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Background: Life-saving emergency major resection of colorectal cancer (CRC) is a high-risk procedure. Accurate prediction of
postoperative mortality for patients undergoing this procedure is essential for both healthcare performance monitoring and
preoperative risk assessment. Risk-adjustment models for CRC patients often include patient and tumour characteristics, widely
available in cancer registries and audits. The authors investigated to what extent inclusion of additional physiological and surgical
measures, available through linkage or additional data collection, improves accuracy of risk models.
Methods: Linked, routinely-collected data on patients undergoing emergency CRC surgery in England between December 2016
and November 2019 were used to develop a risk model for 90-day mortality. Backwards selection identified a ‘selected model’ of
physiological and surgical measures in addition to patient and tumour characteristics. Model performance was assessed compared
to a ‘basic model’ including only patient and tumour characteristics. Missing data was multiply imputed.
Results: Eight hundred forty-six of 10 578 (8.0%) patients died within 90 days of surgery. The selected model included seven
preoperative physiological and surgical measures (pulse rate, systolic blood pressure, breathlessness, sodium, urea, albumin, and
predicted peritoneal soiling), in addition to the 10 patient and tumour characteristics in the basicmodel (calendar year of surgery, age,
sex, ASA grade, TNM T stage, TNM N stage, TNM M stage, cancer site, number of comorbidities, and emergency admission). The
selected model had considerably better discrimination compared to the basic model (C-statistic: 0.824 versus 0.783, respectively).
Conclusion: Linkage of disease-specific and treatment-specific datasets allowed the inclusion of physiological and surgical
measures in a risk model alongside patient and tumour characteristics, which improves the accuracy of the prediction of the mortality
risk for CRC patients having emergency surgery. This improvement will allow more accurate performance monitoring of healthcare
providers and enhance clinical care planning.
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Introduction

Major resection is a common treatment for patients diagnosed
with colorectal cancer (CRC), and is associated with a high-risk of
death when undertaken in the emergency setting[1]. Comparisons
of postoperative mortality among hospitals, teams or surgeons, or
over time, are important for quality assessment and quality

improvement of CRC services and risk-adjustment is needed to
ensure fair comparisons. Risk models are also important for
preoperative risk assessment, which can aid clinical care planning
and inform the counselling of patients for emergency CRC sur-
gery. Clinical guidelines recommend that all high-risk surgical
patients should receive certain standards of care, such as direct
transfer to critical care and presence of a consultant surgeon and
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anaesthetist in theatre[2]. Accurate risk prediction is therefore vital
to ensure the highest risk patients receive appropriate care.

There are four major arguments to develop a new extended
risk model for emergency CRC surgery. The first argument is that
recent reviews have identified a substantial number of models for
CRC surgery[3], and for emergency bowel surgery[4,5], but only a
few models for the intersection between these two groups. Using
either a CRC risk model or an emergency bowel surgery risk
model may lead to inaccurate predictions of risk for patients
undergoing emergency CRC surgery.

Second, the available models that focus on emergency CRC
surgery were specifically developed using data from a single
provider[6,7], or from a limited geographical area[8]. A risk pre-
diction model developed in a national population of patients
undergoing emergency CRC surgery will have increased precision
in the model estimates and will be more widely applicable.

Third, risk models for CRC surgery tend to include patient and
tumour characteristics, which are widely available in cancer
registries and audits of care for patients with CRC. For this new
risk model, we also considered the inclusion of physiological
measures (e.g. measurements of organ function and overall
health, such as serum creatinine level, breathlessness history, etc.)
and surgical measures (e.g. peritoneal soiling, intraoperative
blood loss, etc.), which are less readily available. Their inclusion
may improve accuracy of risk prediction in the emergency setting.

Fourth, increasing the number of measures included in a risk
model may also limit the model’s utility in clinical practice given
the potentially greater impact of missing data, mismeasurement,
and misclassification. We therefore used an explicit model
development approach to ensure that the improvement in pre-
diction accuracy by including physiological and surgical mea-
sures is balanced against utility of the model.

The development of such an extended risk model for patients
undergoing major emergency CRC resection is possible due to
availability of detailed patient, tumour, surgical, and physiolo-
gical information from a large cohort of patients recorded in
linked electronic health databases[9]. In the study described in this
paper, we investigated whether accuracy of a basic risk model
including only patient and tumour characteristics was improved
by inclusion of physiological and surgical measures. We aimed to
develop and validate such an extended risk model that can be
used for both risk-adjustment for performance monitoring of
healthcare providers, and risk prediction for clinical care
planning.

Methods

Datasets and linkage

Data from disease, treatment, and administrative hospital data-
bases for patients in England were linked in a national cohort
study. For information on patient characteristics, hospital
admissions, and outcomes, we used an administrative hospital
database, Hospital Episode Statistics Admitted Patient Care
(HES), which contains information on all hospital admissions in
the English National Health Service (NHS)[10,11]. For informa-
tion on patient and tumour characteristics, we used a disease-
specific dataset collected by the National Bowel Cancer Audit
(NBOCA), containing data on patients diagnosed with CRC[1].
For physiological and surgical measures, we used a treatment-
specific dataset collected by the National Emergency Laparotomy

Audit (NELA), containing data on patients having emergency
bowel surgery[12]. Each of these datasets contains information on
mortality provided via national UK mortality statistics[13].

