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Abstract

The expansion of high-quality, low-cost sequencing has created an enormous opportunity to understand how genetic variants alter
cellular behaviour in disease. The high diversity of mutations observed has however drawn a spotlight onto the need for predictive
modelling of mutational effects on phenotype from variants of uncertain significance. This is particularly important in the clinic due to
the potential value in guiding clinical diagnosis and patient treatment. Recent computational modelling has highlighted the importance
of mutation induced protein misfolding as a common mechanism for loss of protein or domain function, aided by developments in
methods that make large computational screens tractable. Here we review recent applications of this approach to different genes,
and how they have enabled and supported subsequent studies. We further discuss developments in the approach and the role for the
approach in light of increasingly high throughput experimental approaches.
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INTRODUCTION
DNA sequencing has revolutionized biomedical research. The
ability to routinely sequence samples with increasing sensitivity
and continually reducing costs has enabled major new insights
into diseases and ageing. In turn, this has led to a growth in the
routine use of sequencing in the clinic; for example, in the UK,
the NHS now routinely sequences at risk prenatal foetuses [1] for
mutations in a panel of genes known to cause disorders, and this
type of testing is now taking place in several countries [2]. This
collection of data is likely to become increasingly widespread as
costs continue to decline, and with that become more available
in lower-middle income countries. In principle this deluge of data
should improve our understanding of disease, as we become able
to link variants to specific clinical phenotypes. However, a funda-
mental issue with genomic variants is in their interpretability. It
is estimated that roughly two-thirds of disease causing variants
are nucleotide substitutions, causing either a truncation of the
protein (e.g. through introducing a termination codon, or a splice
site) or a substitution of amino acids in the protein sequence
(missense mutations) [3]. Missense mutations can cause either
loss or gain of resultant protein activity, or not alter gene function
at all. Whilst some missense mutations occur reliably in hotspots,
the wide diversity of variants that present in the clinic lead to
problems of interpreting variants of uncertain significance (VUS).
This is a problem for relatively common diseases, such as the
RASopathy Noonan’s syndrome (effecting 1 in 2000 individuals),
where almost 60% of prenatally detected mutations in associated

genes were found to be VUS [4], but presents an even more
serious barrier for diagnosis of rare diseases. Given that the
frequency of rare diseases as a cohort is high, effecting 3.5–5.9%
of individuals globally [5], interpretation and confirmation of the
role of a missense mutation in disease is paramount. This is of
particular importance for genes that are not tractable to assay
(e.g. many membrane proteins), where the commonly used assay
does not reflect all aspects of the disease (e.g. assays for fumarate
hydratase function, [6]), or where collection of materials is not
possible (e.g. RASopathies, which can present prenatally [7]).

Bioinformatic and genomic approaches offer one route to
understanding such variants. FATHMM [8], GenePy [9] and
PolyPhen-2 [10] are examples of statistical tools to predict
pathogenicity of variants, using machine learning algorithms
trained on recorded observations. Whilst these approaches are
powerful, they also share common limitations. Whilst they
can illustrate statistical correlations between variant sites and
types and disease, they do not offer biophysical mechanisms for
variant action. This is necessary for understanding the type of
perturbation caused by the variant- an ‘edgetic’ modification
would influence a specific function or protein interaction, whilst
‘global’ modifications would alter overall levels of gene activity on
all downstream elements [11]. The type of mutation is associated
with specific clinical phenotypes or cellular behaviours, and
understanding this is therefore necessary for predicting clinical
outcomes. Understanding specific mechanisms can also provide
routes to drug development. For example, mutations to the gene

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/advance-article/doi/10.1093/bfgp/elae007/7634255 by Eastm

an D
ental Institute user on 05 April 2024

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3207-3584
https://orcid.org/0000-0003-0355-2946

 21981 13595 a 21981
13595 a
 
mailto:b.hall@ucl.ac.uk
mailto:b.hall@ucl.ac.uk
mailto:b.hall@ucl.ac.uk
mailto:b.hall@ucl.ac.uk


2 | Briefings in Functional Genomics, 2024

Figure 1: Schematic demonstrating the role of protein folding calculations in interpreting results from genetic sequencing data.

