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A B S T R A C T

In an effort to reduce pesticide use, agronomists and computer scientists have joined forces to develop site-
specific weed detection and classification systems. These systems aim to recognize and locate weed species
within a crop field, using precision equipment to apply required herbicides timely and only where needed, with
the objective of reducing the sprayable surface required to eliminate the given weed and protect the crop, with
both economic and environmental benefits. Yet, with climate change on the rise, common weeds are expected
to undergo some changes to adapt to their environment, possibly with new or invasive weeds spreading to areas
where they did not exist before. These changes (often morphological) as well as new invasions need to be taken
into account by future classifiers and detection algorithms to ensure system robustness and adaptation to new
habitats/climate dynamics. This paper proposes a set of experiments evaluating the use of transfer learning and
zero-shot learning for weed classification using our novel TomatoWeeds dataset. Residual networks of variable
depth, pretrained on the Imagenet and/or DeepWeeds datasets were evaluated. A ResNet50 pretrained on
both datasets and fine-tuned on the TomatoWeeds dataset performed best, returning a holdout set accuracy
of 77.8%, showing the advantageous use of transfer learning in this domain. Zero-shot learning, using both
embeddings of images and morphological and habitat text-based descriptions, is implemented to test the ability
of machine learning pipelines of recognizing unseen classes at test time (which may arise e.g. due to changing
climate dynamics), a learning task in which the field (and our experiments) are still far from satisfactory
results. Further research could benefit from larger weed-specific datasets for transfer learning as well as deeper
network architectures to improve model performance. The projection-based ZSL could also benefit from larger
datasets and new zero-shot learning architectures in hope that unseen classes are accurately projected.
1. Introduction

The COVID-19 pandemic demonstrated the fragility of food supply
chains worldwide. In order to be resilient to future crises, the EU
has implemented a Farm 2 Fork strategy (F2F) where food systems
were planned to be redesigned to be more socially, economically, and
environmentally sustainable.

A 2019 study estimated that out of the 2 million tonnes of pesticides
used worldwide, 47.5% of them were herbicides [1]. According to the
European Union statistics office, the consumption of herbicides has
not seen a decrease since 2011; analysis suggests that the number has
stayed constant to approximately 350 000 tonnes a year [2]. As a result,
the EU has implemented a ‘pesticide and herbicide plan’ within the
F2F strategy that aims to reduce the use of pesticides and herbicides
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by 50% by 2030. However, this is no simple task. Depending on their
emergence time, density and species, weeds can result in total yield loss
if left uncontrolled [3].

In order to reduce the use of pesticides, research has suggested the
use of Site-Specific Weed Management (SSWM) where the aim is to
reduce the amount of herbicide used by determining the location of
the weeds at an early growth stage [4]. SSWM leverages computer
vision and deep learning improvements to detect and classify weeds.
Ground, drone, and satellite images were used to train image recogni-
tion models [5,6]. Once detected, precision agriculture techniques were
used to precisely apply herbicide on the weed, reducing drastically the
amount of product used. As consequences of climate change, plants
were expected to evolve to better suit their environments [7]. Future
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SSWM methods must be more robust and adaptive in order to detect
these changes and maintain accurate classification.

Weed mapping is an essential step to apply site-specific weed con-
trol strategies in the context of precision agriculture. Current machine
learning models for this purpose utilize various neural network ar-
chitectures for computer vision applications, trained using specifically
tailored weed datasets (with low generalization beyond the specific
conditions of the training set), and with high associated labeling and
computational costs, all of which precludes broader uptake of this tech-
nology and its use for building more sustainable pipelines. To ensure
the reproducibility of methods in real cropfield scenarios, it is crucial
to build algorithms that can recognize weeds in the most accurate and
cost/time-effective manner. This means detecting and classifying weeds
seen or unseen at training, at early plant growth stages (to optimize
the application of control measurement), but also leveraging multiple
low-cost scalable datasets to ensure broad generalization.

This study aims to explore methods that make weed detection mod-
els more reproducible, effective and robust. More precisely, transfer
learning and zero-shot learning (ZSL) configurations were evaluated
using various open-source datasets along with our novel TomatoWeeds
dataset. This dataset was generated with a small number of drone-based
weed images obtained of a commercial tomato field naturally infested
with three different species: Cyperus rotundus, Solanum nigrum, and
Portulaca oleracea. We thus propose high performing models trained
on an early stage weed dataset, and evaluate how transfer learning
may help weed detection task in an effort to reduce computation and
labeling cost for future models. Performance of zero-shot learning was
also analyzed in order to be further integrated into weed detection
algorithms capable of detecting new weeds not previously seen in the
target scenario.

2. Materials and methods

2.1. Weed detection algorithms

The global growing awareness towards healthy and more sustain-
able foods, as well as an increase in cost of labor, have shed light
on the benefits of automatic weed control. Automated weed control
systems involve detecting the location and species of a weed in a
field. For the past decade a variety of weed detection studies have
been published. Both machine learning (ML) and deep learning (DL)
approaches have been used to solve the detection and classification
tasks. Despite good results with classical machine learning techniques
(SVM [8,9], LDA [10], K-Means [11]), advancements in Deep Learning
methods have helped weed detection achieve higher performing meth-
ods and models. These methods have been used to solve different weed
detection objectives.

