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A B S T R A C T   

Liquid air energy storage (LAES) is a promising energy storage technology for net-zero transition. Regarding 
microgrids that utilize LAES, the price of electricity in the market can create significant uncertainty within the 
system. To address this issue, the information gap decision theory (IGDT) method has proven to be an effective 
tool for resolving uncertainties in system operation. The IGDT method is a decision-making tool designed to 
tackle uncertainty, which can significantly enhance decision-making abilities in situations where information is 
scarce. Additionally, the state transition algorithm (STA) is a highly intelligent optimization algorithm that le-
verages structural learning. This study proposed a novel IGDT-STA hybrid method to solve the optimal operation 
of a microgrid with LAES while considering the uncertainty of market electricity prices. The IGDT-STA offers two 
distinct strategies for decision-makers who are either risk-averse or risk-taking. These strategies are subsequently 
optimized by the STA method. In addition, the IGDT-STA is implemented within a multi-agent framework to 
enhance system flexibility. Through a case study, it was found that the IGDT-STA employed good performance 
compared with the IGDT-genetic algorithm, stochastic method, and Monte Carlo method.   

1. Introduction 

Renewable energy sources (RES) have undergone continual ad-
vancements due to the economic advantages of cost reduction and the 
environmental benefits of minimal pollutant emissions [1]. Integrating 
large-scale energy storage technology is crucial to further enhance the 
potential of renewable energy [2]. This technology involves storing the 
physical, chemical, and electromagnetic energy [3]. From the perspec-
tive of environmental protection, adopting physical energy storage 
systems that cause minimal pollution is a promising approach [4]. 
Among the various physical energy storage technologies available, 
pumped energy storage, flywheel energy storage, and compressed air 
energy storage (CAES) are the most popular. 

Pumped energy storage transforms electrical energy into mechanical 
energy, which is then transferred to the potential energy of water. 
Pumped energy storage has a low investment cost but requires a long 
construction time and has negative environmental impacts. Addition-
ally, some developed countries cannot use pumped energy storage due 
to geographical limitations and the limited capacity of large reservoirs 

[5]. Flywheel energy storage converts electrical energy into rotational 
kinetic energy of a spinning flywheel that can be regained later. This 
technology has a long lifespan and high efficiency, but it also has 
drawbacks such as high capital cost and high self-discharge rate. CAES 
converts electrical energy into potential energy of compressed air mol-
ecules, which are stored in underground caverns or other suitable lo-
cations. CASE has a high safety level, but the number of caves or 
abandoned mines limits its application [6,7]. On the other hand, liquid 
air energy storage (LAES) is a new large-scale physical energy storage 
technology that compresses and condenses air into a liquid state in the 
cryogenic storage tank, as shown in Fig. 1. It should be noted that the 
round-trip efficiency of LAES ranges from 50 % to 60 %, depending on 
the system design [8]. Although LAES tends to have lower round trip 
efficiency than other storage methods, it has the advantages of high 
energy storage density, accessible storage, and less restricted by 
geographical conditions compared with CAES. 

The research on LAES mainly focuses on thermodynamic and eco-
nomic analysis [9–12]. Borri et al. [13] conducted a preliminary analysis 
of different liquefaction cycles and proposed an optimized configuration 
scheme for liquefaction devices in microgrid-scale LAES. Briola et al. 
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[14] developed an LAES integration method, which can be applied to 
integrate LAES power plants with thermal power plants to improve the 
utilization efficiency of stored energy while also improving the eco-
nomics of thermal power plants. Yazdani et al. [15] investigated the 
CAES, LAES, and hydrogen energy storage as the energy storage system 
for wind power plants. Yazdani et al. concluded that LAES has better 
ecological performance and environmental sustainability than the other 
two large-scale energy storage based on energy analysis. Xie et al. [16] 
conducted an LAES case study to assess the economic feasibility of in-
vestment in the UK LAES plant construction and determine the optimal 
scale of operations and operating strategy. Lin et al. [17] designed an 
arbitrage algorithm based on different operating strategies. The algo-
rithm determined the price threshold every half an hour to decide about 
charging, discharging, and standby of LAES. Khaloie and Vallee [18] 
investigated the day ahead optimal dispatch of LAES with liquified 
natural gas to increase system efficiency. 