GLA that cause protein misfolding can be successfully treated
with the chaperone migalastat [12], but mutations that alter
enzyme activity in other ways do not respond. Finally, to date,
sequencing data have predominantly been collected in advanced
countries with widespread access to healthcare. This creates
fundamental problems of bias in the underlying data, limiting
the transferability of statistical approaches [13].

Molecular modelling approaches can address these issues.
Based on the 3D atomic structure of the protein, they can be
used to link observed variants to specific parts of the structure–
function relationship. Most approaches in the field focus on
the study of single or small groups of variants, modelled in
highly complex systems and performed on high performance
computing facilities. Whilst these can offer insights into single
variants, computational costs are extremely high, making
translation to large numbers of variants difficult, and the large
amount of time needed to perform calculations limits the
potential for integration into the clinical diagnosis pipeline.
Despite this, molecular modelling enables bridging between
mutational data and protein function, and several techniques
have demonstrated the ability to achieve this now (e.g. protein
insertion into membranes [14], single helix simulations [15],
multi-helix simulations [16], protein binding [17]). The calculation
of changes to protein folding energies upon amino acid changes,
the Gibbs free energy (��G), is now well established as a tool
for predicting the impact of large sets of mutations on the
folding ability of a protein (Figure 1). Prevention of canonical
protein folding is a fundamental mechanism for altering protein
activity. Incorrect folding is estimated to be responsible for loss
of activity in two-thirds of variants across multiple long standing
studies [18–21], and is responsible for the majority of pathogenic
missense mutations observed in humans [22]. A wide range
of tools are now available for calculating folding energies of
protein structures, with tools such as Rosetta [23] and FoldX
[24] dominating the landscape (see approaches summarized
in Table 1).

In this review, we draw together multiple examples of how
this approach enables predictive insights in human disease. This
is not an exhaustive review of papers deploying these meth-
ods, but for single diseases we focus on papers where specific
insights or data derived from protein folding calculations have
been reused by others to make discoveries or aid clinical inter-
pretations. We further discuss studies that examine the aggre-
gate properties of multiple genes, either to identify global trends
induced by mutations, or to integrate folding data into more
complex models of gene interaction. Finally, we discuss upcoming
developments that are likely to transform how the method is
applied.

UNDERSTANDING DISEASE CAUSING
VARIANTS THROUGH MISFOLDING
CALCULATIONS
Hereditary diffuse gastric cancer is an inherited condition that
can lead to sporadic diffuse stomach and lobular breast cancers,
and is driven by loss of function mutations to the CDH1 gene
encoding E-cadherin. Following previous in vitro work from the
same group, and motivated in part by potential artefacts induced
by the assays used there, Simões-Correia et al. used FoldX to cal-
culate the impact of mutations on E-cadherin stability [25]. Based
on the limited structural data available at the time, a homology
model of the E-cadherin protein was built from the SWISS-MODEL
repository [26]. The protein prodomain is cleaved from the protein
during normal maturation, and the authors found that mutations
observed in the prodomain are not associated with destabiliza-
tion, consistent with the region not having a role in activity
post maturation. A total of 70% of mutations to the extracellular
domain were found to be predicted as pathogenic as determined
by high mutational ��G estimates and a simple cutoff threshold,
and that destabilization of the protein was associated with a
younger age of onset of the disease. Based on these calculations
three previously uncharacterized variants, two predicted neutral
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Table 1. Methods for computing the energy change of folding on mutation

Method Computational Cost for Saturation Screen Comments

Forcefield-based methods (e.g. Foldx) Low – 10-100 s of CPU hours per structure High efficiency, easy to parallelize, based on a
set of energy parameters (forcefield), no
incorporation of dynamics

Ensemble-based methods (e.g. Rosetta
FlexDDG)

Medium – 1000-10 000 s of CPU hours per
structure

Medium efficiency, possible to parallelize,
collects ensembles of structures from
small-scale dynamics calculations to generate
energies

Dynamics-based methods (e.g. Alchemical
methods)