Deep learning has been used for multi-label classification on an
image level. The presence is a weed along with its class is given for an
input image. Convolutional Neural network (CNN) type architectures
are implemented to extract features from these images. Using the Deep-
Weeds dataset, past studies have used pretrained (Imagenet) Resnet50
architectures [12] as well as a graph-based RNN architecture [13] to
perform such classification. The Resnet50 proposed by Olsen et al. [12]
achieves considerably high results on the DeepWeeds dataset; reaching
a validation accuracy of 95.7%. The graph-based approach achieves
an even better accuracy of 98.1%. Peteinatos et al. [14] uses the
same Resnet50 pretrained on Imagenet but on a different UAV images
of maize, sunflower, and potatoes fields; model performance reaches
an accuracy of 97%. Veeranampalayam Sivakumar et al. [15] uses a
region based faster CNN and Single-shot Detector (SSD) architectures
to perform real-time crop and weed detection on UAV data. Both
models were able to predicted accurately (85% and 84% respectively)
and promptly. A more recent combines a CNN with learning vector
2

quantization on an UAV dataset where masks have been applied to
Table 1
Summary of CNN-based weed detection models.

Citation Model Accuracy (%)

[12] Resnet50 (Imagenet) 95.7
[13] Graph-based RNN 98.1
[14] Resnet50 (Imagenet) 97
[15] Faster CNN and SSD 85
[16] CNN with Learning Vector Quantization 99.44
[17] YOLO-v3 –
[18] YOLO (CNN) 0.94 (𝐹1 Score)
[19] YOLO-v3, Centernet, Faster R-CNN 0.97 (𝐹1 Score)
[20] SegNet 0.8 (𝐹1 Score)
[21] UNet 83.23
[22] Fully Convolutional Network 92.3

input images to remove background [16]; model performance reaches
99.44%.

To further this objective, some models have the capacity to detect
the location of the weed on top of its classification. A rather simplistic
YOLO-v3 model for UAV footage was built to detect a single plant
class and build a bounding box around the detected plant [17]. Puerto
et al. [18] uses a CNN approach with a YOLO (You Only Look Once)
architecture for multi-spectral crop row and weed detection. A recently
published study compares YOLO-v3, Centernet, and Faster R-CNN for
real-time bounding-box weed detection [19]. YOLO-v3 demonstrated
the highest accuracy and computational efficiency.

Some models aim to classify weeds and crops on a pixel level;
otherwise known as semantic segmentation. Such deep learning models
take images as inputs and output an image of labeled pixels. The
networks used in such tasks are derived from CNNs as they contains
convolutional layers. However, they do not the same architectures
given that the output dimensions must match the input dimensions. A
SegNet trained on a UAV data classified weeds, crops and background
to a high accuracy [20]. Brilhador et al. [21] explores the effects of
different data augmentation combinations when performing pixel-wise
classification; the designed UNet reports an optimal pixel-accuracy of
83.23% when augmenting images with vertical and horizontal flips. Un-
like the latter two models, where the models contain encoder–decoder
architectures, Huang et al. [22] uses a pretrained fully convolutional
network that is capable of predicting dense class map of UAV rice paddy
images; model performance reaches a pixel-accuracy of 92.3% Table 1.

The majority of the research papers suggest models for detecting
and/or classifying weeds. These models have typically undergone test-
ing on datasets specifically designed for weeds, comprising images of
early growth stage weeds spanning various weed species. This approach
aligns with the methodology employed in this paper.

2.1.1. Limitations of weed detection
The existing literature on weed detection has presented effective

models, but there is still room for improvement, especially in reducing
computation time constraints for real-time applications to maximize
crop yield and minimize costs. Weed datasets vary significantly in
species, atmospheric conditions, growth stages, resolution, scalability,
and acquisition methods, potentially leading high-performing models to
be overfitted to specific datasets. To address this, future research should
focus on creating a comprehensive dataset covering diverse species,
geographies, and atmospheric conditions. The cost of labeling images,
whether at the image or pixel level, is a significant challenge, and
efforts should be directed towards developing cost-effective labeling
methods, such as weakly-supervised, semi-supervised, and unsuper-
vised approaches. Moreover, as climate change affects weed dynamics,
life cycles, and geographic ranges, algorithms need to adapt to these
changes. Zero-shot learning, a machine learning paradigm, can be a
valuable tool in addressing these challenges by enabling models to
recognize new weeds with limited or no data.
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2.2. Zero-shot learning paradigm

The majority of machine learning models classify data whose classes
were seen at training. To cope with ever changing weed species, models
must be able to detect new different weeds, that were not present at
training. The zero-shot learning paradigm is designed to distinguish
seen classes from potential unseen classes.

Zero-shot learning methods can be broken down into two section:
classifier-based methods and instance-based methods [23]. Classifier-
based methods focus on directly learning a classifier that can detect
unseen classes. Instance-based methods, aim to determine a way to
generate labels for an unseen testing instances and then use them in
a classifier. In this study, the aim is to use an Instance-based method
to apply ZSL to a weed detection task. Instance-based methods can
be broken down into projection, instance-borrowing and generative
methods, as shown in Wang et al. [23], Pourpanah et al. [24].

Generative approaches in zero-shot learning, as explored in recent
research, focus on synthesizing visual features for unseen categories.
One approach introduces novel fusion techniques at the attribute,
feature, and cross-levels, achieving state-of-the-art results on three zero-
shot image classification benchmarks, along with successful generaliza-
tion to zero-shot detection on the MS COCO dataset [25]. Another study
proposes a dual generation network framework, leveraging discrimina-
tive information from visual features, resulting in superior performance
on six benchmark datasets [26]. Both approaches contribute to nar-
rowing the gap between seen and unseen classes in zero-shot learning
scenarios, showcasing the potential of generative models in addressing
ZSL. Given the complexity of generative approaches, this research opted
for the more interpretable projection-based methods.