Although many efforts have been made in the optimization and 
operation strategy of the LAES system, there are only a few studies on 
the optimal scheduling of microgrids with LAES at this stage. In addi-
tion, the operation strategy of a microgrid is affected by uncertainties 
from wind and photovoltaic power generation, system load, and market 
electricity price. At present, the analysis methods of uncertainty prob-
lems are as follows: stochastic programming [19], fuzzy theory, robust 
optimization [20], Interval optimization [21], scenario optimization 
[22], and information gap decision theory (IGDT) [23]. Marino et al. 
[24] considered the uncertainty of power demand. They proposed a 
scalable two-stage stochastic programming model with chance con-
straints, which minimized the operating cost of the microgrid while 
ensuring the effective use of renewable energy. Dong et al. [25] pro-
posed an energy management scheme based on adaptive optimal fuzzy 
logic for the intermittence and randomness of renewable energy and 
demand. Zhao et al. [26] studied a new two-stage minimum-max-min 
robust optimal scheduling model, establishing the uncertain set of 
renewable energy generation and demand loading through robust 
optimization modeling. Li et al. [27] established a microgrid model 

considering uncertainty based on interval optimization with the wind 
power and photovoltaic output as interval variables. Khaloie et al. [28] 
proposed a new bidding and offering strategy while considering a risk- 
based operation strategy. Borujeni et al. [29] took renewable energy 
output and load as uncertain variables, classified them according to 
seasons, and selected appropriate scene generation methods according 
to dynamic behaviors, improving microgrid planning reliability. 

Choosing an appropriate level of uncertainty for optimization 
problems is challenging in real-world applications. High uncertainty can 
raise the system’s operating cost, while low uncertainty can compromise 
the system’s stability [30]. Compared with the above methods, the IGDT 
method is suitable for evaluating various risk levels without statistical 
data [31]. This method is ideal for systems with difficult or scarce un-
certain parameter information. Decision-makers can use the IGDT 
method to make decisions and enhance their decision-making ability. 
Moreover, this method can offer different strategies for different needs 
because it sets both the opportunity and robustness functions to 
formulate the strategy of risk-averse and risk-taking. 

Some researchers have recently used the IGDT method to model the 
microgrid system. The IGDT method can help the decision-makers 
choose the most economical and feasible solutions for the microgrid 
system under uncertainty. Nasr et al. [32] proposed a robust framework 
based on the IGDT method to realize the effective operation of island 
microgrids, considering the uncertainty of photovoltaic power genera-
tion and demand. Rezaei et al. [33] proposed a new multi-objective 
auction strategy based on the IGDT method, which managed the se-
vere uncertainty caused by market electricity prices and load fluctua-
tions. As a result, the operating efficiency of the microgrid and spinning 
reserve market was improved. Khaloie et al. [34] proposed a day-ahead 
and intra-day risk-controlled multi-objective optimization framework 
with IGDT. Mehdizadeh et al. [35] proposed a short-term power gen-
eration dispatch method for grid-connected microgrids to obtain the 
optimal bidding strategy, considering the demand response program 
based on the IGDT method under uncertain upstream grid prices. Based 
on the abovementioned literature, it can be concluded that the IGDT 

Nomenclature 

Abbreviations 
LAES Liquid Air Energy Storage 
CAES Compressed Air Energy Storage 
IGDT Information Gap Decision Theory 
STA State Transition Algorithm 
GA Genetic Algorithm 
NOCT Nominal Operating Cell Temperature 
SOC State of Charge 
WT Wind Turbine 

Variables 
λ actual value of the uncertain parameter [− ] 
λ̂t predicted value of the uncertainty parameter [− ] 
α bound for system uncertainty levels [− ] 
Caverse target system cost that for risk-averse decision-makers [$] 
Ctaking target system cost that for risk-taking decision-makers [$] 
Pt

WT WT output power at time t [kW] 
GT solar radiation incident on the PV [Wm− 2] 
Tc PV cell temperature [◦C] 
Pt