High – >10 000 s of CPU hours per structure Poor efficiency for high-throughput, requires
extensive CPU time for each mutation, can be
parallelized, mutates a wildtype protein over a
small molecular dynamics simulation

and one predicted destabilizing, were validated in vitro, demon-
strating that the predictions were correct. The authors further
identified a mutation at the same site of a known deleterious vari-
ant that was expected to be stable, and confirmed experimentally
that this alternative missense mutation was indeed tolerated.
This work was followed up by Figueiredo, who adapted similar
experimental and theoretical approaches to study one missense
variant [27]. However, arguably the most substantial impact of this
notable work is the impact on assessment and curation guidelines
for mutations of CDH1 ([28], reviewed in [29]). These explicitly
used the evidence taken from this work to alter the rules for
clinical classification of CDH1 variants based on predictions from
protein folding calculations. This highlights the potential value of
computational analysis such as this in assessing VUS when taken
alongside other data.

Retinitis pigmentosa (RP) is one of the most common
retinopathies, causing progressive loss of peripheral and night
vision, which can, in turn, lead to loss of central vision [30]. This
is frequently caused by mutations to rhodopsin. Rakoczy et al.
studied 103 known RP causing mutations in rhodopsin with a
mixture of structural bioinformatics tools, including misfolding
calculations [31]. A total of 62 of the variants were found to cause
protein misfolding, whilst others could be understood in terms
of known protein biology or membrane insertion. Notably they
observed a clear correlation between calculated ��G values
and both vision loss onset and average age of night blindness,
suggesting that the severity of the disorder could be understood
through the relative destabilization of the protein fold. This work
led to several other studies, including experimental exploration
of small groups of mutations [32], and high throughput assays
that were directly compared with data, challenging some of the
conclusions drawn [33]. Perhaps some of the most impactful
work that arises from this study however is the insight that
treating the misfolding directly might reverse some or all of the
symptoms. The use of small chaperone proteins as a therapy was
computationally explored in [34], and the wider set of treatments
for RP (including chaperone therapy) reviewed in [35].

Fumarate hydratase is an oncoenzyme, whose loss is asso-
ciated with hereditary leiomyomatosis and renal cell cancer
(HLRCC) [36]. This is a late-onset disease, for whom improved
mutant classification could support clinical diagnosis of VUS,
but in principle routine sequencing could identify individuals
at higher risk. Shorthouse et al. [21] used misfolding alongside
other measures of biophysical properties in the computational
equivalent of a multiplexed assay for variant effects (MAVE)
to determine the protein structural features that drove disease

based on publicly available data from the fumarate hydratase
database [37]. This classifier was able to identify three structural
features that correctly predicted the impact of mutations-
misfolding (accounting for 2/3 of deleterious mutations), mod-
ifications proximal to the active site and substitutions at hinges
in the protein. Notably, the importance of dynamics had not been
observed previously and its analysis was enabled by use of elastic
network modelling, verified by molecular dynamics. Furthermore,
this approach ruled out possible mechanisms speculated in
the literature of the involvement of an allosteric ‘B’ site in this
disease [38]. The model was verified against publicly available
metabolomics data, and classification and data were made
available with publication. This has enabled the reuse of the data
in clinical case reports, where novel mutations were assessed and
classified using the approach [39]. A more complicated problem
for understanding VUS is the known issues in clinical assays used
to assess enzyme activity in the clinic, which identify fumarate
hydratase deficiency in individuals who do not develop renal
cancer [6]. The same computational approach applied to small
sets of variants reveals that variants that are identified in the
assay but do not lead to cancer have lower misfolding energies
than disease causing variants and are distant from the enzyme
binding site [40]. This finding is consistent with the variants
being sufficiently disruptive to trigger a response in the assay
but insufficient to cause more serious disease.

Studies of the COVID spike protein have made extensive use
of folding calculations to understand the patterns of evolving
pathogenicity. Learning how the spike changes is important both
for understanding how COVID adapts to human hosts, but also
for its role in immune evasion. One pre-alpha study by Laha et al.
reported alignments of whole genome sequencing, identifying
frequently mutated regions and co-occurrence of mutation pairs
between different proteins [41]. Using structures available at the
time, models of mutations were constructed using a combina-
tion of SWISS-MODEL [26] to model missing loops, and FoldX
to introduce point mutations. The impact of mutations were
assessed using both FoldX overall energy estimates, alongside
empirical approaches that estimated the energy of substitution
through summing the impact of specific contacts made and bro-
ken and portioning energies. This study made several important
contributions that aided the interpretation of later datasets. The
identification of the recurrent mutation D614G as a stabilizing
substitution supported later work on its impact on viral infectivity
[42], and the underlying mechanism of selection was further
extended to consider the impact on binding affinity [43]. This
observation was used to support several later sequencing studies
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performed on different populations, supporting the interpretation
of novel data as it arose [44–46].

