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We present numerical methods based on the fast Fourier transform (FFT) to solve convolution integral
equations on a semi-infinite interval (Wiener-Hopf equation) or on a finite interval (Fredholm equation).
We extend and improve a FFT-based method for the Wiener-Hopf equation due to Henery, expressing it in
terms of the Hilbert transform, and computing the latter in a more sophisticated way with sinc functions.
We then generalise our method to the Fredholm equation reformulating it as two coupled Wiener-Hopf
equations and solving them iteratively. We provide numerical tests and open-source code.
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1. Introduction

We consider the linear integral equation of convolution type with constant limits of integration

λ f (x)−
∫ b

a
k(x− x′) f (x′)dx′ = g(x), x ∈ (a,b), (1.1)

where f (x) is the unknown function, k(x) is a given kernel, and g(x) is a given so-called forcing function.
The domain of f (x) and g(x) is (a,b), the domain of k(x) is (a−b,b−a); the endpoints can be included
if they are finite. If a=−∞ or b=+∞ Eq. (1.1) is called a Wiener-Hopf equation (Wiener & Hopf, 1931;
Noble, 1958; Krein, 1962; Polyanin & Manzhirov, 1998; Lawrie & Abrahams, 2007); if both integration
limits are finite, it is called a Fredholm equation (Fredholm, 1903; Whittaker & Watson, 1927; Polyanin
& Manzhirov, 1998). The latter case is also called a Wiener-Hopf equation on a finite interval (Voronin,
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2004) or, because of an application in electrotechnics, a longitudinally modified Wiener-Hopf equation
(LMWHE), while the former case is also called a classical Wiener-Hopf equation (CWHE) (Daniele &
Zich, 2014). If λ = 0 it is an equation of the first kind; if λ 6= 0 it is an equation of the second kind. In
the latter case it can be assumed that λ = 1, dividing the kernel and the forcing function by values of this
parameter different from 1. Historically these equations arose in physics, e.g. to describe diffraction in
the presence of an impenetrable wedge or of planar waveguides (Daniele & Lombardi, 2007), but also
for problems in crystal growth, fracture mechanics, flow mechanics (Choi et al., 2005), geophysics, and
diffusion (Lawrie & Abrahams, 2007). The connection of the Wiener-Hopf equation with probabilistic
problems was noticed by Spitzer (1957) and is discussed by Feller (1971), together with the application
of Fourier transform methods to stochastic processes. More recently these equations have become of
interest in finance to price discretely monitored path-dependent options like barrier, first-touch, lookback
(or hindsight), quantile and Bermudan options (Fusai et al., 2006; Green et al., 2010; Fusai et al., 2012;
Marazzina et al., 2012; Fusai et al., 2016; Phelan et al., 2018, 2019, 2020). The Wiener-Hopf method is
employed also to solve a large collection of mixed boundary value problems (Duffy, 2008).

2. Mathematical tools

2.1 Fourier transform and projection operators

We define the Fourier transform of a function f (x) as

f̂ (ξ ) = Fx→ξ [ f (x)](ξ ) =
∫ +∞

−∞

f (x)eiξ xdx (2.1)

and its inverse as

f (x) = F−1
ξ→x[ f̂ (ξ )](x) =

1
2π

∫ +∞

−∞

f̂ (ξ )e−ixξ aξ (2.2)

where i is the imaginary unit. We are aware that it is advised to define Fourier space in terms of
frequency ν (see e.g Press et al., 2007) rather than angular frequency or pulsation ξ = 2πν (this is
physics terminology if x is interpreted as time). With ν the inverse transform lacks the factor 1/(2π),
making it more symmetric with respect to the forward transform, and the Nyquist relation between
grids in the normal and Fourier spaces simplifies to ∆x∆ν = 1/N, where N is the number of grid points,
without a factor 2π on the right-hand side. We also know that putting the minus sign in the exponent
of the forward Fourier transform stresses the relationship with the Laplace transform and is the more
common choice in fast Fourier transform (FFT) libraries, including the FFTW (Frigo & Johnson, 2005)
used in MATLAB. However, we chose the definition of the Fourier transform used normally in the two
main application fields of Eq. (1.1), physics and finance. An inconvenience is that the Fourier transform
F of our equations translates into ifft in the MATLAB code examples given in the supplementary
material, and the inverse transform F−1 into fft.

We define the projection of a function f (x) on the positive or on the negative half-axis through the
multiplication with the indicator function of that set,

f+(x) = P+,x f (x) = 1R+(x) f (x) (2.3)
f−(x) = P−,x f (x) = 1R−(x) f (x). (2.4)

A function that, like f+(x), is 0 for x < 0 and nonzero for x > 0 is called “causal”, because it can be used
to describe the effect of something that happens at x = 0 and causes the function to become nonzero.
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The two half-range Fourier transforms are

f̂+(ξ ) = Fx→ξ [ f+(x)](ξ ) =
∫ +∞

0
f (x)eiξ xdx (2.5)

f̂−(ξ ) = Fx→ξ [ f−(x)](ξ ) =
∫ 0

−∞

f (x)eiξ xdx. (2.6)

The order in which the operators are applied matters:

f̂+(ξ ) = Fx→ξ [P+,x f (x)](ξ ) 6= f̂+(ξ ) = P+,ξ Fx→ξ [ f (x)](ξ ). (2.7)

In other words, f̂+(ξ ) is the Fourier transform of a function f (x) that vanishes for negative arguments x,
but f̂+(ξ ) does not vanish itself for negative arguments ξ , which instead happens with f̂+(ξ ); similarly
for the − case. The function f̂+(ξ ) is analytic (or holomorphic), i.e. locally given by a convergent
power series, in an upper complex half-plane that includes the real line; the function f̂−(ξ ) is analytic
in a lower complex half-plane that includes the real line. The half-range Fourier transforms can be
considered special cases of the Laplace transform,

f̃ (s) = Lx→s[ f (x)](s) =
∫ +∞

0
f (x)e−sxdx, s ∈ C, (2.8)

where s = ±iξ , while the Fourier transform can be considered a special case of the bilateral or two-
sided Laplace transform. Except possibly for x = 0, the indicator function 1R+(x) coincides with the
Heaviside step function Θ(x), and 1R−(x) with 1−Θ(x); Θ(x) is 1 if x> 0 and 0 if x< 1, while for x= 0
it can be assigned the value 0 (left-continuous choice), 1 (right-continuous choice), or 1/2 (symmetric
choice). When integrating as in Eqs. (2.5) and (2.6), the value for x = 0 matters only numerically and
only if x = 0 is a grid point, as analytically the measure of a point is zero. Clearly the sum of the two
projections, Eqs. (2.3) and (2.4), is the full function,

f+(x)+ f−(x) = f (x), (2.9)

and the sum of the two half-range Fourier transforms, Eqs. (2.5) and (2.6), is the full Fourier transform,

f̂+(ξ )+ f̂−(ξ ) = f̂ (ξ ). (2.10)

2.2 Gibbs phenomenon

As explained in Section 2.1, we numerically implement the forward and inverse Fourier transform using
the FFTW library in MATLAB. The ranges of x and ξ cease to be infinite and continuous, and are
approximated with grids of size N. The other parameter which defines both grids, which we centre
around zero, is the truncation in the x domain xmax. The step is ∆x = 2xmax/N and the x grid is

xn = n∆x, n =−N
2
,−N

2
+1, . . . ,

N
2
−1. (2.11)

The step of the ξ grid is given by the Nyquist relation, ∆ξ = 2π/(N∆x) = π/xmax; the truncation in the
ξ domain is ξmax = π/∆x and the ξ grid is

ξm = m∆ξ , m =−N
2
,−N

2
+1, . . . ,

N
2
−1. (2.12)
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The discrete forward and inverse Fourier transforms are

f̂ (ξm,∆x,N) = ∆x
N/2−1

∑
n=−N/2

f (xn)eiξmxn (2.13)

f (xn,∆ξ ,N) =
∆ξ

2π

N/2−1

∑
m=−N/2

f̂ (ξm)e−ixnξm . (2.14)

The truncation of the sums in Eqs. (2.13) and (2.14) causes the Gibbs phenomenon. For a detailed
explanation of its effect on the solution to Wiener-Hopf type equations see Phelan et al. (2019). In this
case we must consider two main issues: firstly, if the function f (x) has a discontinuity, the truncation
of f̂ (ξm,∆x,N) causes oscillations in f (xn,∆ξ ,N) close to the discontinuity; secondly, the error away
from that discontinuity will decay with the grid size N as | f (xn)− f (xn,∆ξ ,N)|= O(1/N).