Projection methods project feature space instances (seen classes) and
the unseen prototypes into a common projection space. This will allow
to obtain labels instances of unseen classes and build a classifier for
them. The advantage of these methods is that the choice of projection
function is flexible. It can be chosen to suit the task and dataset at
hand. However, given that each unseen class has one labeled proto-
type, suitable classification algorithms can be limited. Xie et al. [27]
proposed a simple ZSL architecture that uses class attributes to build its
semantic space. Before word embedding models gained in popularity,
some research proposed projection-based architectures that use text-
keyword semantic spaces alongside with TF-IDF histograms [28]. Wang
et al. [29] proposed a projection-based ZSL implementation that uses
CNN extracted instance features, Word2Vec extracted label features and
a linear mapping function. Xian et al. [30] was then introduced to
incorporate nonlinearity to the model, by incorporating latent variables
for every image-class pair. Morgado and Vasconcelos [31] uses a label-
embedding semantic space and CNN feature extraction to create a
ZSL method based on the complementarity found between class and
semantic supervision.

Zero-shot learning methods have never been used in the context of
weed detection; highlighting the novelty of our research.

2.3. TomatoWeeds dataset

The novel dataset used and presented in this study consists of two
mosaic images (10521 ⋅10521 pixel resolution) of tomato fields in Bada-
oz, Spain taken at midday on a clear day. This was done to minimize
loud and crop-induced shade. The mosaic images were constructed
sing a commercial softwwere (Photoscan agisoft) that generates the
rthomosaic in a semi-automatic way following a chain of phases. Both
mages were manually labeled by two experts in weed identification,
ccording to their species using GIS coordinates. The images were taken
hen the weeds were in early growth stages, which is the right time

o apply a control treatment to prevent competition with the crop or
urther spread across the field. The identified species were labeled as:
3

. rotundus, S. nigrum and P. oleracea. Fig. 1. i
Table 2
Class occurrences in the TomatoWeeds dataset.
Development set Holdout set

Class Training set Validation set

C. rotundus 1062 361 302
Negative 1434 254 425
P. oleracea 52 71 85
S. nigrum 320 36 38

The data is acquired using a Microdrones md4-1000 UAV mounted
with a Sony alpha 6300 point-and-shoot camera. The camera shoots
in a visible-range camera and acquires 24.2-megapixel images in the
visible RGB spectrum. The camera was equipped with a 19 mm focal
length lens. The images were acquired at an altitude of 10 m.

2.3.1. Dataset preparation
As mentioned above, the weeds were labeled by class using GPS

coordinates. In order to use these labels in a deep learning setting they
must be projected onto the image. To do so, the label coordinates were
projected onto the image reference frame and transformed to represent
pixel locations. This was done using the QGIS software along with both
shp and rasterio python packages (see Fig. 2).

Once the labels were mapped onto the mosaic image, the mosaic
image was split in 2 different parts where 70% of the image would be
used for training (development set) and the remaining 30% would be
used for testing (holdout set). Performing this split earlier ensures that
the there is no overlap between both development and holdout dataset.

The next step was to split the mosaic images into smaller input
images for a deep learning classification model. To do so, a sliding
square window of dimension 𝑛 ⋅𝑛 is applied to the mosaic. The window
slides across the images with an overlap, checking if a label lies in its
inner circle (see Fig). The inner circle is defined by a circle of radius
𝑅, where 𝑅 = 𝑛− 𝛾 and 𝛾 is a user inputted margin value. For the case
of this study, the margin is set to 𝛾 = 1∕5⋅𝑛

2 , leaving a fifth of the image
out of the circle. This ensures that the labeled weeds remain somewhat
central in the image. The images were therefore annotated on a image-
level. For simplicity, windows that contain 2 or more weed species were
removed; hence multi-label classification is not considered (see Fig. 3).

Given the small size and sparsity of weeds, the number of back-
ground images is considerably higher that the labeled images. Negative
sampling is used to level out this imbalance; the number of background
and labeled images were made equal for both training and holdout
sets. However, there is still class imbalance given that there were non
uniform amounts of weed species in the field. Some species were more
common than others.

The choice of 𝑛 can be crucial in terms of dataset size and model
erformance. After discussing with the data provider, it was agreed that
he algorithm should take as input an image that would represent a
urface smaller than 1 m2. 64-pixel and 128-pixel sizes both represent
surface werea of 32 and 64 cm2. These dimensions will be tested in

urther experiments.
A summary of class occurrences across training, validation and

oldout sets is given in Table 2.

.4. Weed detection and classification methods

A ResNet architecture was used to detect and classify weeds. This
rchitecture leverages skip connections to avoid the vanishing gra-
ient problem. They have shown very good performance in image
lassification tasks, especially in the field of weed classification [12,15].

This study evaluates the performance of different ResNet architec-
ures and transfer learning on a weed detection and classification task
or the TomatoWeeds dataset. For transfer learning, the whole model
s finetuned.
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Fig. 1. S. nigrum, P. oleracea and C. rotundus weeds (from left to right) at early stages.
Fig. 2. Entire mosaic image of the TomatoWeeds dataset.

