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Human listeners possess an innate capacity to discern patterns within rapidly unfolding sensory input. Core questions, guiding
ongoing research, focus on the mechanisms through which these representations are acquired and whether the brain prioritizes
or suppresses predictable sensory signals. Previous work, using fast auditory sequences (tone-pips presented at a rate of 20 Hz),
revealed sustained response effects that appear to track the dynamic predictability of the sequence. Here, we extend the investigation
to slower sequences (4 Hz), permitting the isolation of responses to individual tones. Stimuli were 50 ms tone-pips, ordered into
random (RND) and regular (REG; a repeating pattern of 10 frequencies) sequences; Two timing profiles were created: in “fast”
sequences, tone-pips were presented in direct succession (20 Hz); in “slow” sequences, tone-pips were separated by a 200 ms silent
gap (4 Hz). Naive participants (N= 22; both sexes) passively listened to these sequences, while brain responses were recorded using
magnetoencephalography (MEG). Results unveiled a heightened magnitude of sustained brain responses in REG when compared to
RND patterns. This manifested from three tones after the onset of the pattern repetition, even in the context of slower sequences
characterized by extended pattern durations (2,500 ms). This observation underscores the remarkable implicit sensitivity of the
auditory brain to acoustic regularities. Importantly, brain responses evoked by single tones exhibited the opposite pattern—stronger
responses to tones in RND than REG sequences. The demonstration of simultaneous but opposing sustained and evoked response
effects reveals concurrent processes that shape the representation of unfolding auditory patterns.
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Significance Statement

Humans excel at detecting predictable patterns within sound sequences, a process crucial for listening, language processing,
and music appreciation. However, questions persist about the underlying neural mechanisms and the specific information
monitored by the brain. Our study addresses these questions by analyzing magnetoencephalography (MEG) signals from par-
ticipants exposed to predictable and unpredictable tone-pip patterns. We found that the MEG signal simultaneously captures
two crucial aspects of predictability tracking. Firstly, sustained MEG activity, tracking the sequence's evolution, dynamically
assesses pattern predictability, shedding light on how the brain evaluates reliability. Secondly, phasic MEG activity, reflecting
responses to individual events, shows reduced activity to predictable tones, aligning with the idea that the brain anticipates
and efficiently encodes upcoming events in predictable contexts.

Introduction
The physical rules that govern the environment and impose con-
straints on its agents result in statistically structured, predictable sen-
sory signals.Thebrain ishypothesized tohavedeveloped thecapacity
to rapidly detect and track the regularities within these signals (de
Lange et al., 2018; Press et al., 2020). This ability plays a crucial role
in the comprehension of our surroundings, facilitating efficient rec-
ognition and processing of incoming information, to empower us to
respond rapidly and adaptively to changing circumstances.

The auditory system, in particular, has demonstrated remark-
able tuning to regularities across various time scales and
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dimensions (Bendixen, 2014; Carbajal and Malmierca, 2018;
Heilbron and Chait, 2018; Asokan et al., 2021; Fitzgerald and
Todd, 2020). This plays a crucial role in our ability to understand
spoken language (Arnal and Giraud, 2012), appreciate the
nuances of musical compositions (Koelsch et al., 2019) and
make sense of the complex soundscape that surrounds us.
However, core questions regarding the mechanisms through
which regularity is discovered and tracked remain elusive. In par-
ticular, pivotal issues revolve around whether the brain chooses
to prioritize or suppress predictable sensory signals (Press
et al., 2020).

Barascud et al. (2016) provided insight into the brain's auto-
matic ability to detect the emergence of predictable acoustic
structure by examining low-frequency activity in the M/EEG sig-
nal (Sohoglu and Chait, 2016; Southwell et al., 2017; Herrmann
and Johnsrude, 2018; Herrmann et al., 2019; Zhao et al., 2024).
Using rapidly unfolding (20 Hz) tone-pip sequences that con-
tained transitions from a random (RND) to a regularly repeating
pattern (REG), they observed that a gradual increase in sustained
power accompanies the emergence of repeating structures. The
timing of the differentiation between REG and RND sequences
(3 tones after the first cycle) was consistent with that predicted
by an ideal observer model (Pearce, 2005; Harrison et al.,
2020), demonstrating statistically efficient processing of structure
even when not behaviorally relevant (Barascud et al., 2016).

The sustained response effect is interesting for several reasons:
Firstly, it suggests that the brain encodes the inherent state of the
stimulus (RND vs REG) rather than merely registering changes
in the environment. Secondly, the observed increase in sustained
power during structure discovery challenges our understanding
of how the brain processes and represents predictability.
Specifically, it appears to contradict expectations derived from
predictive coding frameworks (e.g., Rao and Ballard, 1999;
Friston, 2005, 2009), where predictable information is typically
associated with reduced neural activity, as the brain can efficien-
tly encode and predict upcoming events (de Lange et al., 2018).
Barascud et al. showed that the sustained response, underpinned
by activation in the auditory cortex (AC), hippocampus (HP),
and inferior frontal gyrus (IFG), increases with the predictability
of the ongoing stimulus sequence. This prompted the hypothesis
that it might reflect the process of tracking the inferred reliability
of the unfolding input (“precision”; the accuracy, or conversely
the “expected uncertainty” with which future inputs can be pre-
dicted, Yon and Frith, 2021; O’Reilly et al., 2013) whereby pre-
dictable sensory streams are associated with heightened
sensitivity (see also Zhao et al., 2024).

Several issues need to be addressed for a better interpretation
of the sustained response. Firstly, it is important to consider that
the effects observedmay be specific to the rapid sequences used in
Barascud et al. (2016). Other research (e.g., reviewed by de Lange
et al., 2018; Heilbron and Chait, 2018) has focused on slower pat-
terns, which may elicit different neural responses. Secondly, it is
crucial to determine whether the observed effect primarily
reflects a shift in background neural activity or if it also extends
to modulations of responses to individual events due to their
integration within the structured sequence.

To address these questions, the current study expands upon
the original stimulus by introducing silent gaps between succes-
sive tones (Figs. 1, 2). We aim to explore the generality of the
sustained-response effects across different temporal scales and
provide a clearer understanding of the mechanisms involved in
the processing of structured auditory sequences.

