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Abstract: Industry Foundation Classes (IFCs), as the most recognized data schema for Building Infor-
mation Modeling (BIM), are increasingly combined with ontology to facilitate data interoperability
across the whole lifecycle in the Architecture, Engineering, Construction, and Facility Management
(AEC/FM). This paper conducts a bibliometric analysis of 122 papers from the perspective of data,
model, and application to summarize the modes of IFC and ontology integration (IFCOI). This paper
first analyzes the data and models of the integration from IFC data formats and ontology development
models to the IfcOWL data model. Next, the application status is summed up from objective and
phase dimensions, and four frequent applications with maturity are identified. Based on the afore-
mentioned multi-dimensional analysis, three integration modes are summarized, taking into account
various data interoperability requirements. Accordingly, ontology behaves as the representation of
domain knowledge, an enrichment tool for IFC model semantics, and a linkage between IFC data and
other heterogeneous data. Finally, this paper points out the challenges and opportunities for IFCOI in
the data, domain ontology, and integration process and proposes a building lifecycle management
model based on IFCOI.

Keywords: IFC; ontology; interoperability; knowledge representation; semantic enrichment; lifecycle
management

1. Introduction

Industry Foundation Classes (IFCs), developed and maintained by the buildingSMART
International (bSI) (formerly known as the International Alliance for Interoperability, IAI),
provide an open and neutral schema for storing and exchanging BIM data. They rely on
the EXPRESS language and concepts for its definition [1] and are expected to describe all
building components.

Globally, BIM regulations in various countries continue to highlight IFC as the pre-
ferred format for delivering design results. Over 400 software applications, including
Solibri [2], Revit [3], Bentley [4], and SketchUp [5], enable the exchange of IFC data among
stakeholders. Many studies have shown that IFC data can be exchanged and managed
for rule checking [6] and structural design analysis [7] during the design phase, construc-
tion cost estimation [8] and progress monitoring [9] during the construction phase, and
structural health monitoring [10] during the operation and maintenance (O&M) phase. In
short, IFC enables the exchange of information between BIM and other IFC-compatible
environments, which improves the efficiency, effectiveness, and performance of whole
lifecycle management.

Nevertheless, there are still some challenges in domain information representation
and heterogeneous data fusion in BIM-incompatible environments, where professional
boundaries in vendor barriers limit the interoperability of BIM data. IFC provides a rich yet
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redundant and ambiguous schema for interoperability and the same information may have
multiple data structures in the IFC data schema, which is caused by the lack of semantic
clarity in mapping entities and relationships [11]. Due to data heterogeneity, information
loss, omission, error, or even inaccessibility may occur in the interaction between BIM
and other related data, such as cost data, professional analysis data, monitoring data, and
Geographic Information System (GIS) data. Even if IFC is committed to the integration
of data from different users throughout the lifecycle, additional technical means are still
needed to address data heterogeneity.

Ontology is defined as a formal, explicit specification of a shared conceptualization [12].
As a Semantic Web technology, ontology can represent, exchange, and reuse domain knowl-
edge and define relationships between concepts. In addition to powerful descriptive capa-
bility, ontology can deduce new knowledge through rule-based languages. Ontology has
good adaptability and has been widely used in medicine [13], biology [14], engineering [15],
agriculture [16], and other fields. In the AEC/FM field, ontology is proven to have applicative
value in various tasks, such as knowledge representation [17,18], data interoperability [19–21],
and rule-based reasoning [22,23].

Given the capacity of ontology and the challenges faced by IFC, IFCOI is dedicated
to addressing data heterogeneity issues. Integrating IFC data with ontologies can be
applied throughout the lifecycle, ranging from design [24] and preconstruction [25] to
construction [26], operation, and maintenance [27]. Prevailing research shows that IFCOI
has been used in compliance checking [28], facility management [29], cost estimation [30],
and so on. With the explicit and normalized representation capability, ontology can be
combined with IFC to eliminate interoperability differences across domains and phases
and thus facilitate whole building lifecycle management.

There are 19 literature review articles [31–49] on IFCOI according to a preliminary
literature retrieval. Among them, five literature reviews focus on the application of IFC or
ontology in a specific domain [31–35], seven discuss the role of ontology in integrating BIM
with other technologies [37–40,42,43,47,48], and six review the independent application of
IFC or ontology [36,41,44–46,49], respectively. However, there is no comprehensive review
of IFCOI. Hence, it is worthwhile and necessary to conduct a systematic multi-dimensional
review, including data and applications, to unearth the integrational modes of IFC and
ontology. This review intends to answer the following questions:

(1) At the level of data and models, what are the existing categories, their distribution,
and the dominant types applied in IFCOI?

(2) At the level of applications, how many objective types and phases are covered and
what are their specific applicable scenes? And how are they used?

(3) Further, what are the existing modes of IFCOI according to the integrational mecha-
nism and degree and their applicability and feasibility, as well as pros and cons?

(4) What are the challenges and future opportunities of IFCOI?

Therefore, the structure of the review is as follows. Section 2 illustrates the methodol-
ogy of this review and initially analyzes the sample literature base. Section 3 elaborates on
the data and models of IFCOI based on the relevant theories. Section 4 analyzes the current
status in terms of application objectives and application phases. Section 5 summarizes the
modes of IFCOI. Section 6 discusses the current challenges and the future opportunities.
Section 7 concludes this review.

2. Methodology

Web of Science Core Collection, which is widely used in literature reviews in the
AEC/FM field and contains the most important and influential journals in the world, is
chosen as the database for paper retrieval for high-quality papers [50,51]. To ensure a
comprehensive review of IFCOI, the selection of papers is not limited to the AEC/FM field,
it also considers relevant interdisciplinary fields, such as computer science. These research
fields determine the corresponding categories setting of WOS in Step 1 (as shown in
Figure 1). To have no omissions in paper retrieval, ‘BIM’ and ‘Semantic Web’ are also added
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to the search string apart from ‘IFC’ and ‘ontology’. We selected the relevant literature
in recent decades to study the latest research progress of IFCOI, and the corresponding
time range was set from 1 January 2011 to 30 June 2023. Keywords included, but were not
limited to, ‘BIM’, ‘IFC’, ‘ontology’, and ‘semantic web’. Boolean operators were used to
combine multiple keywords, and the corresponding search string is shown in Figure 1.
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In Figure 1, the paper acquisition consisted of four steps: retrieving, preliminary
screening, rescreening, and bibliometric analysis. In Step 1, the aforementioned topic
expression is applied to get a database of 252 papers (excluding proceeding papers) after
the categories setting of WOS (as of 30 June 2023). In Step 2, we excluded papers that did
not integrate IFC and ontology based on title, abstract, and keywords. In total, 174 papers
were retrieved. Step 3 eliminated papers that had little relevance to IFCOI after reading the
full texts. After this process, the number of papers was reduced to 122, including 19 review
papers. Finally, the sample literature base is preliminarily analyzed from the aspects of
paper source, publication date, and keywords, and a more in-depth and comprehensive
analysis is carried out in Sections 3–6.

This research used NoteExpress v3.7.0 [52] to analyze the journal distribution of
selected papers, and the result is shown in Figure 2, with Automation in Construction [53]
as the top journal. The fields of these papers mainly lie in AEC/FM, computer science, and
geographic information science. This result aligns with the objective of this review.
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A statistical graph of the number of papers every year from 2011 to 2023 is shown
in Figure 3a. There is an upward trend in the number of publications. The number has
increased yearly since 2018, and the trend has become more obvious in the past two years.
This trend demonstrates the steady progress of research related to IFCOI and highlights
the significance of this literature review. The keyword co-occurrence temporal overlay
network graph drawn by VOSviewer v1.6.19 [54] is shown in Figure 3b. In the keyword
co-occurrence analysis graph, the circles’ size and color reflect the frequency and time of
keyword occurrence.
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After classifying the keywords, the words and phrases ‘interoperability’, ‘linked data’,
and ‘information extraction’ indicate that IFCOI addresses the issues of data interoperability
and information integration. Therefore, it is necessary to analyze the integrated data and
integrated tools (i.e., ontology). The words and phrases ‘operation and maintenance’,
‘smart city’, ‘automatic compliance checking’, ‘hbim’, and ‘gis’ indicate that IFCOI has
various functions for different objects and at different stages. Additionally, ‘Automated
compliance checking’ and ‘operation and maintenance’ are shown to be hot issues and are
popular in the latest research. These results provide a reference for the determination of the
following research dimensions.