Teng et al. followed this work in early 2021 with a detailed theo-
retical study expanding the approach explicitly to computational
saturation mutagenesis applied to the spike protein [47]. Here
the researchers used FoldX again to calculate the change in the
free energy of folding and the change in binding affinity to the
ACE2 receptor, and compared them with predictions of impact
from the machine learning based tool SNAP [48], verifying 20
notable mutations against other prediction tools. They found clear
correlation between folding energies and SNAP scores, and a bias
towards stabilization of the spike protein amongst the observed
mutations. This was a powerful resource for several new studies
to confirm findings. It supported validation of specific recurrent
observations such as the L452R substitution, predicted to be
both stabilizing and enhancing of binding to ACE2 [49], and high
throughput experimental assays using yeast expression systems
[50]. As with Laha et al., the data were important in interpreting
sequencing data taken from different subpopulations [51–53], and
the approach reapplied to analysis of Middle East respiratory
syndrome (MERS) evolution [54]. This work also empowered a
new set of analyses, where phylogenies and clades were studied
explicitly using insights from the change of binding and folding
[55, 56].

The impact of misfolding on viral evolution explicitly was
studied later that year by Shorthouse et al. [57]. At this point,
alpha, beta and delta waves had arisen and expanded rapidly,
allowing us to validate the features that defined a variant of
concern and how to include this information in the assessment
of upcoming variants of interest. This study performed saturation
mutagenesis with analysis of folding energy in the then current
variants of concern/interest, and the mutational states that repre-
sented transitions between different forms. This work was able to
use known successful variants to show that strongly destablizing
mutations were excluded from the existing dominant variants,
whilst stabilizing mutations were enriched. Intriguingly, grouping
by spatial location showed that destabilizing mutations were
clustered around regions known to interact with host proteins,
suggesting that they were tolerated due to compensatory mecha-
nisms that counterbalance any loss of fitness. All three studies
inspired an in depth methodological analysis, spurred by the
availability of multiple structures of COVID spike [58]. Assessing
multiple structures leads to variation in energy calculations, and
this is a potential source for bias or error in each study. Whilst
the work confirmed the analyses presented, it highlighted the
sensitivity of the approach to structural availability and potential
for bias. This demonstrates a challenge for folding calculation
methods, particularly where structures are derived at a range of
qualities, with different co-factors and experimental techniques,
and should be a target for future study. As with other studies
this work supported sequencing efforts in new samples [59], and
the open question left about binding affinities was addressed
by later studies [60]. Finally, the work was expanded upon by
explicitly considering the role of glycosylation [61], where once
again stability was found to be a key factor.

MISFOLDING WITHIN LARGE SETS OF
GENES
As illustrated above, computational saturation screens of single
genes offers a powerful tool for understanding the link between
function and phenotype. It further opens the opportunity for
studies that aggregate data to identify broader trends or distinct
properties. One of the earliest examples of this was a ‘structural

systems biology’ approach taken by Cheng et al., which studied the
MAPK pathways and the yeast cell cycle with a combined misfold-
ing screen and ordinary differential equation network modelling
approach [62]. ��G values were combined with a measure of
systemic control to determine a ‘systemic impact factor’ (SIF),
used to introduce structural effects into the network model. In
yeast they were able to show that these SIF values correlated to
experimental measurement of in vitro cell length for models of the
cell cycle at a restrictive temperature. Studies of MAPK signalling
revealed distinct effects of HRAS mutations from other pathway
members.