Materials and Methods
Experiment 1—online behavioral study
The behavioral study was designed to probe how the introduction of
silent gaps between tones affects explicit pattern detection. We sought
to pinpoint an optimal gap duration that is sufficiently long to allow us
to isolate responses to individual tones, yet brief enough to maintain
high-performance levels in pattern detection.

Stimuli
Stimuli were sequences of 50 ms tone-pips (gated on and off with 5 ms
raised cosine ramps) drawn from a pool of 20 values equally spaced on
a logarithmic scale between 222 and 2,000 Hz (12% steps). The order
in which these tone-pips were successively distributed defined two differ-
ent sequence types. RND sequences consisted of 20 tone-pips (sampled
from the full pool) arranged in random order. Each tone-pip occurred
equi-probably across the sequence duration. RNDREG sequences con-
tained a transition between a RND sequence, and a regularly repeating
pattern (REG). REG consisted of 10 different tone-pips, randomly cho-
sen from the full pool on each trial and repeated in three identical cycles.
The RND to REG transition always occurred after 30 tone-pips. Opting
for this method, as opposed to a variable transition time, ensured a con-
sistent context (in terms of frequency information available) both pre-
ceding each transition and across different gap duration conditions.
RND and RNDREG sequences were generated anew for each trial and
presented equi-probably throughout the experiment. Therefore, the
occurrence of a transition in any given trial was unpredictable. The
amplitude of each tone-pip was normalized to yield an approximately
similar perceived loudness (Moore, 2014). Across blocks, the inter-ton
intervals were manipulated to form four conditions (Fig. 1A): Gap0 (con-
tinuous presentation), Gap100 (a 100 ms gap inserted between tones),
Gap200 (a 200 ms gap inserted between tones), Gap500 (a 500 ms gap
inserted between tones).

Two control stimuli were also included: sequences of contiguous (no
silent gap) tone-pips of a fixed frequency (CONT) that lasted 4,000 ms,
and sequences with a step change in frequency partway through the trial
(STEP, the change always occurred after 2,000 ms). These were used to
measure individuals’ response time to simple acoustic changes and
served as “catch trials” to assess task engagement.

Procedure
The experiment was implemented online using the Gorilla Experiment
Builder (www.gorilla.sc). Before the main task, participants completed
a headphone screening task (Milne et al., 2020) to ensure they were using
appropriate audio equipment. They then received an explanation of the
task and completed a practice session. Due to length constraints, the
experiment was divided into two parts, performed by two different
groups of participants. Experiment 1a contained the Gap0, Gap100,
and Gap200 conditions along with the control stimuli (STEP and
CONT; see above). Experiment 1b contained the Gap0, Gap100, and
Gap500 conditions, along with the control stimuli.

Participants were instructed to respond, by pressing a keyboard but-
ton, as soon as possible once they had detected a RNDREG transition or a
STEP. To motivate participants to focus on the task, they were given
feedback on their accuracy and speed after each trial. A small monetary
bonus was given for each correct response (Bianco et al., 2021).

In each experiment, three blocks of 40 trials were delivered. Each
block contained the following sequence types: 15 RNDREG, 15 RND,
5 STEP, and 5 CONT. The first block always presented the Gap0 condi-
tion. This block lasted 5 min. Thereafter, listeners completed the other
two blocks (Gap100 and Gap200 in experiment 1a, Gap100 and
Gap500 in experiment 1b) in random order. Starting with Gap0 ensured
that all participants experienced the easiest condition first and had ade-
quate opportunity to practice the regularity detection task, reducing the
likelihood of frustration and dropout that may occur if participants are
immediately faced with the most difficult condition. The main task in
experiment 1a lasted about 20 min, and that in experiment 1b lasted
about 30 min.
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Participant rejection criteria
Previous work (Barascud et al., 2016; Bianco et al., 2020) demonstrated
that participants are sensitive to the emergence of regularity in
RNDREG sequences, exhibiting high sensitivity and rapid detection
time (usually responding within two regularity cycles). Due to the online
nature of the present experiments and associated reduced control over
participants’ environments, equipment, and engagement (Bianco et al.,
2021), it was important to implement a series of rejection criteria to
make sure that data reflect true sequence tracking sensitivity.
Therefore, subject data were excluded from the experiment following
the below (a priori determined) criteria:

1. Failure on the headphone screen: We used the task introduced by
Milne et al. (2020). Participants who did not pass the screening pro-
cedure did not proceed to the main experiment.

2. Low performance in the practice run: To ensure participants under-
stand the task, 24 trials with no gap (10 RNDREG, 10 RND, 2
CONT, and 2 STEP) were given. Participants did not proceed to
the main task if their correct response rate was below 80% in the
practice task (see also Bianco et al., 2023). This ensured that those
participants who proceeded to the main experiment could detect
the REG transitions, thus allowing us to focus on how performance
is affected by increasing the gaps between tones. Our previous expe-
rience with similar stimuli in lab settings (see e.g., Barascud et al.,
2016; Bianco et al., 2020) suggests that the vast majority of young
participants can achieve ceiling performance. We, therefore, rea-
soned that those online participants who performed below 80%
are likely not sufficiently engaged with the task (i.e., distracted, not
following instructions, etc.).

3. Of those participants who completed the full experiment, we rejected
the data from those subjects who failed to respond to STEP trials
(allowing at most one miss per block) or whose RT to STEP trials
fell above 2 STDEV relative to the group mean. Failure to respond
quickly to the (easy) STEP trials indicated low task engagement.

Participants
Two participant groups were recruited via the Prolific platform (https://
www.prolific.co/). Based on previous work with a similar task (Barascud
et al., 2016; Bianco et al., 2020), we aimed to recruit N= 25 valid datasets
per group.

In Experiment 1a, 43 participants completed the experiment. Data
from 14 participants were rejected due to failure to respond to STEP tri-
als or because responses to STEP trials were too slow (rejection criterion
#3, above). Data from 29 subjects are included in the analysis below
(seven females; average age, 24.3 ± 4.79 years). Additionally, 42 subjects
did not proceed to the main task due to not passing the pre-determined
performance threshold in the practice task (rejection criterion #2, above).
This number is much higher than that normally encountered in the lab
(e.g., Bianco et al., 2020) and likely reflects variable engagement by online
participants.

