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Quantum computing requires a universal set of gate operations; regarding gates as rotations, any rotation
angle must be possible. However a real device may only be capable of B bits of resolution, i.e., it might
support only 2B possible variants of a given physical gate. Naive discretization of an algorithm’s gates to
the nearest available options causes coherent errors, while decomposing an impermissible gate into several
allowed operations increases circuit depth. Conversely, demanding higher B can greatly complexify
hardware. Here, we explore an alternative: probabilistic angle interpolation (PAI). This effectively
implements any desired, continuously parametrized rotation by randomly choosing one of three discretized
gate settings and postprocessing individual circuit outputs. The approach is particularly relevant for near-
term applications where one would in any case average over many runs of circuit executions to estimate
expected values. While PAI increases that sampling cost, we prove that (a) the approach is optimal in the
sense that PAI achieves the least possible overhead and (b) the overhead is remarkably modest even with
thousands of parametrized gates and only seven bits of resolution available. This is a profound relaxation of
engineering requirements for first generation quantum computers where even 5–6 bits of resolution may
suffice and, as we demonstrate, the approach is many orders of magnitude more efficient than prior
techniques. Moreover we conclude that, even for more mature late noisy intermediate-scale quantum era
hardware, no more than nine bits will be necessary.
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Introduction.—Producing quantum computers of the
scale and fidelity needed to solve practically useful
problems requires development not just of the quantum
processor itself, but of the analog and digital electronics
used for the control and readout of qubits. These electronics
may include field-programmable gate array systems [1,2]
and customised integrated circuits [3–6], typically cooled
to improve performance and integration with the qubits.
Understanding and minimizing the required specifications
of the electronics supporting the quantum computer is an
essential step in developing scalable systems in general.
These issues, however, become even more acute when
considering cryogenic electronics with limited power
budgets [7], and/or quantum processor architectures target-
ing close integration of quantum systems with classical
systems, such as for silicon-based spin qubits [8].
Consider, for example, the instruction to implement a

parametrized Pauli gate in which a user has specified the

kind of gate they want to implement and to which qubits.
As the gate angles are defined and implemented using
digital electronics, they must be discretized into B bits of
resolution. The choice of B has significant impacts on
elements such as the bandwidth of communication chan-
nels between different elements of the control stack and the
memory requirements of any gate instruction cache, and in
the digital-to-analog converters used ultimately to produce
the driving fields acting on the qubits. There is therefore a
strong benefit in minimizing B to the point where it is just
sufficient to provide the required gate fidelities for a given
application or circuit. Most of the currently leading qubit
hardware platforms operate optimally at cryogenic temper-
atures, including superconducting qubits [5,9], trapped ions
[10,11], semiconductor spin qubits [12,13], and photonic
qubits [14]. This has motivated significant effort on
developing control systems that can also operate adjacent
to the qubits, at low temperatures, where the motivation to
minimize power consumption becomes even greater.
In principle even three bits of angular resolution would

already guarantee a universal computing machine via
sequences of discrete Clifford and T gates [15]. However,
realizing the desired gate by a sequence of discrete options,
one would significantly deepen the overall circuit; this is
undesirable in general and particularly so for near-term
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quantum computers where one always prefers shallow
circuits. Furthermore, focusing on the impact of control
limitations on a single gate operation [7], rather than on the
average output of a quantum calculation, risks significantly
overspecifying the control hardware requirements. Our
approach is to consider the output state of the quantum
device, and examine its sensitivity to the number of bits
used in the angular discretization of the gates (which can
ultimately be related to parameters such as the bit resolution
and/or sampling rate of a qubit control digital-to-analog
converter).
In this Letter, we develop the method of probabilistic

angle interpolation (PAI) and show that we can effectively
upgrade the capabilities of a physical device with only a set
of discrete angles such that on average it can implement any
continuous rotation gate—and this is achieved without
increasing circuit depths. We do so by randomly instructing
the control infrastructure to perform one of the discretized
rotation angles, and we subsequently combine the individ-
ual outputs of the device such that on average we obtain the
same output as the ideal device with infinite resolution.
The PAI approach thus allows one to fully exploit the
power of algorithms that (nominally) require continuously
parametrized gates. It does so with only a marginal increase
in repetition (sampling) cost for any reasonable number of
parameters as long as the aim is to estimate expected values
of observables as relevant in most near-term quantum
algorithms [16–18]. As opposed to comparable error
mitigation techniques addressing the issue of gate infidelity
due to random and unknown variations [19,20] our
approach addresses the challenge of discretization. We
thus first build a model using unitary gates and later discuss
combinations with error mitigation.
Probabilistic angle interpolation.—Summary of proto-

