the optimal power sharing factor between
the source and destination is obtained by maximizing the
secrecy rate in a wireless-powered untrusted relaying net-
work, where the untrusted relay is exposed to destination-
based jamming. Furthermore, the authors of [20] proposed a
wireless-powered two-way cooperative network, wherein the
two sources communicate via a wireless-powered untrusted
relay. To boost the secrecy performance, an external jammer
was relied upon, which was also wirelessly charged by
the two sources. In [21], the IoT nodes first harvested
energy from the hybrid sink (H-sink) and then transmitted
the information to the H-sink and generated interference to
confuse the eavesdropper. The sum-throughput maximization
problem was formulated to allocate the optimum power to
each of the nodes.

In realistic digital communication systems, practical im-
pairments, such as I/Q imbalance, phase noise, amplifier non-
linearities, quantization errors and non-ideal filters inevitably
degrade the system performance [22]–[24]. Naturally, the
level of residual hardware impairments (HWIs) is determined
by the quality of the RF transceivers as well as by the
analog and digital signal processing techniques adopted [24].

For the sake of analytical tractability, the HWIs may be
modeled by additive noise at the transmitter and receiver
nodes [22], [23]. This model was confirmed by experiments
and it is extensively applied in various use cases in the
literature to model the impact of the residual HWIs [25]–
[29]. Based on this model, several studies have examined the
impact of HWIs on the security of diverse communication
networks [30]–[34]. To be specific, the authors of [30] con-
sidered the residual HWIs in a dual-hop untrusted relaying
network. Furthermore, the authors of [31] studied a three-
hop untrusted relaying network in the presence of HWIs and
imperfect channel estimation. Additionally, the authors of
[32] have studied physical layer secret key generation (SKG)
in direct source-to-destination communication in the pres-
ence of a man-in-the-middle adversary, where the legitimate
users suffer from HWIs. The same authors [33] also adopted
the concept of recurrent neural networks to compensate the
HWIs at the legitimate transceivers. Furthermore, in [34],
a source intends to transmit its confidential information to
a destination in the presence of a group of untrusted AF
relays. All the nodes are assumed to have residual HWIs
in their transceiver chains, except for the eavesdropper.
A sophisticated joint cooperative beamforming, jamming
and power allocation policy was proposed to safeguard the
confidential information.

DL provides unique advantages in numerous areas, in-
cluding security. Accordingly, researchers are seeking DL
solutions for employment in resource-limited mobile and
IoT devices [35]. Some recent PLS studies exploit the
ability of deep neural networks (DNNs) to approximate
continuous functions for solving resource allocation prob-
lems, which are usually non-convex [36]–[40], [42], [43].
Specifically, in [36]–[38], a transmit power control (TPC)
regime was designed for maximizing the system’s secrecy
rate. An unsupervised DL-assisted approach is proposed for
reducing the complexity of the conventional optimization-
based techniques and for circumventing their performance
erosion due to approximations. EH is also considered in
these studies, while the authors of [36] and [38] also take
into account the deleterious effects of imperfect channel state
information (CSI). Furthermore, the quality-of-security vio-
lation probability (QVP) experienced in image transmission
is minimized in [39] by utilizing a fully-connected feed-
forward DNN. The optimal values of the power allocation
ratio, the transmit power, the decision threshold on whether
to send public or confidential packets and the transmission
rate are determined by the the DNN. The authors of [40]
leverage a deep feedforward neural network to obtain the
optimal fraction of power allocated to the information signal,
the redundancy rate and power transfer time that jointly
maximize the effective secrecy throughput in a wireless-
powered system. The security versus reliability trade-off is
considered in [41]. Optimum power allocation coefficient for
information and artificial noise power ratio is determined
using a feedforward DNN. Additionally, the authors of [42]
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study a transmit antenna selection (TAS) scheme based on
feedforward DNNs in untrusted relay networks. Finally, the
authors of [43] propose a specific fully-connected DNN to
obtain the optimal precoding matrix, which maximized the
secrecy rate in a MIMO Gaussian Wiretap Channel.

Against this background, in this paper, we consider two
legitimate nodes in which the source, S, wants to send
its confidential information to the destination, D, with the
aid of an amplify and forward (AF) relay, R. The relay is
powered by the signals gleaned from the environment and
it is also assumed to be curious about the information sent
from S. Hence D aims for preventing R from obtaining the
confidential signal by sending jamming during the reception
phase of the untrusted relay R. Accordingly, R simultane-
ously receives the desired signal from S and the jamming
from D in the first phase. Hence R is unable to extract the
confidential desired signal. The resultant composite signal
is then amplified by R in the second phase using the
energy harvested from the composite signal, followed by
its transmission to D. Since D is the original source of
the jamming, its effect can be readily subtracted from the
composite signal to recover the original desired signal of the
source. Although the energy efficiency of the system suffers,
because D has to dissipate power for jamming transmission
and cancellation, this solution assists distant destinations in
improving both their reception integrity and confidentiality.
Furthermore, we take into account the HWIs of all three
nodes. Seeking a light-weight optimization approach, we aim
for exploiting the potential of DL in obtaining the optimum
power allocation for this scenario.The main contributions of
this paper are boldly and explicitly contrasted to the literature
in Table I and are summarized as follows:

• We first calculate the instantaneous secrecy rate and
formulate a secrecy rate optimization problem subject
to the individual power constraints of the nodes. We
then design a deep neural network (DNN) for address-
ing the optimization problem formulated. By exploiting
the potential of deep learning, we are able to promptly
configure the power allocation factors at S and D based
on the changes in the S − R and R − D links. Our
simulation results show that the proposed deep net-
work approaches the accuracy of the exhaustive search
method, despite its substantially reduced complexity.