In experiment 1b, 34 participants completed the experiment. Data
from seven participants were rejected due to failure to respond to
STEP trials or because responses to STEP trials were too slow (rejection
criterion #3, above). Data from 27 subjects are included in the analysis
below (six females; average age: 22 ± 4.69 years). Additionally, 13 subjects
did not proceed to the main task due to low performance in the practice
task (rejection criterion #2, above).

In both experiments, about 30% of the participants who initially
accessed the experiment did not pass the headphone screen and therefore
did not proceed further. This is a similar fail rate to that reported in
Milne et al. (2020).

Experiment 2—MEG in naive passively listening participants
Stimuli
Stimuli (Fig. 2) were generated similarly to those in Experiment 1. To
reduce the duration of the (passive listening) MEG experiment, we
focused on REG and RND sequences, without transitions. Sensitivity
to regularity is investigated by comparing brain responses to the onset
of REG and RND sequences. During the initial portion of the sequence

(first cycle in REG), responses to the two sequence types should be iden-
tical, with differences emerging as soon as the auditory system has dis-
covered that the pattern is repeating. Ideal observer modeling
(Barascud et al., 2016; Harrison et al., 2020) suggests that about 3 tones,
following the first cycle, are needed for the transition to be statistically
detectable. REG sequences were generated by randomly selecting (with-
out replacement) 10 frequencies from the pool and iterating that order to
create a regularly repeating pattern. RND sequences consisted of a ran-
dom succession of 10 tones, newly selected on each trial. All stimuli con-
tained 60 tone-pips. Two timing conditions were used: in “Fast”
sequences, tone-pips were presented in direct succession (20 Hz rate;
500 ms REG cycle duration; 3 s overall sequence duration); in “Slow”
sequences, tone-pips were separated by a 200 ms silent gap (4 Hz rate;
2,500 ms REG cycle duration; 15 s overall sequence duration). One hun-
dred instances of each condition were presented. Sequences were gener-
ated anew for each trial such that each stimulus was created of the same
frequency “building blocks” (random selection of 10 out of 20 frequen-
cies). Condition presentation was fully randomized.

Procedure
The experiment was controlled with the Psychophysics Toolbox exten-
sion in MATLAB (Kleiner et al., 2007). All auditory stimuli were pre-
sented binaurally via tube earphones (EARTONE 3A 10 Ω; Etymotic
Research) inserted into the ear canal, with the volume set at a comfort-
able listening level, adjusted for each participant.

The experiment lasted 40 min. Participants listened passively to the
stimuli (presented in random order with an ISI jittered between 1,400
and 1,800 ms) and engaged in an incidental visual task. The task con-
sisted of landscape images, grouped in triplets (the duration of each
image was 5 s, with 2 s ISI between trials during which the screen was
blank). Participants were instructed to fixate on a cross in the center of
the screen and press a button whenever the third image was identical
to the first image (10% trials). The visual task served as a decoy task
for diverting subjects’ attention away from the auditory stimuli.
Participants were naive to the nature of the auditory stimuli and encour-
aged to focus on the visual task. Feedback was displayed at the end of
each block. The experimental session was divided into six 12 min blocks.
Participants were allowed a short break between blocks but were required
to remain still.

Participants
Twenty-three naive subjects participated in the study. One participant's
data were discarded due to excessive noise in the data. Data from 22 par-
ticipants (11 females; average age, 25.14 ± 4.61 years) are reported below.

Data recording and pre-processing
Magnetic signals were recorded using CTF-275 MEG system (axial
gradiometers, 274 channels; 30 reference channels; VSM MedTech).
The acquisition was continuous, with a sampling rate of 600 Hz.
Offline low-pass filtering was applied at 30 Hz (all filtering in this study
was performed with a two-pass, Butterworth filter with zero phase shift).
All pre-processing and time domain analyses were performed using the
fieldtrip toolbox (Oostenveld et al., 2011). To analyze time domain data,
we selected the 40 most responsive channels for each subject. This was
done by collapsing across all conditions and identifying the M100 com-
ponent of the onset response (Näätänen and Picton, 1987; Stufflebeam et
al., 1998; Näätänen et al., 2011; Gorina-Careta et al., 2021), as a source–
sink pair located over the temporal region of each hemisphere. For each
subject, the 40 most strongly activated channels at the peak of the M100
(20 in each hemisphere; 10 in each sink/source) were considered to best
reflect auditory activity and thus selected for all subsequent time-domain
analyses. This procedure served the dual purpose of enhancing the rele-
vant response components and compensating for any channel misalign-
ment between subjects.

We report two time-domain analysis pipelines.

Whole sequence analysis
Initially, we focused on responses to the entire sequence. Low-frequency
activity is of prime importance as a possible marker of predictability
tracking (Barascud et al., 2016; Southwell et al., 2017). Therefore, no
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high-pass filter was used. Data were segmented into epochs from 200 ms
before onset to 1,000 ms post offset (yielding epochs of 4,200 ms and
16,200 ms in “Fast” and “Slow” conditions, respectively). Epochs con-
taining artifacts were removed (based on within trial variance summary
statistics) using Fieldtrip's manual visual artifact rejection function.
Around 5% of epochs, containing large shifts in magnetic activity,
were removed from each subject's data (range 0–10%). The remaining
epochs were then averaged by condition. To help denoise the data
from “Slow” conditions (low-frequency drift artifacts) denoising source
separation (DSS) analysis was applied to maximize reproducibility across
trials (Särelä and Valpola, 2005; de Cheveigné and Simon, 2008; de
Cheveigné and Parra, 2014). For each subject, the three most significant
components (i.e., the three “most reproducible” components across tri-
als) were kept and projected back into sensor space.

The single-tone response analysis
A subsequent analysis focused on responses to individual tones in REG
versus RND sequences in the “Slow” sequences. To identify activity asso-
ciated with individual tone-evoked responses which might be masked by
the sustained activity, the raw data were high-pass filtered at 2 Hz.
Filtered data were then cut into individual tone epochs, from 50 ms
before the onset of the tone, to 200 ms post onset. Responses from tones
within each cycle were averaged, yielding six time series per condition per
subject (tones in Cycle#1, Cycle#2, etc.). Time series were baselined
based on pre-tone onset activity.

Statistical analysis
The time domain data are summarized as root mean square (RMS)
across the 40 selected channels for each subject (see above). The RMS
is a useful summary signal, reflecting the instantaneous power of the neu-
ral response irrespective of its polarity. Group RMS (RMS of individual
subject RMSs) is plotted; statistical analysis was always performed across
subjects.