col: Focusing on quantum systems of N qubits, we
consider parametrized quantum gates RðθÞ ¼ e−iθG=2 with
gate generators G of eigenvalues �1. These include para-
metrized SWAP gates and Pauli gates for any Pauli string
G∈ f1; X; Y; Zg⊗N . These gates encompass most gate sets
developed for quantum technologies, such as single qubit
X, Y, or Z rotations or two-qubit XX entangling gates—and
we discuss below that the PAI method can also be extended
to any other physical gate sets. We denote the superoperator
of our parametrized gates as RðθÞ, which acts by con-
jugation as RðθÞρ ≔ e−iθPk=2ρeiθPk=2.
Figure 1 illustrates a physical device that can perfectly

perform parametrized gates RðΘkÞ but only with a finite
angular resolution of B bits as

Θk¼kΔ with Δ¼2π

2B
; k∈f0;1;…2B−1g; ð1Þ

and we detail below the generalization to nonuniformly
distributed (nonlinear) set of angles. We define any
continuous rotation angle as an over-rotation of one of

the discrete settings RðΘk þ θÞ by an angle 0 ≤ θ < Δ.
Given a relative position λ ¼ θ=Δ between two discrete
settings, the most simple solution would be to round to the
nearest notch; however, this leads to systematic coherent
errors that we demonstrate below in numerics can be
remarkably severe.
PAI randomly chooses one of three allowed notch

settings (Fig. 1) for each parametrized gate in a circuit
and exactly implements the desired continuous rotation
angle by postprocessing measurement outcomes. In par-
ticular, in each circuit execution we randomly choose
either the nearest two notch settings Θk and Θkþ1 or with a
small probability we choose the antipolar angle setting
Θk þ π as illustrated in Fig. 1. When estimating expected
values with PAI, the individual circuit outputs are multi-
plied by a sign −1 whenever the third rotation angle was
chosen.
Thus, the expected value estimation yields a probability

distribution in Fig. 3 (left, gray histogram) that is centered
around the same mean value that one would obtain via an
infinite angular resolution (blue). However, the ability to
exactly implement continuous rotations while having
access to only discrete rotation angles comes at the price
of an increased number of circuit repetitions that scales in
the worst case exponentially as eνΔ

2=4 with the number of
gates ν. We find in Fig. 2, however, that at B ¼ 7 bits of
resolution this overhead is still reasonable when the number
of parametrized gates in the circuit is not more than a few
thousand (of course, there can be arbitrarily many addi-
tional nonparameterized gates that align to the available,
discrete rotations).
PAI of a single rotation gate: Introducing the notation

for the aforementioned discrete notch settings as

R1≔RðΘkÞ; R2≔RðΘkþ1Þ; R3≔RðΘkþπÞ; ð2Þ

FIG. 1. Continuously parametrized Pauli rotation gates RðθÞ
encompass most typical gates developed for quantum technolo-
gies. Because of the use of digital electronics, the rotation angles
are divided into 2B equiangular segments Θk. In order to reduce
engineering complexity, the number B of bits is chosen as small as
possible. PAI realizes an arbitrary, continuous rotation RðΘk þ θÞ
by randomly instructing the quantum hardware to apply one of the
two nearest notch settings RðΘkÞ and RðΘkþ1Þ or with a small
probability to apply the antipolar rotation RðΘk þ πÞ.
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the main observation we build on is that we can exactly
express any over-rotation RðΘk þ θÞ as a linear combina-
tion of the discrete gates as

RðΘk þ θÞ ¼ γ1ðθÞR1 þ γ2ðθÞR2 þ γ3ðθÞR3: ð3Þ

By solving a system of trigonometric equations, we obtain
the analytic form of the coefficients γlðθÞ as a function of
the continuous angle θ in the Supplemental Material [22].
In a fashion analogous to quasiprobability sampling
methods [19,20,36], which mitigate nonunitary error
effects, our angular decomposition leads to the following
implementation.
Statement 1.—We define a sampling scheme whereby

we randomly choose one of the three discrete gate variants
fRlg3l¼1 from Eq. (2) according to the probabilities
plðθÞ ¼ jγlðθÞj=kγðθÞk1, where kvk1 ¼