The three datasets were linked using a spine linkage approach,
where the administrative hospital database was designated the
‘spine dataset’ and the other two datasets were linked to it[9].
Linkage used deterministic rules regarding agreement on patient
identifiers (NHS number, sex, date of birth, and residential post
code)[9,14].

Patients were eligible for analysis if they were in the spine
dataset, were recorded as undergoing an emergency major
resection for CRC between 1 December 2016 and 30 November
2019 in at least one dataset (Appendix: Table A.1, Figure A.1,
Supplemental Digital Content 1, http://links.lww.com/JS9/B778),
and had complete data for mortality.

The eligible cohort was split into development and validation
datasets based on date of surgery. The development cohort inclu-
ded patients having surgery between 1 December 2016 and 30
November 2018. The validation cohort included patients having
surgery between 1 December 2018 and 30 November 2019.

Identification and definition of variables

The risk model for 90-day mortality was developed to be used for
both risk-adjustment and for clinical care planning. For both risk-
adjustment and clinical care planning, variables need to capture a
patient’s risk immediately before surgery. For risk-adjustment,
variables included need to be factors outside of the control of the
provider, so that due merit is given to providers with high-quality
care. For clinical care planning, information that is reflected by the
included variables needs to be available before surgery. Variables
to be considered for inclusion were identified from existing risk
models for CRC surgery or emergency bowel surgery[3–5,15–21].

A ‘basic model’ included all patient and tumour characteristics
included in these models that met the inclusion criteria and were
routinely available in electronic health records (i.e. without any
variable selection). Physiological and surgical measures included
in models identified in the literature were candidate variables for
selection if they met the inclusion criteria, and were available
through linkage to external databases. Candidate surgical mea-
sures were preoperative estimates of operative severity (i.e. type
of procedure to be undertaken), expected peritoneal soiling, and
expected intraoperative blood loss, as these variables reflect
clinicians’ assessments of patients’ health just before surgery[16].

For continuous variables, we used fractional polynomials with
functional forms established in an existing model developed and
validated in 38 830 patients (e.g. age was modelled as linear plus
quadratic)[16]. To reduce the influence of outliers, continuous
variables wereWinsorised, by setting observed values beyond the

HIGHLIGHTS

• We developed and validated a risk model for emergency
colorectal cancer surgery.

• Our risk model can be used for risk-adjustment or clinical
care planning.

• Colorectal cancer surgery risk models often use patient and
tumour characteristics from routine data.

• Physiological and surgical measures improved accuracy of
mortality risk predictions.

Blake et al. International Journal of Surgery (2024)

1565

D
ow

nloaded from
 http://journals.lw

w
.com

/international-journal-of-surgery by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4
a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dgG
j2M

w
lZ

LeI=
 on 04/09/2024

http://links.lww.com/JS9/B778


1st and/or the 99th percentile as the value of that percentile
(Appendix Table A.2, Supplemental Digital Content 1, http://
links.lww.com/JS9/B778). Levels of categorical variables were
combined if any categories had <10 patients with complete data
in either the development dataset or validation dataset. We
considered all interactions that had been identified by existing
models: an interaction between age and metastases, an interac-
tion between age and ASA grade, and an interaction between
ASA grade and respiratory history[15,16].

Handling missing data

Multiple imputation with chained equations was used to handle
missing data, under the assumption of missing-at-random con-
ditional on mortality and other observed information[22]. The
imputation procedure was undertaken separately in the devel-
opment and validation datasets, and for the full dataset as a
whole. The number of imputations was set at 20. Year of pro-
cedure, sex, and procedure type were complete for all patients.
Eight patients with missing mortality were excluded from ana-
lysis (Appendix Figure A.1, Supplemental Digital Content 1,
http://links.lww.com/JS9/B778). Binary variables were imputed
using logistic regression, categorical variables were imputed using
multinomial logistic regression, continuous variables were
imputed using predictive mean matching with values drawn at
random from a pool of k= 3 observations with similar predicted
values[23,24].

Parameters and performance measures (on the appropriate
scale) were pooled over imputed datasets using Rubin’s rules[25].
As the χ2 statistic fromHosmer–Lemeshow (H–L) tests cannot be
pooled using Rubin’s rules, we calculated a F-statistic to account
for between-imputation variation[26].

Potential bias from nonlinkage, the main source of missing
data, was assessed by comparing patient characteristics (recorded
in the administrative spine dataset) and 90-daymortality between
linked and unlinked patients[27].

Model development

Using the development dataset, a ‘full model’was fitted including
all patient and tumour characteristics in the basic model and all
candidate physiological and surgical measures. To assess whether
a simpler model could achieve similarly high prediction perfor-
mance, backwards selection was used with criteria defined by
model R2 (measure of variation in outcomes explained). At each
step, R2 values were pooled over the imputed datasets using
Rubin’s rules[25,28]. Candidate physiological and surgical vari-
ables were excluded in turn, with those resulting in the smallest
reduction in model R2 excluded first[29], until the basic model was
reached.

The R2 value from the full model was used to define a threshold
for choosing a model containing only the most important addi-
tional physiological and surgical variables. The ‘selected model’
was the simplest model with an R2 value greater than 95%
relative to the full model R2 value.

Once the selected model was finalised in the development
dataset, this model was refitted using the full dataset (i.e. both
developmental and validation datasets). Estimated model coeffi-
cients were reported in the form of an equation and the corre-
sponding odds ratios (ORs) were also reported.