3. Data and Model

Based on the results of the above bibliometrics analysis, this section analyzes the
integrated data and integration tools (i.e., ontology) from the dimensions of data and
model. First, the integrated data and their characteristics are clarified. Second, we shed
light on ontology models that link various heterogeneous data, focusing on the choice of
ontology description languages and development methods. Additionally, IfcOWL is an
important attempt to use ontology in BIM to address the data interoperability issue [55].
Based on IfcOWL, BIM data are converted to ontology data. On the one hand, the IfcOWL
data schema is as close to the IFC standard as possible and contains all the data in the
IFC document [56]. On the other hand, the form of ontology data transformed from BIM
data is conducive to data mining, analysis, and query. Many studies have used IfcOWL
or the ontology extended from it to transform IFC data into ontology data to achieve data
integration. Therefore, in Section 3.4, we specifically elaborate on IfcOWL, which plays an
important role in promoting data interoperability in IFCOI.

3.1. IFC Data

As the most recognized data schema for BIM, IFC can provide convenience for informa-
tion communication between BIM environments and other IFC-compliant
environments [57]. It is intended to facilitate data management through the whole lifecycle,
and its applicability extends across many other areas involving industrial data modeling,
including design, construction, simulation, and evaluation [58]. The IFC schema is divided
into four layers from bottom to top [59]: Resource Layer, Core Layer, Interoperability
Layer, and Domain Layer. Each conceptual layer contains several sub-modules, and each
sub-module contains many entities, types, functions, and rules. Each level can only refer to
the information resources of the same and lower levels, but not those of the upper level,
to ensure the stability of the information description. IFC could define new classes as
subclasses of existing classes from which the new classes inherit their properties [60].

The IFC standard defines, in detail, the representation of basic information, geometric
information, and attribute information. In the IFC data schema, each entity describes
its own information through attributes. For example, Figure 4 shows the inheritance
relationships of IfcBeam. IfcElement in the figure has 13 attributes, some of which we
omitted. There are six layers of inheritance from IfcRoot to IfcBeam. The attributes of
entities in IFC files are mainly obtained through inheritance relationships. In addition to its
own attribute, IfcBeam has all attributes derived from the parent entity through inheritance.
Therefore, through the IFC data schema, the required BIM data can be quickly acquired.

In order to facilitate the integration and query of IFC data using an ontology, there
are three main formats to directly or indirectly obtain the data acceptable to ontology
when exporting IFC files. A total of 51 papers discussed the IFC data format, as shown
in Figure 5a. The first is to export the default file format directly and then convert it to
RDF format using the IFC-to-RDF converter. IFC generally uses the STEP Physical File
(SPF) [61] for clear text representation of EXPRESS data models. Considering maximum
compatibility and minimum file size, SPF is the most widely used format in IFC. The
second is the ifcXML format, which is based on the ISO standard for representing STEP
data in Extensible Markup Language (XML) format [62]. The XML format is more readable
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and is suitable for more software, but its size is larger than the SPF format. Lastly, export
to the Terse RDF Triple Language (Turtle) format or Resource Description Framework
(RDF/XML) format [62] based on IfcOWL (discussed in Section 3.4), which are two ways
of RDF data serialization. They are more flexible in data description but have very large
file sizes.
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Both researchers and buildingSMART have made a lot of efforts to fully explore the
semantics in IFC, and the continuous enrichment of supported file formats also reflects
the feasibility and trend of using ontology to enrich BIM semantics. The characteristics of
the three IFC data formats are shown in Table 1. We found that the SPF format was used
the most. Even if the SPF format needs to be converted into a data format acceptable to
ontology later, the SPF file size is small and it’s easy for researchers to preprocess IFC data.
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Table 1. IFC data formats and their characteristics.

Format Extension Characteristic/Advantage Disadvantage Reference Number

SPF .ifc The most widely used and
compact format

Later format
conversion [26,56,63–86] 27

XML .ifcXML
Enhanced readability;
applicability to more

software
113% file size [25,30,57,87–98] 15

Turtle
RDF/XML

.ttl based on IfcOWL
.rdf based on IfcOWL

Great flexibility in data
description

1372% file size
816% file size [27,29,69,76,87,90,99–101] 9

3.2. Other Heterogeneous Data

With the rapid development of the Internet of Things (IoT), enormous amounts of
data from multiple sources are collected, which may have different structures, formats,
semantics, and uses. The heterogeneity of these data is manifested in the following:

1. Source diversity. Data can come from different fields, e.g., construction and the
geographic information industry;

2. Structural differences. Data can be structured, semi-structured, or unstructured,
e.g., tabular data, text, and images;

3. Format Diversity. Data can be in different formats and encodings, e.g., XML, SPF,
and JPEG;

4. Semantic difference. The semantics of the data can vary depending on the source and
structure of the data, and it is necessary to mine semantic information in
practical applications;

5. Usage Diversity. Data can be applied to different domains and for different purposes.

In the retrieved articles, heterogeneous data (mainly unstructured data) involved in
different application fields are diverse, including but not limited to specification text [28],
GIS data [92], schedule [102], sensor data [27], laser scanning data [72], real-time monitoring
information [103], and equipment status information [104]. A big difference between
structured and unstructured data is the ease of analysis. Unstructured data have no
predefined data model and are technically more difficult to standardize and understand
than structured data due to their large volume and diverse formats. It is important for
the ontology to describe and represent these data in a structured way to exploit their
rich semantics.

These multi-source heterogeneous data can provide more comprehensive and in-depth
information, and the integration of IFC and these data through ontology can expand the
data interoperability and application scope of BIM. For structured and semi-structured
data, ontology can map the concepts and their relationships to achieve integration. For
unstructured data, the ontology needs to express the data in a structured way to ensure
that the semantics can be obtained, and then establish the mapping relationship.

3.3. Ontology Description Language and Development Methods

With its ability to describe information in an explicit and unified way, ontology is an
essential bridge to integrate IFC data and other data. The different ontology description
languages and development methods will affect the specific applications of IFCOI.

3.3.1. Ontology Description Language

Ontology languages have different expression and reasoning mechanisms, so it is
necessary to choose an appropriate language for their representation and description
during ontology development. With the rapid development and broad application of
web technologies, web-based ontology description languages have gradually become
mainstream. In this review, the main ontology description languages are web-based RDF
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and OWL and object-oriented UML (see Figure 5b). To some extent, this reflects the
concentration of these description languages in the IFC data model association.

Resource Description Framework (RDF), developed by the W3C, is a framework for
representing information on the web [105], which is essentially a data model. RDF (S)
commonly refers to a combination of RDF and Resource Description Framework Schema
(RDF Schema, RDFS) [106]. The RDF data model consists of an RDF graph and an RDF
dataset. The RDF graph contains a series of logical statements about concepts and their
relationships. These statements are often referred to as ‘RDF triples’ (see Figure 6), which
are directional and consist of a subject, predicate, and object. In addition, each concept and
relationship has a Unique Resource Identifier (URI) so that RDF graphs can be explicitly
labeled. The RDF dataset is used for a collection of RDF graphs.
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Web Ontology Language (OWL) aims to describe the classes and their relations that
are inherent in web documents and applications [107]. OWL can be categorized into
three sub-languages: OWL Lite, OWL DL, and OWL Full [108]. OWL, as an extension
of RDF(S), provides more expressive elements for ontology description. Thus, OWL has
stronger reasoning capabilities. However, the RDF(S) and OWL support only a basic level of
inference, and the complexity of inference is limited. More complex reasoning and retrieval
should be performed using more specialized rule languages. Semantic Web Rule Language
(SWRL) [109] and SPARQL Query Language for RDF (SPARQL) [110] are two commonly
used rule languages for deductive inference and query, respectively.