P
l jvlj is the usual

l1 norm. This yields the unbiased estimator of the rotation
gate as

R̂ðΘk þ θÞ ¼ kγðθÞk1sign½γlðθÞ�Rl; ð4Þ

such that E½R̂ðΘk þ θÞ� ¼ RðΘk þ θÞ.
To intuitively understand the above approach, we expand

the trigonometric probabilities to leading order in the small
Δ. With probability p1ðθÞ ¼ ð1 − λÞ þOðΔ2Þ we apply

the gate at the notch setting Θk, and with probability
p2ðθÞ ¼ λþOðΔ2Þ we apply the gate at the next notch
setting Θkþ1. In leading order this would be equivalent to a
naive, non-unitary approximation that we detail in the
Supplementary Materials. In contrast, we obtain the
desired, unitary operation by applying the antipolar rotation
RðΘk þ πÞ with a small probability p3ðθÞ ¼ 1

4
λð1 − λÞΔ2þ

OðΔ4Þ. Additionally, we multiply any observable measure-
ment-outcome with the factor kγðθÞk1sign½γlðθÞ�.
In Theorem 1 we explicitly prove the above approach is

optimal in the sense that it yields a minimal kγk1 and
present a general solution that can be applied to nonuniform
notch settings, too.
Theorem 1 (informal summary).—Given any set

fRðΘqÞg of discrete (possibly nonuniform) notch settings
that a machine can realize, the optimal protocol that
minimizes kγk1 uses Θk and Θkþ1 as the two nearest notch
settings to θ and we choose the third gate to be the notch
setting nearest to Θk þ π þ ðΔ=2Þ, where we defined the
distance Δ ≔ Θkþ1 − Θk.
PAI of parametrized circuits: We now consider a

quantum circuit Ucirc that contains ν continuously para-
metrized gates and additionally may also contain other
nonparameterized gates. We apply Statement 1 to each of
the continuously parametrized gates. Given that each
parametrized gate has a desired continuous rotation angle
Θkl þ θl, we first determine the corresponding notch
settings ðΘk1 ;Θk2…ΘkνÞ and corresponding over-rotation
angles ðθ1; θ2;…θνÞ in Eq. (3). At each execution of the
circuit we randomly replace a parametrized gate with the
corresponding discrete gate variant, i.e, the jth parame-
trized gate is replaced by one of the discrete gate variants

RðjÞ
lj

from Eq. (2) according to the probability distribution

pljðθjÞ from Statement 1.
The result is a set of circuit variants Uj that contain

only discrete notch settings according to the multi index
j ¼ ðj1; j2;…jνÞ∈ 3ν.
Statement 2.—Given a circuit Ucirc of ν parametrized

gates we choose a multi index l∈ 3ν according to the prob-
ability distribution pðlÞ ¼ jglj=kgk1 where gl are simply
products of the single-gate factors from Statement 1. We
obtain an unbiased estimator of the ideal circuit as

Ûcirc ¼ kgk1signðglÞU l ð5Þ

by executing the circuit variants U l in which all continu-
ously parametrized gates are replaced by the discrete ones
according to the multi index l. Thus, E½Ûcirc� ¼ Ucirc.
The above scheme can be compared to probabilistic error

cancellation [19,20]. Despite the close formal connection,
PAI is quite different conceptually, e.g., all gates involved
in PAI are unitary, and PAI does not apply gate insertions
but rather applies the same gate at different angle settings.