Model performance and validation

Other performance measures calculated were the C-statistic,
and the scaled Brier score (SBS). The C-statistic quantifies the
discrimination of the model, ranging from 0.5 (non-
informative) to 1 (perfect discrimination)[30–33]. The Brier
score quantifies the average prediction error (accuracy) of the
model predictions, compared to a naïve noninformative model.
We calculated SBS ranging from 0 (noninformative) to 100%
(perfect predictions)[30,34,35]. Verburg et al.[36] gave the fol-
lowing rule-of-thumb for interpreting a SBS for binary out-
comes: <0.04 representing very weak predictions, 0.04–0.15
weak, 0.16–0.35 moderate, 0.36–0.62 strong, and > 0.63 very
strong.

Using the development dataset, we calculated the R2 value,
C-statistic, and SBS for the full model, selected model, basic
model, and all models in between.

Using the validation dataset, we refitted the full model, selected
model, and basic model and assessed calibration of the selected
model compared to the full model and basic model by plotting
observed versus predicted mortality by deciles of risk. We also
calculated the R2 value, C-statistic, and SBS for the three models.

Table 1
Data sources for the patient and tumour characteristics included in
all models, and the physiological and surgical measures
considered for variable selection.a

Source of data items NBOCA NELA HES

Outcome:
90-day mortalityb ✓3 ✓2 ✓1

Patient and tumour characteristics:
Calendar period ✓2 ✓1 ✓3

Sex ✓2 ✓1 ✓3

Age ✓2 ✓1 ✓3

ASA grade ✓2 ✓1

Pretreatment TNM staging ✓
Cancer site ✓
Comorbidities ✓
Emergency admission ✓3 ✓2 ✓1

Physiological and surgical measures:
ECG ✓
Cardiac signs ✓
Systolic BP ✓
Pulse ✓
Breathlessness history ✓
Glasgow coma score ✓
Urea ✓
White blood cell count ✓
Creatinine ✓
Sodium ✓
Potassium ✓
Albumin ✓
Predicted peritoneal soiling ✓
Predicted intraoperative blood loss ✓
Number of operations in admission ✓
Surgical urgency ✓
Preoperative severity ✓

aWhere data was available from more than one source, order of preference for reconciliation rules are
given using numbers in superscript.
bFor each dataset, mortality information was obtained from the Office of National Statistics.
NBOCA.
HES, Hospital Episode Statistics.
NBOCA, National Bowel Cancer Audit.
NELA, National Emergency Laparotomy Audit.
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Using the full dataset, we used funnel plots to visually explore
hospital trust-level variation in 90-day mortality for the basic and
selected models to determine whether variation between hospital
trusts was greater than expected by chance alone[37]. A hospital
trust is an organisational unit in the English NHS that can include
more than one hospital.

For sensitivity analysis, we produced estimates of adjusted ORs
for the selected model using complete case analysis instead of
using multiple imputation. A further sensitivity analysis explored
using postoperative measures of actual operative severity, peri-
toneal soiling, and intraoperative blood loss instead of their pre-
operative estimates. We used Stata 17.0 for all linkage,
imputation, and analysis of data[38] and reviewed the TRIPOD
guidelines for reporting on multivariable prediction models
(Appendix B, Supplemental Digital Content 1, http://links.lww.
com/JS9/B778)[39]. This work has also been reported in line with
the strengthening the reporting of cohort, cross-sectional, and
case–control studies in surgery (STROCSS) criteria[40]

(Supplemental Digital Content 2, http://links.lww.com/JS9/B779).

Results

Overall, 846 of 10 578 (8.0%) patients died within 90 days of
surgery, with 90-day mortality in the development and validation

datasets of 8.2 and 7.6%, respectively, (Appendix Table A.3,
Supplemental Digital Content 1, http://links.lww.com/JS9/B778).
10 441 (98.7%) of the analysis cohort linked to the disease-specific
dataset (NBOCA), the treatment-specific dataset (NELA) or both
(Appendix Figure A.1, Supplemental Digital Content 1, http://
links.lww.com/JS9/B778). 5,803 (54.9%) patients linked to both
the disease-specific and treatment-specific datasets, providing
information on patient and tumour characteristics as well as
physiological and surgical measures.

Table 1 shows the patient and tumour characteristics in the basic
model and the candidate physiological and surgical measures, and
the source of information for each variable. Where information on
a variable was available from multiple datasets, reconciliation of
conflicting information was undertaken (Table 1)[9].

Patient and tumour characteristics, physiological and surgical
measures, and 90-day mortality are summarised in Tables 2 and 3
for the whole analysis cohort. The missing categories in the tables
include patients withmissing data due to nonlinkage and, to a lesser
extent, patients with missing values in the datasets. 55.5% of the
analysis cohort had at least one missing variable. Distributions of
patient characteristics were similar for the development dataset and
the validation dataset (Appendix Table A.3, Supplemental Digital
Content 1, http://links.lww.com/JS9/B778).