• To provide further insights on how the available power
budget at S and D impacts the system model consid-
ered, we derive analytical results at high SNRs. Further-
more we discuss the rationale behind our optimal power
management problem and discuss the special case in
which the secrecy rate becomes equal to zero.

• We develop an optimization framework for finding
the optimal sharing of the total HWIs among the
nodes for maximizing the secrecy rate. To over-
come the non-convexity of this problem, we derive
a low-complexity algorithm based on the popular

majorization-minimization (MM) method for improving
the secrecy rate.

• To gain further insights, a detailed discussion is pre-
sented concerning both the impact of HWIs, as well as
the energy efficiency and the available power budget at
S and D on the overall secrecy rate. The impact of these
parameters on the power allocation problem considered
is also studied in detail.

The remainder of this paper is organized as follows. In
Section II, we introduce our system model and problem
formulation. In Section III, we define our approach to
solving the optimal power allocation problem by utilizing
DL. Accordingly, the structure of our training and test data,
activation functions and the loss function are described in
detail. To gain further insights, in Section IV, we derive high-
SNR expressions of the instantaneous secrecy rate. Based
on high-SNR results of Section IV, in Section V, a HWI
allocation problem is formulated and solved by applying the
MM technique. Finally, in Section VI, our discussions and
numerical results are presented, while our conclusions are
offered in Section VII.

II. System Model
We investigate the EH-aided untrusted relay network of Fig.
1, which consists of a source, a destination, and an untrusted
AF relay. All the nodes are equipped with a single antenna.
The transmission is performed in two phases within the time
T . In the first phase, the source transmits confidential data
to the untrusted relay. Furthermore, to confuse the untrusted
relay in this phase, the destination simultaneously emits a
jamming signal. In the second phase, the untrusted relay
amplifies and retransmits the signal received in the previous
phase. Note that the untrusted relay is an essential partner
in the proposed system model, but it may also act similar
to an eavesdropper and extract confidential data without any
permission from the network. Moreover, the untrusted relay
considered is able to harvest energy from the signals received
in the first phase and consumes it in the second phase.
This capability leads to its sustained communication without
high-energy batteries. We note that the considered system is
equivalent to an IoT sensor (source) which intends to send
its sensory data to a central node (destination) with the aid
of a third node which acts as a relay and can not be trusted.

Remark 1: Energy harvesting and information transmis-
sion have to be appropriately scheduled. In this regard,
SWIPT transmission techniques include the time, power,
antenna and spatial domains [13]. Here, we consider the time
switching (TS) method. As shown in Fig. 2, in this method,
the first phase is split into two slots. In the first slot which
lasts for T/3 seconds, the relay harvests energy from the
transmitted signals of source and destination. The second
slot is for information processing (IP) which again has the
duration of T/3. Finally, in the second phase and during the
time of T/3, the relay transmits the received signal with the
harvested energy in the first phase.
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TABLE 1. Contrasting our contributions to the state-of-the art

Contributions This work [36] [37] [38] [39] [40] [42]

Untrusted EH Relay X

Hardware Design X

DL-based PLS X X X X X X X

Because of the obstacles between the source and desti-
nation, the direct link is not available. It is assumed that
reciprocity is satisfied by the system model considered. The
channels spanning from the source to relay and relay to
destination are complex-valued Gaussian with a distribution
of hsr ∼ CN (0, υsr) and hrd ∼ CN (0, υrd), respectively.
The HWIs in node i (source, relay, destination) are expressed
as ξti and ξri for the transmission and reception modes,
respectively, which are defined as [23]

ξtS ∼ CN
(

0, psk
t
S

2
)
, ξtD ∼ CN

(
0, pdk

t
D

2
)
,

ξrD ∼ CN
(

0, pr|hrd|2krD
2
)
, ξtR ∼ CN

(
0, prk

t
R

2
)
,

ξrR ∼ CN
(

0, krR
2
(
ps|hsr|2 + pd|hrd|2

))
, (1)

where ps, pr, and pd are the transmit powers at the source,
relay, and destination, respectively. Moreover, kti > 0 and
kri > 0 are the level of imperfections at the transmitter and
receiver hardware, respectively. Note that the additive white
noise at node i, i ∈ {R,D} is defined as ni ∼ CN

(
0, σ2

i

)
,

i ∈ {R,D}.

A. Energy harvesting at the untrusted relay
In the TS based energy harvesting, the energy E harvested
during the first time slot with duration T/3 is equal to [20],
[44], [45]

E = λ
T

3
‖√pshsrxs +

√
pdhrdxd‖2, (2)

where λ ∈ [0, 1] is the energy conversion efficiency and xd
and xs are the jamming and information signals with unit
power, respectively. The relay uses this energy to transmit
the signal in the second phase with the power of

pr =
E

T/3
= λ‖√pshsrxs +

√
pdhrdxd‖2. (3)

B. IP at the untrusted relay
The signal received at the untrusted relay in the second slot
of the first phase is given by

yr =
(√
psxs + ξtS

)
hsr +

(√
pdxd + ξtD

)
hrd + ξrR + nR.

(4)

The received signal-to-interference-plus-noise-ratio (SINR)
at the relay is expressed as

ΓR =
ps|hsr|2

ps|hsr|2
(
ktS

2
+ krR

2
)

+ pd|hrd|2
(

1 + ktD
2

+ krR
2
)

+ σ2
R

.

(5)

Destination

SourceSource

First phase

Second phase

Impairment distortion

Relay

FIGURE 1. System model: An untrusted energy harvesting relay conveys
the source signal to the destination in the face of hardware impairments.
The destination exploits jamming to disturb the signal reception at the
untrusted relay.

phase I: relay harvests and receives signals phase II: relay transmits signals

slot I: energy harvesting (EH)
slot II: information processing 

(IP)
slot III: signal transmission

𝑻/𝟑 𝑻/𝟑 𝑻/𝟑

FIGURE 2. Slot allocation for time switching (TS) based energy
harvesting in the proposed system model.