Unified Modeling Language (UML) is a modeling language for object-oriented analysis
and design with strict syntactic and semantic specifications. The metamodel provides a
consistent, common definitional description for all elements of UML, eliminating the effects
of differences in expression methods.

In summary, RDFS is essentially an extension of the RDF vocabulary, while OWL adds
predefined vocabulary and provides faster and more flexible data modeling capabilities.
Both OWL and UML support modular structure. The difference is that UML graphical
modeling is more intuitive and easier to communicate and understand, while OWL has a
stronger logical foundation for efficient reasoning. Table 2 shows the ontology description
languages and their characteristics and applications. We found that most researchers choose
OWL as an ontology development language due to the requirement of reasoning ability.
The second is RDF, considering that it is a common uniform data format. In addition, rule
languages, such as SWRL and SPARQL, are also used for more complex reasoning.

Table 2. Ontology description languages and their characteristics and applications.

Language RDF(S) OWL UML

Characteristics Limited expression capacity Stronger expression capacity More intuitive and understandable
graphical modelingcommon data format inference capability

Reference [30,66,70,89,97,111–114] [11,25,27,29,56,58,61,63–65,69,71–
73,77,78,85,86,88,94,96,101,102,104,115–123] [67,124]

Application Compliance checking, HBIM, cost estimation, etc.; buildings and infrastructure;
whole lifecycle Infrastructure; O&M

3.3.2. Ontology Development Methods

Ontology development should adhere to the following principles: clarity, coherence,
extendibility, minimal encoding bias, and minimal ontological commitment. The develop-
ment and refinement of the ontology is an iterative process of back-and-forth and additions.
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There is no uniform method for ontology construction, so choosing the appropriate method
according to different requirements is necessary.

The main ontology development methods are IDEF5 [125], Toronto Virtual Enterprise
(TOVE) [126], Seven-Step method [127], KATUCS [128], Skeletal method [129], METHON-
TOLOGY [130], etc. Table 3 shows the functions and characteristics of these methods. The
methods involved in the retrieved articles are the Seven-Step method, METHONTOLOGY,
multi-step iterative methodology [126], and Neon Methodology [131]. The Seven-Step
method [127] (also known as Ontology Development 101) was developed by Stanford Uni-
versity and consists of seven steps. This method is more specific and detailed and is widely
cited by researchers in various fields. METHONTOLOGY [130], proposed by the Artificial
Intelligence Lab at the Technical University of Madrid, typically involves six segments:
specification, knowledge acquisition, conceptualization, integration, implementation, and
evaluation. It is a generalized approach to ontology development. The multi-step iterative
methodology [126] is a method proposed by Grüninger and Fox to build ontologies and
allows a more precise evaluation of an ontology. The Neon Methodology [131] proposes
multiple ways to develop ontologies and identifies nine scenarios that cover common
situations. This method emphasizes the reuse of knowledge resources. The characteristics
of these two methods are also shown in Table 3.

Table 3. Ontology development methods and their characteristics.

Method Characteristics/Advantages Disadvantages Reference

IDEF5 A general approach that all ontology
development methods should follow Too abstract [125]

TOVE
A method for developing a task ontology;

solving a specific problem;
enterprise modeling

No iterative process for
the generated ontology [126]

Seven-Step method Building domain ontologies;
high maturity

Lack of inspection and
evaluation [61,85,116,117,120,121,132]

KATUCS Based on the existing ontology or applied
knowledge base emphasizing knowledge reuse

Few details of
the method [128]

Skeletal method
Describing specific terms between enterprises;

ontology validation required
during development

Ambiguous ontology
evolution [129]

METHONTOLOGY Emphasizing ontology reuse; suitable for
developing large ontologies

Failing to reflect
iterative evolution [67,74,78,81,133]

Multi-step iterative
methodology

Guiding ontology development through
competency questions allowing for

ontology evaluation
- [26]

Neon Methodology
A scenario-based methodology emphasizing

the reuse, reconfiguration, and merging
of resources

No guidance on key
aspects of

engineering processes
[27,98]

‘-’ Indicates that no related literature is found.

In addition, ontology reuse [83,131] is a very important approach during ontology
development. Some basic information can be provided by other available ontologies, thus
saving a lot of work in ontology building.

3.4. IfcOWL

IfcOWL ontology is a common choice for ontology reuse. It was obtained by trans-
forming the EXPRESS schema of IFC into an OWL ontology [134]. IfcOWL ontology allows
the representation of building data in terms of Semantic Web and Linked Data. Semantic
Web technology can connect IFC data to other data, including material data, sensor data,
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GIS data, etc., through RDF graphs. These data form a web of building data that facilitates
data management in different domains.

It is more accessible and targeted to meet the needs of different applications by
developing new ontologies based on IfcOWL ontology or extending IfcOWL ontology.
Ma et al. [71] built a domain ontology on the BIM-R platform based on IfcOWL to facilitate
the use of ontology data in RDF files converted from BIM data. Soman et al. [135] used
IfcOWL to capture model information and construct LinkOnt to introduce classes missing
from IfcOWL but needed for constraint checking. Romero et al. [64] extended the IfcOWL
and ifcRDF models with fuzzy information. The extended fuzzy ontology avoids the
cumbersome details of the underlying theoretical framework while supporting imprecise
queries. Combined with Semantic Web, IfcOWL ontology can also link non-geometric data
with multiple geometric representations, allowing the mapping of IFC data to geospatial
data [136].

IfcOWL ontology is derived from the EXPRESS schema and is obtained through the
EXPRESS-to-OWL converter. In practice, there are still some challenges in the applications
that require complex reasoning because of the redundancy in mapping from EXPRESS to
OWL and the large size of IfcOWL ontology. Nonetheless, what is certain is that IfcOWL
and ontologies extended from IfcOWL can facilitate data exchange and sharing. To a certain
extent, the proposal and application of IfcOWL also reflect the necessity and trend of IFCOI.

4. Applications of IFCOI
4.1. Application Objectives

Through the analysis of the papers with explicit application targets, we found that the
number of applications targeting buildings and infrastructures accounted for 72% and 24%,
respectively (as shown in Figure 7). The building-oriented IFCOI applications mainly focus
on Historic/Heritage Building Information Modeling (HBIM), green building, and facility
Management (FM). Infrastructure-oriented applications are mainly for roads, railways,
and tunnels. There are also some applications at the urban level, which are placed in the
category of buildings according to the research focus.
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4.1.1. Buildings

In the building-oriented papers, the proportion of applications in HBIM, prefabricated
building, green building, and facility management is shown in Figure 7. In this subsection,
these applications are discussed in turn.

HBIM

In the field of cultural heritage, Historic/Heritage Building Information Modeling
(HBIM) is formed after the investigation and collection of historical data. Due to complex
geometry and various data types, HBIM faces some challenges in data integration. Ontology
is used to facilitate the sharing, integration, and storage of heritage data.

The focus of IFCOI in HBIM is to integrate BIM with the knowledge base developed
through ontology to enhance knowledge representation and management in built heritage
processes. Mattia et al. [137] developed an ontology-based vaults database to effectively
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combine heterogeneous data and thereby reconstruct a rich history of European building
technology and skilled labor. de Oliveira et al. [138] introduced an improved workflow for
converting traditional BIM models into semantic models, which can improve knowledge
sharing and reuse among different stakeholders of historic building projects. Ontologies de-
veloped for HBIM have different focuses, such as mesh-to-HBIM modeling [113], generating
parametric structured models from point clouds [74], and developing an ontology-based
vault database [137].

A few studies evaluated the interoperability of cultural heritage information ontology.
Andrej et al. [139] followed the ontology-evaluation framework OQuaRE and proposed
externes, composability, and aggregability indicators to evaluate the interoperability of
CIDOC CRM ontologies.

However, in the process of transmission, data loss typically occurs. On the other hand,
the construction of the knowledge base and mapping file is mainly carried out manually,
resulting in an increase in time cost.