2.4.1. Learning setting and performance metrics
A development containing 70% of the dataset was broken into a

training and validation splits, following a 80/20 split. The left 30% of
the dataset was used as a holdout set, for testing purposes. Models were
all trained on the training set for 100 epochs using the cross-entropy
loss function [32] and Adam optimizer [33].

In order to optimize learning rate and subsequent model perfor-
mance, a step-wise learning rate scheduler was used. Such schedulers,
help the model approach the optimum more efficiently. In practice,
they apply different types of decay functions to the learning rate;
meaning that as the model approaches an optimum, the learning rate
will decrease and allow for more precise updates.

All models were evaluated using the accuracy metric. This metric
corresponds to ratio of all correctly classified images against the total
images. Despite often providing with an accurate representation of
model performance, accuracy is often not a suitable metric for imbal-
anced classification problems. Thus, recall and precision metrics were
also used to report performance across all classes.

Recall is measure of how many correct class-specific predictions
over all the occurrences of that class. Precision is a measure of many
correct class-specific predictions were over all the prediction made for
that class. Described often as the harmonic mean of both metrics, f1
score is used to encapsulate both recall and precision metrics, in a
balanced way. As shown below, in order to obtain high f1 score, recall
and precision values must be high.

F1 Score =
2 ⋅ precision ⋅ recall

.

4

precision + recall
Table 3
Class occurrences in the original DeepWeeds dataset.

Class Entire dataset ZSL Training set ZSL Test set

Chinee apple 1125 900 225
Lantana 1064 852 212
Parkinsonia 1031 825 206
Parthenium 1022 818 204
Siam weed 1074 860 214
Snake weed 1016 813 203
Prickly acacia 1062 – 250
Rubber vine 1009 – 250
Negative 9106 – –

Total 17 509 5068 1764

2.5. Zero-shot learning for unseen weed classification

Zero-shot learning has been applied to various different image-based
tasks in literature. However, its application to weed classification is
novel. Suggested in the 2019 Weed detection survey [34], ZSL has
since not been mentioned in any SSWM research. Hence, this section
introduces a novel approach to weed detection and classification. The
second part of our experimental design aims to test ZSL in the domain
of weed classification.

The real-world application of ZSL in this domain aims to flag to
agronomists (or any other end user) when a weed that is not contained
in the training set has appeared in the field. The proposed system could
provide a classification to an unknown class. The agronomist can then
verify the validity of this prediction and add the new plant to the
training set. This, which can commonly be done through uncertainty
quantification techniques [35]. ZSL aims to include the information
into the classification system in such a way that when the same weed
emerges it can be associated to this same category seen before, without
requiring explicit training.

2.5.1. DeepWeeds dataset for zero-shot learning
The previously described TomatoWeeds dataset contains 4232 im-

ages across four imbalanced classes. Hence, to ensure the best results
possible for this novel approach, we focus our ZSL experiments on the
DeepWeeds dataset [12]. It has a large number of balanced classes
with many images per class. The negative background class was not
considered in these experiments as the aim was to detect and classify
new weeds.

The dataset was manipulated to fit the ZSL task; we drop two classes
from the training set, so that unseen classes are only present in the test
set and we can monitor the performance on those classes. In order to
maintain the test set class-wise balance, 250 random samples of both
unseen classes were retained. Class-wise balance was required to ensure
that the unseen classes were fairly represented when projecting them
into feature spaces, later used for classification. Table 3 summarize
these changes.

2.5.2. Semantic spaces used for ZSL
Many ZSL approaches rely on projection spaces and notions of

distances to classify unseen classes [23]. Such projection methods aim
to project both seen and unseen instances into a common projection
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Fig. 3. Visualizing the inner circle splitting protocol for C. rotundus, P. oleracea and S. nigrum (from left to right).
Table 4
Examples of morphological and habitat descriptions [36].
Weed type Morphological description Habitat description

Chinee Apple Small, hairless trees up to 10 m
tall. Branches were slender, zigzag
shaped, with sharp spines. Leaves
have a short, spine-tipped stalk.
Leaf branches were 20–40 cm long.
Flowers were yellow, fragrant, 5-petaled,

each on a long, slender, drooping stalk.
Seed pods were pencil-like, 5–10 cm
long, constricted between seeds. Seeds
were oval, about 15 mm long, with
thick,
extremely hard coats.

Occurs most abundantly on flood
plains but adaptable to a wide
range of soil types. Found along
watercourses in sub-humid and
semi-arid wereas of Queensland.
or semantic space, which is built to maximize class discrimination and
used to detect occurrences of new unseen classes. In this work, we
experiment with both image and text semantic spaces, as we observe
in our initial experiments that image spaces are not enough to do ZSL
of weed classification.

Image-representation space. Image-representation semantic spaces were
built by projecting images into a vector space. This can be done using
the output layer of a neural network. The backbone of ResNet50
was used to build image-representation embeddings. Given that the
model produced some of the most accurate results, the output layer
would discriminate the most between classes; therefore aiding further
analysis. The output layer of the ResNet50 model is a 1 ⋅ 2048 vector,
meaning the projection space would be 2048-dimensional. This high-
dimensional space may be reduced to maximize class variability using
dimension reduction techniques.

Text-embedding space. Apart from the images available, we extracted
morphological and habitat descriptions of seen classes using web scrap-
ing techniques on a Queensland Government website [36]. An example
of description for a class can be seen in Table 4.

Text-embedding spaces were built using seen and unseen class de-
scriptions and word embedding models; terms in the descriptions were
converted to vectors that provide a latent representation of the seen
classes. Word embedding models leverage natural language processing
techniques to project words into a vector space or semantic space.