C. Signal Forwarding
In the second phase, the untrusted relay amplifies the re-
ceived signal yr by an amplification factor G and then
forwards it to the destination. Explicitly, the relay transmits
xr = Gyr, where the amplification factor is defined as

G =

√
pr

‖yr‖2
. (6)

The signal received at the destination is a combination of the
information signal, self interference, distortion, and thermal
noise. After self-interference cancelation, the signal received
at the destination is expressed as

yD = G
√
pshsrhrdxs︸ ︷︷ ︸

Informationsignal

+

GξtShsrhrd +GξtDhrdhrd +GξrRhrd + ξtRhrd + ξrD︸ ︷︷ ︸
Distortion

+

GnRhrd + nD︸ ︷︷ ︸
noise

. (7)

It is worth noting that when the relay aims for transmitting
data in the second phase, it completely dissipates the total
energy harvested in the previous phase, hence, by consider-
ing (3) and (6), we have G ≈

√
λ.
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Remark 2: We note that the approximation G ≈
√
λ is

justified, since the term
√
pshsrxs+

√
pdhrdxd in pr is way

larger than the impairment and noise terms in (4) for practical
networks. Otherwise, the end-to-end SNR would be very low.
This assumption is widely used in the related literature [46]–
[50].

We define kt,rR,D
2

= ktR
2

+ krD
2 and after some simplifi-

cations, the SINR at the destination is given by

ΓD =
ps|hsr|2

B
, (8)

where we have

B = ps|hsr|2
(
ktS

2
+ krR

2 + kt,rR,D
2

+ kt,rR,D
2
ktS

2
+ kt,rR,D

2
krR

2
)

+

pd|hrd|2
(
ktD

2
+ krR

2 + kt,rR,D
2

+ kt,rR,D
2
ktD

2
+ kt,rR,D

2
krR

2
)

+

σ2
R

(
1 + kt,rR,D

2
)

+ σ2
D|hrd|

−2
λ−1. (9)

Therefore, the instantaneous secrecy rate at the destination
can be expressed as

Rs = [log2 (1 + ΓD)− log2 (1 + ΓR)]
+
, (10)

where [κ]
+

= max (κ, 0). In this paper, our aim is to
maximize the secrecy rate by considering realistic power
constraints at the source and destination. Hence, we propose
the following optimization problem

max
ps,pd

Rs, (11a)

s.t. : 0 ≤ ps ≤ Pmax
s (11b)

0 ≤ pd ≤ Pmax
d , (11c)

where Pmax
s and Pmax

d are the maximum transmit power
available at the source and destination, respectively.

III. Deep Learning Based Optimal Power Allocation
In this section, we intend to propose a DNN based solution
to solve the optimal power allocation problem. The optimiza-
tion problem defined in (11) can be rewritten as

max
α,β

Rs, (12a)

s.t. : 0 ≤ α ≤ 1 (12b)
0 ≤ β ≤ 1, (12c)

where α = ps
Pmax

s
and β = pd

Pmax
d

. The above form will
later facilitate the design of the neural network to obtain
the optimal solution.

However, the above optimization problem is non-convex
and complex, hence it is a challenge to find the opti-
mal power allocation coefficients (α∗, β∗) analytically. On
the other hand, solving this problem numerically requires
substantial processing power and vast memory. Therefore,
motivated by the capability of DNNs to solve complex
optimization problems, we intend to solve the above problem
using a DNN. The following sections show that utilizing DL
to solve this optimization problem will significantly reduce
the time required for finding the optimal solution compared

to the exhaustive search method, when they have the same
processing capability.

The primary goal of neural networks is to estimate com-
plex functions using simple operations of the neurons. Here,
we will harness this feature of DNNs to obtain a complex
mapping between the channel coefficients (hsr, hrd) and
optimal power allocation coefficients (α∗, β∗). The result
will eventually be able to maximize the ergodic secrecy rate
(ESR). This action can be summarized as follows

(α∗, β∗) = Ψ∗(hsr, hrd), (13)

where Ψ∗ represents the complex mapping from (hsr, hrd) to
(α∗, β∗). It should be noted that because the channel exhibits
fast fading, the coefficients hsr and hrd of the consecutive
coherence time intervals will have different values. As such,
for each pair of (hsr, hrd), the optimal values of α∗ and β∗

will be different. Accordingly, performing exhaustive search
for each distinct pair of (hsr, hrd) will impose a heavy
computational burden on the network, which highlights the
need for harnessing a less complex method, such as a
DNN. As DNNs can estimate any measurable function up
to a desired value [51], we intend to estimate Ψ∗ with the
required accuracy using our proposed DNN.

A. Proposed Deep Neural Network
As shown in Fig. 3, the proposed DNN consists of the input,
hidden, and output layers. According to (5), (8) and (10),
Rs is a function of |hsr|2 and |hrd|2. Accordingly, instead
of using complex values of hsr and hrd, we use |hsr|2 and
|hrd|2 as the input of our DNN. This will further simplify
its implementation. We also consider the output of the two
neurons in the last layer of the DNN as an (α̂, β̂) pair.
Furthermore, we set the number of hidden layers in our DNN
to l.

In a DNN, each layer’s output is the next layer’s input.
Therefore, the output of each layer can be written as a
function of the input in the same layer formulated as

Xi = Φ(WiXi−1 + bi), (14)

where Φ(.) is the activation function for the ith layer, and
Wi and bi are the weight and bias matrices of the ith layer,
respectively. In this work, we use the rectified linear unit
(ReLU) activation function for the hidden layers and the
Sigmoid activation function for the output layer, which are
defined as

ReLU (z) = max (0, z) , (15)

Sigmoid (z) =
1

1 + e−z
. (16)

Using the ReLU function in hidden layers is capable of
counteracting the gradient vanishing problem. Moreover,
using the Sigmoid function in the output layer can implicitly
include constraints (12b) and (12c) in the DNN’s optimiza-
tion problem, since the Sigmoid function always has an
output value between 0 and 1.
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FIGURE 3. Structure of our proposed deep neural network

B. Training Our DNN Model
This subsection will discuss how to train the proposed
DNN to generate optimal power allocation coefficients for
maximizing the ESR. To this end, we should first create a
dataset to train the DNN for our optimization problem. In
the second step, we must define a suitable criterion for the
network to enforce its output to get closer to the optimal
values of the optimization problem.

