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Abstract 

Background: 

Perivascular spaces (PVS) are fluid-filled cavities surrounding small cerebral blood vessels. There are 

limited reports of enlarged PVS across the grey matter in manifest Huntington’s disease (HD). Little is 

known about how PVS morphometry in the white matter may contribute to HD. Enlarged PVS have 

the potential to both contribute to HD pathology and affect the distribution and success of 

intraparenchymal and intrathecally administered huntingtin-lowering therapies.  

Objective: 

To investigate PVS morphometry in the global white matter across the spectrum of HD. Relationships 

between PVS morphometry and disease burden and severity measures were examined. 

Methods: 

White matter PVS were segmented on 3T T2W MRI brain scans of 33 healthy controls, 30 premanifest 

HD (pre-HD), and 32 early manifest HD (early-HD) participants from the Vancouver site of the TRACK-

HD study. PVS count and total PVS volume were measured.  

Results: 

PVS total count slightly increased in pre-HD (p=0.004), and early-HD groups (p=0.005), compared to 

healthy controls. PVS volume, as a percentage of white matter volume, increased subtly in pre-HD 
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compared to healthy controls (p=0.044), but not in early-HD. No associations between PVS measures 

and HD disease burden or severity were found. 

Conclusions:  

This study reveals relatively preserved PVS morphometry across the global white matter of pre-HD 

and early-HD.  Subtle morphometric abnormalities are implied but require confirmation in a larger 

cohort. However, in conjunction with previous publications, further investigation of PVS in HD and its 

potential impact on future treatments, with a focus on subcortical grey matter, is warranted. 

Keywords: 

Huntington’s disease; magnetic resonance imaging; perivascular spaces; PVSSAS. 

 

Introduction 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by a cytosine-

adenine-guanine (CAG) trinucleotide repeat expansion in the huntingtin (HTT) gene for which there is 

currently no cure [1]. Despite this, the single genetic cause of HD has led to the development of a 

diverse pipeline of clinical trials aiming to lower mutant HTT (mHTT) [2]. Many of these putative 

treatments are administered either intrathecally, such as antisense oligonucleotides, or via 

intraparenchymal delivery such as genetic therapies [3]. Understanding factors that may affect 

regional distribution and success of such therapies throughout the grey and white matter, such as 

morphological changes in perivascular spaces (PVS), is imperative [3]. Thus, a more in-depth 

understanding of PVS, particularly in premanifest (pre-HD) and early manifest HD (early-HD), may 

facilitate future clinical trial design or interpretation. 

PVS are fluid-filled structures surrounding the walls of arterioles, capillaries, and venules within the 

brain parenchyma and throughout the white matter [4]. Astrocytic end-feet containing aquaporin-4 

(AQP-4) channels make up the external boundary, and the vessel wall forms the internal boundary of 
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PVS. While their precise role remains elusive, they are believed to act as a conduit for fluid transport, 

including the exchange of cerebrospinal fluid (CSF) surrounding the cortex with intra-parenchymal 

interstitial fluid [5]. This exchange facilitates waste clearance from the brain and contributes to the 

maintenance of brain homeostasis [6]. By contrast, increased PVS load is associated with 

neuroinflammation [7], blood-brain barrier (BBB) dysfunction, and impaired clearance from the 

interstitial space, ultimately leading to the accumulation of toxins and hypoxia, causing tissue damage 

[6]. There is evolving interest in abnormal PVS morphometry in neurological disorders and how they 

contribute to disease mechanisms with numerous strategies and techniques proposed in the literature 

to enhance the visibility and quantification of PVS. For example, there are reports of visibly enlarged 

PVS (ePVS) on magnetic resonance imaging (MRI) in various neurological diseases including 

Alzheimer’s disease [8], small vessel disease [6], multiple sclerosis [9], and HD [3,10–12].  

PVS in HD have mostly been investigated in subcortical grey matter structures in participants with 

manifest disease. Using PVS visual scores on 1.5T MRI, one study found increased PVS burden in the 

basal ganglia of manifest HD participants compared to first-degree relatives [10]. A histological study 

found profoundly enlarged PVS on ex vivo 7T MRI in HD participants. However, the authors 

acknowledged that whether ePVS were a fault of fixation artefact or a disease-specific observation 

was unknown [11]. Subsequently, an in vivo 3T MRI study reported a larger percentage volume of 

dilated PVS in subcortical structures in early-HD participants compared to healthy controls [3]. They 

reported higher PVS burden to be associated with smaller caudate volume, suggesting PVS burden 

becomes progressively worse with increasing disease severity; however, this is only suggestive 

because the study was cross-sectional [3]. Furthermore, a greater quantity of ePVS has been shown 

to overlap with areas of impaired cerebrovascular reactivity in HD participants compared to controls 

[12]. This can alter cerebral blood flow and induce relative hypoxia, therefore, compromising PVS 

function and encouraging enlargement of PVS. A relationship between cerebrovascular reactivity and 

PVS suggests that neurovascular alterations in HD have the potential to contribute to the enlargement 

of PVS.  



 5 

Nonetheless, the reasons for the widening of PVS remain to be elucidated but they may be an 

indication of compromised PVS function. A review by Brown, et al., (2018) described obstruction of 

PVS from protein and cell debris to contribute to the widening of PVS and stagnation of fluid drainage 

[6]. HD is a disease caused by the accumulation of mHTT protein [13] and there have been reports 

that clearance of mHTT occurs through PVS in the glymphatic system [14]. This suggests that mHTT 

might amass within PVS, leading to detectable PVS enlargement on 3T MRI, potentially due to the 

accumulation of debris around vascular cells [6]. This postulation would need to be investigated 

further as enlarged PVS have the potential to affect the distribution and success of intraparenchymal 

and intrathecally-administered therapies in HD [2]. 