Prefabricated Buildings

The application of IFCOI in prefabricated buildings mainly focuses on design opti-
mization and construction safety. Xu et al. [140] used BIM to achieve the forward design
of prefabricated assembly buildings and combined it with ontology for knowledge vi-
sualization and expression, thus solving the problems of data heterogeneity and lack of
semantic expression. Shen et al. [85] proposed an automated ontology- and BIM-based risk
identification and response method so as to provide timely information and knowledge for
safety risk decision making in prefabricated building construction. It can be seen that the
application of IFCOI in this field is mainly in the expression of ontology knowledge based
on BIM models.

Green Building

Traditional green building evaluations rely on subjective feedback and are less effi-
cient and reliable. Integrating the green building evaluation process with BIM allows for
extracting the building information for assessment. However, the information obtained
from BIM is very limited, and the consistent representation of the assessment knowledge is
the main challenge. Semantic-based domain ontologies can provide a shared and consistent
model to express the fragmented assessment information in a regularized way, so the green
building evaluation work can be carried out with the help of ontology based on IFC data.

Jiang et al. [118] constructed a Green Building Evaluation Ontology (GBEOntology) to
represent knowledge and promoted the green building evaluation process based on BIM
and the constructed domain ontology. To facilitate interoperability with building energy
simulation tools, Costa et al. [87] represented the BIM model using IFC and Semantic Web
technologies and converted the BIM into energy-building simulation models through two
query languages.

We can see that BIM acts as a data provider of the evaluated building, and ontology
is used to structurally represent the information in the specifications, thus facilitating the
green building evaluation process. In a word, the application of IFC with ontology in this
field is mainly manifested in the expression of ontology knowledge and rule reasoning
based on BIM models.

Facility Management

Facility management (FM) is intended to manage the planning, preparation, and
maintenance of the human living environment with the latest technology. FM information
has the longest duration in the whole lifecycle of a building and is tightly linked to the BIM
model in the preceding phase. It also has to be embedded with massive real-time growing
O&M data. Therefore, stronger data interoperability is required. In order to increase the
accessibility of object-oriented BIM data, ontology is considered in the FM information
management work.
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Kim et al. [29] effectively managed BIM-based FM information by linking BIM-based
building elements and FM work information in the FM system database, which enhanced
the interoperability and accessibility of FM data. Colucci et al. [141] proposed a method-
ology for mapping BIM data to domain-specific sets of concepts, which can be used for
managing and maintaining facilities and infrastructure. Dibley et al. [98] developed and
implemented a software system utilizing various techniques, such as IFC and ontology, to
generate useful working knowledge for FM.

Research on the application of IFCOI in this field focuses on establishing the association
between BIM models and FM information through ontologies. The phenomenon may be
due to the diversity, complexity, and large volume of data in the O&M phase, and ontologies
are better suited to play the role of information medium in this scenario.

In summary, IFCOI applications are in high demand and have a good performance in
building-oriented applications. Table 4 demonstrates the integration application methods
and data information of the above applications. Through the above analysis, we found that
the multi-source heterogeneity of data is the main challenge for applying IFC on buildings.
Through ontologies, various types of data (including unstructured text) can be integrated
and associated with IFC data, which can improve the data interoperability of BIM in
other domains.

Table 4. Integration application methods and data information.

Type Integration Application Method Data Information Reference

Historical Building
Enhancing semantic representation,

knowledge representation,
and management

3D building models;
built heritage information [40,72,74,113,122,137–139,141,142]

Prefabricated
Building

Heterogeneous data fusion; access
to richer knowledge

and information

Design models; construction
models; assembly and
fabrication knowledge

[85,140]

Green Building
Structured representation

of knowledge;
rule-based reasoning

BIM; specification text [32,73,87,89,96,98,118,123,143]

Facility Management
Linking BIM and FM data;

access and use of BIM-based
facility information

Building models; historical
working records of facilities [29,78,80,90,93,98,101,114]

4.1.2. Infrastructure

Compared with buildings, infrastructure involves more complex information. Infras-
tructure data have high heterogeneity and complex spatiotemporal relationships. Man-
agement throughout the lifecycle requires a high degree of expertise. Therefore, the ap-
plication of IFCOI in infrastructure management focuses on the fusion of heterogeneous
data from different times and spaces. Hagedorn et al. [79] developed a web-based plat-
form in which transportation infrastructure data are provided or exchanged in the form of
information containers.

We summarized the infrastructure-oriented application of IFCOI from infrastruc-
ture types, data types, ontology models, functions, and application phases, as shown in
Table 5. We found that the O&M phase is where IFCOI is most used for infrastructure
and determined that many studies tended to reuse public and existing ontologies, such
as IfcOWL and srt-ontology [144]. In addition to the IFC data of the infrastructure, the
status and operational data of facilities are the main data types. Hu et al. [116] evaluated
the proposed TDDS method and found that the automatic data acquisition rate reached
86.7%, the defect detection accuracy rate reached 99.5%, the false positive rate was 0.5%,
and the false negative rate was 0%.
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Table 5. IFCOI data types and applications in terms of different infrastructure types.

Infrastructure Type Data Type Ontology Model Function Application Phase

Tunnel

IFC data; facility information TDO Defect Diagnosis [116] O&M

Tunnel model; map data;
cadastral map; city model srt-ontology Spatial Reasoning of

Alignments [145]
Conception and

Planning

IFC data; status information;
activity information — E-maintenance [103] O&M

IFC data; collected data OntModel Surface Subsidence
Risk Warning [104] O&M

Road IFC data; equipment data;
digital terrain model IFCInfra4OM O&M Management

[124,146] O&M

Railway IFC data; railway code IfcOWL Compliance Checking
[147] Design

Airport IFC data; facility information IfcOWL; Airm-mono Facility Management
[101] O&M

In practice, IFC has insufficient modeling ability for infrastructure, so it is necessary
to extend IFC to meet the requirements of infrastructure semantic expression. In order
to build a BIM model of a multi-component roadbed, Pu et al. [148] mapped the newly
added entities and attributes with RSSDO by extending new entities. To ensure a complete
description of the concepts in the code ontology, Li et al. [147] extended attribute values,
entities, and properties.

For multiple interdependent infrastructure systems, the integration of information
from multiple systems is essential for infrastructure resilience decisions. This requires
integrating heterogeneous data, acquiring knowledge in multiple domains, and deriving
valuable information from the integrated data. Dao et al. [132] built ontologies for drainage,
traffic, building, and flood systems, respectively, and used SPARQL and SWRL rules to
provide automated decision support.

IFCOI is suitable for infrastructure such as roads, railways, and tunnels based on
the aforementioned case analysis. However, there are still challenges in the real-time
acquisition, real-time use, and automatic update of data.

4.2. Application Phases

The building lifecycle refers to the entire cycle from conception and planning, design
and development, construction, operation, and maintenance to demolition or decommis-
sioning. Based on the preliminary analysis of the sample literature base, the application of
IFCOI in this review lies in the design phase, preconstruction phase, construction phase,
and operation and maintenance phase.

4.2.1. Design Phase

The design phase is one of the most critical phases in the project process. At the design
phase, the necessary information for project implementation is identified, and decisions
can be made to avoid negative impact and rework in the project [149]. When used during
the design phase of a construction project, BIM can facilitate an effective design process
and improve design deliverable quality [150]. In the sample literature base, IFCOI in the
design phase focuses on compliance checking and model optimization of BIM models
through ontologies.

Compliance Checking

The compliance checking system based on IFCOI generally consists of three subsys-
tems: the BIM data system, the knowledge base system, and the rule reasoning system. The
BIM data system is responsible for the extraction and storage of review data. Structured
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specification knowledge and review rules are stored in the knowledge base system. The
rule reasoning system is used to compare the consistency of building information and
code information. Zhong et al. [114] developed four specific ontologies for representing
and integrating various information to support building environment monitoring and
compliance checking.

Compliance checking is generally divided into four steps: ontology modeling, building
model preparation, rule construction, and inspection execution. Table 6 shows some studies
that can improve the efficiency and accuracy of compliance checking in specific steps. We
found that machine learning, deep learning, and multi-objective decision-making methods
have been combined with IFCOI, and these methods have further improved the efficiency
and accuracy of compliance checking.

Table 6. Some studies on specific steps of compliance checking to improve the efficiency and accuracy
of the checking.