To evaluate differences between conditions (RND vs REG), the RMS
differences at each time point were computed for each participant, and a
bootstrap re-sampling (Efron and Tibshirani, 1998) was applied (10,000
iterations) on the entire epoch. Significance was inferred by inspecting
the proportion of bootstrap iterations that fell above or below zero,
here p= 0.01 (and p= 0.05 for the sustained response for “Slow”
sequences; Fig. 4) was used as a threshold.

Source analysis. To estimate the brain sources that underlie the
observed time domain effects at the sensor level, we performed source
reconstruction using the standard approach implemented in SPM12
(Litvak and Friston, 2008; López et al., 2014; Bartha-Doering et al.,
2015) Sensor-level data were converted from Fieldtrip to SPM. By using
three fiducial marker locations, the data were co-registered to a generic
8196-vertex inverse-normalized canonical mesh warped to match the
SPM's template head model based on the MNI brain (Ashburner and
Friston, 2005). This had the advantage of providing a one-to-one map-
ping between the individual's source-space and the template space, facil-
itating group analyses (Litvak and Friston, 2008). The forwardmodel was
solved with a single shell forward head model for all subjects. Source
reconstruction was performed using the multiple sparse priors (MSP)
model that assumes that activity can be expressed in multiple patches
or covariance components, each of which has an associated hyperpara-
meter (Litvak and Friston, 2008; López et al., 2014; Bartha-Doering et
al., 2015). These were optimized with greedy search (GS) technique
(Litvak and Friston, 2008) by iterating over successive partitions of
MSP to find the set yielding the best fit (here we specify a total of 512
dipoles). The MSP model was used to identify distributed sources of
brain activity; hence, the two conditions (RND and REG) were inverted
together.

We were interested in capturing the sources underlying two aspects
of the data:

1. The discovery of regularity (REG vs RND). This analysis was per-
formed on the “Fast” sequence evoked response. The analysis used
DSSed data (de Cheveigné and Parra, 2014), with the three most

reproducible components projected back into sensor space and
used for the inversion. Trials were averaged by condition and the
inverse estimates were obtained for the two conditions together
using an interval of 300 ms between 665 and 965 ms poststimulus
onset. The interval was chosen to coincide with the timing of diver-
gence between the REG and RND conditions as seen in the time
domain analysis (Fig. 3). An attempt was made to analyze the
“Slow” sequences (between 3,500 and 6,000 ms post stimulus onset,
coinciding with the timing of divergence between REG and RND
conditions), but no significant sources were identified. This lack of
findings can be attributed to several factors, primarily the weaker
sustained response effect (see below). Memory constraints probably
further exacerbated the issue, resulting in substantial variability
across participants when tracking the slow sequences. Furthermore,
the opposing effects observed for the sustained and tone-evoked
responses (see “results”) likely contributed to a net cancellation of
effects, making it challenging for the sourcemodel to discernmeaning-
ful patterns in the “slow” sequence evoked activity.

2. The effect of regularity (REG vs RND) on the individual tone
responses in “Slow” sequences. A similar analysis pipeline as that
described above was used. This analysis focused on the interval
between 5 and 15 s—from the third cycle of the REG until offset,
i.e., where the regularity in REG stimuli was well established (theoret-
ically, and, as seen in the time domain data, regularity is discovered
partway through the second cycle and well established by the third
cycle). The filtered raw signal (2–30 Hz), epoched over 0–200 ms
post tone onset and averaged across tone presentations, was used for
the inversion. The interval was chosen to coincide with the largest
possible time window post tone onset to allow the algorithm to
encompass all brain sources responsible for generating the response
(Henson et al., 2011).

After inversion, source activity for each condition was projected to a
three-dimensional source space and smoothed [12-mm full width at half
maximum (FWHM) Gaussian smoothing kernel] to create Neuroimaging
Informatics Technology Initiative (NIfTI) images of source activity for
each subject. At the second level of statistical analysis, the two conditions
(REG vs RND) were modeled with the within-subject factor Regularity
(REG/RND). Statistical maps of the contrast were thresholded at a level
of p= 0.05 uncorrected (F contrasts) across the whole-brain volume.
Relevant brain regions were identified using the AAL3 toolbox (https://
www.oxcns.org/aal3.html).

Results
Behavioral performance reveals good sensitivity to regularity
even following the introduction of silent gaps between tones
We tested how pattern detection ability is affected by the intro-
duction of a silent gap of increasing length between successive
tone-pips. Figure 1B shows performance (quantified as d’ sensi-
tivity score) for each condition in experiments 1a and 1b. With
increasing gap duration, an overall gradual worsening of perfor-
mance was observed. A repeated measures ANOVA over the
three gap duration conditions in experiment 1a confirmed a
main effect of condition [F(2, 56) = 3.814, η

2 = 0.123, p= 0.026].
Post hoc tests (Bonferroni corrected) indicated a significant
difference between Gap0 and Gap100 conditions [p= 0.034]
and between Gap0 and Gap200 conditions [p = 0.026]. No
difference between Gap100 and Gap200 was seen [p = 1]. In
general, most participants achieved a d’ above 2 in the
Gap200 condition, revealing a largely conserved sensitivity
even though the duration of the pattern increased five-fold
from 500 ms in Gap0 to 2,500 ms in Gap200. In experiment
1b we further tested the performance for silence gaps of 500 ms.
A repeated measures ANOVA with factor Gap (0, 100, 500 ms)
confirmed a main effect of condition [F(2,52) = 33.687, η

2 = 0.564, p
< 0.001]. Post hoc (Bonferroni corrected) comparisons indicated
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significantly worse performance in Gap100 [p= 0.025] and
Gap500 [p < 0.001] compared to Gap0, and between Gap100
and Gap500 [p < 0.001].

Overall, the pattern of results is consistent with a slow
decline in performance for gaps up to 200 ms and a steeper
drop thereafter. We, therefore, selected the 200 ms gap dura-
tion for the MEG experiments (in naive distracted listeners)
below.