1) Training Set Generation
To train the DNN, we generate a dataset having M members.
Each member of this dataset is an optimal power alloca-
tion coefficient as an (α∗, β∗) pair, each obtained for the
corresponding

(
|hsr|2 , |hrd|2

)
pair, so that we have τm ={(

|hsr|2 , |hrd|2
)
→ (α∗, β∗)

}
, where m = {1, . . . ,M}.

Accordingly, we randomly generate the
(
|hsr|2 , |hrd|2

)
pairs and obtain the corresponding (α∗, β∗) pair using the
exhaustive search method.

2) Loss Function
To define the Loss Function, we first define W =
[w1, w2, · · · , wl]. Accordingly, the mapping between the
DNN input and output can be defined as

(α̂, β̂) = Ψ(|hsr|2 , |hrd|2 ,W ). (17)

We remark that the function Ψ∗ is a mapping that accepts the
channel coefficients at its input and results in the exact value
of the optimal power allocation coefficients. At the same
time, Ψ is the mapping between the DNN input and output.
Our goal is for Ψ and Ψ∗ to be as similar as possible. To
achieve this, we use the mean square error (MSE) criterion

T (w) =
∣∣∣Ψ(|hsr|2 , |hrd|2 ,W)−Ψ∗(hsr, hrd)

∣∣∣2 . (18)

In other words,

T (w) = (α− α̂)2 + (β − β̂)2. (19)

In Section VI, using the above loss function, we will train
our proposed DNN by applying the error back propagation
(EBP) algorithm [52].

IV. Asymptotic High-SNR Analysis
In this section, to provide a better practical insight into the
parameters of the scenario studied, we examine the equations
obtained in Section II for the asymptotic SNR. To simplify
the analysis, we rewrite Eq. (10) as

Rs =

[
log2

1 + ΓD
1 + ΓR

]+

, (20)

where the expanded expression for 1+ΓD

1+ΓR
is presented at the

top of the next page with

k1 = kt
2

s + kr
2

R + k
(t,r)2

R,D + k
(t,r)2

R,D kt
2

s + k
(t,r)2

R,D kr
2

R , (21)

k2 = kt
2

D + kr
2

R + k
(t,r)2

R,D + k
(t,r)2

R,D kt
2

D + k
(t,r)2

R,D kr
2

R , (22)

k3 = σ2
(

1 + k
(t,r)2

R,D

)
, (23)

k4 = σ2λ−1, (24)

τ1 = kt
2

s + kr
2

R , (25)

τ2 = 1 + kt
2

D + kr
2

R , (26)

τ3 = σ2. (27)

Additionally, we have assumed equal noise power at all
nodes (σ2) and set γsr = ps|hsr|2

σ2 and γrd = pd|hrd|2
σ2 .

Corollary 1:
If γsr →∞ and γrd has a finite value, then Rs = 0.

Proof: According to (20) we can write

lim
γsr→∞

[
log2

1 + ΓD
1 + ΓR

]+
(28)
=

[
log2

(1 + k1)τ1
k1(1 + τ1)

]+

. (29)
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1 + ΓD
1 + ΓR

=

[
(1 + k1)σ2|hrd|2γsr + k2σ

2|hrd|2γrd + k3|hrd|2 + k4

] [
τ1σ

2γsr + τ2σ
2γrd + τ3

]
[k1σ2|hrd|2γsr + k2σ2|hrd|2γrd + k3|hrd|2 + k4] [(1 + τ1)σ2γsr + τ2σ2γrd + τ3]

(28)

Moreover according to (21) and (25), τ1 ≤ k1 leading to
τ1 + τ1k1 ≤ k1 + τ1k1 so

(1 + k1)τ1
k1(1 + τ1)

≤ 1→ log
(1 + k1)τ1
k1(1 + τ1)

< 0. (30)

Therefore, we have Rs = 0.
Corollary 1 states that by increasing the quality of signal

reception at the untrusted relay, at some point the rate at
the relay exceeds the corresponding rate at the destination.
This leads to zero secrecy rate. Moreover, we know that
when the transmitter power is zero, Rs = 0. Accordingly
the optimal value for the transmitted power lays between 0
and ∞. This observation has motivated us to formulate the
power allocation problem.

Corollary 2:
If γrd →∞ and γsr has a finite value, then Rs = 0.

Proof: According to (20) we can write

lim
γrd→∞

[
log2

1 + ΓD
1 + ΓR

]+
(28)
= [log2 1]

+
= 0. (31)

Corollary 2 states a completely different result with re-
spect to the ideal hardware case. This is because by increas-
ing γrd (for example, increasing the level of jamming power
sent by the destination), due to the presence of HWIs in
the jamming signal transmitted, this node cannot effectively
remove the distortion caused by itself, when receiving it
again after being forwarded by the relay. This observation
is quite different from the ideal hardware mode in which
the destination can eliminate the distortion caused by itself.
Accordingly, in the ideal hardware case, it will be optimal
to use the maximum power of the destination to degrade the
quality of the relay’s reception. The observation in Corollary
2 was another incentive for us to formulate the optimal power
allocation problem.