Researcher Main Work Step Recall Precision

Peng et al. [100] Using the NLPIR Chinese word separation system to extract
information from unstructured and semi-structured data. Ontology modeling - >96%

Zhang et al. [28] Using Deep NLP to capture ACC-specific knowledge, AEC
domain knowledge, and linguistic knowledge. Ontology modeling 98.7% 87.6%

Zheng et al. [151] Strengthening the interpretation of rules based on the
NLP approach. Rule construction 82.2% 94.2%

Zhou et al. [152] Using deep learning techniques to measure semantic similarity
to select matching instances. Rule construction 93.4% 94.7%

Shi et al. [84] Designing the NSGA-II optimization algorithm to minimize
initial construction costs and seismic loss expectations. Inspection execution - -

Lee et al. [24] Using the AHP-TOPSIS method to provide design
suggestion rank. Inspection execution - -

However, current automated methods of information transformation are generally
tested on limited specification clauses. Further adjustments are needed to expand the scope
of automatic rule interpretation and to accept different types of documents. In addition,
since the model data are transformed and mapped in the form of IFC files, errors and
omissions are inevitable during data transmission.

Model Optimization

Ontology-based model optimization can enrich the semantics of BIM models and
integrate different heterogeneous data, thus improving the interoperability of BIM data.
Jeong [97] converted the information defined from the user’s perspective into an ontology
and processed the BIM data into linked semantic data from the perspective of building
information management, which realized greater interoperability and extensibility than
the general model. We can see that the application of IFCOI in this field is mainly in
ontology-based BIM data extraction and mapping to obtain semantically rich BIM models.

Several researchers have explored the performance of existing data mapping ap-
proaches. Costa and Sicilia [87] identified fourteen different data mapping patterns and
three cases of data transformation and reviewed the two best alternatives (SPARQL Con-
struct and SPARQL-generate) for data transformation. They comprehensively evaluated
the data transformation process between BIM and other software tools with ontology in
terms of the complexity of query generation, format dependency, and performance.

4.2.2. Preconstruction Phase

As its name implies, the preconstruction phase is the stage prior to construction
and is critical to the success of a construction project. Different from the design phase,
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preconstruction activities, including preconstruction planning, cost estimation, and de-
sign analysis, can provide the benefits of the early analysis of materials, cost, techniques,
and schedules.

Cost Estimation

The bidding process is directly related to the project’s quality, schedule, cost, and
economic efficiency during the operation period. Typically, significant cost differences occur
in the bidding process [153], and an accurate cost estimation can effectively avoid potential
project risks. Cost estimation in the tendering phase requires the work item’s component
categorization, quantity takeoff, and unit cost allocation. Work items and unit costs must
be prepared strictly with local specifications and are mostly performed manually, which
requires the estimator to have an in-depth knowledge of the standards and regulations.
As a result, estimation at this phase remains a hazy and inaccurate process [154], and the
accuracy and efficiency of cost estimation are significantly affected by the proficiency of
estimators. Ma and Liu [71] utilized bill of quantities (BOQ) for bidding cost estimation
on the ontology- and freeware-based BIM-R platform by establishing a mechanism to
transform BIM data into ontology data. Abanda et al. [25] developed an ontology based
on New Rules of Measurement (NRM) for cost estimation in the tendering phase, and the
use of IFC facilitated the abstraction of house components for quantity takeoffs and, hence,
cost estimation. In this schema, a standardized IDM specified the information exchange,
and ontology represented a logically consistent semantic structure of related information
items. As we can see, in the cost estimation of the preconstruction phase, the ontology is
used to represent the specification text and infer the work item and unit costs based on the
BIM data.

Preconstruction Planning

Additionally, it is possible to extend the interoperability of BIM to preconstruction
planning activities with ontologies. BIM and GIS data can be integrated with a set of
standardized construction operations ontologies, which can offer substantial benefits to
managing the planning process during the design and preconstruction phases [92].

4.2.3. Construction Phase

BIM can help construction organizations improve project quality and collaboration
efficiency and reduce construction period and expenditure. However, due to the informa-
tion constantly generated during construction, BIM lacks sufficient flexibility in integrating
various information.

IFCOI in the construction phase is mainly applied to monitor and manage quality,
schedule, cost (mainly for quantity extraction [66,70]), and safety. Table 7 shows some
examples of IFCOI applications during the construction phase. In essence, the performance
of IFCOI in the construction phase is to use ontology to test the consistency of IFC data and
constraints in the construction process.

Table 7. Some examples of IFCOI applications during the construction phase.

Researcher Work Aspect

Jiang et al. [89] Combined mvdXML and semantic technology to organize and
reuse green construction knowledge Green construction

Han et al. [26] Supporting inference and detailed report of progress status when
data are incomplete, WBS is at a high level, or BIM is not detailed Schedule

Soman et al. [135] Using Linked Data-based constraint checking to define and check
complex dynamic construction scheduling constraints Schedule

Guo and Goh [133] Developing an ontology for Active Fall Protection System
(AFPS-Onto) to facilitate knowledge reuse and sharing Safety
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4.2.4. Operation and Maintenance Phase

IFCOI in the operation and maintenance phase is mainly applied in defects detection,
urban facility management [93], building energy consumption performance
assessment [123], historical building maintenance [74], etc. In energy consumption per-
formance assessment, the semantic requirements can be met by ontology-based building
object recognition and semantic information addition, which is conducive to improving the
interoperability between BIM and assessment systems.

Defect Detection

For the rapid assessment and defect diagnosis, ontology is utilized to establish map-
ping rules for heterogeneous data integration, and semantically enriched BIM is applied
to object recognition in non-contact defect detection. Hu et al. [116] developed a Tunnel
Defects Diagnosis System (TDDS) based on IFC and Semantic Web technology, through
which spatiotemporal relations and expert knowledge are applied to automatic diagnosis
and cause detection of tunnel defects. Zhong et al. [114] presented an ontology-based
framework to support environmental monitoring and compliance checking in buildings,
focusing on knowledge sharing and interoperability between different information systems
through integrating BIM and sensors. Kim et al. [29] semantically linked BIM data to
related historical work records and proposed a method to manage BIM-based FM infor-
mation effectively. They associated building elements and FM information into the FM
system database to improve the quality of information search. Ait-Lamallam et al. [124]
proposed the IFCInfra4OM ontology, which could integrate O&M information into the road
information model and standardize the use of BIM for road infrastructure operation and
maintenance. These studies show that the application of IFC and ontology in this domain
is mainly characterized by ontology-mediated data integration and correlation.

Urban Management

In urban management, it is necessary to take account of the building itself and its
surroundings, and geospatial data cannot be ignored in various applications. BIM models
can provide designers and managers with detailed information and visual models but lack
spatial analysis capability. While GIS has powerful spatial analysis ability, it lacks detailed
information on building components. Researchers naturally think of integrating BIM and
GIS. IFC is the standard data format for BIM, and CityGML is a GIS standard developed
by Special Interest Group 3D (SIG3D) [155]. Table 8 compares IFC and CityGML in terms
of modeling language, geometric representation, application scenario, and level of detail
(LoD). In the table, we can find that differences in data schema and LoD level are major
barriers to integrating BIM and GIS. Deng et al. [67] generated the mapping rules between
IFC and CityGML through an instance-based approach and gave a clear definition of each
LoD in CityGML. In this way, the constructed transformation framework between LoDs
realized the automatic data mapping between IFC and CityGML in different LoDs.

Table 8. Differences between IFC and CityGML in modeling language, geometric representation,
application scenarios, and level of detail (LoD).

IFC CityXML

Modeling Language EXPRESS XML

Geometric Representation B-rep; Constructive Solid
Geometry (CSG) B-rep

Application Scenario Building details Urban semantic information

LoD Level LoD 100–500 LoD 0–4

One way to integrate BIM and GIS is to build an intermediate platform where BIM
and GIS are coupled in the same environment. Karan and Irizarry [92] converted build-
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ing elements and GIS data into RDFD data and used a set of standardized ontologies
for preconstruction operations to integrate and query the heterogeneous spatiotemporal
data in RDF format. In order to manage geographic elements, Mignard and Nicolle [93]
extended an existing facility management system that manages data with semantic BIM.
This approach can manage data from both BIM and GIS worlds in the same structure and
with the same tools.

