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Customizable and Robust Internet of Robots
Based on Network Slicing and Digital Twin
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Abstract—The Internet of Robots (IoR) is proficient in han-
dling complex tasks in challenging environments, yet it en-
counters challenges related to service and scenario diversity,
risk reduction, and ultra-low latency requirements. To address
these challenges, we propose an integrated architecture that
enhances the IoR’s adaptability, flexibility, robustness, and low
latency. This is achieved through the introduction of network
slicing, service-based architecture, and digital twin (DT). We have
developed an open-source experimental platform to showcase
the customizability of the proposed architecture. Slices with
different requirements are set up in WiFi and cellular scenarios
to demonstrate its versatility. Additionally, we present a DT-
assisted deep reinforcement learning (DRL) approach for the IoR
to improve DRL performance and mitigate risks associated with
undesirable actions. The DT is employed to predict rewards and
dynamic state transitions in the physical environment. Further-
more, we introduce a resource allocation method that combines
data processing queue preemption and spectrum puncturing.
This is designed to accommodate coexisting services, specifically
enhanced mobile broadband (eMBB) and bursty ultra-reliable
low latency communications (URLLC). Experimental and numer-
ical results validate the effectiveness of our proposed methods,
showing improvements in customizability, robustness, latency,
and outage probability in IoR.

Index Terms—Internet of Robots, Network Slicing, Digital
Twin, Service based architecture, Co-existence of eMBB and
bursty URLLC.

I. INTRODUCTION

THE remarkable success of artificial intelligence (AI) and
manufacturing processes in the past decade has spurred

the rapid development and widespread application of robots.
Recently, there is a growing trend for robots to tackle complex
tasks, meet stringent quality of service (QoS) requirements,
and operate in harsh environments. Individual robots often
face challenges in performing these complex tasks due to
limitations in their capabilities of perception, computation, and
communication. This necessitates the advent of the Internet of
Robots (IoR), a specialized robotic communication network
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that integrates AI, cloud/edge computing, communications,
and robots [1]. This integration significantly enhances their
ability and performance in handling complex tasks. While the
well-studied Internet of Things (IoT) has provided valuable
research and development experiences [2], the unique charac-
teristics of IoR present new challenges.

The IoR has shown rich diversity in terms of scenarios,
services requirements, communication protocols, hardware and
software, imposing many challenges to the IoR. Specifically,
setting up various physical networks to realize the diversity
of IoRs would increase the cost of research, deployment,
configuration, and maintenance. Besides, network elements
and robots supporting different protocols (e.g., WiFi, 4G,
and 5G etc.) deteriorate the scalability and flexibility of the
IoR. Moreover, vendor-specific network devices and robots
are difficult to share resources due to their closed nature,
which in turn results in lower resource utilization. Network
slicing [3], an enabling technology in B5G and 6G, can
provide customized virtual networks on the shared network
infrastructure to fulfill the various requirements and scenarios
of the IoR. Its software-defined and virtualized capabilities
can improve the IoR’s resource utilization, flexibility, and
deployment as well as management efficiency, thus addressing
challenges arisen from diversity of IoRs.

The IoR with self-decision and self-control capabilities
requires more careful design to prevent accidents and hazards
(such as high-speed moving robot collisions). Besides, in
recent years, there is a greater tendency for IoRs to be de-
ployed in harsh environments to perform highly sophisticated
tasks, which increases challenges to developing and updating
IoRs, particularly with respect to the difficulty and cost of
functional experimentation. The emerging Digital twin (DT)
enables the setting up of digital clones (also called twins)
of physical objects. By introducing DT, developers are able
to design, deploy, improve and manage IoR in digital clones
more efficiently, preventing the risks in physical environment
associated with poor decisions, and accelerating new feature
development cycles with low validation costs. In addition,
combining AI (e.g., deep learning, deep reinforcement learning
(DRL), etc.) with DT allows for efficient and secure deploy-
ment and management the IoR [4].

Among key performance indicators, low latency require-
ment is one of the most important indicator for the IoR,
especially for applications like telesurgery, remote robotic
arms, and autonomous driving. However, in scenarios where
enhanced mobile broadband (eMBB) and bursty ultra-reliable
low latency communications (URLLC) coexist [6], traditional
resource allocation algorithms struggle with timely solutions,
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Figure 1. Integrated Network architecture for the IoR.

and resource reservation methods may reduce IoR’s resource
utilization. Efficiently and dynamically allocating communica-
tion and computational resources in such scenarios remains a
challenge.