Additionally, a recent study examined the glymphatic distribution of antisense oligonucleotides (ASOs) 

in BACHD transgenic mice expressing the human HTT gene [15]. They found that, following cisternal 

injection, ASOs entered the brain parenchyma via PVS in the cortex and striatum of mice. This study 

also found downregulation of AQP-4 in astrocytes decreased levels of ASOs in the brain, suggesting 

AQP-4 lined PVS are vital for intracisternal injected therapies [15]. Therefore, further understanding 

of PVS morphological alterations across the spectrum of HD will enable a deeper understanding of 

how they could impact future HD therapies.  

PVS are very small structures and manually identifying and delineating them is extremely time-

consuming and prone to rater error [16]. Despite this, multiple different automated and semi-

automated pipelines for PVS quantification have been described in the literature based on classical 

image processing techniques or machine learning approaches to eliminate time-consuming manual 

processes [17]. For example, the effectiveness of employing a Frangi filter for detecting tubular 

structures in semi- and fully automated methods have been investigated, resulting in successful and 

robust segmentation of PVS through the extraction of a vesselness map derived from the tubular 

morphology characteristics of PVS [18–20]. Furthermore, various machine learning approaches have 

been investigated, where algorithms are trained with manually labeled PVS segmentations; through 
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multiple iterations, these models learn the features associated with PVS and can subsequently label 

PVS structures on new data [17]. For instance, Park et al., (2016) demonstrated a machine-learning 

technique utilizing random forests for automated PVS segmentation [21]. More recently, efforts have 

been focused on enhancing the visibility of PVS on scans. One approach combined both T1- and T2-

weighted images to achieve enhanced PVS contrast (EPC), making the PVS clusters more discernible 

from the white matter [22]. However, the availability of such techniques are often limited, with the 

majority being in-house techniques [19].  

Recently, perivascular space semi-automatic segmentation (PVSSAS) [23], was made freely available 

on GitHub (https://github.com/smithd37/pvssas) for segmenting, viewing, and editing PVS in vivo on 

T2-weighted scans across the cortical white matter. PVSSAS quantifies PVS count, PVS total volume 

(mm3) and PVS median long and short axis (mm). This method was validated on a participant with 

multiple sclerosis, finding an 83% overlap of PVS detected manually and using PVSSAS [16], and has 

since been applied to quantify PVS across the white matter in participants with COVID-19 [23] and 

major depressive disorder patients [24]. 

The objective of this study is to assess the application of PVSSAS, an existing analysis pipeline validated 

for quantification of PVS in T2-weighted images across the global white matter, for use in HD using a 

cohort of pre-HD, early-HD, and matched controls. The clinical application of this method will 

investigate PVS morphometry in the global white matter across the spectrum of HD to visualize if there 

is a stepwise increase in total PVS count and absolute PVS volume from controls to pre-HD to early-

HD. Additionally, we will assess the relationships between PVS morphology and measures of disease 

burden/severity in HD including HD disease burden score (DBS) and total motor score (TMS). 

 

Materials and methods 

Study participants 

https://github.com/smithd37/pvssas
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Participant data from the Vancouver site of the multi-site TRACK-HD study were selected [25–28] 

including 33 healthy controls, 30 pre-HD, and 32 early-HD participants. Participants were aged 18 to 

65 years, able to tolerate MRI and biosample collection, and without major psychiatric disorder or 

previous significant head injury. Written informed consent was obtained from each participant 

according to the Declaration of Helsinki and this study was approved by local ethics committees. Full 

descriptions of data collection, storage, procedures, ethical approval, and demographics are found in 

previous TRACK-HD publications [25–28]. 

Healthy controls included siblings, relatives, and non-family members with confirmed non-expanded 

CAG repeat lengths. Controls were recruited with comparable environmental and social exposures 

with HD participants as well as some psychological burdens of living with HD [25]. Pre-HD participants 

(prior to clinical onset) required a CAG repeat expansion of 40 and a DBS of >250 which approximates 

15 years to estimated disease onset [29]. DBS is a model to reflect the burden of HD pathology 

determined by age x (CAG – 35.5) [30].  A Unified Huntington’s Disease Rating Scale (UHDRS) TMS of 

5 to indicate a lack of significant motor features was required for pre-HD participants [25]. Early-HD 

participants (clinical motor onset) required a CAG repeat expansion of 40 and were identified in stage 

1 or 2 according to the Shoulson and Fahn staging system with a UHDRS Total Functional Capacity 

(TFC) score of 7 [31].  

 

Image acquisitions 

Participants underwent both T1-weighted (T1) and T2-weighted (T2) MRI in the same visit. For T1 

scans, a 3D MPRAGE acquisition on 3T Phillips scanners with the following imaging parameters was 

used: TE = 3.5ms, TR = 7.7ms, FA = 8°, FOV = 24cm, matrix size = 224x224, voxel size = 

1.07x1.07x1.07mm3. A total of 164 sagittal slices were produced for each scan with 1.0mm slice 

thickness. For T2 scans, a VISTA sequence was used for the 3T Phillips scanners with an identical field 

of view, acquisition matrix and slice thickness as T1 scans [25]. 
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Perivascular space analysis pipeline 

The analysis pipeline for PVS segmentation included MRI pre-processing, PVS morphometric 

measurements, and refinement of the methodology (Figure 1).  This included parameter optimisation 

for this 3T cohort from the Vancouver site and reproducibility testing to assess manual edits to 

improve segmentation accuracy. We utilized a single TRACK-HD cohort site for this exploratory 

analysis to mitigate confounding variables, as site-specific optimization is necessary for PVSSAS 

software. Prior to running MRI data through the pipeline, raw T1 and T2 data were visually inspected 

for artefacts and those deemed unsuitable for analysis were excluded prior to processing. 