The emergence of regularity is associated with an increase in
sustained MEG activity
The Group RMS (mean of all subjects’ RMSs) of the evoked
response to the “Fast” sequences is shown in Figure 3A,B. The
brain response presents prototypical onset activity, followed by
a subsequent rise to a sustained response that persists until
offset. A pronounced offset response is seen about 100 ms after
sound cessation. Fluctuations at 20 Hz, reflecting the tone

Figure 1. A, Behavioral experiment. Examples of the four gap duration stimuli (to scale). RNDREG sequences are plotted (the stimulus set also contained 50% no-change RND sequences). Four
gap duration conditions are used (0, 100, 200, and 500 ms), resulting in regularity cycles of 500, 1,500, 2,500, and 5,500 ms, respectively. Participants listened to the sound sequences and were
instructed to press a keyboard button as soon as they detected the emergence of a REG pattern; indicated with a red line. B, Behavioral performance. Performance steadily declined with
increasing gap duration. Generally good performance (mean d’> 2) was seen for the Gap200 condition and it was therefore chosen for the MEG experiment.

Figure 2. Examples of stimuli in the MEG experiment (to scale). All stimuli consisted of 60 tones (6 regularity cycles in REG sequences; red lines). “Fast” sequences were 3 s long; “Slow”
sequences were 15 s long. Naive participants listened to the sound sequences passively and were instructed to focus on a visual task. If brain responses track the emergence of regularity,
responses REG and RND sequences should be differentiated following Cycle#1. Ideal observer REG detection latency (∼3 tones into the second cycle, e.g., Barascud et al., 2016) is indicated
with a dashed line.
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presentation rate, are visible in the sustained portion of the
response. In line with previous observations (Barascud et al.,
2016; Southwell et al., 2017; Southwell and Chait, 2018), REG
shows an increased sustained response when compared with
RND. The timing at which the response to REG diverges from
RND is considered to reflect the information required to detect
the regularity. A significant difference between conditions
emerged after 665 ms (13 tone-pips, 1.3 cycles). This estimate
is consistent with previous modeling work (Barascud et al.,
2016; Harrison et al., 2020) which demonstrated that an ideal
observer model required 3–4 tones following the first cycle to
detect the emergence of regularity.

Figure 3C displays the source analysis, applied over a 300 ms
interval over which the REG and RND conditions begin to
diverge (yellow shading in Fig. 3A). The activation map (F con-
trast, REG>RND, p= 0.05, see Table 1) demonstrates increased
activity in the AC (bilaterally), IFG (bilaterally) and HP (right
hemisphere only). No areas were identified by using the opposite
(RND>REG, p= 0.05) contrast. Overall, the source data are
largely consistent with what was previously shown by Barascud
et al. (2016) for similar stimuli, confirming a distributed network
spanning auditory, frontal and hippocampal sources which
underlies sensitivity to regular patterns.

Responses to the “Slow” (Gap200) sequences are shown in
Figure 4A. Pronounced fluctuations at 4 Hz, reflecting the
tone presentation rate, are clearly visible on top of the sustained

response. Similar to what was observed for the “Fast”
sequences, a difference in sustained response emerges between
REG and RND when the REG pattern begins to repeat (after
2,500 ms). This effect is much smaller, however. To separate
the sustained response from phasic activity associated with
tone-evoked responses, the data were low-pass filtered (0–
2 Hz; Fig. 4B). A significant difference between conditions
emerged after 13 tones (3,266 ms) consistent with the observa-
tions from the “Fast” sequence above. This suggests that irre-
spective of the rate at which tones are presented (at least
within the range tested here), regularity detection requires a
constant amount of information (as measured in number of
tones pips). However, it is notable that the sustained difference
between REG and RND conditions in the “Slow” sequences is
smaller and rather noisier (e.g., as reflected by the discontinu-
ous significance, see Fig. 4) than in the “Fast” sequences. A
repeated measures ANOVA on the difference between mean
sustained response power in REG and RND (as shown in
Figs. 3B, 4B) confirmed a significantly smaller difference
between REG and RND in the “Slow” sequences (F(1, 42) = 18.31,
η2 = 0.3036, p<0.001).

Overall, the MEG results demonstrate that passively elicited
brain responses to REG relative to RND sequences are associated
with significantly stronger sustained response magnitude,
including when pattern durations are long (2,500 ms in “slow”
sequences).

Figure 3. MEG response to “Fast” (Gap0) sequences. A, The full stimulus epoch, from stimulus onset (t= 0 s) to offset (t= 3 s). The shaded area around the traces indicates the standard error
of the mean. The gray horizontal line indicates time intervals where a significant difference is observed between the two conditions (p< 0.01). Yellow highlighting indicates the interval
(665–965 ms) used for source analysis in (C). B, Mean sustained response power computed during the last second of stimulus presentation (2–3 s post onset) and averaged over trials
for each subject in RND and REG conditions. C, Source analysis. Group SPM F map for the REG > RND contrast during the rising slope of the sustained response (yellow shaded area in A),
thresholded at p= 0.05 (uncorrected). AC, auditory cortex; HP, hippocampus; IFG, inferior frontal gyrus.

Table 1. Summary of MEG source localization results

Region Side p-value (peak-level) F-value

MNI coordinates

x y z

REG-RND (“Fast” sequence) Middle temporal gyrus Left 0.002 12.42 −56 −28 −10
Inferior frontal gyrus Left 0.026 5.78 −50 34 −4
Middle temporal gyrus Right 0.002 12.9 54 −28 −6
Inferior frontal gyrus Right 0.024 5.98 46 32 −4
Hippocampus Right 0.033 5.22 30 12 −38

RND-REG (tone response extracted from “Slow” sequence) Heschl's gyrus/superior temporal gyrus Left 0.01 8.09 −60 −8 12
Inferior frontal gyrus Left 0.035 5.06 −48 34 −6
Rolandic operculum Right 0.035 5.06 52 −4 14
Inferior frontal gyrus Right 0.039 4.85 48 28 −8

MNI coordinates (x, y, z), and F-values (pvoxel < 0.05). Anatomical labeling based on the Harvard–Oxford Cortical Structural Atlas.
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Responses to individual tones are decreased in REG relative to
RND sequences
To focus on phasic activity associated with responses to individ-
ual tones, sequence-evoked responses were high-pass filtered at
2 Hz (Fig. 4C) and tone-centered epochs were extracted (from
50 ms pre-tone onset to 200 ms post tone onset). The main
analysis (Fig. 5), focused on tones presented in each cycle of
the REG sequences (see indicated in Fig. 4C; 0–2.5 s; 2.5–5 s;
5–7.5 s; 7.5–10 s; 10–12.5 s; 2.5–15 s), and corresponding tones
in RND sequences. As expected, no differences between condi-
tions are seen in the first cycle (Cycle#1) (Fig. 5A). In contrast,
clear differences between tones presented in REG versus RND
contexts are seen in Cycle#2 onwards (Fig. 5B; Cycle#6 also plot-
ted; Fig. 5C). Critically, REG tones evoke reduced responses
relative to RND tones. This effect appears to be specific to the
latter part of the tone-evoked response: from ∼100 ms post
tone onset, i.e., during the tone-evoked M100 peak.