This article presents a network architecture and solutions to
fulfill the IoR’s demands of diversity, risk avoidance, and ultra-
low latency and reliability. Main contributions are summarized
as follows.

• We present an integrated network architecture by the
cooperation of network slicing, cloud/edge computing,
DT and AI, which enables the IoR with the features of
flexibility, low latency, customizability and robustness.

• We provide a DT-assisted DRL approach for the IoR to
speed up convergence of DRL and reduce the risks caused
by bad actions, where the DT uses neural networks to pre-
dict reward and state transition of physical environment.

• We provide a resource allocation method for the co-
existence scenario of eMBB and bursty URLLC appli-
cations, based on data processing queue preempting in
the base station and spectrum puncturing in the air.

• We set up an experimental platform to validate the IoR
customization capability and demonstrate the advantages
of the above DT-assisted DRL approach and resource al-
location method in terms of DRL rewards, risk reduction
and latency through simulations.

The rest of this article are organized as follows. We propose
an integrated network architecture and the experimental results
to demonstrate its customizability, based on which we provide

a DT-assisted DRL approach for IoR. Then, we provide a joint
spectrum and computing resource allocation method for the
coexistence scenario of eMBB and URLLC, followed by the
conclusion of this article.

II. INTEGRATED NETWORK ARCHITECTURE FOR THE IOR

This section proposes an integrated network architecture
to meet the challenges of service diversity, stringent QoS
requirements, and risk avoidance in the IoR, as shown in Fig.
1. We have made comprehensive use of advanced technologies
such as software-defined networking (SDN), network function
virtualization (NFV), network slicing, service-based architec-
ture (SBA), DT and AI, which enables the IoR to be highly
flexible, agile, customizable and robust.

The overall architecture includes four domains, which are
detailed in the following:

• The network domain represents the physical network that
provides information services to robots and is the carrier
for the implementation of the architecture. It consists
of three logical layers. The infrastructure layer includes
heterogeneous network elements (such as base stations
(BS), servers, etc.), and multiple resources (e.g., radio,
computing, and sensing resources). With the aid of virtu-
alization technologies (e.g., virtual machine and docker),
these elements and resources can be abstracted and shared
in the virtualization layer. The network function layer pro-
vides the basic network functions for IoR. This functions
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can be further classified into functional planes for easy
management as in 6G network architecture [5], such as
control plane, user plane and AI plane.

• The management and orchestration (MANO) domain is
responsible for the orchestration and configuration of
network resource, functions and slices, in accordance
with the requirements of services and network operation.
The objects of MANO domain orchestration include
the network domain, the DT domain and the service
domain. It can receive network configuration parameters
from optimization algorithm, AI, and the DT domain to
orchestrate and manage the physical network, enhancing
the network’s adaptability to new services and scenarios
with differentiated needs.

• The DT domain utilizes advanced AI algorithms (e.g.,
DRL) and sensed data to model and then generate virtual
images of parts or the whole of the physical network. We
can enter requirements and corresponding data through
real time interfaces and validate network operations and
intelligent applications at the DT domain, followed by
which optimal decisions are sent to the MANO domain or
the physical network. It enables low-cost trial and error,
intelligent decision making, efficient collaboration, and
fast responsiveness, significantly reducing the destructive
impact of some bad decisions on the network.

• The service domain includes all the IoR applications that
build network services through the use of network slicing.

The advantage of the proposed architecture lies in multi-
folds.

(1) Flexibility. Note that the SBA is the cornerstone of the
proposed architecture, which was a 5G core network architec-
ture accepted by 3GPP Release 15 [7]. Inspired by the idea
of microservices, the SBA connects required virtual network
functions (VNFs) over a unified serviced bus (e.g., HTTP)
based on service requirements, which in turn allows for the
provision of customized services. This SBA principle allows
for the implementation of unified service provisioning, routing,
monitoring, and slicing of IoR services, which improves IoR
flexibility by leveraging the advanced technologies of the
public cloud in an efficient manner.