The selected model included seven physiological and surgical
measures (pulse rate, systolic blood pressure, breathlessness,

Table 2
Distribution of patient and tumour characteristics, and 90-day mortality percentages. Using full dataset (December 2016 to November
2019).a

n (%) Mortality n (%) Mortality

Total 10 578 Died within 90 days of surgery 846 (8.0)
Patient and tumour characteristics
Age (years) Calendar year
< 50 971 (9.2) 2.9% 2016 302 (2.9) 7.9%
50–59 1494 (14.1) 4.1% 2017 3612 (34.1) 8.4%
60–74 4082 (38.6) 6.9% 2018 3480 (32.9) 7.9%
75–84 3008 (28.4) 10.9% 2019 3184 (30.1) 7.6%
≥ 85 1008 (9.5) 14.4% ASA grade
Missing 15 (0.1) < 0.1% 1 1009 (9.5) 1.7%

Sex 2 4466 (42.2) 3.1%
Female 5082 (48.0) 7.7% 3 3721 (35.2) 9.8%
Male 5496 (52.0) 8.3% 4 or 5 1042 (9.9) 27.8%

TNM T stage Missing 340 (3.2) 10.6%
T1 or T2 (inner layer of bowel 548 (5.2) 3.3% Cancer site
or into muscle layer) Appendix/caecum/ascending

colon
3083 (29.1) 6.8%

T3 (beyond muscle layer) 3140 (29.7) 5.3% Hepatic flexure 505 (4.8) 7.3%
T4 (breached outer lining 4375 (41.4) 7.4% Transverse colon 916 (8.7) 7.1%
or invaded adjacent organs) Splenic flexure/descending

colon
1047 (9.9) 6.3%

Missing 2515 (23.8) 13.4% Sigmoid colon 2214 (20.9) 6.3%
TNM N stage Rectosigmoid/Rectal 912 (8.6) 5.4%
N0 (0 nodes involved) 3314 (31.3) 5.9% Missing 1901 (18.0) 14.8%
N1 (1–3 nodes involved) 2626 (24.8) 5.6% Comorbidities
N2 (4 or more nodes involved) 2107 (19.9) 7.8% 0 5122 (48.4) 4.4%
Missing 2531 (23.9) 13.4% 1 3171 (30.0) 8.4%

TNM M stage 2+ 1836 (17.4) 15.5%
M0 (no metastases) 6519 (61.6) 5.7% Missing 449 (4.2) 15.8%
M1 (metastases) 1293 (12.2) 8.4% Emergency admission
Missing 2766 (26.1) 13.2% No 2843 (26.9) 4.3%

Yes 7728 (73.1) 9.4%
Missing 7 (0.1) 14.3%

aMissing categories for variables include patients who had missing values in all linked data sources as well as patients who did not link to a data source containing that information.
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sodium, urea, albumin, and prediction of peritoneal soiling) in
addition to the ten patient and tumour characteristics in the basic
model (calendar year of surgery, age, sex, ASA grade, TNM T
stage, TNM N stage, TNM M stage, cancer site, number of
comorbidities, emergency admission).

Figure 1 shows model performance measured at each stage of
the variable selection process, using the development cohort only.
More details can be found in Appendix Table A.4 (Supplemental
Digital Content 1, http://links.lww.com/JS9/B778). The full
model (all patient, tumour, surgical, and physiological variables)

had an R2 of 0.235 (blue markers). The percentage decrease in R2

is shown for the remaining model after each variable is removed
until we are left with the basic model (patient and tumour
characteristics only).

Of all physiological and surgical measures, serum albumin was
the most predictive, contributing most to the R2, therefore being
the last variable removed in the variable selection process. The
selected model had an R2 value of 0.225, 95.7% relative to the
full model, whilst the basic model had an R2 value of 0.163,
69.2% relative to the full model (Fig. 1). The selected model had a

Table 3
Distribution of physiological and surgical measures, and 90-day mortality percentages. Using full dataset (December 2016 to November
2019).a

n (%) Mortality n (%) Mortality

Total 10 578 Died within 90 days of surgery 846 (8.0)
Physiological and surgical measures

Electrocardiogram Sodium (mmol l^-1)
No abnormalities 6269 (59.3) 7.2% Low (< 133) 1198 (11.3) 14.6%
AF rate 60–90 343 (3.2) 15.5% Normal (133–146) 6317 (59.7) 7.8%
AF rate > 90 or other 934 (8.8) 17.7% High (> 146) 44 (0.4) 22.7%
abnormal rhythm Missing 3019 (28.5) 5.7%
Missing 3032 (28.7) 5.7% Potassium (mmol l^-1)

Cardiac signs Low (< 3.5) 769 (7.3) 12.4%
No failure 5719 (54.1) 7.3% Normal (3.5–5.3) 6620 (62.6) 8.2%
Diuretic, digoxin, antianginal 1499 (14.2) 12.1% High (> 5.3) 3189 (30.1) 6.5%
Or antihypertensive therapy Albumin (g/l)
Borderline cardiomegaly 329 (3.1) 21.6% Low (< 35) 3136 (29.6) 13.5%
Or cardiomegaly Normal (35–50) 3926 (37.1) 5.3%
Missing 3031 (28.7) 5.8% High (> 50) 66 (0.6) 6.1%

Systolic BP (mmHg) Missing 3450 (32.6) 6.1%
Low (< 90) 159 (1.5) 29.6% Haemoglobin (g/l)
Normal (90–120) 2618 (24.7) 10.4% Low (male <130/female <115) 3417 (32.3) 10.0%
High (> 120) 4761 (45.0) 7.5% Normal (male 130–180/female