An additional repeated measures ANOVA on response mag-
nitude (mean power between 100 and 200 ms post tone onset)

with regularity (REG vs RND) and tone position in the second
to sixth cycles (i.e., from tone #11 to tone #60) as factors revealed
a main effect of regularity only (F(1,21) = 4.634, η2 = 0.181,
p=0.043), with no effect of tone position (F(1,49) = 1.063, η

2 =
0.048, p=0.359) or interaction of the two factors (F(1,49) = 0.937,
η2 = 0.043, p=0.599). Though clearly noisy, this tone-by-tone
analysis reveals a sustained, stable difference between REG and
RND conditions. As a control analysis, a repeated measures
ANOVA on the first 10 tones in the sequence (Cycle#1) indicated
a main effect of tone position (F(1,21) = 9.877, η

2 = 0.32, p< 0.001)
only. Post hoc tests indicated that the responses to the first two
tones are significantly different from the third through tenth tones
(p< 0.01) in both REG and RND sequences, reflecting increased
responses at sequence onset. Neither condition (F(1,9) = 2.647,
η2 = 0.112, p=0.119) nor the interaction of condition by tone posi-
tion (F(1,9) = 0.556, η

2 = 0.026, p=0.832) was significant. Together,
these analyses confirm no difference between REG and RND dur-
ing the first cycle, with a sustained difference between conditions
emerging during the second cycle onwards.

Figure 4. MEG response to “Slow” (Gap200) sequences. A, Wideband; 0–30 Hz. The entire stimulus epoch (16 s) is plotted. A sustained difference between responses to REG and RND
sequences emerges from ∼3 s post onset. Responses evoked by individual tones (4 Hz) are observed throughout the epoch. B, Low-pass filtered responses (0–2 Hz) focusing on the slow
sustained response activity. The horizontal black and gray lines denote time intervals where a significant difference is observed between conditions (p< 0.05 and p< 0.01, respectively).
Mean sustained response power computed between 10 and 15 s (from the fifth cycle onwards) post onset for each individual in each condition is shown on the right. C, High-pass filtered
activity, with clearly visible responses to individual tones. The six REG cycles analyzed in Figure 5 are indicated. Shaded areas are those plotted in Figure 5B,C.
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To further understand whether and how the tone-evoked
responses in REG and RND contexts changed over time, we com-
puted the mean evoked field differences between tones presented
in the first and subsequent cycles in REG and RND conditions.
Because responses to the initial couple of tones (first two tones
in Cycle#1) were affected by onset-response activity, we focused
this analysis on the last eight tones of each cycle (Cycle#1, tone
3-10; Cycle#2, tone 13–20; and so on). The mean tone-evoked
response (computed between 100 and 200 post onset) during
Cycle#1 was subtracted from that of Cycle#2 to Cycle#6 to

understand how the presence of regularity affects tone responses.
The data are plotted in Figure 5D. A repeated measures ANOVA
with the condition and cycle number as factors yielded a main
effect of condition only (F(1, 21) = 4.723, η

2 = 0.184, p= 0.041).
No effect of cycle number (F(4, 84) = 1.078, η

2 = 0.049, p= 0.373)
or interaction of those two factors (F(4,84) = 1.087, η

2 = 0.049,
p= 0.368) was observed. This indicates a sustained difference
between REG and RND conditions that does not change over
time. A one-sample t test (uncorrected) confirmed that such
differences for cycles#2-#6 in the REG condition were below

Figure 5. Tone evoked responses. A, Tone-evoked responses averaged over the first 10 tones (0–2.5 s; first cycle) in the RND and REG conditions. Shading around the traces indicates the
standard error of the mean. Magnetic field maps corresponding to the M50 (60–80 ms) and M100 (130–150 ms) responses are shown below. As expected, no differences are seen because
the REG pattern can only be distinguished from RND following the first cycle (once the pattern starts repeating). B, Tone-evoked responses averaged over tones presented between 2.5 and 5 s
(Cycle#2) in the RND and REG conditions. The horizontal gray line indicates time intervals where a significant difference is observed between conditions (p< 0.01). C, Tone-evoked responses
averaged over tones presented between 12.5 and 15 s (Cycle#6) in the RND and REG conditions. D, Difference from 1st cycle computed (over the M100 time interval; 100–200 ms) for each
subsequent cycle in REG and RND. Tones presented in REG contexts show consistently reduced activity relative to the 1st cycle. P-values indicate a difference from 0 (one sample t test). E,
Tone-evoked responses averaged over tones presented during 5–15 s (Cycle#3 to Cycle#6). F, Source analysis results computed from the data in (E). The image is a group SPM F map for the RND
> REG contrast, thresholded at p= 0.05 (uncorrected). AC, auditory cortex; HP, hippocampus; IFG, inferior frontal gyrus.
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zero, i.e., consistently reduced relative to cycle 1 [Cycle#2 t(1,21) =
−3.102, d=−0.661, p=0.003; Cycle#3 t(1,21) =−3.288, d=−0.701,
p=0.002; Cycle#4 t(1,21) =−3.702, d=−0.789, p<0.001; Cycle#5
t(1,21) =−2.161, d=−0.461, p=0.021; Cycle#6 t(1,21) =−2.478,
d=−0.528, p=0.011]. In contrast, the same analysis for RND
indicated nonsignificant effects [Cycle#2 t(1,21) =−1.051, d=
−0.224, p=0.153; Cycle#3 t(1,21) =−1.7, d=−0.363, p=0.052;
Cycle#4 t(1,21) =−1.604, d=−0.342, p=0.062; Cycle#5 t(1,21) =
−1.829, d=−0.390, p=0.041; Cycle#6 t(1,21) =−0.125, d=−0.027,
p=0.451].