MT output power of micro-turbine at time t [kW] 
Pt

WT output power of WT at time t [kW] 
Pt

PV output power of PV at time t [kW] 
Pt

LAES charge and discharge power of LAES at time t [kW] 
Pt

gird tie line transition power at time t [kW] 

Parameters 
ω rotation operator [− ] 
β translation operator [− ] 
γ expansion operator [− ] 
δ axesion operator [− ] 
ΨSE search enforcement constant [− ] 
ωcut

in cut-in wind speed [ms− 1] 
ωcut

out cut-out wind speed [ms− 1] 
ωrate rated speed WT [ms− 1] 
Prated

WT rated power of WT [kW] 
Prated

PV rated power of PV [kW] 
fpv derating factor of PV [− ] 
GT,STC incident radiation at the standard test conditions [Wm− 2] 
αp temperature coefficient [− ] 
Tc,STC PV cell temperature at the standard test conditions [◦C] 
Ta,NOCT ambient temperature under the NOCT [◦C] 
GT,NOCT solar radiation under the NOCT [Wm− 2] 
ηc electrical conversion efficiency of PV [%] 
ηKapitza Kapitza cycle efficiency [%] 
ηcryo− pump cryogenic pump efficiency [%] 
ηturbines turbine efficiency [%] 

Function 
Γ system operation cost function [$] 
α̂(P,Caverse) robustness function [− ] 
β̂
(
P,Ctaking

)
opportunity function [− ]  
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method is a suitable and effective energy-dispatching strategy when the 
microgrid is faced with various resource uncertainties. This study con-
siders the uncertainties in electricity market price as a significant un-
certain factor in formulating the optimal dispatch strategy. Thus, this 
study uses IGDT to model the uncertainties in electricity market prices to 
ensure the stable and economic operation of the microgrid system. 

Recently, many hybrid methods have been proposed, which have 
attracted wide attention from researchers [36,37]. Cai et al. [38] com-
bined robust optimization and stochastic optimization to establish a 
novel hybrid method to simulate the uncertainty of the cavern capacity 
of CAES and the market electricity prices. Among these methods, one 
major trend is applying intelligent optimization algorithms to optimize 
uncertain modeling methods. The state transition algorithm (STA) is a 
new intelligent optimization algorithm based on structuralist learning, 
first proposed by Zhou, Yang, and Gui [39]. The core concept of STA is 
treating a solution to an optimization problem as a state. The generation 
and update process of the solution is treated as a state transition process. 
The unified framework of the solution process of the algorithm is based 
on the state space expression in modern control theory, and four state 
transformation operators are constructed on this framework. Most 
traditional intelligent optimization algorithms, such as genetic algo-
rithm (GA) [40], particle swarm optimization (PSO) [41], and simulated 
annealing algorithm (SAA) [42], are mainly inspired by imitating social 
phenomena or natural laws. Unlike these traditional intelligent opti-
mization algorithms, the state transition algorithm is an intelligent 
optimization algorithm based on structural learning, which shows better 
performance than conventional intelligent optimization algorithms 
[39]. 

1.1. Research gaps 

The existing research on energy system management with IGDT 
mainly focuses on using convex optimization techniques to solve IGDT 
problems, as shown in the comprehensive review of IGDT application in 
energy problems by Majidi, Mohammadi-Ivatloo, and Soroudi [43]. 
However, only a limited number of studies use heuristic optimization to 
solve the IGDT problem for energy system management. Nojavan et al. 
[44], Kim and Kim [37], as well as Ke et al. [45] proposed energy system 
management strategies by solving IGDT with modified particle swarm 
optimization algorithms. To the author’s knowledge, no studies are 
investigating how to optimize the IGDT problems with STA in the energy 
systems. In addition, there is limited research on investigating the 
optimal operation of a microgrid with LAES with IGDT. As a result, this 
study proposed a novel IGDT-STA hybrid method to solve the optimal 
operation of a microgrid with LAES while considering the uncertainty of 
market electricity prices. 