115–165)
4061 (38.4) 8.0%

Missing 3040 (28.7) 5.6% High (male > 180/female > 165) 3100 (29.3) 5.7%
Pulse rate (beats per min) Surgical urgency

Low (< 60) 206 (1.9) 5.8% Expedited (> 18 h) 1890 (17.9) 6.9%
Normal (60–100) 6002 (56.7) 7.6% Urgent (6–18 h) 3187 (30.1) 7.2%
High (> 100) 1332 (12.6) 15.5% Urgent (2–6 h) 2127 (20.1) 11.7%
Missing 3038 (28.7) 5.6% Immediate (< 2 h) or emergency 353 (3.3) 19.5%

Breathlessness history (resus of > 2 h possible)
No breathlessness 5760 (54.5) 6.5% Missing 3021 (28.6) 5.7%
Breathlessness on exertion or CXR 1228 (11.6) 13.4% Number of operations within
Breathlessness limiting exertion and at rest 565 (5.3) 24.1% Admission 1 7304 (69.0) 8.8%
Missing 3025 (28.6) 5.7% 2+ 257 (2.4) 13.6%

Glasgow coma score Missing 3017 (28.5) 5.7%
15 7344 (69.4) 8.3% Preoperative severity
14 or less 205 (1.9) 31.2% Major 2732 (25.8) 7.8%
Missing 3029 (28.6) 5.6% Major+ 4829 (45.7) 9.6%

Urea (mmol L^-1) Missing 3017 (28.5) 5.7%
Low (< 2.5) 299 (2.8) 5.0% Predicted peritoneal soiling
Normal (2.5–7.8) 4992 (47.2) 6.1% None 3492 (33.0) 6.7%
High (> 7.8) 5287 (50.0) 9.9% Serous fluid 2161 (20.4) 8.6%

White blood cell count (× 10^9 l^-1) Localised pus 781 (7.4) 7.0%
Low (< 3.6) 162 (1.5) 17.3% Free pus, blood, or bowel contents 1123 (10.6) 17.9%
Normal (3.6–11.0) 4224 (39.9) 8.0% Missing 3021 (28.6) 5.7%
High (> 11.0) 6192 (58.5) 7.7% Predicted intraoperative blood loss

Serum creatinine (mu mol l^-1) < 100 2363 (22.3) 6.9%
Low (male <59/female <45) 665 (6.3) 11.0% 100–500 4831 (45.7) 9.6%
Normal (male 59–104/female 45–84) 5198 (49.1) 6.5% > 500 366 (3.5) 12.8%
High (male > 104/female > 84) 4715 (44.6) 9.2% Missing 3018 (28.5) 5.7%

aMissing categories for variables include patients who had missing values in all linked data sources as well as patients who did not link to a data source containing that information.
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moderate SBS of 17.6%[36], slightly lower than the full model SBS
(18.6%), whereas the basic model had a substantially weaker SBS
(10.9%) (Fig. 1). All fitted models had good discrimination in the
development cohort, with C-statistics, 0.84 for the full model,
0.83 for the selected model, and 0.80 for the basic model (Fig. 1).

The measures of model performance (R2, C-statistic, HL
P-value, SBS) for the full model, the selected model, and the basic
model in the validation cohort (Table 4) were slightly lower than
those in the development cohort. Discrimination was lower for
the basic model in the validation cohort (0.78) whilst the full
model and selected model had similar discrimination as in the
development cohort (0.84 and 0.83, respectively).

Figure 2 displays calibration of the full model, selected model,
and basic model using data from the validation cohort, by plot-
ting observed mortality versus the model predicted risk by deciles
of predicted risk. All three models demonstrate good calibration.

There was no evidence of poor fit as HL test P-values were large
for all three models (Table 4).

Figure 3 explores whether the basic model lacks calibration
because it does not include the seven physiological and surgical
measures included in the selected model. It displays observed and
predicted mortality, using the basic model and the validation
cohort, by categories of the physiological and surgical measures
that were included in the selected model. The basic model had
poorer calibration for patients with abnormal levels of serum
albumin, urea, systolic blood pressure, or history of breathlessness
at rest. On average across imputations, 8.3% of patients in the
validation cohort had abnormal levels in at least one of these.

Table 5 gives adjusted ORs and 95% CIs calculated using the
selected model, for all variables included in the selected model.
Appendix Table A.5 (Supplemental Digital Content 1, http://links.
lww.com/JS9/B778) gives the equation for the selected model using
the whole analysis cohort. As the effect of a continuous risk factor
on mortality is not easily expressed when the relationship is non-
linear, Table 5 presents ORs for selected values of the continuous
factors. The adjusted odds of death within 90 days of major
resection increased with worse breathlessness history, lower systolic
blood pressure, higher pulse rate, higher urea levels, and lower
albumin. The adjusted odds of death with serum albumin levels of
25 g/l was 1.66 (CI: 1.48–1.86) times the adjusted odds at serum
albumin 35 g/L (reference value). The adjusted odds of death with
urea levels of 20 mmol L-1 or 30 mmol L-1 were 1.57 (CI:
1.32–1.88) and 2.18 (1.54–3.10) times the adjusted odds at urea
10 mmol L-1 (reference value), respectively.