Overall, the tone-evoked analysis demonstrates a consistent
difference between tones presented in REG relative to RND con-
texts, the effect emerges early during the second regularity cycle
(i.e., when the regularity has been established) and is manifested
as a reduction in responses to REG tones, while responses to
RND tones remain stable throughout the stimulus period.

Source localization (see Fig. 5F and Table 1) for the contrast
RND>REG (p= 0.05) during the tone-evoked response (full
epoch – 0–200 ms; extracted from the 3rd cycle until sequence
offset; 5–15 s; i.e., after the regularity in REG has been established;
see Figs. 4B, 5E) identified sources in bilateral temporal lobe
(superior temporal gyrus, Heschel's gyrus) and bilateral IFG that
underlie the time-domain effect. The opposite contrast (REG>
RND, p=0.05) yielded no significant activations.

No significant correlation between tone-evoked and
sustained-response effects
To investigate a potential link between the sustained response
and tone-evoked responses we correlated (spearman) the differ-
ence in the tone-evoked response (REG-RND; mean power
between 100 and 200 ms post tone onset) with a difference in
the sustained response (REG-RND; low-pass filtered as in
Fig. 4B) during Cycle#2 and Cycle#6 across subjects. Both anal-
yses yielded nonsignificant effects (p > 0.2).

We also conducted a more complex ridge regression analyses
over single trial data using linear mixed effects models imple-
mented by the lme4 package in R (Bates et al., 2015).
Likelihood estimation was conducted using the anova function
in the stats package. Models were run separately on Cycle#2
(where we expect initial divergence between REG and RND con-
ditions) and Cycle#6 (where we expected the regularity in REG to
be fully established) data predicting the tone-evoked response
with the sustained response as a continuous predictor in interac-
tion with condition (REG/RND) as a categorical predictor. Both
models included random intercepts by trial number and subjects.
No significant effects were observed (p > 0.29).

However, it is essential to acknowledge that the absence of a
correlation between tone-evoked and sustained-response effects
in the current dataset may stem from the relatively modest effects
observed in both the sustained and tone-evoked responses. A
more comprehensive exploration of this relationship could be
achieved through a systematic examination of data with an
increased number of trials per subject or a larger sample size.
This approach would provide a more robust foundation for
drawing conclusions about potential correlations between these
response types.

Discussion
We demonstrated that an increased sustained response to REG
compared to RND patterns previously observed in rapid tone
sequences (20 Hz; 500 ms cycle duration), also occurs in slower
sequences (4 Hz; 2,500 ms cycle duration). This confirms the

auditory brain's remarkable implicit sensitivity to complex pat-
terns. Critically, brain responses evoked by single tones exhibited
the opposite effect - lower responses to tones in REG compared to
RND sequences. The observation of opposing sustained and
evoked response effects reveals parallel processes that shape the
representation of unfolding auditory patterns.

Sustained brain responses track pattern emergence even in
slow sequences
Increased brain responses to predictable, relative to random pat-
terns have previously been documented in many contexts
(Barascud et al., 2016; Sohoglu and Chait, 2016; Southwell et
al., 2017; Herrmann and Johnsrude, 2018; Herrmann et al.,
2019; Zhao et al., 2024). A greater amplitude for REG over
RND stimuli is not easily interpretable as a response to physical
attributes of the signal. Adaptation, for example, would result in
the opposite pattern (Megela and Teyler, 1979; Pérez-González
and Malmierca, 2014). Instead, the dynamics of this response,
including when it diverges between REG and RND stimuli, sug-
gest that the brain is sensitive to changes in the predictability of
sound sequences. Previous observations regarding how the sus-
tained response is modulated by sequence predictability have
prompted the hypothesis that it might reflect the coding of pre-
cision, or inferred reliability, of the incoming sensory informa-
tion (Barascud et al., 2016; Heilbron and Chait, 2018; Zhao
et al., 2024).

Here we showed that sustained response effects persist even
when sequences are presented at a slower rate (4 Hz). Despite
the fivefold increase in pattern duration, the divergence between
REG and RND conditions occurred roughly at the same time
(three tones into the second cycle), in ‘Slow’ and ‘Fast’ sequences,
consistent with ideal observer benchmarks (Pearce, 2005;
Barascud et al., 2016; Harrison et al., 2020).

It is noteworthy that the sustained response was diminished in
the ‘Slow’ compared to ‘Fast’ sequences. This could be attributed,
at least in part, to limitations in human listeners’memory capac-
ity. Indeed, Barascud et al. (2016) observed a reduced sustained
response to REG sequences consisting of cycles of 15 tones rela-
tive to 10 tones. This was interpreted as indicative of a threshold
in encoding patterns that emerges when detecting longer repeat-
ing cycles. Similarly, Herrmann et al. (2019) reported reduced
sustained responses in older individuals compared to younger
participants, hypothesizing that this reduction could stem from
age-related decline in tracking regularity patterns (Bianco et al.,
2023). To detect the emergence of regularity, the auditory system
must presumably maintain and update a statistical model of the
auditory input, registering tone repetitions, and decide at which
point there is sufficient evidence to indicate a regular pattern. The
efficiency of this process relies on the interplay between echoic
and short-/long-term memory capacity (Bianco et al., 2020;
Harrison et al., 2020). In our study, the introduction of gaps
between consecutive tones and the subsequent increase in cycle
duration from 500 ms to 2,500 ms likely strained short-term
memory, leading to less precise memory encoding and therefore
overall lower encoding fidelity for the 'Slow' sequences. The beha-
vioral results indeed indicate a decline in pattern detection
(Fig. 1). However, it is crucial to emphasize that, despite this
decline, the mean performance level remained high, underscor-
ing the largely preserved sequence tracking capacity.

The brain mechanisms underlying the sustained response
remain unclear. Source analysis suggests that the amplified
response is driven by cortical activation in auditory, inferior
frontal (IFG) and hippocampal sources (Barascud et al.
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(2016)). A similar network involving the AC and IFG has been
implicated in the generation of the Mismatch Negativity
response (Näätänen et al., 2012) and has been postulated to rep-
resent the circuit responsible for maintaining an auditory model
and conveying predictions to lower processing levels (Garrido
et al., 2009; Heilbron and Chait, 2018).