Corollary 3:
If γrd →∞, γsr →∞ and γsr

γrd
= ν, then

Rs =

[
log2

[
ν (1 + k1) + k2

νk1 + k2
�

ντ1 + τ2
ν (1 + τ1) + τ2

]]+

. (32)

Moreover, to have a non-zero secrecy rate, we shall have

ν <
1− k(t,r)2

R,D (1 + kt
2

D + kr
2

R )

k
(t,r)2

R,D (1 + kt
2

S + kr
2

R )
. (33)

Proof : According to (20), we can write

lim
γsr,γrd→∞

[
log2

1 + ΓD
1 + ΓR

]+

(28)
=

[
log2

[
ν (1 + k1) + k2

νk1 + k2
�

ντ1 + τ2
ν (1 + τ1) + τ2

]]+

. (34)

Additionally, to have non-zero Rs, 1+ΓD

1+ΓR
has to be strictly

positive. Using (32) and (21)–(27) we get the condition in
(33).

Corollary 3 highlights three important points of our sce-
nario. Firstly, according to (32), upon increasing the powers
at the nodes, the ESR value for this scenario becomes satu-
rated for a given ν. This is due to the HWIs in our scenario
and is a fundamental difference with respect to (w.r.t.) the
ideal hardware case in which the ESR increases unboundedly
upon increasing the power. Secondly, it provides an upper
bound on the ratio of γsr

γrd
, which can be helpful when

adjusting the power of the nodes. If the power of S exceeds
a specific level, the rate of the relay will be increased.
However, due to the presence of HWIs, D will not be able to
completely contaminate the received signal of the relay. This
will eventually lead to zero secrecy rate. Finally, according
to (33), for k(t,r)2

R,D (1+kt
2

D +kr
2

R ) ≥ 1 the system will have a
zero ESR. This provides us with an upper bound on the worst
case HWI values and states that for impairment levels above
this upper bound, the ESR will always be zero, regardless
of the transmit powers at S and D.

V. Optimum Hardware Impairment Sharing
The principal motivation behind optimal HWI sharing is to
provide a guideline for an overall system design under a
total cost constraint [25]. Specifically, the level of HWIs
directly depends on the quality of hardware utilized in the
RF section of the nodes. These impairments may become
excessive in low-cost IoT networks. In such networks, the
financial budget and total revenue will eventually determine
the quality of RF hardware utilized in each node and the total
tolerable HWI levels [25], [30], [31], [53]. In this section
we formulate and solve an optimization problem, which
determines the optimum sharing of the HWI levels among
the nodes. More explicitly, the total tolerable HWIs could
be shared in an equitable manner across the three nodes or
in an extreme case we could opt for an expensive but high-
quality source and low-quality, high-impairment relay and
destination.

Accordingly, the optimization problem is formulated using
the results of our high-SNR regime in Corollary 3 as

max
k

max
ν

log2

[
ν (1 + k1) + k2

νk1 + k2
�

ντ1 + τ2
ν (1 + τ1) + τ2

]
(35a)

s.t : k1 = kt
2

s + kr
2

R + (ktR
2

+ krD
2)(1 + kt

2

s + kr
2

R ), (35b)

k2 = kt
2

D + kr
2

R + (ktR
2

+ krD
2)(1 + kt

2

D + kr
2

R ), (35c)

τ1 = kt
2

s + kr
2

R , (35d)

τ2 = 1 + kt
2

D + kr
2

R , (35e)
ktotS,D = ktS + ktD + krD, (35f)
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ktotR = ktR + krR, (35g)

where k = {ktS , ktR, krR, ktD, krD}, ktotS,D is the joint error
vector magnitude (EVM) constraint at S and D, which ktotR
is the maximum tolerable HWIs in R. In our optimization
problem we have considered the impairment sharing for the
value of ν, which leads to maximizing the instantaneous
secrecy rate. This is because when utilizing the system model
considered, one intends to adjust the transmit powers of
S and D in a way, which leads to the maximum secrecy
rate and it is in line with the optimization problem in
(12). The solution for the optimization problem in (35)
is not straightforward, since neither the objective function
nor the rational expression inside log(.) are concave w.r.t.
the optimization variables. Furthermore, we have non-affine
equality constraints in (35b) through (35e). In the following,
we intend to solve the above problem using MM by utilizing
geometric programming (GP) in each step.

To solve the optimization problem in (35), we consider
the joint maximization of the secrecy rate versus the opti-
mization variables ν and k. We can also substitute for k1,
k2, τ1 and τ2 in (35a) to eliminate the non-affine equalities.
This yields log2

[
N
D

]
in the objective function where N and

D are defined in (36) and (37) at the top of the next page.
Accordingly, we can rewrite (35) as

max
k,ν

I∑
i=1

ti (38a)

s.t : tiD ≤ pi, i = 1, ..., I, (38b)
ktotS,D = ktS + ktD + krD, (38c)

ktotR = ktR + krR, (38d)

where pi represents each of the monomial terms in (36),
ti represents the slack variables and I is the number of
monomials in it (I = 56). We have also taken into account
the maximization of the rational expression inside the log
function, since log(x) is a monotonically increasing function
w.r.t. x. The optimization problem in (38) is in the form
of Signomial Programming (SP) and it is still non-convex.
However, by applying the following Corollary we can solve
it iteratively by converting the SP into a GP in each iteration.

Remark 3: Before proceeding, we need to define the
concepts of posynomials and monomials. A monomial is a
function f : Rn

++ → R:

f(x) = dxa
(1)

1 xa
(2)

2 ...xa
(n)

n , (39)

where the multiplicative constant d ≥ 0 and the exponential
constants a(j) ∈ R, j = 1, 2, ..., n. A sum of monomials
is called a posynomial [54]. Note that a GP program is
the minimization of a posynomial subject to posynomial
upper bound inequality constraints and monomial equality
constraints. Moreover, since the domain of monomials is
the strictly positive real numbers, when a GP is written in
terms of monomials, it is implicitly assumed that the optimal
variables are greater than zero [54]. A GP is easily converted

to a convex program with the change of variables and can
be directly defined in MATLAB CVX.