Another way to integrate BIM and GIS is to convert BIM data into ontology data and
then connect it to the GIS environment. McGlinn et al. [75] developed a national geospatial
identifier infrastructure based on OSi building ontology. This infrastructure supports the
capture of OSi building data using RDF.

Delgado et al. [156] selected four ontologies from building information and geospatial
web domains to evaluate different ontological matching techniques in terms of compliance
and performance. They found string-based techniques to be the most appropriate way for
CityGML-IFC alignment. It was also found that due to the more complex ontologies of
CityGML and IFC, CityGML-IFC alignment takes more time and memory to compute.

In practice, however, semantic alignment is mostly created manually. Additionally,
the transformed RDF data are too large to output. The storage method of RDF triples can
improve this situation, and further optimization of triples is needed in the future.

4.2.5. Discussion

In this subsection, we discussed the applications of IFCOI in different domains and
their involved building data and non-building data (e.g., specification text, record text,
monitoring data) from the dimension of the application phase. The applications and their
data information in different phases are shown in Table 9. Based on the analysis of IFCOI
applications, we find that data from different phases and domains enjoy some common
principles. (1) The integrated data directly or indirectly relate to certain entities or attributes
in IFC files. In short, these non-building data are necessary in the applications of BIM. When
some entities or attributes do not exist, an IFC extension can be a solution. (2) Unstructured
data can be expressed structurally by ontologies. (3) In IFCOI applications, IFC data and
other heterogeneous data can be semantically related through ontologies. For example,
SWRL rules can be used to establish a semantic mapping relationship between ontologies
describing building information and specification knowledge, respectively.

Table 9. The applications of IFCOI and their data information in different phases.

Phase Application Function Data information Reference

Design phase Compliance checking;
model optimization

IFC file; BIM model;
design specification

[24,28,32,40,57,68,76,77,83–87,92,94,97,
100,115,117,118,120,140,147,151,152,157]

Preconstruction phase Cost estimation;
preconstruction planning

IFC file; valuation standard;
GIS data [25,30,66,71,90]

Construction phase

Monitoring and
management of quality,

schedule, cost,
and safety

IFC data; construction
specification; on-site records

[26,57,70,73,81,85,89,95,112,133,135,158–
160]

Operation and
maintenance phase

Building energy
management, culture

heritage maintenance, defect
detection, etc.

IFC data; BIM model;
historical work records;

real-time monitoring data

[27,29,32,35,60,74,78–80,82,101,103,104,
113,116,123,124,137,146]

Data principal
(1) Direct or indirect association with IFC data;
(2) Being expressive;
(3) Being associated through ontology.
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4.3. Application Framework of IFCOI

In the analysis of application objectives and phases, we explored the implied integra-
tion motivations and broke down the application domains and the corresponding data
models and ontology functions. Based on this, the characteristics of the application modes
are further identified, and hence, the IFCOI application framework is constructed (Figure 8).
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The heterogeneity between IFC data and others is the main reason for the lack of
interoperability between different systems. The information from different domains and
phases brings more challenges for data interaction. Based on the above analysis, three
motivations of IFCOI are revealed.

1. Knowledge representation. Many IFC-incompatible fragmented data are involved in
BIM applications. Ontology can represent information in a structured way to facilitate
the storage, sharing, and reuse of IFC-related knowledge.

2. Semantic enrichment. External data or knowledge can be linked to IFC through
ontologies, enabling IFC to acquire more BIM-incompatible semantic information.

3. Data interoperability. Ontology can eliminate the information barriers between IFC
and other systems with a common representation method and promote the linking
and sharing of heterogeneous data at the semantic level.

Through the decomposition of IFCOI applications in different phases, we also found
that IFCOI applications have their own integration mechanisms for compliance checking,
cost estimation, HBIM, and BIM-GIS integration. As shown in Figure 8, the IFCOI appli-
cation in compliance checking and cost estimation is reflected in the construction of the
domain ontology and the querying of IFC documents. In Refs. [66,147], the railroad code
ontology and construction-oriented product ontology were constructed, respectively, and
the rules written according to the specifications or guidelines were executed to query IFC
data. In cultural heritage management, the semantic association between IFC and related
historical information is established with ontology to obtain semantically enriched and
continuously updatable HBIM models. In Ref. [72], the BIM environment is integrated
with the knowledge base created through information ontologies, enhancing semantic
representation capabilities of architectural heritage processes. In BIM-GIS integration, the
semantic mapping of IFC to CityGML is realized through the alignment rules created by
the ontology, on the basis of which IFC data can be further queried. In Ref. [145], BIM and
GIS were merged at the data level with the ontology database, and the relevant information
required for decision making was derived by querying. The underlying IFCOI modes,
possibly implied in this IFCOI application framework, will be discussed in Section 5.
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5. Modes of IFCOI

Through the analysis of IFCOI from the dimensions of data, models, application objec-
tives, and application phases, collectively, IFC is mainly linked with other data by ontology
to obtain semantically enriched models [72] or only provide building data [118], and ontol-
ogy is used for knowledge representation [89] or as a medium between IFC and other data
schemas [93]. According to the purpose of data integration and the semantics and structure
of the integrated data, three integration modes of IFCOI are identified (as shown in Table 10),
which also implies the increasing degree of data integration, i.e., (1) ontology is used for
knowledge representation and rule reasoning without changes in IFC. (2) Ontology embeds
domain information into IFC to obtain semantically rich IFC models. (3) Ontology links IFC
and other data to facilitate interoperability between BIM and other platforms. The three
modes and their integration mechanisms are shown in Figure 9 and are elaborated below.

Table 10. The division of IFCOI modes from the dimensions of data integration purpose, semantics,
and structure of integrated data.

Mode 1 Mode 2 Mode 3

Data integration purpose BIM information query Semantically enriched
BIM models

Data interaction at the
semantic level

Semantics of integrated data Being related to entities or
attributes in IFC

Potential existence of entities
or properties not in IFC files

Data schema different
from IFC

Structure of integrated data Unstructured, but can be represented in a structure similar
to IFC

Structured, but different from
IFC schema

Application Rule checking; green building
evaluation; cost estimation

HBIM; defect detection;
infrastructure management BIM and GIS integrationBuildings 2024, 14, x FOR PEER REVIEW 20 of 33 
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Mode 1: Ontology is used for knowledge representation and rule reasoning without
changes in IFC.

In the papers related to compliance checking, green building evaluation, and cost
estimation, ontology is used for structured representation of knowledge and IFC-based
rule reasoning, while there is no change in the IFC document. Various unstructured infor-
mation is a common feature of these application fields. In fact, cross-domain unstructured
information, especially textual information, cannot be entirely understood by computers,
thus limiting BIM’s interaction with other platforms. As a formal specification description,
ontology can represent semantic knowledge in a structure similar to the IFC schema, so
it is suitable for applications that verify the consistency of domain knowledge and IFC
information, such as compliance checking and building energy consumption analysis.

In this mode, the IFC file provides building information, the domain ontology repre-
sents knowledge, and the reasoning mechanism in the ontology helps to query information
from the IFC file. Eastman et al. [161] broadly structured rule checking into four stages. In
fact, the process for Mode 1 is very similar to rule checking and is also applicable to green
building evaluation and cost estimation. Drawing on the four stages proposed by Eastman,
the process of Mode 1 includes (1) rule interpretation: construct domain ontologies based
on design, green building, and cost-related regulation text, and rule languages (e.g., SWRL,
SPARQL) are used to regularize specification provisions; (2) building model preparation;
(3) rule execution: align the prepared building model with the rules and execute the rule
statement; and (4) rule check reporting. Throughout the process, we can find that IFC only
provides building data, which are not altered or embedded.

In this mode, the knowledge base constructed through the domain ontology could
represent and store knowledge, facilitating the expression of complex semantics and the
sharing, maintaining, and reusing of knowledge. Additionally, the built domain ontology
enables the retrieval of knowledge and the reasoning of new facts, which provides decision-
making guidance for the application of BIM in specific domains.