There have been many different approaches to solve or mitigate the Gibbs phenomenon; see e.g.
Vandeven (1991); Gottlieb & Shu (1997); Tadmor & Tanner (2005); Tadmor (2007); Ruijter et al. (2015).
As in Phelan et al. (2019), we apply a spectral filter in the Fourier domain, specifically the exponential
filter of Gottlieb & Shu (1997)

σ(η) = e−ϑη p
, (2.15)

where p ∈ N is even and η = ξ/ξmax. This function does not strictly meet the usual filter requirements
described e.g. by Vandeven (1991) as it does not go exactly to zero when |η | = 1, nor do so its deriva-
tives. However, if we select ϑ > − logε , where ε is machine precision, then the filter coefficients are
within computational accuracy of the requirements. Advantages of the exponential filter are its good
performance, its simple form, and the order of the filter being equal to the parameter p which is directly
input into the filter equation.

We also investigated the use of the Planck taper (McKechan et al., 2010), which is defined piecewise
as

σ(η) =



0, η 6 η1, η1 =−1
1

e z(η)+1
, z(η) = η2−η1

η−η1
+ η2−η1

η−η2
, η1 < η < η2, η2 = ε−1

1, η2 6 η 6 η3, η3 = 1− ε

1
e z(η)+1

, z(η) = η3−η4
η−η3

+ η3−η4
η−η4

, η3 < η < η4, η4 = 1

0, η > η4.

(2.16)

Here, the value of ε gives the proportion of the range of η which is used for the slope regions. In
common with the findings by Phelan et al. (2019), the Planck taper, whilst having some interesting char-
acteristics such as a flat central section and a filter order of ∞, when tested did not offer any advantage
over the exponential filter, so we did not pursue its use any further.

2.3 Hilbert transform and Wiener-Hopf factorisation

The Hilbert transform (see e.g Pandey, 1996; Vergara Caffarelli & Loreti, 1999; King, 2009) of f (x) is
defined as the Cauchy principal value of the convolution with 1/(πx),

Hx f (x) = p.v.
1

πx
∗ f (x) = p.v.

1
π

∫ +∞

−∞

f (x′)
x− x′

dx′ (2.17)

= lim
ε→0+

1
π

(∫ −ε

−1/ε

f (x′)
x− x′

dx′+
∫ 1/ε

ε

f (x′)
x− x′

dx′
)
. (2.18)
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The principal value avoids that the improper integral evaluates to the indefinite form +∞−∞. Since with
this definition the Hilbert transform often appears multiplied by the imaginary unit (see the following
equations), some authors such as Stenger (1973) define the Hilbert transform as the principal value of the
convolution with i/(πx). To stress that the Hilbert transform is actually a functional like the Fourier and
Laplace transforms, one could write Hx′→x[ f (x′)](x) instead than Hx f (x), but this is too cumbersome
and also less useful because, unlike x and ξ or x and s, x′ and x belong to the same space. A subscript
like x→ ξ or x can be omitted when there is no misunderstanding about which variable the operators
F ,F−1,P+,P− and H act on, notably when the argument function depends on a single variable;
this is mostly the case here. The operator iH is its own inverse,

(iH )2 f (x) = f (x); (2.19)

equivalently, H −1 =−H . The convolution theorem

F [ f (x)∗g(x)] = f̂ (ξ )ĝ(ξ ), (2.20)

which maps the convolution product in real space to a simple product in Fourier space, together with
the Fourier transform (Weisstein, 2021)

p.v.F
1

πx
= isgnξ (2.21)

enables to express the Hilbert transform through a forward and an inverse Fourier transform,

H f (x) = F−1[isgnξ f̂ (ξ )
]
. (2.22)

Thus a fast method to compute the Hilbert transform numerically consists simply in evaluating Eq. (2.22)
through a forward and an inverse FFT. In the next subsection, 2.4, we shall see more sophisticated
numerical methods. Swapping the forward Fourier transform with its inverse, Eq. (2.21) becomes

p.v.F−1 1
πξ

=−isgnx, (2.23)

and Eq. (2.22) becomes
iH f̂ (ξ ) = F

[
sgnx f (x)

]
; (2.24)

substituting sgnx = 1R+(x)−1R−(x) (this is true also for x = 0, while sgnx = 2Θ(x)−1 is fulfilled for
x = 0 only if Θ(0) = 1/2), and applying the definitions of the half-range Fourier transforms, Eqs. (2.5)
and (2.6), yields

f̂+(ξ )− f̂−(ξ ) = iH f̂ (ξ ). (2.25)

This can be shown also evaluating the integral in Eq. (2.17) with contour integration methods in the
complex plane. Together, Eqs. (2.10) and (2.25) are known as Plemelj-Sokhotsky relations (Pandey,
1996; Vergara Caffarelli & Loreti, 1999; King, 2009). They can be rearranged as

f̂+(ξ ) =
1
2
[

f̂ (ξ )+ iH f̂ (ξ )
]

(2.26)

f̂−(ξ ) =
1
2
[

f̂ (ξ )− iH f̂ (ξ )
]

(2.27)
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or, with a different notation involving the Fourier-transform and projection operators, as

FP+ f (x) =
1
2
[
F f (x)+ iH F f (x)

]
(2.28)

FP− f (x) =
1
2
[
F f (x)− iH F f (x)

]
. (2.29)

Substituting f (x) with P+ f (x) in Eq. (2.28) and f (x) with P− f (x) in Eq. (2.29), and taking into
account that projection operators are idempotent, i.e., PP f (x) = P f (x), shows that the half-range
Fourier transforms are eigenfunctions of the Hilbert transform operator,

iH f̂+(ξ ) = f̂+(ξ ) (2.30)

iH f̂−(ξ ) = − f̂−(ξ ). (2.31)

This is evident also substituting f (x) with f+(x) or with f−(x) in Eq. (2.24), or applying the operator
iH to both sides of Eqs. (2.26)–(2.27) and simplifying with Eq. (2.19). Eqs. (2.30) and (2.31) allow to
obtain Eq. (2.25) applying the operator iH to both sides of Eq. (2.10); conversely, Eq. (2.10) can be
reobtained applying iH to both sides of Eq. (2.25). Eqs. (2.26) and (2.27) are invariant with respect to
an application of iH to both sides.