Funnel plots of adjusted 90-day mortality by hospital trust,
risk-adjusted using (i) the basic model and (ii) the selected model,
are shown in Figure 4. Using the selected model, five hospital
trusts were above the inner limit (i.e. identified as having outlying
performance). If instead the basic model was used for risk-
adjustment, one of these hospital trusts would not have been
identified as having outlying performance (a ‘false negative’) and
one further hospital trust would been incorrectly identified as
having outlying performance (a ‘false positive’).

Fewer patients would be classified as high-risk and therefore
receive care recommended for high-risk patients using the selec-
ted model compared to the basic model (22.9% of patients had
predicted risk >0.1 and 18.5% had predicted risk between 0.05
to 0.1 using the selected model, versus 25.4 and 21.1%, respec-
tively, for the basic model). The selected model classified 15.2%
of patients into a lower risk category than the basic model, and
7.8% into a higher risk category.

In sensitivity analysis, a similar pattern of associations
between risk factors and mortality was seen in the complete
case analysis, only with greater uncertainty (Appendix Table
A.6, Supplemental Digital Content 1, http://links.lww.com/
JS9/B778). Furthermore, results were not sensitive to using
postoperative surgical measures in variable selection instead of
preoperative estimates of operative severity, peritoneal soiling,
and intraoperative blood loss, and prediction did not improve
substantially (results not shown).

Appendix Table A.7 (Supplemental Digital Content 1, http://
links.lww.com/JS9/B778) compares characteristics of patients
according to which datasets they were linked between. Patient
characteristics were broadly similar, comparing those linked
from the administrative dataset (HES) to only the disease-specific
dataset (NELA), only the treatment-specific dataset (NBOCA),
those linked to both, and those linked to neither. However, the

Figure 1. Pooled C-statistic and relative pooled R2 for the full model, basic
model, and all intermediate models.* Scaled pooled Brier score (SBS) also
given for the full model, selected model, and basic model. Using development
dataset (December 2016 to November 2018).*The full model includes all
patient and tumour characteristics, and physiological and surgical measures.
The basic model includes all patient and tumour characteristics. Each inter-
mediate model is defined by removing one of the physiological and surgical
measures from the previous model, according to which would result in the
smallest difference in pooled R2. For example, model 2 includes all variables
included in the full model except operative severity. The selected model
includes all patient and tumour characteristics, and the physiological and sur-
gical measures highlighted in bold.
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patients that only linked between the spine (HES) dataset and the
treatment-specific (NELA) dataset had much higher mortality
compared to other groups.

Discussion

We have developed and validated an accurate and relatively
simple risk model for patients with CRC undergoing emergency
surgery, that can be used for risk-adjustment or clinical care
planning. We identified seven important physiological and sur-
gical measures which we recommend should be included along
with patient and tumour characteristics to accurately predict
postoperative mortality. These measures are either easy to cap-
ture (pulse rate, blood pressure, and breathlessness history) or
estimate (peritoneal soiling), or are completely objective (urea,
albumin, and sodium). This extended risk model, including these
additional physiological and surgical measures, allows more
accurate prediction than available basic risk models, particularly
for patients with abnormal values of these additional measures.

Comparison to other risk models

All seven of the physiological and surgical measures included in
our selected model have been found to be important predictors in

other models, including the surgical risk score P-POSSUM[41,42].
The discrimination of our selected model compares very
favourably to existing risk models (which have C-statistics ran-
ging from 0.732 to 0.861[7,8,15–21] whilst including a relatively
small set of risk factors that are all routinely available in patients
undergoing emergency CRC surgery.

Of the seven measures we selected, four (serum albumin, urea,
sodium, and breathlessness history) are composite markers of
pre-existing chronic disease, and impact of current acute status.
For example, breathlessness could be attributable to either car-
diac or respiratory disease and cardiorespiratory insufficiency
(poor functional capacity) is a known major risk factor for poor
surgical outcome[43]. Breathlessness may also be a symptom of
metabolic acidosis in an unwell patient with sepsis. Urea is a
biomarker for kidney function, but is also affected by diet,
dehydration, and proximal colonic bleeding[44]. Serum albumin
falls in the acute phase response of sepsis but may also be a
marker of chronic malnutrition.

Strengths, limitations, and opportunities for further work

The model was developed in a large representative national study
using linked electronic health records, and candidate variables
were drawn from the literature. The variables identified by the

Figure 2. Calibration plot showing proportions of patients that died within 90 days (observed mortality) versus mortality predicted using the full model, selected
model, and basic model, by deciles of predicted risk. Using validation dataset (December 2018 to November 2019).

Table 4
Model performance comparing the full model, to the selectedmodel, and to the basic model. Using validation dataset (December 2018 to
November 2019).

N= 3467 Pooled R2 (as % of full model) Pooled C-statistic (95% CI) HL test P-value Scaled Brier score

Full model 0.230 (100.0) 0.843 (0.816–0.869) 0.801 16.6%
Selected model 0.200 (87.1) 0.827 (0.800–0.853) 0.758 13.7%
Basic model 0.149 (65.0) 0.784 (0.755–0.813) 0.657 10.2%

HL, Hosmer–Lemeshow.
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selected model are all recorded as close as possible to the time that
a patient was booked for theatre. During the development of our
selected model, we included the physiological measures as con-
tinuous variables. Other risk models have categorised these
variables, which leads to loss of information that could mask or
exaggerate relationships[45].