 

MRI pre-processing 

T1 and T2 scans that passed visual quality control were co-registered using Statistical Parametric 

Mapping version 12 (SPM12) [32] to correct for subtle alignment differences between scans (Figure 

1a). This was followed by a dual-channel tissue segmentation within SPM12 to generate a white 

matter mask using default parameters for bias regularisation and bias full-width half maximum. 

SPM12’s built-in dual-channel segmentation segments, bias corrects, and spatially normalises all in 

the same model [32]. This segmentation method combined the different T1 and T2 image contrasts 

to generate a white matter mask that was specific to the T2 images (Figure 1b). Additional 

morphological pre-processing steps included optimising the white matter mask for PVSSAS which can 

be found in Supplementary Material 1 (Figure 1c). The quality of white matter masks was visually 

inspected and those deemed unsuitable for analysis were excluded prior to processing. 

 

PVS morphometric measurements 
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PVSSAS is a semi-automated segmentation tool for segmenting, viewing, and editing PVS in vivo [23]. 

It functions to segment PVS in T2 images by using a 2D Frangi-based detection algorithm: a quick and 

powerful segmentation technique to detect vessel-like structures and fibers in volumetric data, such 

as PVS [20]. PVSSAS pipeline refinement and the reproducibility of PVS segmentations were assessed 

and the methods for this can be found in Supplementary Material 2. To summarise, Frangi filter 

parameter optimisation included systematically assessing each parameter gradually within their pre-

defined limits and visually inspecting the PVS segmentations. Supplementary Table A summarises the 

different parameters, the range explored for the optimisation process in this study, and how they 

change PVS segmentations. The final PVSSAS parameters were used: PVSSAS filter size to 0.5-10, 

Frangi scale range of [0.5-3.2], scale ratio of 2, Frangi β1 to 0.98, Frangi β2 to 0.35.  

For each participant, the T2 image and white matter mask were inserted into PVSSAS and PVS were 

segmented (Figure 1d-1e). MRI scans in PVSSAS can only be viewed in one plane at a time, restricting 

the view of PVS. To increase the reliability of the visual quality control of the segmented and non-

segmented PVS, FMRIB Software Library (FSL) viewer [33] was open with the corresponding T2 scan 

for additional 3-plane visibility of PVS. 

Manually editing, adding, and removing PVS on PVSSAS included removing PVS outside the white 

matter mask such as within a ventricle or sulcus. Missegmented white matter hyperintensities were 

removed. PVS that were not segmented by PVSSAS were added in all visible slices above and below 

using the ‘Add’ tool if they were visible on FSLView and abided by the STRIVE criteria (Figure 1e) [34]. 

 

Statistical analysis 

All data analysis was performed using STATA version 17.0 (https://www.stata.com). The level of 

significance for all statistical tests was set at 0.05. Appropriate normality tests were performed, and 

log transformations were attempted for variables where necessary. 

https://www.stata.com/
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Demographic group differences were investigated using independent t-tests for normally distributed 

data and Mann-Whitney U tests when groups were not normally distributed. A Chi-squared test was 

used for group differences in sex.  

For the main analysis, absolute group differences for PVS count and PVS volume were assessed using 

linear regression with age, sex, and total intracranial volume (TIV) adjusted for as nuisance variables. 

Further analysis looked at the density of PVS count and PVS volume in the white matter by normalising 

to white matter volume. PVS count density was calculated as PVS count per 1000mm3 of white matter 

volume. PVS volume was calculated as a percentage of white matter volume: total PVS volume divided 

by total white matter volume. Group differences between healthy controls, pre-HD and early-HD for 

these variables were assessed using linear regression models with age, sex, and TIV as nuisance 

variables. 

Linear regression analyses were conducted to investigate associations between PVS variables with 

TMS and DBS with age, sex, and TIV adjusted for nuisance variables. TMS was only assessed in early-

HD participants as most pre-HD participants would score at floor level. DBS was used as a disease 

burden measure across all gene-positive participants and, therefore, comprised both pre-HD and 

early-HD participants.  

 

Results 

Group demographics 

Table 1 provides demographic data for the participants included in this study. As expected for a 

progressive disease, pre-HD participants were significantly younger than early-HD participants 

(p=0.004). The distribution of males and females differed slightly between groups as assessed by a chi-

squared test (χ2=6.38, p=0.041). DBS, TMS, and TFC all showed a significant increase between pre-HD 
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and early-HD groups (as expected for a progressive disease) whereas CAG repeat length did not differ 

between HD groups (p=0.464). 

 

Quality control 

Visual assessment of T1 and T2 scans excluded three participants due to motion artefact (1/33 healthy 

controls, 1/30 pre-HD, 1/32 early-HD). Following processing, four participants were excluded due to 

white matter mask failure; two failures from over-segmented non-cortical areas (2/33 healthy 

controls), and two from over-segmentation of the brainstem (1/33 healthy controls, 1/30 pre-HD). 