The key step in the Wiener-Hopf solution of Eq. (1.1) described in the following section is the
decomposition of a function f̂ , i.e., the reverse of Eq. (2.10),

f̂ (ξ ) = f̂+(ξ )+ f̂−(ξ ). (2.32)

The factorisation of a function f̂ (ξ )
f̂ (ξ ) = f̂+(ξ ) f̂−(ξ ), (2.33)

which is required too, can be reduced to a decomposition by taking logarithms,

log f̂ (ξ ) = log f̂+(ξ )+ log f̂−(ξ ); (2.34)

this procedure is called logarithmic decomposition. As described by Rino (1970), Henery (1974) and
Bart et al. (2004), the decomposition can be achieved by

f̂+(ξ ) = FP+F−1 f̂ (ξ ) (2.35)

f̂−(ξ ) = FP−F−1 f̂ (ξ ), (2.36)

as can also be seen from the definitions of the half-range Fourier transforms, Eqs. (2.5) and (2.6).
More generally by the Plemelj-Sokhotsky relations, Eqs. (2.26) and (2.27) can be used (Stenger, 1973).
Eqs. (2.35) and (2.36) are a special case of the latter if the Hilbert transform is computed through
Eq. (2.24).

The definition of the two half-range Fourier transforms, Eqs. (2.5) and (2.6), can be generalized
splitting the x axis around a constant a 6= 0. Feng & Linetsky (2008) showed how the shift theorem,

Fx→ξ [ f (x+a)](ξ ) = f̂ (ξ )e−iaξ , (2.37)

can be exploited to generalise the Plemelj-Sokhotsky relations to

f̂+(ξ ) =
1
2
{

f̂ (ξ )+ eiaξ iHξ

[
f̂ (ξ )e−iaξ

]}
(2.38)

f̂−(ξ ) =
1
2
{

f̂ (ξ )− eiaξ iHξ

[
f̂ (ξ )e−iaξ

]}
. (2.39)
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It might be a good idea to write f̂+,a and f̂−,a on the left-hand side, but we will not do it to not over-
burden the notation, since it will be clear from the context with respect to which parameter a function is
decomposed. In the above formulas Eq. (2.24) generalizes to

eiaξ iHξ

[
f̂ (ξ )e−iaξ

]
= eiaξ Fx→ξ

[
sgn(x) f (x+a)

]
(2.40)

= Fx→ξ

[
sgn(x−a) f (x)

]
(2.41)

= Fx→ξ

[
(1(a,+∞)(x)−1(−∞,a)(x)) f (x)

]
, (2.42)

and thus it is easy to show that

lim
a→−∞

eiaξ iHξ

[
f̂ (ξ )e−iaξ

]
= f̂ (ξ ) (2.43)

lim
a→+∞

eiaξ iHξ

[
f̂ (ξ )e−iaξ

]
=− f̂ (ξ ) (2.44)

and that lima→−∞ f̂+(ξ ) = f̂ (ξ ), lima→+∞ f̂+(ξ ) = 0, lima→−∞ f̂−(ξ ) = 0, lima→+∞ f̂−(ξ ) = f̂ (ξ ).
These limits are useful to retrieve the results for the classical Wiener-Hopf equation from those for the
Fredholm equation.

2.4 Fast Hilbert transform with sinc functions

Eq. (2.22) provides a straightforward method to evaluate numerically the Hilbert transform. Since it is
based on two FFTs, its computational cost is O(N logN), where N is the number of grid points, and
thus is called fast. We compared this method with the quadrature method described in King (2009,
Eqs. (4.19)–(4.20)), where the summation is taken over every second point in order to avoid the singu-
larity which results when xi− x j = 0. We tried various quadrature weights, including Simpson’s rule
and 3rd and 4th order quadrature (Press et al., 2007). For our implementation, see the MATLAB func-
tions htq.m and weights.m in the supplementary material. All weights give the same result and have
polynomial convergence with N. Therefore, as with quadrature the computation speed is O(N2), the
FFT-based method is preferable because of its higher speed.

An alternative, but equally fast O(N logN) approach to compute numerically the Hilbert transform
is based on the sinc expansion approximation of analytical functions. Sinc functions are deeply studied
in the books by Stenger (1993, 2011), where the author shows that a function f analytical in the whole
complex plane and of exponential type with parameter π/h, i.e.,

| f (z)|6Ceπ|z|/h, (2.45)

can be reconstructed exactly from the knowledge of its values on an equispaced grid of step h. Defining
the sinc functions

Sn(z,h) =
sin(π(z−nh)/h)

π(z−nh)/h
, n ∈ Z, (2.46)

the function f admits the sinc expansion (Stenger, 1993, Theorem 1.10.1)

f (z) =
+∞

∑
n=−∞

f (nh)Sn(z,h). (2.47)

Moreover, also its Fourier transform admits the sinc expansion

f̂ (ξ ) = h
+∞

∑
n=−∞

f (nh)eiξ nh if |ξ |< π/h, (2.48)
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while it is zero if |ξ |> π/h. Finally, also the integrals of f and | f |2 can be written as sinc expansions,∫ +∞

−∞

f (x)dx = h
+∞

∑
n=−∞

f (nh),
∫ +∞

−∞

| f (x)|2dx = h
+∞

∑
n=−∞

| f (nh)|2. (2.49)

The above results show in particular that the trapezoidal quadrature rule with step size h is exact. Using
the following result on the Hilbert transform of the sinc functions (Feng & Linetsky, 2008, Corollary
6.1)

Hξ Sn(ξ ,h) =
1− cos(π(ξ −nh)/h)

π(ξ −nh)/h
, (2.50)

also the Hilbert transform can be evaluated exactly as

Hξ f (ξ ) =
+∞

∑
n=−∞

f (nh)
1− cos(π(ξ −nh)/h)

π(ξ −nh)/h
. (2.51)

This holds for a function f that is analytic in the whole complex plane. However, this can be used
also to approximate a function that is analytic only in a strip including the real axis, which is the case
considered in this article. As shown in Stenger (1993, Theorems 3.1.3, 3.2.1 and 3.1.4), in this case the
trapezoidal approximation has a discretisation error that decays exponentially with respect to h. Feng
& Linetsky (2008, Section 6.5) also shows that the computation of the Hilbert transform via a sinc
expansion can be performed using the FFT. The idea is that to compute a discrete Hilbert transform
it is necessary to do matrix-vector multiplications involving Toeplitz matrices. As is well known, this
kind of multiplications can be performed exploiting the FFT, once those matrices are embedded in a
circulant matrix as in Feng & Linetsky (2008, Appendix B) and Fusai et al. (2012). In particular, Feng
& Linetsky (2008, 2009) prove the following convergence result: if a function is analytic in a suitable
strip around the real axis, then the discretisation error of its numerical factorisation or decomposition
decays exponentially with respect to the step size between discretisation points h. Feng & Linetsky
(2009, Theorem 3.3) considers the computation of the Hilbert transform and Feng & Linetsky (2008,
Theorems 6.5) and Feng & Linetsky (2009, Theorems 3.4) are concerned with the calculation of the
Plemelj-Sokhotsky relations from Eqs. (2.26) and (2.27) in particular. An implementation of both the
O(N logN) methods presented above can be found in the fuction ifht.m in the supplementary material.

However, the error due to the infinite sum in Eq. (2.51) being truncated to the number of FFT grid
points depends on the shape of the function under transform. This has been explored further in the
error bounds developped in Feng & Linetsky (2008, Section 6.4.2) and Phelan et al. (2019, Section 3).
In the case of a function that decays exponentially as |ξ | → ∞, exponential convergence is obtained.
However, if a function decays polynomially then the truncation error convergence is only polynomially
decreasing. In their paper on lookback options (Feng & Linetsky, 2009, Theorem 3.3) report a result
by Stenger that proves the exponential convergence of the discrete sinc-based fast Hilbert transform to
the continuous Hilbert transform. They also examine the truncation error, specifically observing in a
footnote that this converges exponentially only under certain conditions, notably f (x) 6 κ exp(c|x|ν)
for some κ,c,ν > 0. This algorithm can be obtained with an eigenfunction expansion of H and is
identical to the Kress and Martensen method, which was introduced with a proof that its error converges
exponentially (Kress & Martensen, 1970; Weideman, 1995).