(2) Low latency. Edge computing and AI enable distributed
intelligent computation and execution of complex tasks, which
accelerates service responsiveness, and reduces the latency.
Besides, benefiting from SBA, slice templates can be set up for
rapid instantiation of common services as service requirements
arise, thus reduce slice creation time and improves service
responsiveness and efficiency. The network-wide programma-
bility and resource shareability brought about by SDN and
NFV make it easier and faster to schedule and manage network
resources.

(3) Customizability. The proposed architecture gives the IoR
the ability to customize its services on shared the infrastructure
and resources. Specifically, it utilizes network slicing to create
logically separated virtual networks, improving the resource
utilization, and network operation and maintenance efficiency.
Different slices can be orchestrated by the MANO domain for
diverse devices, functions, and networks to meet the various
requirements of IoR application and scenarios. These slices are

eventually rendered in the service domain and form slices-as-
a-service.

(4) Robustness. The encapsulation capabilities of NFV and
network slicing, and the modular design capabilities of the
SBA allow for faster and more robust development and up-
grades of new applications, where an errant network element,
network function, or virtual network does not affect others.
Moreover, the introduction of DT greatly avoids risks during
the design and operation of IoR, so complex tasks can be
continuously tried and tested in DT to find better decisions.

(5) Efficiency. Network slicing provides customization, vir-
tualization and programming capabilities, improving network
management efficiency and resource utilization. DT enables
verification and trial-and-error in the digital world, and im-
proves the efficiency of IoR’s new functionality development.

We set up an experimental platform to demonstrate the
flexibility and customization capability of the proposed archi-
tecture by creating network slices for different services, while
other key technologies for DT and low latency are described
later. In practice, robots adopt diverse standards (e.g.,WiFi,
4G, and 5G), so our platform builds different slices on shared
physical facilities with these various standards. Specifically,
this platform comprises a WiFi-based platform and a cellular-
based platform, which employs universal X86 servers, the
universal software radio peripheral (USRP), routers, a Quectel
RM500Q-GL-based 5G module, smartphones and several
miniPCs, as depicted in Fig. 2a.

In the WiFi-based platform, we utilize virtual machine
(VM) and Docker for the virtualization of computing and
storage resources. We employ the Openwrt to implement Open
vSwitch (OVS), supporting the virtualization of communica-
tion resources. Using Floodlight and OpenWrt, we realize
virtual network functions such as virtual SDN controllers and
virtual access points (VAPs). Additionally, we use FlowVisor
to orchestrate and isolate network slices, forming dedicated
virtual networks. We deploy and test three types of network
slices, namely, video transmission slice, spider robot slice
(equipped with high-definition cameras for visual recognition,
visual synchronization, and intelligent patrol), and 3D cart
slice (simultaneous localization and mapping), and test their
transmission rate and latency performance respectively, as
shown in Fig. 2b. Bandwidth resources are allocated to video
transmission slice, spider robot slice and 3D cart slice on
demand, yielding transmission rates of 45 Mb/s, 35 Mb/s and
15 Mb/s, respectively. These results align with the allocated re-
sources, ensuring bandwidth isolation between network slices.
3D cart transmits a smaller amount of data with a minimum
latency of about 10 ms, followed by the spider robot with the
latency of 52 ms, and the video transmission service has the
latency of 135 ms due to its larger amount of data.

In the cellular-based platform, we utilize Docker to imple-
ment VNFs, and use HTTP bus to connect these VNFs. Kuber-
netes implements microservice orchestration and management
to support slice instantiation. Following that, we deploy the
virtual core network of 4G (i.e., evolved packet core) and 5G
on the cloud servers, respectively. For the access network, we
established virtual eNodeB and gNodeB on a miniPC, and
then use two USRP B210s as the radio remote unit (RRU).
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Figure 2. (a) Experimental platform; (b) WiFi-based slices; (c) Cellular based slices.

As shown in the left of Fig. 2c, the rates of the slices decrease
with the increasing distance from the BS to the device. At a
distance of 1 meter, the 5G slice achieves a transmission rate
of about 116 Mb/s, which is twice the rate of the 4G slice. In
the right part of Fig. 2c, video transmission latencies shows
decreasing trends with the increasing data size. For a video
size of 30 MB, the transmission latency of the 5G slice is
around 2.9s, about 12.1s lower than the 4G slice’s latency.
These results clearly demonstrate the superior performance of
5G slices compared to 4G slices.