After discussion, one pre-HD participant was excluded due to overwhelming additional small vessel 

disease features, making the differentiation and delineation of PVS difficult due to additional non-HD 

pathology. The final cohort used for statistical analysis included 29 healthy controls, 27 pre-HD and 31 

early-HD with a total failure rate of 8%. No patterns of systematic failure between HD and healthy 

controls were identified.  

 

PVSSAS between-group differences 

The reproducibility of the manual refinement of the PVSSAS segmentations was assessed and 

intraclass correlation coefficient (ICC) values for all PVS metrics included in this study were 0.95 or 

higher, showing excellent reproducibility of the manual refinement process for all PVS measures 

(Supplementary Table B). See supplementary Material 2 for further information about reproducibility 

tests and results. 

White matter volume was significantly smaller in early-HD compared with both healthy controls and 

pre-HD, as expected (p<0.0005 for both, Table 3), adjusted for age, sex and TIV. No significant 

difference was found in white matter volume between pre-HD and healthy controls in this relatively 

small cohort (Table 2). 
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Absolute PVS count was on average 8.1% higher in pre-HD compared to healthy controls (p=0.027), 

adjusted for age, sex and TIV. Although the mean PVS count in early-HD was similar to pre-HD (mean 

of 278 and 279, respectively, Table 2), it was not statistically significantly different between early-HD 

and healthy controls (p=0.23), most likely due to higher standard deviation in early-HD. Overall, 

absolute PVS count shows large overlap between groups with considerable variability in the data 

(Figure 2A).  

PVS count density was statistically significantly higher in both pre-HD (8.2% on average) and early-HD 

(16.4% on average) compared to healthy controls (p=0.004 and p=0.005, respectively; Table 3; Figure 

2B), adjusted for age, sex and TIV. Differences between the two HD groups were small and non-

significant (p=0.92). 

Absolute PVS volume was not statistically significant between groups (Table 3, Figure 2C). However, 

there was a statistically significant increase in PVS volume as a percentage of white matter in pre-HD 

compared to healthy controls (9.1% increase in pre-HD on average; p=0.044, Table 3), adjusted for 

age, sex and TIV. Although the mean PVS volume (as a percentage of white matter volume) also 

increased in early-HD compared with healthy controls, the mean difference was not statistically 

significant (Table 3) and there is considerable overlap in the data (Figure 2D). 

 

Relationship between PVS measures and burden/severity measures of HD 

As PVS count density and PVS volume (as a percentage of white matter volume) yielded significant 

results between healthy controls and HD groups (Table 3), further exploration of these variables and 

their association with measures of disease burden and severity in HD were assessed. This included 

DBS in both HD groups combined and TMS in early-HD (Supplementary Table E). There were no 

statistically significant relationships between PVS measures and DBS in both pre-HD and early-HD 
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participants combined or between PVS measures and TMS in early-HD participants (Supplementary 

Table E).  

 

Discussion 

Few studies have explored PVS in both pre-HD and early-HD individuals and across the white matter 

with this being the first study to apply a semi-automated PVS segmentation tool to part of the TRACK-

HD cohort. We assessed PVS metrics in healthy controls, pre-HD and early-HD participants and sought 

to explore the relationships between PVS measures with HD DBS and motor function. Overall, there 

were no marked abnormalities in PVS morphometry in the white matter of both pre-HD and early-HD 

individuals in this study. Subtle morphometric abnormalities are implied but require confirmation in a 

larger cohort. We found PVS count, PVS count density and PVS volume (as a percentage of white 

matter volume) to be subtly statistically significantly higher in pre-HD participants compared to 

healthy controls. Early-HD participants showed subtle statistically significantly higher PVS count 

density compared to controls. No associations between PVS measures with HD DBS and motor 

function were found.  

The main findings of this study show a statistically significant increase in absolute PVS count, PVS count 

density and PVS total volume (as a percentage of white matter volume) in the white matter of pre-HD 

participants compared to healthy controls. Group differences in early-HD compared with controls 

were similar in direction and magnitude to pre-HD compared with controls, but only reached statistical 

significance for PVS count density over the white matter. The underlying causes of subtle increases in 

PVS enlargement in HD are unknown, however, HD is a disease caused by the accumulation of mHTT 

protein [13] and there have been reports that clearance of mHTT occurs through PVS in the glymphatic 

system [14]. This suggests that mHTT might amass within PVS, leading to detectable PVS enlargement 

on 3T MRI, potentially due to the accumulation of debris around vascular cells [6]. This postulation 

would need to be investigated, for example, using positron emission tomography (PET) radiotracers 
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to track mHTT through the glymphatic system to identify any accumulation in PVS. One limitation of 

this proposed investigation is that no PET tracer targeting mHTT has been fully validated to date [35]; 

although, much work is currently underway in this area [36].  

Previous studies have indicated ePVS potentially contributes to HD pathologies. Both BBB dysfunction 

and impaired cerebrovascular reactivity (CVR) have previously been reported as pathological 

consequences of ePVS in small vessel disease [6], and both neurovascular impairments have been 

reported in participants with HD [12,37]. This is speculative but suggests a bidirectional link between 

BBB dysfunction, impaired CVR, and ePVS in HD. While exploring the connection between BBB 

dysfunction and ePVS in HD requires further investigation, recent research examined CVR in relation 

to PVS and identified regional CVR impairments in subcortical white matter regions among pre-HD and 

early-HD participants [12]. The authors reported greater dilated PVS load to overlap with subcortical 

white matter regions showing reduced CVR, which could be due to reductions in cerebral blood flow 

and hypoxia, resulting in increased PVS burden [12]. This differs from our study's findings, which 

revealed only subtle volumetric PVS changes. 