3. The classical Wiener-Hopf method for a convolution equation on a semi-infinite interval

Consider Eq. (1.1) with b = +∞. The lower integration limit a can be set to 0 shifting the x scale
horizontally by the constant a to a new scale x′ = x− a; the prime is dropped hereafter. The functions
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f (x) and g(x), whose domain is [0,+∞), are extended to the whole real axis defining f0(x) = 0 for x < 0,
f0(x) = f (x) for > 0 and g0(x) = 0 for x < 0, g0(x) = g(x) for x > 0. Define moreover the auxiliary
function

f1(x) =
∫

∞

0
k(x− x′) f (x′)dx′ =

∫ +∞

−∞

k(x− x′) f0(x′)dx′, x < 0, (3.1)

and f1(x) = 0 for x > 0, i.e., f̂1 =
(
k̂ f̂0
)
−. Since f0 and g0 are + functions and f1 is a − function, it is

customary to denote these functions f+, g+, and f− respectively. With them Eq. (1.1) is extended to

λ f+(x)−
∫ +∞

−∞

k(x− x′) f+(x′)dx′+ f−(x) = g+(x), x ∈ R, (3.2)

or, with a more compact notation for the convolution,

λ f+(x)− k(x)∗ f+(x)+ f−(x) = g+(x), x ∈ R. (3.3)

The extension of the integration domain to the whole real axis does not affect the equation and its
solution on the positive half-axis, but allows to apply the convolution theorem, Eq. (2.20), to obtain the
equation in Fourier space,

l̂(ξ ) f̂+(ξ )+ f̂−(ξ ) = ĝ+(ξ ), (3.4)

where l̂(ξ ) = λ − k̂(ξ ), (l(x) and l̂(ξ ) are the functional derivatives of the equation with respect to the
solution in normal and Fourier space respectively). Dropping the argument ξ for brevity, factorising
l̂ = l̂− l̂+ and dividing the equation by l̂− gives

l̂+ f̂++ l̂−
−1

f̂− = l̂−
−1

ĝ+. (3.5)

Defining

ĉ = l̂−
−1

ĝ+ (3.6)

and decomposing it as ĉ = ĉ++ ĉ− yields finally

l̂+ f̂++ l̂−
−1

f̂− = ĉ++ ĉ−. (3.7)

The + and − components can be separated into

f̂+ = l̂+
−1

ĉ+ (3.8)

f̂− = l̂−ĉ−, (3.9)

which allows to obtain the sought solution from

f+ = F−1(l̂+−1
ĉ+
)
, (3.10)

while f− was introduced as an auxiliary function and is not of further interest.
The case with a = −∞ is treated in a similar fashion. The upper integration limit b can be set to

0 shifting the x scale horizontally by the constant b to a new scale x′ = x− b; the prime is dropped
hereafter. The functions f (x) and g(x), whose domain is (−∞,0], are extended to the whole real axis
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defining f0(x) = f (x) for x 6 0, f0(x) = 0 for x > 0 and g0(x) = g(x) for x 6 0, g0(x) = 0 for x > 0.
Define moreover the auxiliary function

f2(x) =
∫ 0

−∞

k(x− x′) f (x′)dx′ =
∫ +∞

−∞

k(x− x′) f0(x′)dx′, x > 0, (3.11)

and f2(x) = 0 for x 6 0, i.e., f̂2 =
(
k̂ f̂0
)
+

. Now f0 and g0 are − functions and f2 is a + function, so it
is customary to denote these functions f−, g−, and f+ respectively. With them Eq. (1.1) is extended to
equations identical to Eqs. (3.2)–(3.10), except that the + and − indices are swapped. In particular, the
sought solution is obtained from

ĉ = l̂+
−1

ĝ− (3.12)

f− = F−1(l̂−−1
ĉ−
)
. (3.13)

A more elegant alternative to shifting the x scale forth and back by the constant a or b is to modulate
the functions in Fourier space decomposing ĉ with respect to this constant by the generalized Plemelj-
Sokhotsky relations, Eqs. (2.38) and (2.39). The function l̂ is always factorized with respect to 0, while
ĉ is decomposed with respect to a when b = +∞ or to b when a = −∞. For details, see the function
whf gmf filt4.m in the supplementary material.

4. Generalisation of the Wiener-Hopf method to a convolution equation on a finite interval: the
Fredholm equation

4.1 Theory

In the Fredholm equation both integration limits a and b are finite; either a or, less usually, b can be set
to 0 shifting the x scale, but, unlike with the classical Wiener-Hopf equation described in the previous
section, we prefer not to modify any of the two integration limits; instead, we will use the generalized
Plemelj-Sokhotsky relations. The functions f (x) and g(x), whose domain is [a,b], are extended to the
whole real axis defining f0(x) = f (x) for x∈ [a,b], f0(x) = 0 for x /∈ [a,b] and g0(x) = g(x) for x∈ [a,b],
g0(x) = 0 for x /∈ [a,b]. The kernel k(x), whose domain is [a− b,b− a], is extended to the whole real
axis defining k0(x) = k(x) for x ∈ [a−b,b−a] and k0(x) = 0 for x /∈ [a−b,b−a]. Define moreover the
two auxiliary functions

f1(x) =
∫ b

a
k(x− x′) f (x′)dx′ =

∫ +∞

−∞

k0(x− x′) f0(x′)dx′, x < a, (4.1)

f1(x) = 0 for x > a, i.e., f̂1 = eiaξ
(
k̂0 f̂0e−iaξ

)
− = f̂−,

f2(x) =
∫ b

a
k(x− x′) f (x′)dx′ =

∫ +∞

−∞

k0(x− x′) f0(x′)dx′, x > b, (4.2)

and f2(x) = 0 for x 6 b, i.e., f̂2 = eibξ
(
k̂ f̂0e−ibξ

)
+
= f̂+. Because k0(x) = 0 for x /∈ [a− b,b− a],

f−(x) = 0 also for x < a− (b− a) = 2a− b and f+(x) = 0 also for x > b− (a− b) = 2b− a. Thus
Eq. (1.1) extends to

λ f0(x)−
∫ +∞

−∞

k0(x− x′) f0(x′)dx′+ f−(x)+ f+(x) = g0(x) (4.3)
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or, with a more compact notation for the convolution,

λ f0(x)− k0(x)∗ f0(x)+ f−(x)+ f+(x) = g0(x), (4.4)

and upon Fourier transformation, setting l̂(ξ ) = λ − k̂0(ξ ),

l̂(ξ ) f̂0(ξ )+ f̂−(ξ )+ f̂+(ξ ) = ĝ0(ξ ). (4.5)

Eqs. (4.3)–(4.5) look similar to Eqs. (3.2)–(3.4), but now we have two auxiliary functions, f̂−(ξ ), which
is − with respect to any c > a, and f̂+(ξ ), which is + with respect to any d 6 b, while both the
unknown function f̂0(ξ ) and the forcing function ĝ0(ξ ) are + with respect to a (or any number 6 a)
and − with respect to b (or any number > b). Therefore the usual approach is to split Eq. (4.5) into
two coupled Wiener-Hopf equations, one with the origin shifted to a, the other with the origin shifted
to b (Green et al., 2010). These functions typically involve the four redundant unknowns f̂0(ξ )e−iaξ ,
f̂+(ξ )e−ibξ (which are + functions), f̂0(ξ )e−ibξ , f̂−(ξ )e−iaξ (which are − functions). In Section 4.2
the functions f̂−(ξ ) and f̂+(ξ ) correspond to J− and J+ from Green et al. (2010), Eq. (2.51), while ĉ1
and ĉ2 correspond to P and Q from Eqs. (2.12) and (2.24) in that paper.