Both morphological and habitat descriptions were separately pre-
processed before being projected into latent space and concatenated.
This preprocessing involved removing stop words and performing stem-
ming and lemmatization. The remaining words,  , were then individu-
ally converted to vectors, 𝑣𝑡, using the glove-25-twitter word embedding
model [37]. The average term embedding, 𝑣𝑎𝑣𝑔 , was computed as
follows,

𝑣𝑎𝑣𝑔 = 1
||

∑

𝑡∈

𝑣𝑡
‖

‖

‖

𝑣𝑡
‖

‖

‖

.

Both morphological and habitat descriptions were used to create
two average term embeddings, using the equation above. These em-
beddings were then concatenated to create a 1 ⋅ 50 vector; therefore
5

creating a 50-dimensional latent semantic space. This concatenation
is illustrated in Fig. 4. The dimensionality of this embedding may be
reduced to ease further analysis.

We hypothesize (and visually observe in our embeddings) that the
benefit of text-embedding semantic spaces is that text descriptions are
more nuanced and often better at discriminating between classes when
images show little inter-class variability.

2.6. Image to text projection

As mentioned above, we suspect that embeddings of text descrip-
tions of weeds would represent class-wise difference better than weed
images themselves. To explore this in more detail, we use inspiration
from the literature [38,39], where it is shown that we can project
from images to text, and use this new representation, combined with
the scrapped morphological and habitats descriptions, as a suitable
semantic space for class discrimination and ultimately ZSL.

Specifically, we use multi-dimensional regressions (MDR) to draw
a relationship between two multi-dimensional spaces. In this study,
the MDR is built using a neural network with an encoder–decoder
architecture. This architecture can be broken down into the three
following parts:

• Encoder: A module that compresses the input into a much smaller
representation using a feed-forward neural network.

• Decoder: A module that up samples the smaller representation to
match the output dimension. In practice, the decoder projects to
a lower dimensional subspace that matches the latent label space.

• Bottleneck: A module used to restrict the flow of information
between both encoder and decoder modules [40]. This helps
form a knowledge-representation of the input, where only vi-
tal information about the inputs is shared with the decoder.
In practice, this element enables the models to project in a
more class-discriminative manner, as it outperforms standard
feed-forward architectures.

This study uses this architecture to learn a projection function that
takes as input an image embedding and outputs a text embedding; the
2048-dimensional inputs were projected onto a 50-dimensional label
space. The network architecture, illustrated in Fig. 5, contains a 7 layer
encoder, a 2 layer decoder and 16-dimensional bottleneck.
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Fig. 4. Creating text embeddings from both morphological and habitat weed descriptions.
Fig. 5. Architecture of the multi-dimensional regression used to build a projection-based semantic space.
Fig. 6. 64-pixel (left) and 128-pixel (right) input images for the C. rotundus weed
species.

This architecture is trained using a mean-squared error loss function
(MSE). MSE loss aims to reduce the distance between predicted embed-
dings, 𝑝𝑖, and target embeddings, 𝑡𝑖, by applying the following function,
(𝑝𝑖, 𝑡𝑖) =

∑𝐷
𝑖=1(𝑝𝑖 − 𝑡𝑖)2.

3. Empirical results

3.1. Weed classification and transfer learning experiments

First, we aim to test how the size of images impact our weed detec-
tion and classification pipelines. Two datasets created with 64-pixel and
128-pixel input images were tested across ResNet models of variable
depths. Open-source ResNet models pretrained on Imagenet [41] were
used to perform this experiment. Fig. 6 depicts the different image sizes.

In parallel with the split size evaluation, the effect of a varying
model depth was assessed. ResNet18, ResNet50, and ResNet152 models
were applied to both datasets. These models have respectively 18, 50,
6

Table 5
ResNet performance both 64-pixel and 128-
pixel image splits.
Model 128-pixel split 64-pixel split

ResNet18 0.327 0.697
ResNet50 0.377 0.776
ResNet152 0.340 0.779

and 152 layers. The same open-source ResNet models were used to
perform this experiment. The results of these two tests can be seen in
Tables 5 and 6.

Finally, the effectiveness of transfer learning is evaluated by testing
model performance across various pretraining configurations. Open-
source ResNet models pretrained on Imagenet and ResNets manually
pretrained on the DeepWeeds dataset [12] were tested across different
configurations; seen in Table 6.

When using the trained ResNet50 model and the test set specified
in the DeepWeeds study [12], the model yielded a 95.7% weighted
accuracy; perfectly matching the results obtained in the study. The
baseline was deemed replicated.

All metrics shown below were issued from the holdout set, a dataset
completely independent of both training and validation sets. Hence, the
results give a good idea of model generalization beyond the training set.

The tables below demonstrate clearly how a 64-pixel split is better
suited to this classification task. The larger ResNet152 shows poor
performance for a dataset with a 128-pixel split size; yielding an
accuracy of 0.34. The same model performs considerably better on the
dataset with a 64-pixel split size; yielding an accuracy of 0.78.

In addition, these tables demonstrate that deeper networks perform
better for this weed classification task; ResNet50 and ResNet152 model
performs well for both datasets.

Table 5 shows how model accuracy is affected by different pretrain-
ing configurations. The first configuration evaluates model performance
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Table 6
Model performance (holdout set accuracy) depending on pretraining configuration; PT
for pretrained, FT for finetuned.