III. DT-ASSISTED DRL FOR THE IOR
Conventional robots transmit sensing information (such as

position, velocity, temperature and humidity) into a pre-written
program to obtain their corresponding actions. This approach
highly depends on specialized hardware capabilities and highly
structured environments, applying only to easy tasks, such as
robotic arms next to conveyor belts and shakers.

The DRL is more suitable for dynamically harsh environ-
ment and complex tasks, which benefits decision making and
control of robots. Specifically, the agent of DRL selects actions
for the IoR, and obtains rewards and next state from the
physical environment. Through continuous dynamic trial and
error, DRL can find the optimal action for the IoR. However,
to choose favorable actions or policies, the agent need to
frequently interact with the physical environment. This results
in that the environment needs to run actions and score them,
which incurs additional latency and energy consumption, and
bad actions will be destructive (e.g., robot collisions, damage
to critical equipment, etc.).

In view of this, we propose a DT-assisted DRL approach for
the IoR to improve the performance of the DRL algorithm and
reduce risks caused by bad actions. The main idea is that we
use DT to mimic the physical environment, that is DT predicts
the reward and dynamic state transition of the environment.
Thus, incidence of risk is reduced due to less interaction with
the physical environment. We put our emphasis on the model
based DRL [8] because it can establish an environmental
prediction model that meets the needs of the DT simulation
environment. The proposed method is schematically shown in
Fig. 3, and detailed in the following.

First, we use conventional DRL algorithm (e.g., soft actor-
critic, SAC) for the IoR’s control and resource management.
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Figure 3. DT-assisted DRL for the IoR.

Depending on the state changes caused by the action, the
physical environment feeds back to the agent the value of
the reward. The DRL may find the optimal policy or action
through dynamic trial and error. Experience reply is a common
method to improve the sample efficiency of off-policy DRL
algorithm. An experience is made up of several transitions,
and a transition consists of a tuple (st, at, rt, st+1), where t
stands for the index of training step.

Next, we set up the DT system to predict the state transfer
and reward mechanisms of the physical environment via deep
learning. Basically, the experiences are used as the data set
to train the the predict network (e.g., multilayer perceptron,
MLP), where inputs are the current state st and selected action
at, and outputs are the estimated reward r̂t and state of next
step ŝt+1. Once the neural network performs well, we can use
it to predict r̂t and ŝt+1 without real interaction with physical
environment. We can further store the tuple (st, at, r̂t, ŝt+1)
and build a DT experience buffer. Then, DRL can use both the
real and the DT experience buffer to speed up its convergence.
Furthermore, we add a generate adversarial network (GAN) [9]
due to its data augmentation ability before the predict network
to generate more fake samples ŝt and ât, and submit them
to the predict network to obtain r̂t and ŝt+1. Then we can
obtain more DT experiences (ŝt, ât, r̂t, ŝt+1) that accelerate
DRL convergence without actual interactions with the physical
environment.
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To validate the proposed DT-assisted DRL approach, we
utilize PyTorch and the Hopper-v2 environment to construct
the model and environment, respectively. We respectively use
60000 and 10000 samples to train and test the overall neural
network. Both the SAC network and the predict network
adopt batch size of 256, learning rate 0.0003, and Adam
optimizer with mean square error loss, where the former one
includes three fully connected layers (FCLs) each with 256
neurons, and ReLU activation function, and the latter one
consists of five FCLs each with 200 neurons and Sigmoid
activation function. The batch size, learning rate, optimizer
and number of neurons in each hidden layer of GAN are
64, 0.00005, RMSprop, and 100, respectively. The generator
includes four blocks with a FCL, Batch Normalization, and
LeakyReLU activation, while the discriminator comprises a
FCL and LeakyReLU activation function, ending with a FCL.
Then we compared three algorithms: the SAC algorithm, the
prediction approach without GAN, and the proposed approach
based on GAN.

Fig. 4a shows the reward values of the three algorithms
across training epochs. Our proposed algorithm converges
faster than the SAC algorithm and achieves higher reward. For
instance, the proposed approach with GAN achieves the high-
est reward at the 120th epoch, around 1.2 and 1.4 times higher
than rewards of the prediction approach without GAN and
the SAC algorithm, respectively. Within the initial 80 training
epochs, the prediction approach without GAN converges the
fastest. However, after the 90th epoch, the proposed approach
with GAN surpasses the reward values and convergence speed
of the prediction approach without GAN, maintaining a stable
growth trend. This is because in the initial stages of training,
the GAN network has not fitted adapted to the data from
the physical environment. Once the GAN network becomes
more stable, it provides more accurate training data, which
accelerates the DRL training process.