4.2 Iterative solution

We solved the system of integral equations described in Eqs. (4.1)–(4.3) iteratively observing that, if we
know f̂+(ξ ) and subtract it from both sides of Eq. (4.5) with the origin of the x axis shifted to a, the
result looks like Eq. (3.4), so that we can use the method described in Sec. 3 to obtain f̂−(ξ ); similarly,
if we know f̂−(ξ ) and subtract it from both sides of Eq. (4.5) with the origin of the x axis shifted to b,
we can use the method described in Sec. 3 to obtain f̂+(ξ ). Thus, once again dropping the argument ξ

for brevity of notation, our procedure is to write Eq. (4.5) divided once by l̂−, as in Eq. (3.5), and once
by l̂+,

l̂+ f̂0 + l̂−
−1

f̂−+ l̂−
−1

f̂+ = l̂−
−1

ĝ0 (4.6)

l̂− f̂0 + l̂+
−1

f̂−+ l̂+
−1

f̂+ = l̂+
−1

ĝ0, (4.7)

start from the guess f̂+ = 0 in Eq. (4.6), set

ĉ1 = l̂−
−1
(ĝ0− f̂+), (4.8)

decompose ĉ1 = ĉ1++ ĉ1− with respect to a, and compute the approximations

f̂0 = l̂+
−1

ĉ1+ (4.9)

f̂− = l̂−ĉ1− (4.10)

as + and − functions with respect to a; then turn to Eq. (4.7), set

ĉ2 = l̂+
−1
(ĝ0− f̂−), (4.11)

decompose ĉ2 = ĉ2++ ĉ2− with respect to b, and compute the new approximations

f̂0 = l̂−
−1

ĉ2− (4.12)

f̂+ = l̂+ĉ2+ (4.13)
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as + and − functions with respect to b; and so on until the difference between the values of f̂0 at an
iteration and the previous falls below a threshold. An equivalent result is obtained starting from the
guess f̂− = 0 in Eq. (4.7) and the computation of ĉ2. Notice that the iterations are performed looking
for a fixed point on the variables f̂− and f̂+, while f̂0 is a side product output at each step, but not used
to compute the next step. For details, see the function whf gmf filt4.m in the supplementary material.

4.3 Other iterative solutions

In this journal, Henery (1977) proposed an iterative solution of the Fredholm equation, but presented
only the theory without a numerical validation. In our tests, its literal implementation does not work.
The procedure can be mapped to ours including a missing projection and an untold detail: the yn found in
the residual correction scheme are corrections to the solution and thus must be added together. However,
Henery (1977) did not express the algorithm in terms of the Hilbert transform and thus used only the
simple implementation with the sign function, but not with a sinc function expansion.

Margetis & Choi (2006) presented an iterative solution limited to algebraic kernel functions. More-
over, in the example they implemented which is based on a steady advection-diffusion problem first
suggested by Choi et al. (2005), they noted that “this choice of source function and kernel causes for-
tuitous algebraic simplifications.” Therefore this method, whilst interesting as an iterative procedure,
cannot be considered to have a general validity.

4.4 Noble’s matrix factorisation approach

To avoid the iterations, we tried to solve the two simultaneous Wiener-Hopf equations casted in matrix
form according to the classic approach of Noble (1958, pp. 153–157); see also Daniele (1984) and
Daniele & Zich (2014, Sec. 1.5.2). We write Eq. (4.5) multiplied once by e−iaξ and once by e−ibξ as(

l̂ ei(d−a)ξ

0 ei(d−b)ξ

)(
f̂0e−iaξ

f̂+e−idξ

)
+

(
0 ei(c−a)ξ

l̂ ei(c−b)ξ

)(
f̂0e−ibξ

f̂−e−icξ

)
=

(
0 1
l̂ ei(a−b)ξ

)(
0

ĝ0e−iaξ

)
(4.14)

where a 6 c and d 6 b. Convenient choices of the parameters c and d are c = a, d = b; c = b, d = a;
c = d = a; c = d = b. We choose c = a, d = b and write for short

L̂1 f̂++ L̂2 f̂− = L̂2 ĝ+. (4.15)

Multiplying from the left with L̂2
−1

yields a matrix version of Eq. (3.4),

L̂ f̂++ f̂− = ĝ+, (4.16)

where

L̂ = L̂2
−1

L̂1 = l̂−1
(
−ei(a−b)ξ 1

l̂ 0

)(
l̂ ei(b−a)ξ

0 1

)
=

(
−ei(a−b)ξ 0

l̂ ei(b−a)ξ

)
(4.17)

is a triangular matrix. Swapping the elements of f̂+ and f̂− permutes the elements of L̂. If we knew how

to factorise L̂ = L̂− L̂+, multiplying Eq. (4.16) from the left with L̂−
−1

would lead finally to

L̂+ f̂++ L̂−
−1

f̂− = L̂−
−1

ĝ+, (4.18)
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which is a matrix version of Eq. (3.5) and can be solved in a similar fashion decomposing its right-hand

side. The same result is obtained multiplying Eq. (4.15) from the left with L̂1
−1

or Eq. (4.16) from the
left with L̂−1, yielding

f̂++ L̂−1 f̂− = L̂−1 ĝ+, (4.19)

where

L̂−1 = L̂1
−1

L̂2 = l̂−1
(

1 −ei(b−a)ξ

0 l̂

)(
0 1
l̂ ei(a−b)ξ

)
=

(
−ei(b−a)ξ 0

l̂ ei(a−b)ξ

)
(4.20)

If we knew how to factorise L̂−1 = L̂+
−1

L̂−
−1

, multiplying Eq. (4.19) from the left with L̂+ would
lead again to Eq. (4.18).

Unfortunately, though a formula to factorise triangular 2×2 matrices has been published, see Jones
(1984, Eq. (21)) and Jones (1991, Eq. (6)), an oscillatory element like ei(b−a)ξ does not fulfil the condi-
tions to apply it: it is assumed that + or − factors remain + or − when inverted, but the inverse of the
+ function ei(b−a)ξ is the − function ei(a−b)ξ ; see also Daniele & Zich (2014, Sec. 4.3, Example 2).

4.5 Voronin’s matrix factorisation approach

More recently, a different matrix form of the two simultaneous Wiener-Hopf equations has been pro-
posed by Voronin (2004). We present it with slight modifications. Start from Eq. (4.5) and decompose
the kernel, k̂0 = k̂−+ k̂+ (for simplicity we drop the 0 subscript from the right-hand side), obtaining

(λ − k̂−− k̂+) f̂0 + f̂−+ f̂+ = ĝ0. (4.21)

Multiply by e−iaξ , take the + part, thus eliminating f̂−, which is a − function with respect to a, and
multiply by eiaξ , yielding

(λ − k̂+) f̂0− eiaξ (k̂− f̂0e−iaξ )++ f̂+ = ĝ0. (4.22)

Multiply by e−ibξ , take the − part, thus eliminating f̂+, which is a + function with respect to b, and
multiply by eibξ , yielding

λ f̂0− eiaξ (k̂− f̂0e−iaξ )+− eibξ (k̂+ f̂0e−ibξ )− = ĝ0. (4.23)

Define ϕ̂1 =
(
k̂−+ 1−λ

2

)
f̂0 and decompose it with respect to a, ϕ̂1 = ϕ̂1+ + ϕ̂1−; define ϕ̂2 =

(
k̂+ +

1−λ

2

)
f̂0 and decompose it with respect to b, ϕ̂2 = ϕ̂2++ ϕ̂2−; this gives

f̂0− ϕ̂1+− ϕ̂2− = ĝ0. (4.24)