Configuration ResNet50 ResNet152

No PT /trained from scratch on TomatoWeeds 0.737 0.497
PT on Imagenet + finetuned on TomatoWeeds 0.776 0.781
PT on Imagenet + DeepWeeds + FT on TomatoWeeds 0.778 –
PT on Imagenet + DeepWeeds + no FT 0.486 –

when no pretraining was applied. This entailed training both ResNets
from scratch on the TomatoWeeds dataset. The shallower ResNet50 was
able to reach a fair accuracy of 0.73, whereas the deeper ResNet152
failed to converge to high performing state, returning an accuracy of
0.49.

Then, a simple fine-tuning experiment was led, where the models
were both initially pretrained in the Imagenet dataset. They were then
finetuned on the TomatoWeeds dataset. Both models produced accurate
results; 0.77 and 0.78 for both ResNet50 and ResNet152 models. These
results demonstrate the benefits of finetuning on larger datasets.

The final two experiments involved fine-tuning on the larger Deep-
Weeds dataset [12]. Given the size of this dataset and limited compu-
tational resources, the experiments were only able to be tested on the
smaller ResNet50 model.

As expected, pretraining on Imagenet and on the larger weed-
specific DeepWeeds dataset before finetuning on TomatoWeeds aided
performance on the TomatoWeeds holdout set. However, this improve-
ment is marginal. This could potentially be because DeepWeeds images
were taken on ground for different crop and weed species, rather than
with unmanned aerial vehicles.

When finetuning on TomatoWeeds is not considered and only the
pretrained Imagenet and Deepweeds model were used on the Toma-
toWeeds hold out set, results were poor; yielding a hold out accu-
racy of 0.49. Despite showing poorer performance, the latter model
performed better than a no skill 4-class classifier; demonstrating po-
tential weed feature knowledge transfer between both Deepweeds and
TomatoWeeds datasets.

Throughout this series of pretraining and fine-tuning experiments,
we could conclude that pretraining a model on a larger dataset prior
to fine-tuning it on a smaller more specific dataset, will aid holdout set
performance on this smaller dataset. This could significantly improve
weed mapping pipelines, where the bottleneck is the collection of the
field images, meaning potentially we can achieve better detection in a
more cost-efficient manner by reusing previous weed mapping datasets
(even if they contain different species), and even when other large-scale
object detection datasets like Imagenet are used (which may help to
train features that perform well across different computer vision tasks,
e.g. edge detectors).

As demonstrated in the experiments above, the best performing
models were the ResNet50 pretrained on both datasets and the ResNet
152 only finetuned on Imagenet. Both models perform similarly across
all classes. Fig. 7 illustrates model convergence with a step-wise learn-
ing rate scheduler.

C. rotundus and background were considered as majority classes as
they have more instances within the entire dataset. On the other hand,
P. oleracea and S. nigrum appear considerably less. This class imbalance
is reflected in the class-wise performance of both models. The majority
classes produce good recall and precision metrics, reflected in a good f1
score; returning an average score of 0.78 and 0.87 for C. rotundus and
ackground classes across both models. The minority classes produce
onsiderably lower F1 scores. Both models return the same score of 0.37
or the S. nigrum class. However, for the P. oleracea class, the deeper

ResNet152 model performs slightly better, returning a score of 0.57
Table 7.
7

Table 7
Class-wise precision, recall and F1 for both best performing models.

Model ResNet50 ResNet152

Precision Recall F1 Precision Recall F1

C. rotundus 0.75 0.83 0.79 0.73 0.81 0.77
P. oleracea 0.69 0.32 0.44 0.67 0.49 0.57
S. nigrum 0.29 0.45 0.35 0.37 0.37 0.37
Negative 0.88 0.87 0.87 0.87 0.85 0.86

Table 8
Evaluation of the two embeddings (image and text)
for within cluster and between cluster metrics.
Projection
evaluation
metric

Image-based
projection

Text-based
projection

WCSS 5284.9 1033.8
BCSS 5.73 11.47

3.2. Zero-shot learning experiments

As mentioned, both image-based and text-based semantic spaces
were used to classify seen and unseen classes, as only using image-
based embeddings was not shown satisfactory. Our aim was to project
images into a space where potentially inter-class variance was higher;
ideally improving chances of higher performance. Fig. 8 illustrates the
differences between image-based and text-based projection methods.

In order to further the comparison between both text-based and
image-based projection spaces, we analyzed the cluster characteristics
for the two dimensional projection shown above. We evaluated the
following below.

1. Within-Cluster Sum of Squares (WCSS) represents the sum of
squared distances between each data point and the centroid of
its assigned class.

2. Between-Cluster Sum of Squares (BCSS) represents the sum
of squared distances between the centroids of different classes
and the centroid of all data points. It measures the dispersion
between classes.

To provide a fair comparison between both projection methods,
the embeddings were both normalized using z-score normalization.
Given their high dimensions and exponentially growing distances, the
embeddings were reduced to 2D using PCA to get a more interpretable
evaluation metric.

As shown in Table 8, the text-based projection demonstrates supe-
rior discrimination of classes compared to the image-based projection.
This is evident from the significantly lower WCSS value of the text-
based projection, indicating that the classes are more tightly packed
and distinct. In addition, the image-based projection exhibits a lower
BCSS value, suggesting smaller separation between classes. This, once
again favors the text-based projection, despite being a relatively small
difference. Therefore, we have concluded that the text-based projection
is more suitable for zero-shot learning (ZSL) purposes.