102 103 104 105 106

1

2

12

102

7 bits

Clifford

operations

8 10 bits

Number of parametrized gates�

Measurement cost as

multiplicative overhead

er
ro

r
co

rr
ec

ti
o
n

7 bits bits 9 bits

R
eq

u
ir

es

FIG. 2. The measurement cost of PAI is increased compared to
the case when one has access to continuous rotation angles; see
Eq. (6). Solid lines: worst-casemeasurement overhead kgk21 of PAI
as a function of the number of parametrized gates in the quantum
circuit. The number of gates one can reasonably (with an overhead
at most 12) implement with PAI is approximately 22ðBmin−1Þ where
Bmin is the number of bits used to digitize the rotation angle in
Fig. 1. As these estimates rely onworst-case bounds,we observe in
numerical simulations that the actual number of gates can be
significantly larger. Red vs green lines: our optimal scheme can
achieve many orders of magnitude smaller overheads than prior
techniques based on Clifford operations [21]. Yellow region: very
deep circuits will require quantum error correction and thus even
for late noisy intermediate-scale quantum era devices nomore than
nine bits will be necessary.
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Furthermore, the quasiprobability decomposition in PAI in
Eq. (3) is known by construction as opposed to the
experimentally learned approximate models in probabilistic
error cancellation [36–40].
Estimating expected values: Typical near-term and

early fault-tolerant quantum algorithms use quantum com-
puters for estimating expected values o ¼ Tr½OUcircj0ih0j�
of an observable O [16–18]. Thus, one applies a state-
preparation circuit to a fixed reference state as Ucircj0ih0j.
One then performs a measurement whose outcome is
generally a random variable. By averaging over many
repeated measurement outcomes, one obtains an empirical
estimate of the expected value o. Without loss of generality
we assume a normalized observable kOk∞ ¼ 1 and
thus the number of repetitions required to determine the
expected value to a precision ϵ is upper bounded as
Ns ≤ ϵ−2 given the single-shot variance is less than one.
Since we assume access to only discrete rotations,

whenever the hardware is instructed to execute the state-
preparation circuit Ucirc the parametrized gates are replaced
by one of the discrete circuit variants U l. After performing a
measurement, one multiplies the random outcome with a
factor kgk1signðglÞ that can have negative signs. As a
consequence, the variance of the estimator is magnified,
which implies an increased number of circuit repetitions.
Statement 3.—Applying PAI to the estimation

of an expected value results in an unbiased estimator ô
of the expected value of an observable as E½ô� ¼
Tr½OUcircj0ih0j� ¼ o. The number of repetitions required
to determine the expected value o to accuracy ϵ is upper
bounded as

Ns ≤ ϵ−2kgk21 ¼ ϵ−2
Yν

j¼1

kγðjÞðθjÞk21; ð6Þ

where kgk1 is simply a product of the single-gate norms
kγðjÞðθjÞk1 from Statement 1.
Indeed, to achieve the same precision, PAI has an

increased measurement cost compared to having physical
access to continuously parametrized gates. In the worst case,
when all gate angles are exactly halfway between two
notches as θj ¼ Δj=2, this overhead scales as ∝ eνΔ

2
max=4

where Δmax is the largest discretization across the different
parametrized gates. The overhead is actually quite reason-
able as long as the exponent does not significantly exceed
one, as illustrated in Fig. 2. Thus, in order for the circuit
repetitions to not exceed a 12-fold increase (gray dashed line
in Fig. 2), the number ν of parametrized gates in a circuit that
can be implemented with PAI is limited by the lowest
resolution Bmin of the gate discretions as ν ≤ 22ðBmin−1Þ.
For example, at B ¼ 7 bits resolution 4096 gates can still

reasonably be implemented, while 10 bits resolution allows
over a quarter of a million gates, which is certainly
sufficient for most near-term applications [16–18].
Furthermore, one can significantly reduce these costs by
“turning off” PAI for the gates that are not contained in the
light cone of the analyzed observable O [41,42].
Numerical simulations.—We consider a typical practical