 

Our study has several limitations. Inclusion of manual intervention allows correction of automated 

segmentation errors, but user-error risk increases.  Whilst we showed excellent intra-rater reliability, 

same-scan differences remain and reproducibility is critically dependent on rater expertise. Fully 

automated techniques have the advantage of efficiency and consistency which makes them practical 

for large datasets, but segmentation errors may be problematic particularly when anatomy deviates 

from normality e.g., due to atrophy or other pathology. For example, a recent study used a fully 

automated computational quantification method to assess PVS in the centrum semiovale of 700 

participants from the 1936 Lothian Birth Cohort [18]. Since manual refinement of segmentations was 

not possible, 23% of the cohort was excluded due to falsely segmented artefacts [18]. Fully automated 

methods are superior for efficient and consistent analysis in large datasets, however, if a large amount 
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of the cohort is excluded due to the inability to refine segmentations, then a semi-automated method 

could be advantageous.  

That being acknowledged, our study was limited by the small sample size, hence it could be considered 

a pilot study. However, the use of a smaller sample facilitated the parameter optimization process for 

PVSSAS, as site-specific parameter optimisation is necessary for this technique. This is time-consuming 

and could be difficult to standardise for multi-site studies [19]. Therefore, for this study, we only used 

one site of the TRACK-HD cohort.  

Prior research has observed a more substantial increase in PVS volume within subcortical grey matter 

structures in HD compared to the findings in the global white matter in this study [3], suggesting that 

PVS morphometry may be relatively preserved in the white matter in HD and more pronounced in the 

grey matter. PVSSAS was developed and validated for the quantification of PVS in T2-weighted images 

across the global white matter [16]. This software was selected for the current study as our focus was 

to investigate PVS abnormalities over the white matter – an area that has been relatively 

underexplored for PVS in HD, despite the fact that pronounced white matter changes, e.g., atrophy, 

are evident early in the course of the disease [25–28]. The results from our study suggest that PVS 

morphological changes over the white matter appear to be much more subtle compared to PVS 

findings in subcortical grey matter in early-HD found in other studies. Because of this, we would 

recommend that further work focuses on PVS in the grey matter to understand the impact of PVS in 

the striatum where pathological alterations begin earliest in the disease [38].  
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Tables 

Table 1 – Group demographics.  
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Controls (n=29) 

Mean (SD) 

Pre-HD (n=27) 

Mean (SD) 

Early-HD (n=31) 

Mean (SD) 

p-value 

Age (years) 46.1 (11.9) 39.1 (10.2) 47.9 (22.8) 
0.0411, 0.622, 

0.0043 

Sex (%M) 41.4 44.4 71 0.041+ 

TIV (mm3) 
1466758 

(140953) 

1480589 

(167905) 

1463700 

(132841) 

0.981, 0.0572, 

0.0753 

CAG Length - 43.4 (2.5) 44.7 (4.2) 0.463 

DBS - 287 (43.5) 403 (76.5) 0.000053 

TMS - 2.6 (1.2) 30 (9.8) 0.000053 

TFC - 12.8 (0.8) 10.1 (2.1) 0.000053 

Table 1: Data are mean (SD). Demographic data of the participants that were included in the analysis. 

Age and CAG length used a Mann-Whitney U test. All other group differences are found using an 

independent t-test apart from a chi-squared test to assess sex group differences. Bold values are 

statistically significant (p<0.05).   

1Control versus pre-HD, 2Control versus early-HD, 3Pre-HD versus early-HD, +Chi-squared test. 

Abbreviations: SD, standard deviation; M, males; TIV, total intracranial volume; CAG, trinucleotide 

repeat number; DBS, disease burden score; TMS, total motor score; TFC, total functional capacity.  

 

 

Table 2 – Group summary statistics of PVS measures. 
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Control (n=29) 

Mean (SD) 

Pre-HD (n=27) 

Mean (SD) 

Early-HD (n=31) 

Mean (SD) 

White matter volume (mm3) 425397 (48724) 424453 (60498) 391662 (44194) 

PVS total count 258 (63.2) 279 (48.4) 278 (61.1) 

PVS total volume (mm3) 4712 (1855) 5180 (1699) 5077 (1629) 

PVS count density 

(count per 1000 mm3 WM) 

0.61 (0.14) 0.66 (0.12) 0.71 (0.12) 

PVS total volume 

(% of WMV) 

1.1 (0.43) 1.2 (0.4) 1.3 (0.41) 

Table 2: Summary statistics table of white matter volume and different PVS variables for healthy 

controls, pre-HD, and early-HD participants. Data are presented as mean and standard deviations (SD). 

Abbreviations: WMV, white matter volume; WM, white matter. 