The DeepWeeds images were converted to image-based embeddings
using the CNN backbone of the best-performing ResNet50 model de-
scribed in Section 3.1; these embeddings can be seen as an image-based
space. As mentioned, the text-based space was then constructed using
text descriptions of both the morphological aspects and habitats of both
seen and unseen weeds. As described in Section 2.5.2, these descrip-
tions were converted into embeddings by leveraging natural language
processing techniques. A multi-dimensional regression (MDR) was then
used to project image-based into a text-based semantic space, which
was later concatenated to the original text space. The projected label
embeddings were then classified in a semi-supervised fashion where
the ground-truth label embeddings were used as known embedding

centroids. At training, know text embeddings of both seen and unseen
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Fig. 7. DeepWeeds pretrained ResNet50 and ResNet152 model convergence; with a step-wise learning rate scheduler.
Fig. 8. Image-based (left) and text-based (right) projection reduced to two dimensions using PCA and normalized using z-score normalization.
classes are used to train this MDR. At testing, unseen and seen classes
are projected into text-based space where reside known unseen and
seen class centroids. The projections are then classified corresponding
to their nearest known centroid.

Fig. 9, illustrates this system at testing, where some classes have
not been seen before. Given that ground-truth known labels were used
to aid classification of unseen class, this experiment can be consid-
ered as Class-Transductive Instance-Inductive learning. Two zero-shot
experiments were derived from this setting.

Testing seen class classifications. Prior to testing this projection-based
ZSL architecture on unseen classes, it was crucial to test performance
on seen classes exclusively. This experiment is seen as an initial baseline
to test this classification architecture.

Classifying the entire dataset. Then, an experiment involved classifying
both seen and unseen classes at testing. All instances were projected
into the semantic space and both Nearest-centroid and Label prop-
agation algorithms were used to classify these projections. A PCA
dimension reduction was used to determine the optimal number of
dimensions to retain in order to maximize performance.

Evaluating unseen class projections. To better understand performance
on unseen classes a second experiment was led solely on unseen class
projections. All seen classes instances were removed from the hold out
set. This experiment involved computing the nearest unseen centroid
from all unseen projections, within the semantic space. The idea of this
8

experiment is to evaluate how accurate the MDR architecture is able
to project unseen classes. Good performance would translate to better
than random prediction, where unseen classes were projected nearer to
their respective unseen centroids.

3.2.1. Zero-shot learning results
Prior to testing this projection-based ZSL architecture on unseen

classes, it was crucial to test performance on seen classes exclusively.
Both label propagation and nearest centroid performed similarly. When
retaining 5 dimensions, they returned overall accuracy, precision and
recall scores of 0.77. A class-wise breakdown of the f1-scores can
be seen in Table 9. These scores do not match the performance of
the ResNet50 model proposed in the original DeepWeeds paper [12].
Nonetheless, they were considered valid for further ZSL testing.

When classifying projections of the entire hold out set, seen and
unseen weeds, both nearest centroid and label propagation algorithms
perform identically. The classifiers returned their best performance
when the embeddings were projected into a 4-dimensional subspace;
yielding a total accuracy of 0.55. Both models perform similarly on
unseen classes; returning average accuracies of 0.005 for Prickly acacia
and approximately 0.34 for Rubber vine.

Table 9, illustrates the highest class-wise f1 scores and overall
accuracies across both algorithms; optimal performance is similar.

Table 9 illustrates mixed results. On one hand, the unseen Rubber
Vine class performs to the standard of a seen class, returning an f1 score
of 0.37. On the other, the instances of Prickly Acacia were completely
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Fig. 9. Representation of our ZSL architecture at testing. The ResNet50 backbone and multidimensional regression were trained prior solely on a set of seen images and labels.
The models were expected to transfer knowledge from seen to unseen images. Given the nature of a Class-Transductive Instance-Inductive setting, known labels of seen and unseen
classes were used to create a text-embedding space. At testing, seen and unseen images were projected onto this space. Images were then classified using label propagation and
nearest centroid algorithms.
Table 9
Class-wise F1 Score and average accuracy for ZSL classification methods under the CTII
learning setting. Unseen classes were shown in italic.

Class Baseline Nearest Centroid Label propagation

Chinee apple 0.57 0.28 0.14
Lantana 0.84 0.54 0.55
Parkinsonia 0.95 0.52 0.52
Parthenium 0.88 0.32 0.32
Siam weed 0.90 0.60 0.54
Snake weed 0.49 0.14 0.10
Prickly acacia – 0.00 0.01
Rubber Vine – 0.30 0.37

Total Accuracy 0.77 0.326 0.326

Table 10
Class-wise distances between re-
spective projected and ground-truth
locations within the text-based se-
mantic space; unseen classes shown
in italics.
Class Average

l2-distance to
centroid

Chinee Apple 0.14
Lantana 0.06
Parkinsonia 0.02
Parthenium 0.06
Siam Weed 0.02
Snake Weed 0.17
Prickly Acacia 0.41
Rubber Vine 0.39

misclassified; returning an f1 score of 0.0. An analysis of the latent label
space was led in order to develop an understanding for the f1 scores
shown in table.

When computing the average class-wise l2-distances from the pro-
jected point to the centroids, the difference between seen and unseen
projected points is drastic. On average, an unseen class projection is
nearly 5 times further from its respective centroid than for a seen class
projection; average l2-distances of 0.08 and 0.38 for seen and unseen
classes respectively. Table 10 summarizes class-wise l2-distances. Poor
projections for unseen classes will inevitably reflect on classification
performance.