1.2. Contributions 

The main contributions of this article are as follows:  

1) The IGDT method is implemented on a microgrid with LAES for the 
first time to solve the optimal operation problem with uncertainty in 
market electricity prices.  

2) This study proposed a novel operational framework that integrates 
IGDT-STA hybrid method with a multi-agent system to optimize the 
robustness function and opportunity function in the IGDT.  

3) This study compared the proposed IGDT-STA method with genetic 
algorithm optimization techniques, stochastic method, and Monte 
Carlo method in a case study. The results showed the effectiveness of 
IGDT-STA. 

This study is divided into five sections. The second section explains 
the IGDT-STA method. In the third section, considering the uncertainty 
of electricity prices, the day-ahead optimization model of microgrids 
with LAES based on the IGDT method is established. The fourth section 

explains the IGDT-STA method through a case study and compares it 
with the IGDT-GA method. Finally, in the fifth section, the main con-
clusions of this paper are drawn. 

2. The IGDT-STA method 

This section explains the mathematical details of the IGDT-STA 
method. Section 2.1 describes the IGDT mathematic models, and Sec-
tion 2.2 includes the mathematical formulation of STA. 

2.1. IGDT mathematic models 

The IGDT effectively manages system uncertainties by focusing on 
the information gap. Rather than relying on probability distributions, it 
specifically addresses the divergence between anticipated and actual 
values within an uncertainty parameter. As a result, IGDT is able to 
model uncertainties with a severe lack of information [43]. In addition, 
it effectively manages system uncertainties by focusing on the infor-
mation gap. Rather than relying on probability distributions, it specif-
ically addresses the divergence between anticipated and actual values 
within an uncertainty parameter. Section 2.1 explains the details of the 
system model, uncertainty model, and performance requirements in 
IGDT.  

1) System models 

The decision variables and uncertainty parameters in the decision 
space and uncertainty space are P and λ, respectively. The system model 
can be expressed as the optimization problem (1) to minimize the system 
cost. 

Minimize C(P, λ)

Subject to :

Gi(P, λ) ≥ 0, i = 1,…,m

Hj(P, λ) = 0, j = 1,…, n

(1)  

where C(P, λ) is the system cost function which takes decision variable P 
and uncertainty parameter λ as function input. Gi(P, λ) ≥ 0 and 
Hj(P, λ) = 0 are inequality and equality constraints, respectively.  

2) Uncertainty models 

The uncertainty model of IGDT aims to describe the information gap 
between the predicted value of the uncertainty parameter and its true 
value [46]. The uncertainty model can be expressed as Eq. (2): 

U(α, λ̂t) =

{

λt :
|λt − λ̂t|

λ̂t
≤ α

}

,α ≥ 0 (2)  

Where λt denotes the actual value of the uncertain parameter. ̂λt denotes 
the predicted value of the uncertainty parameter. α is the bound for 
system uncertainty levels. In essence, the uncertainty model ensures that 
the deviation of uncertainty parameter λt with respect to λ̂t will not 
exceed αλ̂t .

3) Performance requirements 

The IGDT performance requirements are the quantitative evaluations 
of objective function performance with respect to system robustness and 
opportunity values. The performance requirements consist of robustness 
function Eq. (3) and opportunity function Eq. (4). 

α̂(P,Caverse)=max
α

{α :maximum cost which is not higher thanaspecified cost}
=max

α
{α :max(C(P,λ))≤Caverse}

(3) 
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where Caverse is the target system cost that risk-averse decision-makers 
are willing to pay. The function value α̂(P,Caverse) indicates the 
maximum possible system uncertainty with a given cost target Caverse. In 
other words, Eq. (1) returns the maximum fluctuation bound for un-
certainty parameter λ. The greater value of α̂(P,Caverse) means the system 
is more robust and less susceptible to uncertainties. Therefore, the risk- 
averse decision-makers are able to make robust decisions, ensuring the 
system is resilient against uncertainties. 