 

 

 

 

 

 

 

 

 

Table 3 – Mean between-group differences in white matter and PVS metrics. 
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Pre-HD - Control 

(95% CI), p 

Early-HD - Control 

(95% CI), p 

Early-HD – Pre-HD 

(95% CI), p 

White matter volume 

(mm3) 

-944 (-1922 4689), 

0.23 

-33735 (-45466 -21836), 

0.0005* 

-32791 (-38885 -13891), 

0.0005* 

PVS total count 
21 (3.7 59.8), 

0.027* 

20 (-10.9 44.6), 

0.23 

-1 (-44.2 14.5), 

0.32 

PVS total volume (mm3) 
468 (-109 1657), 

0.085 

365 (-577 1169), 

0.5 

-103 (-1401 445), 

0.31 

PVS count density 

(count per 1000 mm3 

WM) 

0.05 (0.03 0.16), 

0.004* 

0.1 (0.03 0.15), 

0.005* 

0.05 (0.07 0.06), 

0.92 

PVS total volume 

(% of WMV) 

0.12 (0.006 0.44), 

0.044* 

0.19 (-0.05 0.38), 

0.12 

0.07 (-0.28 0.17), 

0.64 

Table 3: Table of group mean differences with 95% CIs and corresponding p-values from group linear 

regressions with age, sex, and TIV controlled for as nuisance variables. *Statistically significant 

(p<0.05). Abbreviations: CI, confidence interval; WMV, white matter volume; WM, white matter; SD, 

standard deviation. 
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Figure 1: Schematic representing the analysis pipeline including MRI pre-processing, PVS morphometric 

measurements, and pipeline refinement. (a) T1 MRI co-registered to T2 MRI using SPM12. (b) Dual-

channel segmentation was performed on SPM12 using the T2 MRI and the co-registered T1 MRI to 

generate white matter masks. (c) White matter mask modifications were performed including 

thresholding by 0.5, binarizing the image, dilating the image by 1 voxel, filling the holes, and eroding 

the image by 1 voxel to create a final mask (Supplementary Material 1). (d) The PVSSAS interface where 

each participant's T2 image and white matter masks were inserted. (e) The primary interface of the 

PVSSAS tool where PVS were automatically segmented in each slice of the scan in the pre-defined white 

matter and manual editing of the segmentations was performed. (1) Frangi parameters were 

optimised for use on 3T scans (Supplementary Material 2). (2) Reproducibility of manual edits was 

examined (Supplementary Material 2). 
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Figure 2: Scatter plots for (A) absolute PVS total count, (B) PVS count density, (C) absolute PVS total 

volume and (D) PVS volume (as a percentage of white matter volume) between groups with overlayed 

box plots. Age, sex, and TIV were controlled for as nuisance variables in the regression analysis.  

 

 

 

 

 

 



 26 

Supplementary Material 

Supplementary Material 1 – white matter mask optimisation 

Additional morphological pre-processing steps included optimising the white matter mask for PVSSAS 

(Figure 1c). This included thresholding the white matter mask by 0.5 to exclude all voxels with a 

probability of <0.5 of being white matter and binarising the image voxels using FSLMaths. The mask 

was then dilated by 1 voxel and the holes within the mask were filled to create a solid mask including 

all PVS within the white matter. The mask was eroded by 1 voxel to give a final white matter mask to 

be inserted into PVSSAS along with the bias-corrected T2 image. The quality of white matter masks 

was visually inspected and those deemed unsuitable for analysis were excluded prior to processing. 

 

Supplementary Material 2 – PVSSAS pipeline refinement and reproducibility 

Pipeline refinement 

Parameters for optimisation include the minimum and maximum of the scale range, the scale ratio, 

Frangi β1, and Frangi β2. Parameters in [23] were set to a scale range of [1.4-3.2], scale ratio of 2, 

Frangi β1 to 0.95, Frangi β2 to 0.35. Parameters for this study were optimised on a subset of the 

Vancouver data with participants selected to encompass a range of pathology from HC data through 

to more severe HD pathology (n=3 HCs, n=3 HD). This optimisation cohort was used for parameter 

optimisation by systematically changing each parameter gradually within their pre-defined limits and 

visually inspecting the PVS segmentations to determine the ‘best fit’. Supplementary Table A 

summarises the different parameters, the range explored for the optimisation process in this study, 

and how they change PVS segmentations. Once one parameter was changed, the other parameters 

were examined again to identify if they could be further optimised with the newly changed parameter. 
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Supplementary Table A – Parameter optimisation.  

Parameter Function Range Explored Effect on PVS 
Segmentation  

Final 
Parameters  

Standard 
deviation 
(SD) 

Controls how many 
standard deviations 
from the mean voxel 
value the threshold is 
for detection of a PVS 
feature. 

0.1 – 2.5 with 0.5 
increments. 

Decreasing SD 
increased 
segmentations but 
decreased PVS 
accuracy with many 
false positive PVSs. 

1 

Scale 
range 

The range PVSs are 
most likely to be 
found. Controls the 
length versus width 
ratio of an ROI and is 
the range of sigmas 
used. 

Lower range: 0.1 – 
2.0 with 0.1 
increments. 

Above or below 0.5 
reduced PVS 
segmentations 
dramatically. Largest 
effect on PVS count. 

0.5 

Upper range: 0.5 – 
5.0 with 0.5 
increments 

No change. 3.2 

Scale ratio Controls step size 
between sigmas. 

0.5 – 4.0 with 0.5 
increments. 

Increasing scale ratio 
increased number of 
false segmentations. 
Lower than 2 made no 
change. 

2 

Frangi β1 Corresponds to α in 
Equation 1. Controls 
the sensitivity of the 
Frangi filter. Known 
as Frangi correction 
constant. 

0 .1– 0.9 with 0.1 
increments, 

then 0.9 – 1.0 with 
0.01 increments. 

Below 0.9 gave fewer 
PVS segmentations, 
reduces the sensitivity. 
More PVSs segmented 
with increased 
accuracy using 0.98 
and minimal change 
with higher values. 

0.98 

Frangi β2 Corresponds to c in 
Equation 1. Controls 
the sensitivity of the 
Frangi filter. Known 
as Frangi correction 
constant. 

0.2 – 0.9 with 0.1 
increments. 