Finally, when removing all seen classes from the hold out set to
focus solely on unseen class projections, the nearest centroid algorithm
performs fairly returning an optimal accuracy of 0.648 when 9 dimen-
sions were retained for clustering. In other terms, unseen classes are
projected closer to their respective centroids more often than not. This
result suggests that the MDR is learning at a relationship between weed
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images and textual descriptions as it is able to classify unseen weeds at
a higher than random rate, which could be used to build a threshold-
based distance anomaly detector that could similarly detect unseen
classes.

4. Discussion and conclusions

This study explores different methods that allow weed detection
models to be more accurate, cost-effective and potentially reproducible
in the context of climate change. We first show the potential of transfer
learning, even when the pretraining is done with object detection
datasets, instead of weed mapping ones. We then conducted ZSL exper-
iments to evaluate whether we can build more robust weed detection
models that can detect weed species unseen at training.

Transfer learning for weed detection. A diverse set of ResNet models,
coupled with various transfer learning configurations, were tested using
the novel TomatoWeeds UAV dataset. Among the models evaluated,
the most successful included a ResNet50 pretrained on both Imagenet
and DeepWeeds datasets and a ResNet152 fine-tuned solely on Ima-
genet. The application of transfer learning significantly enhanced the
weed classification task’s performance. However, despite achieving
commendable hold-out set accuracies of 0.77, these models struggled
to consistently excel across all classes, particularly with less common
weeds. Agronomists on our team deemed these results acceptable,
asserting their alignment with a valid performance range, especially
in the context of early growth weed detection. The study advocates
prioritizing low errors of omission over higher errors of commission,
emphasizing the importance of over-detection to prevent leaving weeds
undetected.

Many aspects of this study can be discussed to develop a better
understanding of the assumptions made and how they have impacted
results. This starts at the conception of the dataset. The images, cap-
tured at noon under clear atmospheric conditions with minimal shade
and noise, introduce a bias in the model due to an almost ideal data
acquisition setting. Future research could investigate the effect of noise
on UAV data and potentially construct a noise model, enabling data
acquisition with fewer constraints. Additionally, the study overlooks
the multi-label scenario when processing mosaic images, which could
significantly affect scalability depending on weed density in inter-crop
rows.

The study also delves into the model itself, noting the perfor-
mance boost observed in the ResNet50 model when fine-tuned on the
DeepWeeds dataset. Limited computational resources prevented testing
this approach on the larger ResNet152. Exploring deeper networks
might uncover better-discriminating weed features, potentially leading
to improved classification performance.
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The distribution of classes within the dataset is another crucial
aspect. While the overall model performance on the TomatoWeeds
dataset met the approval of subject matter experts, the class imbalance
within the dataset hinders a comprehensive evaluation, with both
classes returning F1 scores of at most 0.57 and 0.37. Strategies for
addressing imbalanced classification could enhance the robustness of
the model.

Lastly, the study calls for future research to focus on aggregating
more weed-specific data across diverse weed species, geographies, and
climate conditions to ensure the reproducibility of weed classification
models. With larger and more varied weed datasets, subsequent transfer
learning experiments can be conducted to push the boundaries of model
performance.

Zero-shot learning for weed detection. The experiments conducted in
the zero-shot learning (ZSL) setting aimed at enhancing the climate-
resilience of weed detection models yielded mixed results. Despite
testing various projection methods, dimensions, and semantic spaces,
the ZSL approach exhibited limited success, particularly in correctly
classifying unseen classes during testing. The insufficiency of data, both
in terms of classes and instances, emerged as a significant challenge,
suggesting that future endeavors in this direction demand a substantial
increase in data availability to ensure more reliable outcomes.

The fusion of weed detection and ZSL, a novel exploration in
this study, necessitated multiple assumptions in constructing semantic
spaces, projection functions, and embeddings. The use of the relatively
compact glove-twitter-25 word embedding model for constructing the
text-based semantic space, while computationally efficient, may have
limited the efficacy of the projection function. A potential avenue
for improvement could involve exploring larger text-based semantic
spaces, although this would require greater computational capacity.

The study’s choice of only eight classes for ZSL implementation,
with a significant proportion being unseen, deviated from the higher
class counts typically employed in ZSL research. Based on existing
literature, it is evident that a larger variety of weed species is neces-
sary for ZSL to excel in weed classification tasks. Furthermore, this
study employed ZSL methods with limited computational demands,
overlooking more recent, high-performing models that utilize gener-
ative approaches, such as generative adversarial networks [42,43].
Future research should strive to incorporate these advanced models to
potentially achieve superior performance.

In the context of zero-shot learning, where minimal or no informa-
tion about unseen classes is available during training, a more flexible
approach could be explored. Integrating a selection of unseen class
instances and labels with the training set, similar to one-shot or few-
shot learning settings, may enhance the model’s ability to perform well
on unseen classes.

Finally, the study raised critical questions regarding the applicabil-
ity of ZSL in the face of climate change, which is anticipated to alter
plant species characteristics. The assumption that changed plants would
resemble entirely new classes warrants scrutiny. Plants may change
only slightly, not deviating from there original morphology as much as
what is assumed. To account for this, the study suggests that models
may benefit from online and lifelong learning methods to adapt to
evolving plant characteristics over time. A deeper understanding of
how weed characteristics evolve is deemed essential for advancing the
climate resilience of future weed detection models.
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