β̂
(
P,Ctaking

)
= min

α
{α : minimum cost which is less than a specified cost}

= min
α

{
α : min(C(P, λ) ) ≤ Ctaking

}

(4) 

where Ctaking is the target system cost that risk-taking decision-makers 
are willing to pay. The opportunity function Eq. (2) returns the mini-
mum fluctuation range of uncertain variables that risk-taker decision- 
makers usually allow. This function mainly evaluates the positive as-
pects of uncertainty and finds the minimum uncertainty level that the 
system can tolerate by reducing costs. 

2.2. STA mathematic formulations 

The STA method is a heuristic optimization algorithm that treats an 
optimized solution as a state and the iterative update steps as state 
transition processes. STA uses the state space representation in modern 
control theory as a framework to solve optimization problems [39]. In 
the framework of the STA method, a candidate solution can be treated as 
a state. STA updats states by state transition operations. With state space 
representation, the unified form of STA is: 
{

xk+1 = Akxk + Bkuk
yk+1 = f (xk+1)

(5) 

where f(⋅) denotes the objective function. xk is the current state 
which corresponds to a solution to the optimization problem. xk+1 is the 
next state and yk+1 is the fitness value at the next state. Ak and Bk denote 
the state transition matrices, which can be also regarded as state 
transformation operators. uk is the function of xk and the historical state. 

With state space representations, the STA method defines four state 
transformation operators to solve optimization problems.  

1) Rotation transformation: 

xk+1 = xk +ω 1
n‖xk‖2

Rrxk (6) 

where ω ∈ ℝ > 0 denotes a rotation operator. Rr ∈ ℝn×n denotes a 
random matrix whose entries are uniformly distributed random vari-
ables between [ − 1,1]. ‖⋅‖2 denotes Euclidean norm (or L2 norm) of a 
vector. The rotation operator has the functionality to search in a 
hypersphere with the maximum radius ω, which has been proven in 
[39].  

2) Translation transformation: 

xk+1 = xk + βRt
xk − xk− 1

‖xk − xk− 1‖2
(7) 

where β ∈ ℝ > 0 denotes a translation operator. Rt ∈ ℝ denotes a 
uniformly distributed random variable on interval [0,1]. The translation 
transformation aims to line search for a possible better candidate solu-
tion, which can be regarded as a heuristic operator.  

3) Expansion transformation: 

xk+1 = xk + γRexk (8) 

where γ ∈ ℝ > 0 denotes an expansion operator. Re ∈ ℝn×n denotes a 
random diagonal matrix under normal distribution. The expansion 
transformation is designed for global search with probabilities to search 
the whole space.  

4) Axesion transformation: 

xk+1 = xk + δRaxk (9) 

where δ ∈ ℝ > 0 denotes an axesion operator. Ra ∈ ℝn×n denotes a 
sparse random diagonal matrix under normal distribution and only one 
random entry is not zero. The axesion transformation has the func-
tionality to strengthen single dimensional search [47]. 

The STA also incorporated sampling in the optimization process. A 
representative sampling technique is used to avoid enumerating all 
potential candidate states [47]. The STA performs a transformation 
operation with multiple times parameterized by a positive integer ΨSE, 
representing search enforcement constant. After explaining the four 

Fig. 1. Schematic diagram of LAES system operation  
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Fig. 2. The flow chart of IGDT-STA.  
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transformation operations and sampling technique, the STA can be 
described with the following pseudocodes:  

The initialization ( • ) in the above pseudocodes initializes a candi-
date solution in the feasible set. The fitness ( • ) selects the best solution 
with state vector after evaluaton with the objective function. During the 
optimization process, The rotation operator ω decrease periodically 
from maximum value ωmax to minimum value ωmin with a lessening 
coefficient fc. Noticeably, the translation operation is implemented in 
othe other three operations once a better candidatesolution is found. 
Thus, the translation operator β is passed to the other three operations: 
expansion ( • ), rotation ( • ), and axesion ( • ). 