According to one interpretation, the sustained responsemight
reflect an excitatory processing mechanism, characterized by an
increase in gain, potentially via neuromodulation, on units
responsible for encoding reliable sensory information (Feldman
and Friston, 2010; Auksztulewicz et al., 2017). In particular, tonic
acetylcholine (ACh) has been shown to be modulated by envi-
ronmental uncertainty (Dalley et al., 2001; Yu and Dayan,
2005; Bland and Schaefer, 2012). However, this interpretation
may be less tenable, as it predicts heightened responses to tones
within the REG sequences, which is contrary to our observed
findings (see below). Alternatively, the sustained response may
indicate an enhancement in the inhibition of neuronal units
that convey low information content. This is consistent with
prior research, albeit involving simpler stimuli, where an increase
in inhibitory activity linked to the presence of predictable infor-
mation has been documented (Natan et al., 2015, 2017; Schulz
et al., 2021; Richter and Gjorgjieva, 2022; Yarden et al., 2022).
A specific role for inhibition, instead of excitation, in governing
responses to predictable sensory stimuli, is also supported by
indirect evidence from dynamic causal modeling (Lecaignard
et al., 2022) and behavioral findings: rather than capturing atten-
tion, predictable patterns are more easily ignored (Southwell
et al., 2017) and are linked to reduced arousal (Milne et al.,
2021). It is important to emphasize that M/EEG (or BOLD) do
not readily differentiate between inhibitory and excitatory activ-
ity. Therefore, further advancement in understanding this phe-
nomenon necessitates focused investigations at the cellular level.

Reduced responses to tones in REG relative to RND patterns
Introducing temporal gaps between successive pips allowed us to
disentangle the neural responses elicited by individual tones.
Results revealed a reduction in neural activity in response to
tones embedded within regularly repeating relatively to random
patterns. This effect appears to be driven by relatively stable
responses to tones in random patterns but declining responses
in the REG context. The dynamics of this effect are consistent
with a step change in response magnitude during the second
cycle (after the regularity has been introduced) that is then
fixed for the remainder of the sequence.

Reduced response to REG tones is consistent with predictive
coding theories (Rao and Ballard, 1999; Lee and Mumford, 2003;
Friston, 2005, 2009). According to these models, top-down
expectations, derived from statistical regularities in the external
world, play a crucial role in suppressing anticipated sensory
input. This mechanism serves as an efficient neural coding
scheme, optimizing the allocation of neural resources and
enabling the brain to prioritize the processing of novel or unex-
pected information, which may hold greater relevance
(Olshausen and Field, 1996, 2004; Friston, 2005, 2009; Tang
et al., 2018). Empirical support for these predictions, often
referred to as “expectation suppression,” has been mounting
across sensory modalities, (Baldeweg, 2006; Summerfield et al.,
2008; Alink et al., 2010; den Ouden et al., 2010; Todorovic
et al., 2011; Kok et al., 2012; Todorovic and de Lange, 2012;
Barbosa and Kouider, 2018; Heilbron and Chait, 2018). In the
auditory domain, Todorovic and de Lange (2012) demonstrated

that when tones were expected based on the probability structure
of tone transitions, they elicited suppressed auditory activity
within a specific time window of 100–200 ms. This suppression
was uniquely attributable to the phenomenon of expectation sup-
pression and distinct from adaptation (repetition suppression)
effects.

Notably, the effects we report manifest within this same time
window (100–200 ms; during the M100 phase of the response).
While it is difficult to exclude low-level processes such as adap-
tation, several patterns in the dynamics of the development of
these effects suggest that simple adaptation is unlikely to be a
main factor. Firstly, the effects require processes that persist for
2,500 ms (duration of a cycle). Secondly, we do not see a gradual
reduction in responses to REG tones that builds up over cycles.
Rather there is a step change in the second cycle that is then con-
sistent for the remainder of the sequence.

Multiplexed representation of sequence predictability
The challenge faced by sensory systems is to accurately and
swiftly represent information to support adaptive behavior and
facilitate interaction with the environment. A fundamental ques-
tion pertains to whether the brain primarily encodes predictable
or novel information (Press et al., 2020). Bayesian cognitive mod-
els propose that our predisposition to perceive what we expect
enhances the fidelity of our sensory experiences (Wyart et al.,
2012; Summerfield and de Lange, 2014; Kaiser et al., 2019). In
contrast, cancellation models suggest that our perceptual system
prioritizes unexpected stimuli, as they carry an informative value
(Blakemore et al., 1998; Meyer and Olson, 2011; Richter et al.,
2018). In line with these considerations, predictive coding mod-
els (Rao and Ballard, 1999; Friston, 2005, 2009) postulate the
existence of two functionally distinct subpopulations of neurons
within the brain. One encodes the conditional expectations of
perceptual causes, while the other encodes prediction error.

Our findings confirm the coexistence of these facets of regu-
larity coding within the MEG signal: the sustained response is
consistent with the encoding of the predictability of the signal,
whereas responses to individual tones appear to correspond to
the coding of prediction error, as indicated by the reduced
responses to predictable tones. Intriguingly, our results under-
score the active involvement of the same neural network, encom-
passing the AC and the IFG, in both discovering structural
patterns within auditory sequences and dampening responses
to anticipated stimuli. However, the spatial resolution limitations
inherent to MEG source analysis prevent definitive conclusions
about the precise co-localization of these neural processes.

Indeed, the question of whether these manifestations stem
from a singular process exhibiting differential characteristics in
sustained and tone-evoked responses or whether they represent
two distinct mechanisms, as proposed in previous works (Rao
and Ballard, 1999; Friston, 2005, 2009), emerges as a crucial ave-
nue for future exploration. For example, it is possible that the sus-
tained response reflects activity linked to a tonic inhibitory drive
(implementing gain control) onto sensory units, resulting in a
diminished evoked response to individual stimuli. Notably, our
study did not reveal a correlational relationship between
tone-evoked and sustained responses. While this may tentatively
suggest no direct linkage between the twomechanisms, it's essen-
tial to consider the possibility that this observation could be
influenced by the inherent noise in MEG measurements. We
anticipate that more nuanced insights will be gleaned with the
application of sensitive invasive tools in future investigations.
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