Kiel et al. took a comparable approach to comparing mutations
of the RAS pathway in cancer and the RASopathies [11]. The RAS
pathway is heavily mutated in a wide range of cancers, whilst
RASopathies are a diverse set of common and rare germline con-
ditions arising from single mutations to RAS pathway members.
Curiously, whilst RASopathies are associated with an increased
risk of cancer (alongside other clinical phenotypes), the overlap
between cancer associated mutations and RASopathies is weak
and raises the question of whether it reflects some fundamen-
tal difference between the mutations. This study showed that
cancer causing mutations had a greater misfolding energy, and a
network modelling approach suggested that the mutations asso-
ciated with RASopathies caused relatively minor pathway dys-
regulation. They further found that experimentally determined
rate constants correlated with misfolding energies determined by
FoldX.

Gerasimavicius et al. took this approach further to study the
mutational landscape of all pathogenic mutations over two stud-
ies. In the first multiple protein stability predictors were competed
to assess their ability to predict pathogenicity and secondly to
explore the patterns of mutations that determine loss versus
gain of function [63, 64]. The second study highlighted distinct
distributions and patterns of pathogenic mutations, with separate
clustering of different classes of pathogenic mutations in space
and with different degrees of structural perturbation. Separating
the pathogenic mutations further into recessive versus dominant
classes they found mutation class specific features, observing that
dominant negative mutations cluster at the interface between
subunits in oligomeric complexes, whilst autosomal recessive
mutations tend to reside within the protein interior. Notably,
gain of function mutations made more subtle alterations to the
protein structure, consistent with the observations made by Kiel
in RASopathies [11].

Finally Hall et al. presented an analysis and software tool for
analysis of mutations observed in aged tissues, effectively using in
vivo fitness as a genetic screen [65], based on prior work studying
such systems [66]. Aged tissues are a mosaic of clones carrying
mutations, where only those with a selective advantage are able
to persist and expand over time. Missense mutations are com-
mon, and are observed to occur in known biologically important
regions of mutated proteins. The statistical approach taken in this
work revealed an apparently worrying contradiction—mutations
to NOTCH1 at known important interfaces were unexpectedly not
statistically enriched relative to a null hypothesis. This could be
understood however through the use of folding calculations—
misfolding as a mechanism for causing loss of gene activity was
so dominant that it acted as a confounder. Once mutations that
induced misfolding were excluded from calculations, the rela-
tive enrichment of different molecular mechanisms, including
JAGGED and calcium binding sites, was revealed. This study fur-
ther observed a trend for increased misfolding in fitness supress-
ing and fitness enhancing mutations, validated in mutations
found in a mouse model of ageing, comparable to the patterns
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Figure 2: Exploring challenges for prediction in future. (A) Estimates of correlation between experimental and calculated values of ��G of mutation
can be low for individual proteins, but this may not substantially limit their ability to classify. A systematic analysis of ��G analyses applied to
structures of PIN1 shows a low Spearman correlation of 0.46. However, a linear regression highlights that 80% (4/5) outliers (red) result from four
substitutions of ∼800. (B) Gain of function mutations may not show the same enrichment for misfolding as loss of function mutations. PTPN11 ��G
estimates here show a distinct distribution from the null hypothesis when applied to the whole gene, with a shift towards stabilization. (C) PTPN11
��G estimates when applied to the autoinhibitory SH2 domain show that misfolding is favoured.

of loss of function versus gain of function mutations observed in
Gerasimavivius et al. [63].

FUTURE DEVELOPMENTS
As a tool for understanding mutagenesis, misfolding calcula-
tions are now well established. As they are used increasingly in
exhaustive screens, it is an open question how the technology will
develop and continue to be applied in future. One key feature that
reflects its maturity is the range of tooling that is becoming avail-
able, particularly evident in the analyses of COVID spike protein,
as scripts developed by different groups become refined. MutateX
[67] is one example of a devoted set of scripts to automate the
calculation of saturation screens, validated against several well
understood systems. Related to folding calculations, the same
tools can further be adapted to calculations of binding affinity,
as achieved in RosettaDDG, a Rosetta based pipeline for calcu-
lating folding energies and affinity [17]. As high-quality models
of protein structure have become more widely available due to
alphafold predictions [68, 69], we can further expect more studies
that perform calculations on these models, as has been done
with neurexin [70]. An additional likely future development is the
incorporation of these calculations into existing machine learn-
ing methods for variant prediction. As folding energy has been
demonstrated to be descriptive for predicting mutation effects, it
follows that this energy would be a useful additional feature for
these tools. For many frequently mutated genes, there would also
be a value in pre-calculating folding energies and making them
available through public databases.