Mode 2: Ontology embeds domain information into IFC to obtain semantically rich
IFC models.

In complex application environments, only the IFC’s semantic information is insuf-
ficient to cover the full range of domain information, such as geographic information,
historical records, etc. It is the existence of these multi-source heterogeneous data that
limits information storage and management [74]. Through ontology, a large number of
BIM-independent semantics are embedded into IFC to obtain semantically rich IFC mod-
els. This enables domain knowledge to be represented and managed in a unified data
environment. The analysis in Section 4 shows that this mode is mainly applied to HBIM,
defect detection, and infrastructure management. In the related papers, the ontology
performs semantic modeling of raw data outside of BIM, such as social information and
environmental resources, and the IFC-based BIM model provides building information and
data environment.

This mode focuses on attaching heterogeneous knowledge to BIM. In contrast to
Mode 1, this mode emphasizes the establishment of the correspondence between IFC and
other semantics in the BIM environment. The knowledge is structurally modeled, and the
obtained knowledge base can be combined with BIM to enrich the semantic information of
BIM. Using HBIM as an example, in order to fully represent and understand the historical
building heritage, IFCOI should contain both BIM information and historical records [137].
A semantically rich model of a historic building requires a BIM model based on the IFC
standard and a knowledge base developed based on an ontology. The objects and properties
in the ontology knowledge base are embedded into the IFC schema, resulting in an HBIM
with extended knowledge representation capability. In addition, IFC needs to be extended
to enhance its expression when there are entities or properties (e.g., spatial distances) not
present in IFC.
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In this mode, the ontology-based knowledge base facilitates the sharing, reuse, and
management of domain-specific semantic knowledge, which is conducive to the BIM
model’s updating. Additionally, the semantically enriched IFC model offers a complete
data foundation for the applications of BIM in a specific domain.

Mode 3: Ontology links IFC and other data schema to facilitate interoperability between
BIM and other systems.

Influenced by heterogeneous data, BIM suffers from loss of information when interact-
ing with some domains (e.g., geography), and even other systems cannot access semantic
knowledge in IFC files. This limits the interoperability of BIM with other systems and
restricts the application of BIM in other domains. Ontology allows for the representation
and process of heterogeneous data in a unified language, such as RDF. Thus, it can be used
as the medium for BIM data and other data to facilitate interoperability between BIM and
other systems.

This mode is commonly used in the integration of BIM and GIS systems within
urban facility management and supply chain management. This mode aims to achieve
interoperability between BIM and other systems at the semantic level. In this mode,
ontology mapping is used to link similar concepts and relationships between IFC and other
data standards (e.g., CityGML). Then, BIM and other source data are transformed into
Semantic Web standards (e.g., RDF) for semantic-level interoperability. Each object and
property is assigned a unique Uniform Resource Identifier (URI), which can be used to find
the corresponding object [92]. Heterogeneous information can then be queried with the
rule language.

This mode is the highest level of data integration among the three modes. In this mode,
ontology and Semantic Web technology acts as a medium for sharing, understanding, and
processing heterogeneous data. Semantic mapping can break down the barriers between
BIM data and other data. Additionally, semantic-level data exchange and integration
greatly facilitate the BIM applications in various fields.

However, the performance of this mode is not very satisfactory in improving inter-
operability at the semantic level. Taking BIM and GIS integration as an example, IFC
and CityGML have different organizations, different patterns, different geometric models,
and different semantics [162]. IFC contains more affluent attribute categories but lacks
information related to geographic location, so there are inevitable omissions in the data
conversion from BIM to GIS. Meanwhile, the difference in the level of detail between BIM
and GIS also needs to be considered [75]. It is necessary to carry out research related to
the enhancement of semantic mapping in the future to improve interoperability at the
semantic level.

6. Discussion

Through the analysis of literature data and typical cases, the authors identify the
challenges of IFCOI and further derive possible research opportunities. If these challenges
can be addressed, IFCOI can better enhance the interoperability of BIM.

6.1. Challenges
6.1.1. Consideration of Data

After ontology represents various domain information in the same or similar structure,
rules need to be used to align the semantics of these data before data query. At this
point, the complexity of data and the expression capability of rules can directly affect the
compatibility of data and the flexibility and scalability of integration.

IFC files have complex data structures and often contain too much redundant infor-
mation. Their characteristics contribute to the difficulty of data mapping and even lead
to the failure of mapping. Meanwhile, ontology needs to align different data structures
and semantics when representing various domain information in the unified data format.
Converting files and models to RDF datasets significantly increases data size. For example,
when an IFC file is exported to the RDF/XML format, the file size becomes 816% of the
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default format, and when exported to Turtle, the file size becomes 1372% [62]. Costa and
Sicilia [87] mentioned that the transformation and representation of RDF data evolve at
a slow pace, and the extraction of mapping is not always easy. When the data amount is
larger and the structure is more complex, the mapping rules will also be longer and more
difficult to fully represent. As a result, it takes more processing time to map more data to
ontology or even fails to do so successfully, which reduces the flexibility and scalability of
ontology mapping.

There is also a lack of flexibility in data queries. The diversity of the data and the
limited expressiveness of reasoning rules can cause inefficiency in data querying. Due to the
additional information converted to RDF or embedded in IFC files, the amount of mapped
data is tremendous. Both data processing and querying can be highly computationally
intensive and time consuming. A great deal of data can result in the slow loading of
ontology models and very large query-generated files. Even some ontologies (expression
ontology and fuzzy ontology [64]) take significant time to solve simple queries. In addition,
it is difficult to write and run rules when querying data with complex relationships, even
resulting in query failures. To overcome this limitation, distributed RDF storage [27]
and adding supplementary indexes [163] can be considered to simplify the information
contained in ontologies. When the same RDF triple store is used for different levels of
detail, complex SPARQL queries need to be written to select the triples associated with
particular building information. If more semantics are added to the generated triples, the
query is simplified by the required level of detail.

6.1.2. Consideration of Domain Ontology

Given that Semantic Web technology is still evolving, fully acknowledged ontologies
applicable to specific domains are not yet accessible. As a result, researchers within the same
domain develop their ontologies independently, which limits the exchange of information
between different users.

Due to BIM’s multidisciplinary and multi-stakeholder characteristics, IFC-related
ontologies alone are insufficient to comprehensively address a specific domain. Sometimes,
only a small portion of the IFC file is selected to validate the feasibility of the proposed
approach [63], leaving the ontology not fully meeting the BIM needs in the specific domain.
Liu et al. [164] mentioned that a single IFC4 document cannot fully cover the product
retrieval needs in the AEC domain. Kim et al. [96] mentioned that the ontology domain
should be expanded to include more than the building materials in the default library.
Combining IFC-related ontologies with other AEC resources is desirable to cover a broader
range of BIM resources. Furthermore, establishing a management process for ontologies
and knowledge bases is essential to ensure the continuous and consistent implementation
of the proposed methodology.

6.1.3. Consideration of Integration Process

The implementation of IFCOI is not entirely automated, and substantial manual
effort is required at various stages of the integration process. First, current ontology
development tools primarily consist of manual development tools (e.g., Protégé [165]) and
semi-automated development tools (e.g., Jena [166]), and most of the papers adopt manual
development methods. Secondly, mapping IFC files to ontology requires a certain amount
of manual work. Sometimes, the alignment needs to be specified manually by domain
experts using predefined functions/languages. In addition, refining the rule language is a
manual task. This challenge might be overcome by developing fully automated converters,
IFC data parsers, and conversion engines to automate the transformation between BIM and
other data formats.
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6.2. Opportunities
6.2.1. Automated Information Extraction and Representation

In order to minimize manual errors in the process, many studies have emphasized
the automatic extraction and representation of information in IFCOI. More advanced
techniques can be applied to facilitate the performance of automated interactions.

Future algorithms can focus on representing and delivering semantic information
to clearly identify the connections between BIM and other systems. Natural language
processing and other techniques can be applied to automatically generate query rules [28]
to improve the accuracy of data queries. New rules are considered to detect inconsistencies
or ambiguities in the ontology and enable automatic updating of the rule set in response
to changes in the IFC standard. Efforts should be directed towards developing a fully
automated converter or an IFC data parser and conversion engine using a programming
language to achieve automatic conversion between different data formats.