The two coupled Wiener-Hopf equations are now obtained multiplying once by k̂−e−iaξ and once by
k̂+e−ibξ ,(

1− k̂− 0
−k̂+ei(a−b)ξ 1

)(
ϕ̂1+e−iaξ

ϕ̂2+e−ibξ

)
+

(
1 −k̂−ei(b−a)ξ

0 1− k̂+

)(
ϕ̂1−e−iaξ

ϕ̂2−e−ibξ

)
=

(
k̂−ĝ0e−iaξ

k̂+ĝ0e−ibξ

)
, (4.25)

for short
M̂r−

−1
ϕ̂ϕϕ++M̂r+ ϕ̂ϕϕ− = ĝ. (4.26)
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Here one can see that the parameter λ has been inserted in the definition of ϕ̂ϕϕ1 and ϕ̂ϕϕ2 to avoid that it

appears in place of the numbers 1 in the diagonal elements of M̂r−
−1

and M̂r+, which would make these
matrices singular for λ = 0. Multiplying from the left by M̂r− yields

ϕ̂ϕϕ++M̂ ϕ̂ϕϕ− = M̂r− ĝ, (4.27)

where

M̂ = M̂r−M̂r+ =
1

1− k̂−

(
1 0

k̂+ei(a−b)ξ 1− k̂−

)(
1 −k̂−ei(b−a)ξ

0 1− k̂+

)

=
1

1− k̂−

(
1 −k̂−ei(b−a)ξ

k̂+ei(a−b)ξ 1− k̂

)
. (4.28)

An equivalent result is obtained multiplying Eq. (4.26) from the left by M̂r+
−1

. If we knew how to

factorise M̂ = M̂l+M̂l−, multiplying Eq. (4.27) from the left by M̂l+
−1

would lead finally to

M̂l+
−1

ϕ̂ϕϕ++M̂l− ϕ̂ϕϕ− = M̂l+
−1

M̂r− ĝ, (4.29)

which, like Eq. (4.18), is a matrix version of Eq. (3.5) and can be solved in a similar fashion decomposing
its right-hand side.

Unfortunately we are stuck again: though formulas to convert left (+−) factorisations of 2× 2
matrices into right (−+) ones and vice versa have been published by Jones (1991, Eqs. (8)–(11)), the
information contained in Eq. (4.28) is not sufficient to apply them, so we cannot obtain M̂l+ and M̂l−
from our knowledge of M̂r− and M̂r+.

4.6 Iterative solution based on Voronin’s approach

An iterative solution is possible also with Voronin’s approach. Write Eq. (4.24) multiplied once by
k̂−/(1− k̂−) and once by k̂+/(1− k̂+),

ϕ̂1+−
1

1− k̂−
ϕ̂1−−

k̂−
1− k̂−

ϕ̂2− =
k̂−

1− k̂−
ĝ0 (4.30)

ϕ̂2−−
1

1− k̂+
ϕ̂2+−

k̂+
1− k̂+

ϕ̂1+ =
k̂+

1− k̂+
ĝ0, (4.31)

in Eq. (4.30) set

ĉ1 =
k̂−

1− k̂−
(ĝ0 + ϕ̂2−), (4.32)

start from the guess ϕ̂2− = 0, decompose ĉ1 = ĉ1++ ĉ1− with respect to a, and compute the approxima-
tions

ϕ̂1+ = ĉ1+ (4.33)

ϕ̂1− = (1− k̂−)ĉ1− (4.34)
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as + and − functions with respect to a, as well as

f̂0 =
1

k̂−+ 1−λ

2

(ϕ̂1++ ϕ̂1−) =
1

k̂−+ 1−λ

2

(
ĉ1++(1− k̂−)ĉ1−

)
; (4.35)

then turn to Eq. (4.31), set

ĉ2 =
k̂+

1− k̂+
(ĝ0− ϕ̂1+), (4.36)

decompose ĉ2 = ĉ2++ ĉ2− with respect to b, and compute the new approximations

ϕ̂2− = ĉ2− (4.37)

ϕ̂2+ = (1− k̂+)ĉ2+ (4.38)

as + and − functions with respect to b, as well as

f̂0 =
1

k̂++ 1−λ

2

(ϕ̂2−+ ϕ̂2+) =
1

k̂++ 1−λ

2

(
ĉ2−+(1− k̂+)ĉ2+

)
; (4.39)

and so on until the difference between the values of f̂0 at an iteration and the previous falls below
a threshold. An equivalent result is obtained starting from the guess ϕ̂1+ = 0 in Eq. (4.31) and the
computation of ĉ2. Similarly to Sec. 4.2, the iterations are performed looking for a fixed point on the
variables ϕ̂1 and ϕ̂2, while f̂0 is a side product output at each step, but not used to compute the next step.
For details, see the function whf gmf v.m in the supplementary material.

Generally, work on factorisation has concentrated on finding methods for particular matrix classes,
often corresponding to specific applications. For example, Kisil (2015) has developped and analysed an
approximate factorisation approach for Daniele-Khrapkov matrics but, although several matrix classes
can be reduced to this case, this is not a general solution. A digest of constructive matrix factorisation
methods was published in this journal by Rogosin & Mishuris (2016), who described several differ-
ent matrix classes and the most suitable methods for their factorisation. This work, whilst important,
underlines that there is no general method which can be used for all matrices.

5. Test cases

As we present a general solution to the Fredholm equation, rather than one limited to a particular appli-
cation, we provide several test cases to solve Eq. (1.1) for f (x). Although the methods developped
herein can be applied to both Fredholm and Wiener-Hopf equations, for the numerical tests we have
chosen to concentrate on solving examples of the Fredholm equation as it is the more challenging case
and encompasses Wiener-Hopf as a special example when a→−∞ or b→+∞.

Solutions to Eq. (1.1) with simple closed form expressions for f (x), g(x) and k(x) are not readily
available. However, if we limit the requirement for simplicity to f (x) and k(x), then closed form solu-
tions for g(x) in Eq. (1.1) can be calculated. These g(x) and k(x) can be used as inputs to our numerical
method, whose accuracy can be measured by comparing the result with f (x). We selected f (x) and k(x)
to give closed form expressions for g(x) and also to have Fourier transforms which are easily calcula-
ble. We derived three solutions, with both f (x) and k(x) 1. Gaussian, 2. Cauchy, 3. Laplace (bilateral
exponential). As discussed in Section 2.2 the decay of the functions as x,ξ → ∞ can influence the
error performance of Fourier-based methods. The functions were therefore selected to be exponentially
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decaying in both the state space and Fourier space (Gaussian), to be polynomially decaying in the state
space and exponentially decaying in the Fourier space (Cauchy) and to be exponentially decaying in
the state space and polynomially decaying in the Fourier space (Laplace). The derivation of g(x) is
described in the following sections.

5.1 Gaussian

We set f (x) = k(x) = 1√
π

e−x2
. The expression for g(x) is then

g(x) =
1√
π

e−x2 − 1
π

∫ b

a
e−(x−y)2

e−y2
dy

=
1√
π

e−x2 − 1
π

e−
x2
2

∫ b

a
e−2(y− x

2 )
2
dy

=
1√
π

e−x2 − 1√
2π

e−
x2
2
[
Φ(2b− x)−Φ(2a− x)

]
, x ∈ [a,b], (5.1)

where Φ(·) is the standard normal cumulative distribution function.