Corollary 4:
Let {ui(x)} represent the monomial terms in a posynomial
f(x) =

∑
i

ui(x). A monomial approximation of the posyn-

omial f(x) can be formulated as:∏
i

(
ui(x)

αi

)αi

, (40)

in which α can be chosen as

αi(x) = ui(x)/f(x), ∀i. (41)

Proof: Please see [54].
The objective function in (38a) and the equality constraints

in (38c) and (38d) are in posynomial forms. Using Corollary
4, at each iteration of the proposed algorithm, we approxi-
mate these posynomial forms with monomials to have a GP
program. The resulting monomial is a global lower bound
of the corresponding posynomial term and is equal to it at
the approximation point [55]. This means that the resulting
iterative algorithm is MM, and the optimization problem at
each step is GP [55]. Accordingly, we start with an arbitrary
feasible point in our MM algorithm and apply Corollary 4 to
Problem (38) to obtain a standard form GP in each iteration.
Algorithm 1 details our proposed MM algorithm, where Θ is
the maximum number of iterations. We have also exploited
the upper bound expression in (33) to initialize ν in this
algorithm. Our numerical results validate that the proposed
algorithm converges rapidly to the optimum point and the
approximations are tight.

VI. Numerical Results and Discussions
In this section, we demonstrate the efficiency of our proposed
DNN-based power allocation scheme by facilitating Keras
Tensorflow [56]. Specifically, we first justify our motivation
behind proposing the power allocation problem. Then we
will examine the impact of the transmission parameters,
namely the power, HWIs and energy efficiency on the ESR.
Additionally, by contrasting the outcome of our DNN to
the optimum values obtained through exhaustive search, we
will evaluate the performance of our DNN. Furthermore, we
will run our MM based algorithm to demonstrate the effect
of optimum HWI allocation on the ESR. Finally, we will
compare the computational cost of our DNN to that of the
exhaustive search.

In our simulations we assume having equal noise power
in the receiver nodes, σ2

R = σ2
D = 0.025. Additionally,

unless otherwise stated, we set λ = 1 and consider the
levels of HWIs found in the related literature [24], [34],
ktS

2
= ktD

2
= krD

2 = ktR
2

= krR
2 = k = 0.05. Fig.

4 shows the impact of HWIs on the ESR of the scenario
studied with different available power constraints in the S
and D nodes. We can observe that when perfect hardware is
considered, regardless of the available power in active nodes,
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N = kr
2

D k
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D + 2kr
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D k
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R ν + 2kr
2
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2
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Algorithm 1 Proposed MM Based Iterative Optimization
Input: ktotS,D, ktotR ,Θ
Output: ktS , ktR, krR, ktD, krD

1: Initialization:

• θ = 0
• ktS = ktD = krD =

ktotS,D

3

• ktR = krR =
ktotR

2

• ν =
1−k(t,r)

2

R,D (1+kt
2

D +kr
2

R )

2k
(t,r)2

R,D (1+kt
2

S +kr
2

R )

2: repeat (MM Algorithm for k and ν)
3: Use (41) to convert the posynomials in the objective

function and equality conditions into monomials:

(I) ri = ti∑I
i=1 ti

, i = 1, ..., I

(II) s1 =
ktS

ktS+ktD+krD
, s2 =

ktD
ktS+ktD+krD

, s3 =
krD

ktS+ktD+krD

(III) q1 =
ktR

ktR+krR
, q2 =

krR
ktR+krR

4: Solve the polynomial time GP:

max
k,ν

I∏
i=1

(
ti
ri

)ri
s.t : tiD ≤ pi, i = 1, ..., I,

ktotS,D =

(
ktS
s1

)s1 (ktD
s2

)s2 (krD
s3

)s3
,

ktotR =

(
ktR
q1

)q1 (krR
q2

)q2
,

5: Update θ = θ + 1.
6: until the optimization variables k and ν reache conver-

gence or θ = Θ.

TABLE 2. Parameter Settings

Parameter description Value

hardware imperfection level k = 0.05

energy conversion efficiency λ = 1

search step size ζa = ζb = 10−2

training dataset size M = 10000

batch size 128

initial learning rate 10−2

decay rate 0.9

Number of training epochs 1000

Optimizer Adam

the maximum ESR is obtained upon using the maximum
available power in both nodes. However, this is not the case
for the scenario of HWIs. We can see that the optimum power
allocation factors have to be assigned to the active nodes to
reach the maximum ESR and the power allocation factors
vary, when the transmit power available at the nodes changes.
This observation is the baseline for raising the problem of
optimum power allocation. We further note that for all of the
cases shown, there is only a single unique optimum point for
the maximization of the ESR.

In Fig. 5, we intend to get a better notion of how
our optimization problem reacts in the face of different
power budgets at S and D. From an energy harvesting
perspective, we expect that the relay will mainly acquire
its transmit power by harvesting from the transmit power
of D. This is because D sends a jamming signal, while S
transmits the main message and accordingly, its power boost
will directly boost the eavesdropping opportunities of the
untrusted relay. This is in line with the trend observed in
Fig. 5. Explicitly, we can see in all cases that the maximum
ESR is achieved through utilizing the maximum available
power at D, (β = 1, α < 1), with an exception in the case
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FIGURE 4. Secrecy rate versus power allocation factors α and β for perfect and non-perfect hardware with different available powers in nodes.

of ps << pd. In the latter case to avoid weak reception of
the signal at D and for acquiring sufficient transmit power
for R, S utilizes its maximum power (α = 1). However,
due to the presence of HWIs at D, the utilization of the
maximum power in this node may deteriorate the quality
of signal reception and accordingly, it is not an optimum
choice. Furthermore, Fig. 5 confirms our results presented
in Corollary 3. This is shown by the ESR versus α curve,
in which the transmit powers are set as Pmax

s = 80.9 and
Pmax
d = 10. These two values are selected in a way that their

ratio meets the condition stated in (33). As expected, when
the condition in (33) is met in α = 1, the ESR becomes
equal to zero.