No change. 0.35 

Sigma 
Kernel 

The sigma used for 
the Gaussian kernel. 

5 – 8 with 
increments of 1, 
default 6. 

No change. 6 

Supplementary Table A: Summary of the different parameters that were altered for optimisation in 

this study. The function of the different parameters optimised in this study are explained by Frangi, et 

al., (1998) and Baboiu & Hamarneh, (2012).  
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The minimum scale range was the most significant parameter change, which was the same as the 

parameter optimisation described in Ballerini, et al., (2018). A value of 0.5 was inclusive of more PVS 

segmentations than any value above or below for this study. Changing the parameter by 0.1 above or 

below 0.5 decreased the PVS segmentations. The final PVSSAS parameters selected for this study 

were: PVSSAS filter size to 0.5-10, Frangi scale range of [0.5-3.2], scale ratio of 2, Frangi β1 to 0.98, 

Frangi β2 to 0.35. 

 

Reproducibility testing methods 

The reproducibility of the PVS segmentations was assessed in three different tests: 

Test 1 assessed the reproducibility of the manual refinement of the PVSSAS segmentations. This was 

performed on a subset of the Vancouver cohort, including examples of healthy control data (n=6) 

through to more severe HD pathology (n=6). A range of different data was used to ensure manual 

edits were consistently applied across groups. PVSSAS was run on each of these test scans once, with 

manual edits performed twice, with a week between each manual edit.  

 

Test 2 aimed to assess scan-rescan reproducibility of PVSSAS algorithm (without manual intervention). 

The ideal data to assess this would be serial scans acquired during the same scanning session, with 

the ground truth being that there would be no/negligible change in PVS morphometry between these 

scans. Any differences in output would be a result of variability in the PVSSAS measurement algorithm 

itself. Since the TRACK-HD dataset does not have serial repeat scans, feasible data to use is healthy 

control data with the shortest time interval between scans: 1 year apart. The (imperfect) assumption 

for using healthy controls is that we would expect minimal change in PVS between serial scans in 

healthy controls. Thus, 12 healthy control participants (age range 23-66 years) from the Vancouver 

cohort were selected including data from their first and second visit (scans one year apart). PVSSAS 
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was run on each 2008 and 2009 scan, without manually editing PVS segmentations, and the output 

was collected. This method for assessing the reproducibility of PVSSAS presents caveats, however, we 

believed it to be the most pragmatic approach with the available data.    

 

Test 3 is an extension of Test 2 and assessed the automated algorithm of PVSSAS with the addition of 

manual edits to understand the contribution of manual refinement to any variability in PVSSAS 

reproducibility. The same healthy control participants in Test 2 were used in Test 3 with the same 

assumption that healthy controls would show minimal change in PVS over a year. The procedure was 

the same as Test 2 but included manual refinement. 

 

To investigate reproducibility, three different reproducibility tests were performed for PVSSAS 

measurements and were assessed using a two-way mixed-effects model intraclass correlation 

coefficient (ICC). ICC measures the reliability of PVS measurements in each test with values ranging 

from 0 to 1 (Koo & Li, 2016). A high ICC close to 1 indicates excellent reliability between PVS 

measurements and a low ICC value close to 0 indicates PVS metrics in the tests have poor reliability 

(Koo & Li, 2016).  

 

Reproducibility testing results 

Reproducibility was assessed for PVSSAS measurements using two-way mixed-effects model ICCs to 

assess the reliability of each reproducibility test with values ranging from 0 to 1 where 1 represents 

complete reliability.  

Test 1: Reproducibility of same-scan manual intervention: 
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The reliability ICC estimates and 95% confidence intervals (CI) to assess the reproducibility of manual 

edits performed twice on the same scan, one week apart, are represented in Supplementary Table B. 

Supplementary Table B – Same-scan manual intervention reproducibility of PVS metrics (Test 1). 

 
Run 1 (n=12) 

Mean (SD) 

Run 2 (n=12) 

Mean (SD) 

Mean absolute 

% difference 

ICC 

(95% CI), p 

PVS count 243 (39.7) 242 (38.1) 2.2 
0.98 (0.94 0.99), 

0.0005* 

PVS total 

volume (mm3) 

4415 

(1299) 

4325 

(1237) 
5.7 

0.97 (0.91 0.99), 

0.0005* 

PVS median 

long axis (mm) 
4.2 (0.4) 4.1 (0.4) 2.4 

0.95 (0.82 0.98), 

0.0005* 

PVS median 

short axis (mm) 
3.1 (0.1) 3.1 (0.07) 0.5 

0.95 (0.82 0.98), 

0.0005* 

Supplementary Table B: Summary table of absolute PVS measures from PVSSAS with manual edits 

performed on 2008 scans and then the same manual editing process on the same scans a week later. 

Values reported are means and standard deviations. The percentage difference is the absolute mean 

percentage difference between scans for each variable. A two-way mixed-effects ICC model was used 

to assess the reproducibility of manual edits on same-scan data. The cohort included a mixture of 

healthy controls and HD participants (n=12). *Statistically significant (p<0.05). Abbreviations: ICC, 

intra-class correlation; CI, confidence interval. 

 

ICC values for all PVS metrics were 0.95 or higher, showing excellent reproducibility of the manual 

refinement process for all PVS measures (Supplementary Table B) including only an absolute mean 

percentage difference of 2% in PVS count and 6.7% in PVS volume.  
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Test 2: Scan-rescan reproducibility on healthy control data, one year apart, without manual edits: 

The ICC reliability results for the scan-rescan reproducibility on PVSSAS output from healthy control 

scans acquired one year apart, without editing PVS segmentations are represented in Supplementary 

Table C. This includes ICC estimates and 95% CI. 