6.2.2. Ontology Extension and Management to Cover a Broader Scope

Developing a new ontology has the advantage of meeting the user/developer require-
ments for concepts and properties as best as possible. However, when a large number of
ontologies are developed, it is difficult to manage them, and even the interoperability of
these ontologies cannot be achieved. Considering consistency, reusability, interoperability,
and efficiency, the extension of existing ontologies is a way to break through the limitations
of existing ontologies when applied. Before developing new ontologies, researchers should
assess existing ontologies and determine whether reusing them is beneficial to the appli-
cation. Some studies have taken this approach and developed new ontologies based on
existing ones (e.g., IfcOWL [64,135] and NRM [25]). Table 11 presents some ontologies that
can be considered for reuse in the AEC/FM domain.

Table 11. Some existing ontologies suitable for reuse in the AEC/FM domain.

Name Prefix Domain

IFC Ontology IfcOWL https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD2_TC1/OWL,
accessed on 13 March 2024

Building Topology Ontology bot https://w3c-lbd-cg.github.io/bot/, accessed on 13 March 2024

Building Product Ontology bpo https://www.projekt-scope.de/ontologies/bpo/, accessed on 13 March 2024

Digital Construction dic https://digitalconstruction.github.io/v/0.3/index.html, accessed on 13
March 2024

Data Catalog Vocabulary DCAT https://www.w3.org/TR/vocab-dcat-2/#UML_DCAT_All_Attr, accessed
on 13 March 2024

Time Ontology Time https://www.w3.org/TR/owl-time/, accessed on 13 March 2024

Semantic Sensor Network
Ontology ssn https://www.w3.org/TR/vocab-ssn/, accessed on 13 March 2024

Organization Ontology Org https://www.w3.org/TR/vocab-org/, accessed on 13 March 2024

A comprehensive domain ontology needs to be compatible with various heterogeneous
data types and fully consider different participating subjects. Due to the limitations of the
storage and data processing capability of a single ontology, the involvement of multiple
ontologies becomes a good alternative [91] and the management of these ontologies is
the other way to broaden the scope of application. Compared with large ontologies
(e.g., IfcOWL), smaller and modular ontologies can be developed, which are simple in
structure and can meet the needs of specific applications. These smaller modular ontologies
are more conducive to extension and data mapping. In the future, we can try to develop
an ontology search engine to integrate more AEC ontologies so that users can query and
obtain existing ontologies faster and more conveniently. In addition, there is a need to
develop open, shared, and recognized ontologies. Alongside their publication, detailed
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documentation of the concepts and relationships should be made available to reduce the
current trend of continuously creating new ontologies [167].

6.2.3. Further Semantic Transformation

In order to meet the needs of applications in different domains at different phases,
the accuracy and depth of data integration must be ensured. The understanding and
transformation of semantic information is the focus of integration. An approach worth
considering is the combination of IFCOI with machine learning [104], Natural Language
Processing (NLP) [151], and deep learning [152] methods to ensure that IFC informa-
tion is semantically consistent with other domain information. Researchers have now
begun to use these methods to process semantic data and optimize rule interpretation.
Yin et al. [99] proposed a graph neural network (GNN)-based semantic parsing method,
which can transform natural language queries (NLQs) into SPARQL queries but poses
heavy computation costs. McGlinn et al. [123] used an Artificial Neural Network (ANN),
a Genetic Algorithm (GA), to intelligently generate and optimize rules. Attempts can be
made to develop tools that realize the automatic generation of semantic data models from
IFC models, and the results can be queried and represented based on ontologies.

6.3. Building Lifecycle Management (BLM) Based on IFC and Ontology

Building Lifecycle Management (BLM) encompasses planning, design, construction,
and O&M, forming an integrated management platform that connects all phases. The
BLM information platform allows for the creation, management, and sharing of consistent
and comprehensive building information, which reduces the loss of information between
phases and between participants. Unfortunately, there are several barriers to BLM im-
plementation, such as information silos, low data interoperability, and poor cross-party
co-ordination [168,169]. Ontologies offer a structured description of domain-specific knowl-
edge and facilitate mapping IFC data to integrate information from BIM and other domains.
It is an effective way to solve the data interoperability problem faced by BLM. Therefore,
we are considering constructing a BLM model based on IFC and ontology to make BLM
more digital, integrated, and visualized.

As shown in Figure 10, the BLM model based on IFC and ontology comprises four
layers: data, model, object, stage, and application. In addition to IFC data, the data layer
includes building-related data and environmental data collected to fulfill specific applica-
tion needs. The model layer is used to store various distributed ontologies and generate
mapping rules and query rules. Ontologies include IfcOWL, geographic information on-
tology, multi-model visualization ontology, and various domain ontologies (e.g., CCO for
compliance checking, WIO and WCO for cost estimation, GBEO for green building evalua-
tion). Various ontologies developed can structurally represent data and realize integration
and interaction, improving interoperability in different stages and different fields. This
model supports both BLM for buildings and BLM for building facilities. Various domain
ontologies in the model layer can be used in different stages to meet various management
needs. At the same time, data generated during and after an application can support
application management in subsequent stages. In the BLM process based on IFC and
ontology, the participation of technologies, such as BIM, GIS, IoT, database, and cloud
computing, is required.
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7. Conclusions

This paper is the first systematic review of IFCOI in the AEC/FM field and presents
a scientific bibliometric analysis of 122 articles in terms of data, models and integration
applications. Based on these, we summarize three integration modes and further discuss
the current challenges and opportunities. The following conclusions are drawn from this
literature review.

(1) We first conduct a bibliometric analysis from the perspective of data and models. In
order to expand the interoperability of BIM, ontology plays a critical role in integrating
IFC data with other data. IFC files can be exported in SPF, XML, and RDF formats,
and other unstructured data can be mined through ontology for their semantics and
linked to IFC. Researchers can select appropriate ontology description languages
and development methods to construct ontologies. In addition, IfcOWL, as a current
model of IFCOI, is applied to different scenarios, directly or after extension, yet causes
complexity in data mapping. Nevertheless, this can be solved by simplifying IfcOWL
and ontologies based on IfcOWL.

(2) We perform a statistical analysis of integration applications across various objectives
and phases (design, preconstruction, construction, and O&M) dimensions. Buildings
are the primary objective of the research. Nevertheless, IFCOI is also very suitable for
infrastructure because of the large amount of spatiotemporal data involved. Drawing
from bibliometrics and discussions in Section 4, IFCOI demonstrates a broad spectrum
of applications throughout its lifecycle. Among them, it is applied more in the design
phase and O&M phase, with good performance in compliance checking, HIBM, and
cost estimation. Additionally, we discussed the motivations for the integration and
constructed a framework diagram for IFCOI application.
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(3) We carry out an in-depth analysis of the roles played by IFC and ontology in IFCOI.
Given the different integration purposes, semantics, and structures of data, the modes
of IFCOI vary accordingly. Based on this, three modes of IFCOI are summarized (see
Section 5). Among them, Mode 1 and Mode 2 perform well in different applications.
Mode 3 is mainly utilized for BIM and GIS integration. Unfortunately, the performance
of Mode 3 is not entirely satisfactory due to differences in data models and levels
of detail. In the future, efforts should continue to be made to seek breakthroughs in
this area.

(4) Despite the advantages, IFCOI mainly faces the following challenges: low flexibility
and scalability in data, limited coverage of domain ontology, and incomplete automa-
tion of the process. To address these challenges, we suggest possible corresponding
solutions as references for future research. In addition, IFCOI has the potential for
building lifecycle management, so we propose a BLM model based on IFC and on-
tology, which could significantly contribute to the digitalization, integration, and
intelligence of management processes.

There are some limitations to this review. Since this review only considers the WOS
database in the selection of papers, there is a possibility of omissions. Furthermore, the
review primarily concentrates on the data, models, applications, and modes of IFCOI,
with relatively less emphasis on technique aspects of data mapping and new knowledge
reasoning through rules.
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