We split the data into development and validation datasets by
date of surgery (temporal validation), since this provides a
stronger test of the validity of the predictions than splitting the
data at random[46]. External validation of the selected risk model

using data from other emergency CRC surgery populations
would further increase confidence in predictive ability[47].

Our study period ends in November 2019, meaning that all
patients in the cohort had their emergency CRC surgery before the
start of the COVID-19 pandemic. During the early pandemic
period, there were rapid changes in national guidelines for cancer
services, and it has been shown that postoperative mortality
increased for patients having emergency CRC surgery[48]. For
these reasons, we decided against using data from the early pan-
demic period for model development and validation. The selected

Figure 3. Calibration plot showing proportions of patients that died within 90 days (observed mortality) versus mortality predicted using the basic model, by
categories of variables that are included in the selected model but not the basic model. Using validation dataset (December 2018 to November 2019).
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risk model should be recalibrated using data from after the
recovery of cancer services in England, once it becomes available.

We used logistic regression to model risk of mortality.
Machine learning is an alternative option, but a comparison of
methods is not the focus of the current paper. Rigorous com-
parisons of machine learning and logistic regression have
found similar performance in patients with CRC and in other
patient groups. For example, a study comparing logistic
regression and machine learning models to predict mortality
after hospital admission using the same large national datasets
demonstrated that their performance was comparable[49]. This
is fully in line with a recent systematic review that found no
evidence of superior performance of machine learning over

logistic regression, when both were applied according to
recommended analysis strategies[50]. Therefore, it is very
unlikely that a comparison between statistical and machine
learning methods here would provide additional clinical
insight into the risks for CRC patients undergoing emergency
surgery.

We have not accounted for clustering by hospital trust in our
model. In order to develop a risk model that accounts for clus-
tering, wewould need to implement this intomultiple imputation,
which adds considerably to the complexity of the procedure[51].
Furthermore, since the within-hospital trust intraclass correlation
coefficient was estimated as 3.8% (95% CI: 1.2–10.8) for the
selected model using complete case analysis, accounting for

Table 5
Adjusted odds ratios (ORs), standard errors (SEs), and 95% CIs for the variables in the selected model (equation given in Appendix Table
A.5), using multiple imputation to handle missing data. Using full dataset (December 2016 to November 2019).

OR SE 95% CI OR SE 95% CI

Calendar year Comorbidities
2016 1.00 (Reference) 0 1.00 (Reference)
2017 1.23 0.30 (0.76– 2.00) 1 1.20 0.13 (0.98–1.49)
2018 1.17 0.29 (0.72–1.90) 2+ 1.81 0.20 (1.45–2.26)
2019 1.17 0.29 (0.72–1.92) Breathlessness history

Age (years) × no metastases No breathlessness 1.00 (Reference)
50 0.61 0.09 (0.46–0.81) On exertion 1.18 0.14 (0.94–1.48)
60 0.77 0.04 (0.69–0.86) Limiting exertion and at

rest
1.52 0.20 (1.17–1.96)

70 1.00 (Reference) Systolic blood pressure
80 1.32 0.07 (1.19–1.47) 80 mmHg 1.60 0.27 (1.15–2.23)
90 1.79 0.25 (1.36–2.36) 100 mmHg 1.23 0.08 (1.08–1.39)

Age (years) × metastases 120 mmHg 1.00 (Reference)
50 1.06 0.21 (0.72–1.58) 150 mmHg 0.82 0.06 (0.72–0.95)
60 1.18 0.21 (0.83–1.68) 180 mmHg 0.78 0.16 (0.52–1.17)
70 1.40 0.23 (1.01–1.94) Pulse
80 1.76 0.30 (1.27–2.45) 60 beats per min 0.62 0.09 (0.46–0.84)
90 2.37 0.61 (1.43–3.92) 70 beats per min 0.75 0.06 (0.63–0.88)

Sex 90 beats per min 1.00 (Reference)
Female 1.00 (Reference) 120 beats per min 1.28 0.12 (1.06–1.55)
Male 1.10 0.09 (0.94–1.29) 140 beats per min 1.33 0.30 (0.86–2.08)

ASA grade Urea
1 1.00 (Reference) 2 mmol l^-1 0.58 0.12 (0.39–0.86)
2 1.31 0.35 (0.77–2.20) 5 mmol l^-1 0.72 0.04 (0.65–0.81)
3 2.52 0.67 (1.49–4.25) 10 mmol l^-1 1.00 (Reference)
4 or 5 4.67 1.31 (2.70–8.08) 20 mmol l^-1 1.57 0.14 (1.32–1.88)

Tumour stage 30 mmol l^-1 2.18 0.39 (1.54–3.10)
T1 or T2 1.00 (Reference) Sodium
T3 1.14 0.32 (0.66–1.99) 125 mmol l^-1 1.95 0.33 (1.40–2.73)
T4 1.25 0.36 (0.71–2.20) 130 mmol l^-1 1.42 0.14 (1.17–1.71)

Node stage 140 mmol l^-1 1.00 (Reference)
N0 1.00 (Reference) 150 mmol l^-1 1.73 0.82 (0.69–4.36)
N1 1.02 0.13 (0.79–1.32) Albumin
N2 1.51 0.22 (1.13–2.02) 25 g/l 1.66 0.10 (1.48–1.86)