Substantial challenges and questions still remain however for
the method. One noteworthy feature is that whilst there have
been successes in developing folding based classifiers, correla-
tions reported in the literature between theoretical predictions
and experimental observations vary widely, for example, 0.2, 0.5
and 0.8 depending on structure [24, 71, 72]. This would suggest
that success depends at least in part on the gene of interest and
whether its structure is amenable to computational saturation
screens (e.g. globular proteins are likely to perform better). We
note that correlation, however, may not be an appropriate tool in
isolation to measure success, as our comparison of theoretical and
experimental estimates from different structures of PIN1 reveals
that 80% (4/5) of outlier estimates arise from only 4 of ∼800

substitutions (Figure 2A). Further systematic analysis of multiple
structures, such as [58, 73], would support our understanding of
the limitations of FoldX and other predictive tools.

A further issue is how applicable this approach will be for the
analysis of pathogenic gain of function mutations. It is intuitive
that misfolding can cause loss of gene activity, but there is some
evidence that alterations of folding of specific domains may
enable gain of function. This was explored in the selection of
mutations to FBXW7 in aged skin [65], which may be expected
to have gain of function mutations under positive selection due
to its relationship with NOTCH1 in other tissues. In this situation,
apparent selection of stablizing mutations across the gene was
influenced by the strong selection of non-destabilizing mutations
to the substrate binding site, and was not apparent once they
were excluded. More generally, we might expect that for gain of
function mutations, the role of specific domains or regions in
gene function becomes more important (as suggested in [63]). For
example, mutations to PTPN11 can lead to different RASopathies
through gain of function. Whilst the impact of mutation on mis-
folding across the whole protein sequence shows a selection for
stablization of the protein (Figure 2B), mutation to the autoin-
hibitory SH2 domains shows strong selection of destabilizing
mutations (Figure 2C). Dedicated studies of well characterized
gain of function mutations in single genes will better illuminate
the utility of folding calculations here.

A more complicated question is what the role of these folding
calculations is in light of more advanced experimental tech-
niques for measuring folding. Tsuboyama et al. recently pub-
lished a landmark paper presenting cDNA display proteolysis,
a technique for rapidly measuring folding stability [74] applied
to the study of single and double mutants. This work further
presents a uniquely powerful resource for understanding protein
stability for a large set of proteins measured under consistent
conditions. In the context of this and other folding based deep
mutation scans, the question arises—do we need to attempt to
predict what we can measure? Just as the widespread availabil-
ity of high-quality protein structure models from Alphafold [68]
does not negate the value of novel experimentally derived struc-
tures, experimental tools to measure protein folding effects of
mutations do not negate the utility of computational predictions
of folding energy. Theoretical approaches offer unique insights
into molecular mechanisms alongside experimental data, and
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both schools have a long tradition of being accelerated by the
availability of new technologies, through working synergistically
together. Two further factors also challenge the primacy of sin-
gle experimental approaches. Experimental assays have inherent
limitations, which have been noted to reflect lab specific exper-
imental conditions [25], and even highly similar but different
tissue environments influence patterns of mutagenesis in vivo
[65]. As such it cannot be assumed that single assays are ‘correct’
for all situations. Second, imperfect measures (whether experi-
mentally or computationally determined) have been shown to be
highly effective, as illustrated by examples cited here that use
homology models successfully in the absence of experimental
structures [25]. One clear target for combined computational and
experimental targets to address is the origin of the apparent gap
between statistically derived pathogenicity scores, particularly
as recent methods show increasing accuracy [75]. In the longer
term, we can expect folding forcefields and calculation methods
to improve, and folding and dynamics calculations will continue
to offer a uniquely powerful and relevant window into experimen-
tally inaccessible problems.

Key Points

• The estimation of folding energies through general
forcefields has become increasingly accurate whilst
computing costs have continued to come down.

• This enables the application of computational satura-
tion screens that explore the mutational landscape of
different genes.

• For individual genes, this has enabled the creation of pre-
dictive screens that support analysis of newly observed
variants.

• It further enables powerful aggregate analysis of col-
lections of mutations across multiple genes, revealing
fundamental shared features and interactions across
networks.
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