benchmarking task of simulating the spin-ring Hamiltonian

H ¼
X

k∈ ringðNÞ
ωkZk þ Jσ⃗k · σ⃗kþ1; ð7Þ
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FIG. 3. Left: distribution of estimated expected values hZ0i using 1000 repetitions (shots) in a 12-qubit, l ¼ 50 layer trotter circuit of
ν ¼ 1786 parametrized gates. Left, red: rounding to nearest notch settings at seven bits resolution results in a shifted mean (black vertical
line) due to over- or under-rotations. Experimentally estimated histogram (gray) of PAI at seven bits resolution is centered around the
same mean as the ideal one (blue, infinite resolution) but its distribution width is slightly increased. Right: energy distance ΔE from the
ground state during a gradient descent search of a 12-qubit spin-ring problem (energy shown assuming infinite resolution to inform
about the optimizer’s progress) using ν ¼ 540 parametrized gates. Gradient estimation is performed with (blue) infinite resolution and
infinite number of shots; (red) rounding to nearest notch settings at seven bits of resolution and using 106 shots; (green) using PAI with
104 shots at only 100 different circuit configurations. PAI (green) significantly outperforms the naive approach (red) despite it using the
same amount of quantum resources and essentially recovers the performance of the ideal optimizer (blue). Additionally shown is the
energy (dashed gray) at the notch settings nearest to the ground-state parameters.
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with coupling J ¼ 0.3 and uniformly random
−1 ≤ ωk ≤ 1. This spin problem is relevant in con-
densed-matter physics in understanding many-body local-
isation in which early quantum computers might be very
useful [43–45].
Time evolution: We first consider simulating time

evolution, which is one of the most natural applications
of quantum computers [46–49] and focus on Trotterization
that is a commonly applied simulation technique [50]; it
approximates the time evolution e−itH as repeated layers of
evolutions under the individual Hamiltonian terms for
small times δt. Since the evolution under each Hamiltonian
term in Eq. (7) is a Pauli rotation gate, e.g.,RðωkδtÞ, a layer
of the time evolution circuit is just a series of rotation gates,
each tuned to its relevant small rotation angle. This layer is
then repeated a large number t=δt of times.
Rounding the rotation angles to nearest notch settings,

e.g., ωkδt ↦ Θ1, leads to a significant coherent error as it
implements incorrect evolution times and/or incorrect
interaction terms ωk. Thus, near phase transitions the
discrepancy might be radical. Thus, measuring an expected
value with a fixed number of shots leads to a biased
probability distribution as we illustrate in Fig. 3 (left, red).
In contrast, PAI results in a probability distribution that is
centered around the exact mean in Fig. 3 (left, blue and
gray), while its distribution width is slightly increased. The
increase in width is actually significantly lower than our
worst-case estimates in Statement 3, which we analyze in
the Supplemental Material [22]—and we also discuss that
PAI is highly enabling for randomized compilers, such as
qDRIFT [23].
Finding eigenstates: We next consider finding eigen-

states of the Hamiltonian in Eq. (7). A broad range of
techniques are available in the literature, including ones
that target near-term and early fault-tolerant quantum
computers [16–18,33,49,51,52]. We use the same
Trotterized circuit structure as we used for time evolution
but we optimize the angles of the rotation gates so that the
energy Tr½HUcircj0ih0j� of the emerging state is minimal—
this variant of the variational quantum eigensolver uses the
Hamiltonian variational ansatz as in case of the quantum
approximate optimization algorithm [16–18,53].
Figure 3 (right, red lines) illustrates that a gradient

descent optimizer does not manage to meaningfully lower
the energy when the gradient is calculated using only
nearest notch settings due to the coherent discrepancy in the
output state. In contrast, using the same quantum resources
(same number of circuit repetitions and discretized gates)
but estimating the gradient using PAI matches the perfor-
mance of an ideal quantum circuit that has infinite angular
resolution in Fig. 3 (right, green and blue lines). We also
note that formally our PAI protocol applies a different,
randomly chosen circuit variant at each circuit repetition.
However, reconfiguring circuits will likely be a bottleneck
for some quantum hardware platforms and thus it is desired

to run the same circuit variant multiple times. Indeed, Fig. 3
(right, green) only uses 100 different circuit variants—each
of which is repeated 104 times—which demonstrably does
not compromise the optimizer’s performance.
Discussion and conclusion.—We present PAI, which

effectively upgrades the capabilities of a quantum hardware
that can only realize discrete rotation angles to a device that
can perform arbitrary, continuous rotation angles.
As we detail in the Supplemental Material [22], a number

of generalizations and further applications of our approach
are apparent, including its combination with well-estab-
lished error mitigation techniques. We thus conclude that
the present technique will be an important and useful tool in
designing optimal quantum hardware. Our analysis sug-
gests that early quantum hardware, being practically
limited to only a few thousand gate operations (due to
limited coherence times), will need no more than seven bits
of resolution in the control systems. As the technology
matures, future generations of hardware are expected to be
able to execute tens of thousands of quantum gates without
error correction, which still, however, requires no more
than nine bits of angular resolution.
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