Cancer site 30 g/l 1.29 0.04 (1.21–1.36)
Appendix/caecum/ascending 1.00 (Reference) 35 g/l 1.00 (Reference)
Hepatic flexure 1.28 0.26 (0.86–1.90) 40 g/l 0.78 0.02 (0.73–0.82)
Transverse colon 1.01 0.16 (0.74–1.38) 50 g/l 0.47 0.04 (0.39–0.56)
Splenic flexure/descending 1.08 0.17 (0.80–1.48) Predicted peritoneal soiling
Sigmoid colon 0.98 0.12 (0.77–1.25) None 1.00 (Reference)
Rectosigmoid/Rectal 0.97 0.19 (0.66–1.42) Serous fluid 1.08 0.12 (0.87–1.34)

Emergency admission Localised pus 0.74 0.13 (0.52–1.03)
No 1.00 (Reference) Free pus, blood or, 1.54 0.20 (1.20–1.98)
Yes 1.80 0.21 (1.43–2.28) bowel contents
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clustering would have little impact on the model intercept or the
weights attached to risk measures.

We used spine linkage to construct the analysis cohort used
here. In a recent paper, comparing spine linkage with using all
pairwise linkages, we have shown that this spine approach is
appropriate in this setting[9].

In this study, a substantial proportion of patients had missing
data, the majority of which was due to nonlinkage. We used the
same multiple imputation procedure for all missing data.
Although we did not treat missingness in datasets differently to
missingness due to nonlinkage, we did compare characteristics of
patients by linkage group to assess potential for bias due to
nonlinkage. Patients linked only between the administrative spine
dataset and the treatment-specific dataset had higher mortality.
Multiple imputation methods result in unbiased estimates of
model weights, provided all important variables associated with
missing values are included in the imputation models[22]. By also
including mortality in these imputation models, we allowed for
differences in missing measurements between survivors and
nonsurvivors, which is much more plausible than assuming that
missing measurements are similar in survivors and nonsurvivors.
It is also important to note that a sensitivity analysis, excluding
patients with missing values regardless of the reason for miss-
ingness, produced a similar pattern of results, which provides
further evidence for the validity of our approach.

Implications

This new accurate and relatively simple risk prediction model for
patients undergoing emergency CRC surgery is recommended for
risk-adjustment and to aid clinical care planning within the
context of shared decision-making with patients and their
families. The model is ready to be translated into a risk calculator
that can be used to predict preoperative risk for an individual
patient. Since HES, the administrative dataset used as the spine

dataset to define our patient cohort, contains information on
hospital admissions for the whole of England[11], there was no
selection of patients other than the eligibility criteria described in
the methods section. This should mean that our risk model is
transportable to other healthcare settings with similar patients
and populations. The model should be recalibrated periodically
because overall mortality is likely to change over time.
Recalibration may also be necessary before being applied in
healthcare settings that differ substantially from England. For
settings with very different background mortality, the weights for
different factors should be reliable but the intercept may need to
be adjusted to ensure good overall calibration.

Inclusion of the seven physiological and surgical measures
identified in our study in the risk prediction model improves the
accuracy of prediction. This will, for example, help to ensure that
the patients at the highest risk can be identified so that they can
benefit from appropriate interventions such as the presence of a
consultant surgeon and anaesthetist in theatre and direct transfer
to critical care in the postoperative phase.

Whereas patient and tumour characteristics are routinely
available in national clinical datasets, this is not usually the case
for physiological and surgical measures. Thus, for accurate risk-
adjustment of CRC patients undergoing emergency surgery, it is
important either to link to existing data, capture existing hospital
data into databases, or to collect the key physiological and sur-
gical measures identified in our model.

We recommend using multiple imputation to handle missing
data when using the risk model for case-mix adjustment for a
cohort of patients. When using the risk model for preoperative
care planning for an individual patient, it may be appropriate
to assume the highest risk values of variables that are
unknown.

Although the purpose of this exercise was to develop a model
for risk-adjustment or clinical care planning, the findings that
there are some potentially modifiable risk factors for survival may

Figure 4. Funnel plots of adjusted 90-day mortality risk-adjusted using the basic model and the selected model, by hospital trust. Using full dataset (December
2016 to November 2019).
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have implications for future research. However, we have only
established associations and predictive ability. Further work is
needed to investigate whether modifying these risk factors before
surgery is feasible in the emergency setting and would improve
patient outcomes.

We demonstrated an approach for developing a risk model for
patients undergoing emergency resection for CRC forwhich there
is an intersection of two sources of national clinical electronic
health records, andwhere data linkage can be used to obtain all of
the required risk factors. We included approaches which others
can follow for variable selection, dealing with missing data, and
assessing bias from missing data due to nonlinkage. In our study,
there was information available on the patient group of interest
from a disease-based dataset and a treatment-based dataset.
Similar situations in which both types of datasets may be avail-
able are, for example, solid organ transplantation or cardiac
surgery[52,53].

Conclusion

We showed that including seven physiological and surgical
measures which are easy to measure or predict from preoperative
imaging, in addition to patient and tumour characteristics,
improve the performance of models predicting risk for patients
undergoing emergency CRC surgery. Inclusion of these addi-
tional measures, in our study available through linkage of elec-
tronic health records, will lead to more accurate performance
monitoring of hospitals providing CRC surgery and enhance
clinical care planning for individual patients.
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