Fig. 6, demonstrates how the impairment in each of the
nodes can affect the ESR. To have a fair comparison, we
have assumed equal total impairment levels in each of the
nodes and equivalently in each of the curves. Firstly, we can
see that the presence of HWIs in every node can severely
degrade the ESR. Accordingly, it is vital to take into account
the HWIs of nodes in realistic implementations. Additionally,
we can observe that the presence of impairments at R and
D imposes more severe degradation on the ESR than at S.
This is because the HWIs of R and D are boosted by the
transmit power of both S and D nodes. However, this is not
the case when we only have HWIs in the S node, where this
impairment is introduced to the system only by the transmit
power of the source.

Moreover, we can observe that the HWIs at R lead to
more grave degradation than those at the D. Nevertheless,

FIGURE 5. Rate versus allocation factors α and β for different available
power budgets in nodes
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FIGURE 6. Rate versus allocation factors α and β for different distribution
of impairments in nodes, Pmax

s = Pmax
d = 10.

this observation may seem ironic at first sight, since one
may expect that in the case of impairments at the untrusted
relay, the detection capability of R degrades, while D
benefits from perfect hardware in support of its detection
and accordingly we can get a better ESR. However, in this
case, the message transmitted from S experiences HWIs in
both the reception and transmission phases ofR. By contrast,
when the impairment is only present at D, this only plays
a detrimental role once in the reception at D. Care must be
taken concerning the transmit power of S in the latter case,
because in the case of Pmax

s >> Pmax
d , R can efficiently

decode the message and the ESR will drop compared to the
former case.

In Fig. 7, we can see the impact of the energy conversion
efficiency of our energy harvesting relay imposed on the
ESR. The maximum ESR is always obtained when λ = 1,
regardless of the allocation factors. However, for different
energy conversion efficiencies, we get different optimum
power allocation factors. The trend of change in optimum
response with respect to energy conversion efficiency is
a function of the power available at D. In Fig. 7, there
are two sets of curves, one for Pmax

d = 1 and the other
for Pmax

d = 10. When there is sufficient power at D
(Pmax
d = 10), the relay can mainly rely on the transmit

power of D to provide its power. Accordingly, by enhancing
the energy efficiency coefficient, the transmit power of S
can be reduced, which leads to reduced information leakage
to the untrusted relay. However, this trend does not apply
to the scenario, in which the power available at D is scarce

FIGURE 7. Rate versus allocation factors α and β for different values of
energy conversion efficiency

(Pmax
d = 1). This is because despite the enhancement of the

energy efficiency coefficient, the relay is unable to harvest
sufficient transmit power from D and accordingly, it requires
more power to be transmitted from S.

Now that we have gained better insights into the impact
of the various parameters on the ESR, we intend to solve
the optimization problem in (12a) by harnessing a DNN. In
the training phase of our DNN, we set Pmax

s = Pmax
d = 1,

kt
2

S = kr
2

R = kt
2

R = kt
2

D = kr
2

D = k = 0.05 and λ = 1.
The optimum hyper parameters were determined experimen-
tally for our DNN and accordingly we considered a fully-
connected neural network having 2 neurons in the input layer
and l = 6 hidden layers associated with (16, 16, 16, 8, 8, 8)
neurons, in addition to output layer consisting of 2 neurons,
as shown in Fig. 3. The activation functions for each of
these neurons and the corresponding loss function are set in
accordance with Section III. We train our DNN with batch
sizes of 128 and 1000 training epochs. Moreover, the Adam
optimizer having decaying steps is utilized with an initial
learning rate of 10−2 and decay rate of 0.9. Furthermore, we
harness Keras in Python for training and testing our DNN.

We generate a training dataset having M = 10000 mem-
bers. Each optimal power allocation pair (α∗, β∗) is gen-
erated through applying exhaustive search based on (12a).
Moreover, for each SNR, HWI level and energy conversion
efficiency, we generate another dataset independent of the
training dataset having M = 10000 members to contrast
their optimal power allocation obtained by exhaustive search
with the output of the trained DNN. Accordingly, in the
following figures we average the maximum ESR over 10000
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FIGURE 8. ESR versus γSR and γRD for k = 0.05 and λ = 1.

samples formulated by Rave = Ehsr,hrd
[R(α∗, β∗)], for each

SNR, HWI level and energy conversion efficiency value.
Fig. 8 characterizes the performance of our trained DNN

and compares it to the exhaustive search results for different
values of SNRs in the S-R and R-D links. The plots prove
the robustness of the trained DNN and it can be seen that
for some SNRs the performance is slightly better than that
of the exhaustive search. This is because the performance
of the exhaustive search is limited by its search step size,
while the sigmoid activation function at the output allows
the DNN to produce any arbitrary number between 0 and
1. Additionally, we can observe that the ESR versus γsr
curves saturate at lower SNRs compared to the ESR versus
γrd curves. This is in line with our previous deductions, since
increasing the power of S will lead to better reception quality
at the untrusted relay, which may lead to the degradation of
the ESR.

We note that when deployed in practice, we need to
fine-tune the trained DNN with the channel samples of the
wireless medium [57]. This is because, due to the impair-
ments or channel variations, the channel samples generated
in simulation may vary from the samples in practice and lead
to non-optimal power values [57]. Another method to acquire
the channel samples is to deploy generative adversarial
networks (GANs). In this method, no assumption is made
about the wireless channel model. Specifically, a GAN is
trained to mimic the wireless environment based on the
measured channel samples [58], [59]. Deploying GANs to
acquire the training dataset of the DNN will be considered
in our future study.