5.2 Cauchy

We set f (x) = k(x) = 1
π(x2+1) . The first step in the calculation of g(x) is to solve the integral

gint(x) =
1

π2

∫ b

a

1
y2 +1

1
(x− y)2 +1

dy. (5.2)

Using partial fractions,

gint(x) =
1

π2

∫ b

a

1
y2 +1

1
(x− y)2 +1

dy

=
1

π2x(x2 +4)

∫ b

a

(
2y

y2 +1
+

x
y2 +1

− 2(y− x)
(y− x)2 +1

+
x

(y− x)2 +1

)
dy

=
1

π2x(x2 +4)
[
log(y2 +1)+ xarctan(y)− log[(x− y)2 +1]+ xarctan(y− x)

]b
a

=
1

π2x(x2 +4)

{
log

(b2 +1)((a− x)2 +1)
(a2 +1)((b− x)2 +1)

+

+x [arctan(b)− arctan(a)+ arctan(b− x)− arctan(a− x)]} . (5.3)

This gives g(x) in closed form:

g(x) =
1

π(x2 +1)
− 1

π2x(x2 +4)

{
log

(b2 +1)((a− x)2 +1)
(a2 +1)((b− x)2 +1)

+

+x [arctan(b)− arctan(a)+ arctan(b− x)− arctan(a− x)]} , x ∈ [a,b]. (5.4)
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5.3 Laplace or bilateral exponential

We set f (x) = k(x) = 1
2 e−|x|. In order to make the calculation of g(x) simpler, the values of a and b are

restricted so that 0 < a < b < ∞. Then the formula for g(x) in closed form is

g(x) =
1
2

e−x− 1
4

∫ b

a
e−|x−y|e−ydy

=
1
2

e−x− 1
4

[∫ b

x
e(x−y)e−ydy+

∫ x

a
e−(x−y)e−ydy

]
=

1
2

e−x− 1
4

ex
(∫ b

x
e−2ydy+ e−x

∫ x

a
dy
)

=
1
2

e−x +
1
8

ex [e−2y]b
x−

1
4

e−x[y]xa
=

1
2

e−x +
1
8

ex
(

e−2b− e−2x
)
− 1

4
e−x(x−a)

= e−x
[

3
8
+

1
8

e−2(b−x)+
1
4
(a− x)

]
, x ∈ [a,b]. (5.5)

6. Results

We used the following methods to recover f (x) and produce the detailed results shown in this section:

1. 4th order quadrature with preconditioner (Fusai et al., 2012; Press et al., 2007); see the MATLAB
functions quadrature.m and weights.m in the supplementary material.

2. Wiener-Hopf method using the sinc-based fast Hilbert transform with no zero padding. In order
to counteract the oscillations on the recovered function, we used an exponential filter of order 8 on
the final stage of the fixed point algorithm. The maximum number of iterations of the fixed point
algorithm is set to 5. In fact, in most cases the final error level is achieved within 3 iterations.
We discuss the use of the sinc-based fast Hilbert transform and spectral filtering in Section 6.1.1
below.

3. Wiener-Hopf method using the symmetric sign function in the fast Hilbert transform, i.e. with
zeros placed at both ξ = 0 and ξ = ξmin = −N

2 ∆ξ , similar to the method introduced by Rino
(1970) and Henery (1974) and tested by Fusai et al. (2016).

4. Wiener-Hopf method with Voronin’s variant using the symmetrical sign function for the Hilbert
transform.

6.1 Results for the Gaussian test case

We first examine the performance of the different numerical methods with the Gaussian test case, with
particular emphasis on the method used to implement the Hilbert transform.

6.1.1 Sinc-based fast Hilbert transform and spectral filtering In the financial pricing applications
described by Feng & Linetsky (2008) and Fusai et al. (2016) the sinc-based fast Hilbert transform has
shown excellent error convergence, especially when combined with a spectral filter as in Phelan et al.
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(2019). However, when we consider its use for this application we must take account of several ways
in which the requirements differ from its general use for finding solutions to Wiener-Hopf or Fredholm
equations.

Firstly the pricing methods that were implemented using the Wiener-Hopf method in Fusai et al.
(2016), as devised by Green et al. (2010), use the analytic continuation of x, i.e. they give results for
values of x both inside and outside the barriers (the integration limits of Fredholm equation). This means
that for these applications there is no requirement to truncate the functions to the integration limits of
a and b in the state space, unlike the problems presented as examples in this paper. The requirement
to truncate the function means that there is a jump discontinuity introduced in the state space, meaning
that, as described by Boyd (2001), the function in the Fourier space decays as a first order polynomial
due to the Gibbs phenomenon. As explained in Stenger (1993) this polynomial decay means that the
sinc-based fast Hilbert transform no longer obtains an error which is exponentially convergent with
grid size but rather converges polynomially. This is in contrast with the aforementioned finance-based
papers from Green et al. (2010) and Fusai et al. (2016) where the Fourier domain functions subject to
the sinc-based fast Hilbert transform are exponentially decaying (or polynomially so in the case of the
VG process) and so excellent error performance is achieved, especially in conjunction with a spectral
filter to solve the issue with the fixed point algorithm.

In contrast, here we solve the Fredholm and Wiener-Hopf equations as they were originally formu-
lated, i.e. the function is only defined for the range of the integration [a,b] and therefore the functions
g(x) and k(x) must be truncated to the ranges [a,b] and [a−b,b−a] respectively. This truncation will
introduce a jump in the functions which means that their Fourier transforms now have first order polyno-
mial decay. Therefore the truncation error from the Hilbert transform will have a first order polynomial
convergence unless we can exploit some symmetry between the Fourier domain functions for positive
and negative ξ as in Phelan et al. (2018), in which case we may achieve second order polynomial con-
vergence.

Moreover, there is a second important distinction to be made between the general solution presented
here and the work in the above literature. In the finance literature the solutions to the Fredholm equation
are used to calculate the expectation of a further function, in this case the payoff function. Therefore the
exact errors in the function for individual values of x are not particularly important. Rather, the finance
literature is concerned with the average error, weighted according to the shape of the payoff function.
This also has particular importance when we are considering the use of the sinc-based fast Hilbert
transform described in Section 2.4 which was instrumental in achieving exponential error convergence
with the number of FFT grid points N in Feng & Linetsky (2008) and Fusai et al. (2016).

In Figures 1 and 2, we show results using the sinc-based fast Hilbert transform with no filter for the
Gaussian test case described in Section 5.1. It is immediately obvious that, even for high values of N,
oscillations are visible in the numerical solution.

We can use a spectral filter to overcome the oscillations, however this can have a negative effect
on the accuracy of the numerical method, especially close to the discontinuities in the state space; this
is illustrated in Figures 3–5. Figure 4 shows that the lower order filter gives a shallower slope at the
discontinuity, but has a stronger effect on the oscillations. However, we can see from Figure 4 that,
regardless of the order of the filter, the overshoot at the discontinuity remains approximately the same.
Figure 5 shows that a spectral filter removes the oscillations away from the discontinuity and that the
best results are achieved with a filter of order 8. Although the behaviour of the numerical method using
the sinc-based fast Hilbert transform is not appropriate for a general solution to the Fredholm equation
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FIG. 1. Numerical and analytical f (x) using the sinc-based fast Hilbert transform with no filter.

-0.5 0 0.5 1 1.5
x

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Er
ro
r

N=29

-0.5 0 0.5 1 1.5
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 10-3 N=213

-0.5 0 0.5 1 1.5
x

-2

-1

0

1

2 10-4 N=217

FIG. 2. Error in the numerical calculation of f (x) using the sinc-based fast Hilbert transform with no filter.

due to the high errors at function discontinuities, it remains the case that for applications where we are
solely interested in a function value away from any jumps this may be an appropriate method to use.
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FIG. 3. Numerical and analytical f (x) using the sinc-based fast Hilbert transform with an exponential filter. The parameter p
describes the order of the filter.
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FIG. 4. Numerical and analytical f (x) using the sinc-based fast Hilbert transform with an exponential filter, focussing on the
discontinuity at x = 0. The parameter p describes the order of the filter.
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6.1.2 Sign-based fast Hilbert transform method As an alternative to the sinc-based fast Hilbert trans-
form, we examine the method of Rino (1970) and Henery (1974), which was used also by Fusai et al.
(2016). It is based on the simple relationship between the Hilbert transform and the Fourier transform
given in Eq. (2.24).