Fig. 4b shows the number of robot falls during each
epoch (which includes 1000 training steps) in the physical
environment, across a total of 50 epochs. Initially, when the
neural network has not yet stabilized, the robot is prone
to falling, making the results particularly representative. The
proposed approach with GAN achieves the smallest number of
falls, about 30 and 50 percentage smaller than the prediction
approach without GAN and SAC algorithm at the 9th epoch,
respectively. This is because once we detect a reward reducing
to a given value in the DT environment, we will not output
the corresponding action in the physical environment, thus
reducing the risk rate of the robot producing a bad action
with destructive consequences in the physical environment.
The total number of robot falls for the proposed with GAN
across 50 epochs is 166, lower than that of prediction without
GAN (i.e., 184), because data samples of the latter one are
obtained by interacting with real environments. In contrast,
the proposed with GAN method generates data samples using
the GAN without interacting with physical environment, thus
increasing the reward value while reducing the chance of robot
falls.
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Figure 4. (a) Reward vs. Epochs; (b) Falls vs. Epochs.

IV. RESOURCE ALLOCATION FOR COEXISTENCE OF EMBB
AND BURSTY URLLC

This paper considers coexist of eMBB and bursty URLLC
because it is more realistically in the practical scenarios.
For instance, in robot-assisted industrial automation and
telesurgery, both the high data rate video transmission for
eMBB and the latency-sensitive controls for URLLC are
required. Meanwhile, control data delivery is not continuous
and uniform, but rather bursty and with varying amounts
of batches over multiple time slots, so we consider bursty
URLLC. Typically, network operators are tend to reserve
a portion of earmarked resources for URLLC services to
meet their stringent requirements, but it reduces the resource
utilization of the IoR. Normally, we can preempt the resources
allocated to eMBB for the data processing and transmission
of URLLC with higher service priority. However, eMBB and
URLLC transmit at different time scales, and 3GPP suggests
the adoption of short transmission time interval (TTI)/punched
approach [10]. Specifically, the time domain is divided into
equal slots (1 ms) and each slot is further divided into multiple
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mini-slots. eMBB transmissions are performed on slots to
achieve high data rate and URLLC packets are transmitted
on mini-slots to reduce latency. Short packets are used to
ensure that URLLC packets can be transmitted in mini-slots.
This leads to the Shannon’s capacity underestimating rate
performance of URLLC, and the achievable rate in short
blocklength regime is adopted [11].

The delay of URLLC service mainly consists of the data
processing delay of the wired network and the data trans-
mission delay of the wireless link. We propose a method to
jointly allocate computing and communication resources by
preempting both data processing queues in the BS and radio
time-frequency resources in air interface for coexisting eMBB
services and bursty URLLC services, as shown in Fig. 5. The
main steps of this method is given in the following.

(1) Arriving traffic modeling. Normally, the arriving traffic
of eMBB and URLLC are modeled as Poisson process with
different mean value. Nevertheless, Poisson process is only
suitable for modeling the traffic arrival is constant for each
time slot, and fails to model the bursty arrivals (or batch
arrivals) of URLLC traffic. Thus, followed by [12], we model
the bursty URLLC traffic arrival process as a composite
Poisson process. Specifically, the URLLC packets arrive in
batches and the number of arriving packets in each batch
follows Poisson distribution. Meanwhile, the batch arrivals
and the arrival interval follow Poisson process and exponential
distribution, respectively.

(2) Computing resource sharing and priority queuing rules
for data processing. The BS has to process the data download
from the cloud. URLLC data with higher priority needs to

preempt the data processing queue in the BS, and thus we
should introduce preemptive-resume priority rules [13] instead
of the conventional first-in-first-out (FIFO) queuing rule. The
preemptive-resume priority rules allows URLLC packets to
interrupt data processing on the eMBB which will be resumed
after URLLC data processing finished. It benefits URLLC
performance but decays the rate and latency of eMBB services.
To solve this problem, we divide the computing resource in
the BS into the shared part and the exclusive part. The shared
part adopts the preemptive-resume priority rule to share the
computing resource for coexisting eMBB and URLLC packets.
The exclusive part is only used for eMBB data processing,
satisfying tolerable latency and rate requirements of eMBB
applications. This practice can achieve the rigorous latency
requirement of URLLC with satisfying basic performance
demands of eMBB. It can also improve resource utilization
because eMBB can use all of the computing resource when
when no URLLC packets arrive.