In Fig. 9, we observe the impact of HWIs on the maximum
ESR, which may significantly degrade the ESR. Additionally,
the performance of our trained DNN is shown for different
values of HWI levels. The ESR attained by the DNN is very
close to that of the exhaustive search. This shows that despite

FIGURE 9. Maximum ESR versus HWI level (k) obtained with DNN and
applying exhaustive search

being trained on optimum values obtained by k = 0.05, our
DNN can generate near-optimal results for the entire range
of HWIs.

In Fig. 10, one can observe how the energy conversion ef-
ficiency affects the maximum ESR. As expected, enhancing
the energy conversion efficiency will boost the ESR. Again,
we can observe that despite being trained on λ = 1, our
trained DNN generates allocation factors very close to those
generated by the exhaustive search for the entire range of
energy conversion efficiencies.

Fig. 11 demonstrates how the optimal impairment dis-
tribution between the nodes can enhance the secrecy rate.
Again, we have considered the equal HWI sharing among
the nodes as kt

2

S = kr
2

R = kt
2

R = kt
2

D = kr
2

D = k = 0.05
to contrast it with the results obtained by our proposed
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FIGURE 10. Maximum ESR versus energy conversion efficiency obtained
with DNN and applying exhaustive search

FIGURE 11. The impact of optimal HWI allocation obtained by algorithm 1
on the ESR.

MM algorithm. Accordingly, we set ktotS,D = 0.67 and
ktotR = 0.45 and by running Algorithm 1 using MATLAB
CVX, we get the optimal values of HWIs in the nodes as
kt

2

S = 0.09, kr
2

R = 0.06, kt
2

R = 0.04, kt
2

D = 0.06, kr
2

D = 0.01.
It takes four iterations for the algorithm to converge and
accordingly the time required to run the algorithm is short. In
Fig. 11 we can observe that the optimal impairment sharing
among the nodes can significantly mitigate the deleterious
effect of HWIs and enhance the secrecy rate.

The output of Algorithm 1 can give us useful insights in
designing the impairment of the scenario considered. We can
observe that a considerable share of ktotS,D is allocated to the
S. This is in line with our observations in Fig. 6, namely that
the presence of HWIs in S will lead to lower degradation of
the ESR compared to that in D. Additionally, we observe that

kt
2

D > kr
2

D . This is because the higher share of impairment
in the transmitter block of D can lead to higher distortion
power at R, hence degrading the reception capability of R.
Moreover, the algorithm allocates much of the ktotR to the
receiver block compared to the transmitter block of R. This
setting can again degrade the reception quality of R.

Finally, we contrast the computational requirements of
the exhaustive search to that of the learning-based method.
Accordingly, we define Nα = 1/ζα and Nβ = 1/ζβ , where
ζα and ζβ denote the search step size for α and β in
our exhaustive search algorithm. To elaborate further, we
quantize α and β with Nα and Nβ equally spaced values.
Then, by substituting all possible combinations, we can find
the maximizing α and β. We note that the computational
complexity of DNN-based power allocation is on the order of
O(1), which is significantly lower than that of the exhaustive
search O(NαNβ). This is because when a DNN is utilized,
we need just finite steps of arithmetic calculations to get the
optimum power allocation factors, while in the exhaustive
search we have to go through every point in the search
space. We validate these results by contrasting the time
taken to obtain the optimum solution by the two methods
upon running them on PYTHON using a dual core 2.2
GHz Intel Xeon (R) microprocessor having search step sizes
of ζα = ζβ = 10−2. The running time of the learning-
based method is as low as 73 microseconds, while for the
exhaustive search this is 4.6 milliseconds. This shows about
two orders of magnitude difference between the running
time of the learning-based method and the exhaustive search.
However, recall from Fig. 8, that the DNN performs better
at some SNRs than the exhaustive search for the search
step sizes assumed. This means that to get an identical
performance to the DNN, we even have to make ζα and
ζβ smaller for the full search, leading to much more time
for obtaining the solution. These observations show that the
exhaustive search method may become infeasible in practical
cases and that the learning-based method is more suitable in
real-time applications.

VII. Conclusions
In this paper, we studied a wirelessly powered coopera-
tive communication scheme, while considering the presence
of HWIs for all nodes. We provided analytical results
for the system model in the high-SNR regime to obtain
better insights on how the power available at the source
and destination can affect the secrecy rate. Furthermore,
an optimization problem associated with individual power
constraints was formulated for maximizing the secrecy rate.
Accordingly, a DNN was designed and trained to get the
optimum power allocation factors at the source and des-
tination. We showed that the proposed DNN succeeds in
matching the secrecy rate performance of the exhaustive
search, while its complexity is considerably lower. This
makes the DNN designed an attractive choice for real-
time applications. Finally, we formulated an optimization
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problem for optimally sharing the HWIs among the nodes
and proposed an MM-based algorithm to solve it. It was
shown that the optimal distribution of HWIs can substantially
enhance the secrecy rate of our system model across the
entire range of SNRs. For our future work, we will consider
the deleterious effect of channel estimation error (CEE)
in the self-interference cancellation phase for a two-way
relaying system. Moreover, considering a multi-node and
interference-limited scenario with exponential complexity
in the corresponding optimization problem, we will deploy
unsupervised deep learning or deep reinforcement learning
(DRL) to obtain the optimum power values. Devising deep
denoising autoencoders to compensate for the deleterious
effects of HWIs and CEEs is another intriguing future
research direction. Finally, we note that we have assumed a
linear relationship between the hardware cost and quality in
our HWI sharing problem. However, the connection between
the hardware cost and quality can be nonlinear in practice.
A deeper examination of the relationship between the cost
and hardware quality for optimum HWI sharing is another
interesting research direction.
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