2.3. IGDT-STA hybrid optimization algorithm 

The innovative IGDT-STA hybrid method merges the STA into the 
IGDT’s optimization process. This method involves two distinct stages. 
During the first stage, STA is utilized to optimize a risk-neutral strategy 
using prediction data. In the second stage, STA optimizes the perfor-
mance requirement functions of the IGDT, which encompasses both the 
robustness function and the opportunity function, based on the risk- 
neutral strategy acquired in the first stage. Accordingly, the micro-
grid’s optimal operation strategy with LAES is developed, accounting for 
uncertain market electricity prices. Fig. 2 depicts the IGDT-STA method 
flowchart, and the solution process is summarized as follows:  

(1) Input the necessary data of the microgrid system, such as the 
parameters of wind turbines, photovoltaic arrays, micro gas tur-
bine, LAES, and the predicted value of market electricity price.  

(2) The base optimization model of the microgrid with LAES is 
formulated. This model aims to minimize the operation cost of 
microgrids with LAES while considering various constraints such 
as operation constraints of LAES, micro gas turbine, and tie-line 
transmission power.  

(3) The STA method is used to solve the basic optimization model of 
microgrid with LAES and further obtain the risk-neutral strategy, 
which is the minimum operating cost strategy of the system based 
on the predicted market price. The minimum operating cost 
under this strategy is also called risk-neutral cost.  

(4) Different cost targets are set according to the minimum operating 
cost corresponding to the obtained risk-neutral strategy. The cost 
targets can be divided into two categories: the cost target greater 
than the risk-neutral cost and the cost target less than the risk- 
neutral cost.  

(5) The cost target determines thee optimization model of the second 
stage. The target cost greater than the risk-neutral cost corre-
sponds to the robustness optimization model. The robustness 
model aims to maximize the robustness function in the IGDT 
method, and the cost target that is less than the risk-neutral cost 
corresponds to the opportunity optimization model. The 

opportunity model aims to minimize the opportunity function in 
the IGDT method. The above two models both consider the con-

straints of the system.  
(6) The STA method is applied to solve the microgrid’s robust or 

opportunity optimization models with LAES. Further, it obtains 
the risk-averse strategy or the risk-taker strategy. 

3. MAS-based microgrid coordination models 

This section describes the details of the MAS-based microgrid coor-
dination model, where the agents solve for optimal operation strategy 
cooperatively. Section 3.1 explains the structure of the coordination 
model, and Section 3.2 describes the details of agent tasks. 

3.1. Microgrid environment 

The microgrid environment, as shown in Fig. 3, includes a power grid 
agent, load agent, photovoltaic agent, wind turbine agent, micro-turbine 
agent, LAES agent, and microgrid coordination agent. The power grid 
agent is responsible for retrieving the day-ahead price information, and 
the load agent is accountable for forecasting the day-ahead load curves. 
The details of the remaining agents will be explained in Section 3.2. 

3.2. Agent task description 

The section explains the task details of the wind turbine agent, the 
photovoltaic agent, the LAES agent, the micro-turbine agent, and the 
microgrid coordination agent. 

3.2.1. Wind turbine (WT) agents 
The WT agent is responsible for supervising the active operation 

status of the wind turbine generator, sending cost coefficient signals and 
WT output power Pt

WT to the microgrid coordination agent at each time 
period. The WT output power is formulated according to [48]: 

Pt
WT(ωt) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if ωt ≤ ωcut
in or ωt ≥ ωcut

out

ωt − ωcut
in

ωrated − ωcut
in

Prated
WT , if ωcut

in ≤ ωt ≤ ωrated

Prated
WT , if ωrated ≤ ωt ≤ ωcut

out

(11)  

where ωcut
in and ωcut

out are the cut-in and cut-out wind speed respectively. 
ωrated and Prated

WT are the rated speed and power of WT units, respectively. 
ωt is the wind speed at time t, whose probability distribution can be 
modeled with the Weibull probability density function [49]: 

PDF(ωt) =
k
c

(ωt

c

)k− 1
e
−

(
ωt
c

)k

(12)  

where k ∈ (0,∞) and c ∈ (0,∞) are the shape and scale parameters 
respectively for Weibull distribution. 
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3.2.2. Photovoltaic (PV) agents 
The PV agent directly supervises the active operation status of PV 

arrays and reports the operation cost coefficient and PV array output 
power Pt

PV to the microgrid coordinated agent. PV array output power is 
formulated with Eq. (13) [50]: 