(3) Spectrum puncturing in wireless transmission. We in-
troduce a preemptive puncturing method to achieve multiplex
the shared channels of eMBB and URLLC, that is scheduling
arriving URLLC packets to be transmitted in the next mini-
slot by preempting the sub-carriers that have been allocated to
eMBB users. We further propose a threshold-based queuing
rule for the downlink transmission, which not only meets the
basic performance requirements of eMBB, but also reduces
the discarding probability of URLLC packet. Specifically, we
establish an upper limit on the number of URLLC packets to
be transmitted per mini-slot (e.g., M ). When the number of
URLLC packets to be transmitted exceeds M , the exceeding
portion will be transmitted in the next mini-slot. Each URLLC
packet needs to be transmitted in two mini-slots, otherwise the
packet will be discarded.

(4) Joint scheduling computing and radio resources for co-
existing eMBB and bursty URLLC services. Upon queue and
spectrum puncturing in data process and wireless transmission,
we can joint schedule the computing and radio resources in
an end-to-end manner by minimizing the average delay of
URLLC packets and satisfying the rate and delay constraint
of eMBB services.

We conducted numerical validation of the proposed resource
allocation method, as depicted in Fig. 6. We adopt a Rayleigh
fading channel with a total bandwidth of 30 KHz, a channel
block length of 200, 12 sub-carriers, 4 mini-slots per slot, the
noise power of -110 dBm, 8 eMBB robots and 1 URLLC
robot. The following two schemes are used for comparison:
one scheme prioritizes URLLC services and directly drops
URLLC packets without participating in the queue when the
URLLC packets exceed the set threshold limit [14], we named
it PUTD scheme. The other scheme splits the computing
resources into exclusive URLLC and eMBB components and
adopts an active packet dropping strategy, and we named it
EUAD scheme.

Fig. 6a shows that the average delay of URLLC increases
as the total throughput requirement of eMBB increases. Our
proposed method exhibits a significant advantage compared to
the EUAD scheme. With an eMBB throughput requirement of
11 Mb/s, the proposed method reduces URLLC delay about
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Figure 6. (a) URLLC average delay vs. Throughput requirements of eMBB;
(b) URLLC outage probability vs. Average number of packets per batch (M =
8).

24 percentage compared with EUAD, due to the improved
resource utilization achieved through resource sharing. Mean-
while, the proposed method and the PUTD achieve almost
the same URLLC delay performances. We further compare
the URLLC outage probability (probability of reaching the
maximum number of transmissions) between the proposed
scheme and the PUTD scheme for different numbers of packets
per batch with 10 sub-carriers [15], as shown in Fig. 6b. The
outage probability increases with the increasing batch size.
Our proposed scheme achieves a lower outage probability
compared to the PUTD scheme. For instance, with 6 packets
per batch, our proposed scheme exhibits an outage probability
of only 3 percentage, about 7 percentage lower than PUTD
scheme, because in the proposed method, URLLC packets
are transmitted in two mini-slots rather than discarding them

directly, reducing the outage probability.

V. CONCLUSION

In response to the growing demand for application ser-
vices and various use-case scenarios, the Internet of Robots
(IoR) faces the challenge of meeting diverse requirements
while ensuring robust design principles. In this article, we
proposed an integrated architecture that leverages advanced
technologies like network slicing, service-based architecture
(SBA), and digital twin (DT) to enhance IoR’s capabilities,
including flexibility, low latency, adaptability, and robustness.
Within this architecture, we introduced a DT-assisted deep
reinforcement learning (DRL) method aimed at improving
DRL performance and reducing IoR risks. This method utilizes
a cascaded generative adversarial network (GAN) and multi-
layer perceptron (MLP) network within the DT framework.
Additionally, we presented a resource allocation method based
on joint queue preemption and spectrum puncturing. This
method is designed to support the coexistence of enhanced
mobile broadband (eMBB) and ultra-reliable low latency com-
munications (URLLC) IoR applications.
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