Supplementary Table C – PVSSAS reproducibility without manual intervention on healthy control data 

of PVS metrics (Test 2). 

 
2008 (n=12) 

Mean (SD) 

2009 (n=12) 

Mean (SD) 

Mean absolute 

% difference 

ICC 

(95% CI), p 

PVS count 273 (40.1) 283 (45.5) 7.1 
0.88 (0.64 

0.96), 0.0005* 

PVS total 

volume (mm3) 
6309 (1253) 6353 (1360) 5.1 

0.95 (0.85 

0.99), 0.0005* 

PVS median 

long axis (mm) 
5.2 (0.3) 5.0 (0.2) 5.8 

0.4 (-0.2 0.8), 

0.086 

PVS median 

short axis 

(mm) 

3.4 (0.1) 3.3 (0.1) 3.6 
-0.23 (-0.7 0.4), 

0.77 

Supplementary Table C: Summary table with absolute PVS measures outputted from PVSSAS without 

manual intervention between paired 2008 and 2009 scans in healthy controls. Values reported are 

means and standard deviations. The absolute percentage difference is the absolute mean percentage 

difference between 2008 and 2009 results for each PVS metric. A two-way mixed-effects ICC model 

was used to assess scan-rescan reproducibility for outputted PVSSAS metrics without manual edits. 

*Statistically significant (p<0.05). Abbreviations: ICC, intra-class correlation; CI, confidence interval.  

 

The test-retest reliability of PVSSAS without manual intervention indicates excellent reproducibility 

for PVS total count and PVS total volume (ICC of 0.89 and 0.94, respectively). However, this 

reproducibility was not reflected for PVS median long- and short-axis which showed poor ICC reliability 
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on scan-rescan longitudinal data (0.4 and -0.23, respectively), despite the mean PVS median long- and 

short-axis for 2008 and 2009 scans being very similar (long-axis: 5.2mm and 5.0mm, respectively and 

short-axis: 3.4mm and 3.3mm, respectively) and the absolute mean percentage difference between 

the scans for each PVS length was low (5.8% and 3.6%, respectively).  

 

Test 3: Scan-rescan reproducibility on healthy control data, one year apart, with manual edits: 

The reliability results for the scan-rescan reproducibility of the PVSSAS output on healthy control data 

one year apart, but with the addition of manually refining PVS segmentations, are shown in 

Supplementary Table D. This includes ICC estimates and 95% CI.  

Supplementary Table D – PVSSAS reproducibility with manual intervention on healthy control data of 

PVS metrics (Test 3). 

 
2008 (n=12) 

Mean (SD) 

2009 (n=12) 

Mean (SD) 

Mean absolute 

% difference 

ICC 

(95% CI), p 

PVS count 223 (67) 235 (68) 7.8 
0.96 (0.88 

0.99), 0.0005* 

PVS total 

volume (mm3) 

3775 

(1572) 

3934 

(2019) 
11 

0.92 (0.77 

0.98), 0.0005* 

PVS median 

long axis (mm) 
4.2 (0.31) 4.1 (0.33) 5.9 

0.62 (0.1 0.87), 

0.0012* 

PVS median 

short axis 

(mm) 

3.1 (0.1) 3.1 (0.1) 2.9 

0.37 (-0.23 

0.76), 

0.11 

Supplementary Table D: Summary table with absolute PVS measures outputted from PVSSAS with 

manual intervention between paired 2008 and 2009 scans in healthy controls. Values reported are 

means and standard deviations. The absolute percentage difference is the absolute mean percentage 

difference between 2008 and 2009 results for each PVS metric. A two-way mixed-effects ICC model 
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was used to assess scan-rescan reproducibility for manual edits between 2008 and 2009 scans. 

*Statistically significant (p<0.05). Abbreviations: ICC, intra-class correlation; CI, confidence interval.  

 

The ICC results for this reproducibility test reflect similar results as those without manual intervention 

(Test 2) with excellent reliability for PVS total count and PVS total volume (ICC 0.96 and 0.92, 

respectively). However, the absolute mean percentage differences for PVS count and PVS volume 

were higher (7.8% and 11%, respectively) compared to those without manual intervention (Test 2, 

Supplementary Table C). This reproducibility test showed slightly improved ICC estimates for PVS 

median long-axis with moderate reliable reproducibility (ICC 0.62). PVS median short-axis still showed 

poor reliable reproducibility with 0.37 ICC. 

From the PVS length results in Test 2 and Test 3, there was low confidence in PVSSAS output for PVS 

length measures, therefore PVS length was not assessed in the main analysis. 
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Supplementary Table E - Relationship between PVS measures and HD disease burden and severity 

measures.  

 
 PVS total count (per 1000 

mm3 WMV) 

PVS total volume (% of 

WMV) 

DBS 
Coefficient 

(95% CI), p 

0.0001 (-0.0002 0.0005), 0.56 
0.0001 (-0.001 0.001), 

0.85 

TMS 0.002 (-0.003 0.007), 0.37 0.012 (-0.004 0.03), 0.15 

Supplementary Table E: Linear regression results from PVS count density and PVS volume (as a 

percentage of white matter volume) between DBS in both HD groups combined and TMS in early-HD 

participants only. All models adjusted age, sex, and TIV as nuisance variables. Abbreviations: WMV, 

white matter volume; DBS, disease burden score; TMS, total motor score; CI, confidence interval.  

 

 

 