The results for the Gaussian test case are shown in Figures 6–8; f is the analytic solution, fsgn0
and fVor are the numerical solutions obtained with the Wiener-Hopf iterative method using the fast
Hilbert transform implemented with the symmetric sign function, the latter in the Voronin variant. It
is immediately apparent from Figure 6 that neither implementation suffers from the overshoot that was
seen using the sinc-based fast Hilbert transform. However, looking at the discontinuity more closely in
Figure 7, we can see that we will have a peak error at a single state-space grid point as the numerical
solution increases to the final value of f (x) more slowly than the analytic function. However, unlike the
sinc-based function, where the extent of the oscillations depends not only on the filter, but also the shape
the function used, we can state here that as long as the value of x is at least one grid step away from
the discontinuity, the answer will be unaffected by the peak error. It is also interesting to note that the
error is symmetrical around the discontinuity when the iterative Wiener-Hopf method is used, but not
with the Voronin variant. This difference is likely to account for the better performance seen in Figure 8
compared to Figure 9. These display the error results away from the discontinuity and we can see that,
although there is some variation in the error across x, the results for both methods are superior to those
for the sinc-based fast Hilbert transform.
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FIG. 6. Numerical and analytical f (x) using the FFT based method with a symmetrical sign function.
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FIG. 7. Numerical and analytical f (x) using the FFT based method with a symmetrical sign function, focussing on the disconti-
nuity at x = 0.
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Although it is important to observe the functions which are calculated numerically, when assessing
the performance of the numerical methods, the error convergence with CPU time and number of grid
points N is also important. We measured this at 10%, 50% and 90% of the range between a and b;
results for the Gaussian test case are shown in Figures 10–11.

The fastest converging method is the Wiener-Hopf iterative method using the sign-based fast Hilbert
transform, achieving an error of O(1/N2). The other methods exhibited O(1/N) error convergence,
with the method using the sinc-based fast Hilbert transform with spectral filter achieving better absolute
error performance vs. N but converging with CPU time almost identically to the quadrature method.
The O(1/N) convergence achieved with the sinc-based fast Hilbert transform is consistent with the error
bound described by Stenger (1993) for a function with a first order discontinuity, while the O(1/N2)
convergence seen for the sign-based variant is consistent with that reported by Fusai et al. (2016).

102 104

N

10-12

10-10

10-8

10-6

10-4

10-2

100

Er
ro
r

Error at x=a+0.1

fsinc
fsin0
fVor
fq

102 104

N

10-12

10-10

10-8

10-6

10-4

10-2

Er
ro
r

Error at x=a+0.5

fsinc
fsin0
fVor
fq

102 104

N

10-10

10-8

10-6

10-4

10-2

Er
ro
r

Error at x=a+0.9

fsinc
fsin0
fVor
fq

FIG. 10. Error convergence of the numerical methods vs. N with the Gaussian test case.
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FIG. 11. Error convergence of the numerical methods vs. CPU time with the Gaussian test case.
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6.2 Results for Cauchy and Laplace test cases

Figures 12–15 compare the results for the test cases in Sections 5.2 and 5.3 for the iterative Wiener-
Hopf method with the sinc- and sign-based fast Hilbert transform methods; in the figures these are
labelled fsinc and fsgn. We also compare the performance of the iterative Voronin method with the
symmetrical sign function, labelled fVor. An 8th order exponential filter was used with the sinc-based
fast Hilbert transform to counteract the oscillations, as described in Section 6.1.1. As a benchmark we
include results from 4th order quadrature with preconditioner fq (Fusai et al., 2012; Press et al., 2007),
labelled fq, which was the previous state of the art. The results for the Cauchy and Laplace test cases are
consistent with those for the Gaussian test case; the use of the sinc-based fast Hilbert transform results in
an overshoot at the function discontinuities and the sign-based method results in a spot error at function
discontinuities. We also notice that the quadrature method has a spot error at the discontinuity, but this
effects a smaller range of x than our new numerical methods. The reason for this smaller range is that
the Fourier-based methods need a truncation in state space at ±4(b− a) in order to avoid wrap-round
effects. In contrast, the range of x for quadrature only needs truncation at the integration limits a and b.
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FIG. 12. Numerical and analytical f (x) with the Cauchy test case.

We also measured the error convergence with the Cauchy and Laplace test cases and the results are
shown in Figures 16–19. These confirm the findings with the Gaussian test case in Section 5.1 which
showed that the best performing method is the new iterative solution to the Wiener-Hopf equation with
the Hilbert transform implemented using the FFT with the symmetrical sign function.
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FIG. 13. Numerical and analytical f (x) with the Cauchy test case focussing on the first discontinuity.
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FIG. 14. Numerical and analytical f (x) with the Laplace test case.
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FIG. 15. Numerical and analytical f (x) with the Laplace test case focussing on the first discontinuity.
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FIG. 16. Error convergence of the numerical methods vs. N with the Cauchy test case.
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FIG. 17. Error convergence of the numerical methods vs. CPU time with the Cauchy test case.
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FIG. 18. Error convergence of the numerical methods vs. N with the Laplace test case.
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FIG. 19. Error convergence of the numerical methods vs. CPU time with the Laplace test case.

7. Conclusion

We implemented four methods to solve general Fredholm equations of the second kind and assessed
their performance for three test cases with analytical solutions. The methods are: 4th order quadrature
with preconditioner Fusai et al. (2012); Press et al. (2007); two iterative solutions that use the Wiener-
Hopf method with the sinc- or sign-based fast Hilbert transform; a variant of the iterative method based
on Voronin’s partial solution to the Fredholm equation with the sign-based fast Hilbert transform.

Unlike an earlier application in option pricing with exponential convergence of a weighted average
error, the iterative Wiener-Hopf method with the sinc-based fast Hilbert transform does not turn out opti-
mal for a general solution of the Fredholm equation, having O(1/N) convergence with the number of
FFT grid points N and high errors close to the function discontinuities; this can be explained with the dif-
ferent requirements of the two problems, as here the solution over the whole interval is required. Instead,
the iterative Wiener-Hopf method with the sign-based fast Hilbert transform has O(1/N2) convergence
and therefore performs better than its sinc-based sibling, the quadrature method from the literature and
the iterative method based on Voronin’s partial solution, whose convergence is O(1/N) even with the
sign-based fast Hilbert transform. So in terms of error convergence, the iterative Wiener-Hopf method
with the sign-based fast Hilbert transform reveals the new state of the art for the numerical solution of
general Fredholm equations, achieving double the convergence speed of the known 4th order quadrature
method.

The other aspect which we must compare for the different methods is the peak error at a discontinuity
of f (x) as shown in Figures 15 and 13. This error is wider for the Wiener-Hopf method than for the
quadrature method because a wider x range is required to avoid the wrap-around effects of Fourier
transform methods. Therefore, if we require an accurate answer close to a discontinuity, the quadrature
method may be best. However, the excellent CPU time vs. error performance shown in Figures 11,
17 and 19 recommend using the Wiener-Hopf method with the sign-based fast Hilbert transform and a
larger grid size to yield the required accuracy close to the discontinuities.
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