Pout
PV = Prated

PV fpv

(
GT

GT,STC

)
[
1+αp

(
Tc − Tc,STC

) ]
(13)  

where Prated
PV and fpv are the rated power and derating factor of the PV 

array units respectively. GT is the solar radiation incident on the PV 
array units, and GT,STC is the incident radiation at the standard test 
conditions. αp is the temperature coefficient of PV power. Tc,STC is the PV 
cell temperature at the standard test conditions. Tc is the PV cell tem-
perature, which can be calculated with Eq. (14) [50,51]: 

Tc = Ta(t) +GT

(
Tc,NOCT − Ta,NOCT

GT,NOCT

)(

1 −
ηc

ταabsorb

)

(14)  

where Ta(t) is the ambient temperature. Tc,NOCT is the nominal operating 
cell temperature (NOCT). Ta,NOCT and GT,NOCT are the ambient temper-
ature and solar radiation under the NOCT, respectively. ηc is the elec-
trical conversion efficiency of PV array units. τ is the solar transmittance 
of the cover of PV array units. αabsorb is the solar absorptance of the PV 
array. The final PV output at time t is calculated with an efficient co-
efficient ηinv to Pout

PV :

Pt
PV = ηinvPout

PV (15) 

The solar radiation incident is modeled with the Beta distribution 
[52]: 

PDF(GT) =
Γ(α + β)

Γ(α) + Γ(β)
(GT)

α− 1
(1 − GT)

β− 1 (16)  

where Γ( • ) is the Gamma function [53], α, β ∈ [0,∞] are shape pa-
rameters for Beta distribution. 

3.2.3. LAES agents 
The LAES agent is responsible for supervising the active operation 

status of the LAES plant and reporting the operation information to the 
microgrid coordination agent. The operation information includes the 
charging phase, storage phase, and discharging phase information. 
During the charging phase, Kapitza cycle acts as a recuperative process 
to liquidfy air and charge the cryogenic energy storage with compressors 
and cryo-turbines [54], where the efficiency of the process is specified in 
Eq. (17). During the storage phase, the level of cryogenic energy storage 
is measured by state-of-charge (SOC) balance Eq. (18), considering the 
energy loss in storage phase with Eq. (19). During the discharge phase, 
the liquid air for the tank is pumped out by a cryogenic pump and 
regasified to ambient temperature. The high-pressure air is further 
heated up by the thermal storage to drive power turbines [55]. The final 
discharge power is calculated by Eq. (20) and Eq. (21) with consider-
ation of the efficiencies of cryogenic pumps and power turbines. 

Pch− final(t) = ηKapitza⋅Pch(t) (17)  

SOCLAES(t) = SOCLAES(t − 1)+Pch− final(t) − Pdis− final(t) − SOCloss
LAES(t) (18)  

SOCloss
LAES(t) = γloss⋅SOCLAES(t) (19)  

Ppump(t) = ηcryo− pump⋅Pdis(t) (20)  

Pdis− final(t) = ηturbine⋅Ppump(t) (21) 

In addition to the charge, storage, and discharge information listed 
above, the LAES agent also sends the operational constraints to the 
microgrid coordination agent. Constraint (C.1) and (C.2) specify the 
range of charging and discharging ranges of LAES unit, where x(t),

y(t) ∈ {0,1}. Constraint (C.3) prevents the LAES plant charges and dis-
charges at the same time at the cryogenic tank. Constraint (C.4) in-
dicates the minimum and maximum range of SOC at each time step t. 

0 ≤ Pch(t) ≤ Pmax
ch ⋅x(t) (C.1)  

0 ≤ Pdis(t) ≤ Pmax
dis ⋅y(t) (C.2)  

x(t)+ y(t) ≤ 1 (C.3)  

SOCmin
LAES ≤ SOCLAES(t) ≤ SOCmax

LAES (C.4)  

3.2.4. Micro-turbine (MT) agents 
The MT agent is responsible for sending the cost coefficient of the MT 

generation unit and micro-turbine specifications, including Constraints 
(C.5) and (C.6), to the microgrid coordination agent. Constraint (C.5) 
and Constraint (C.6) indicate operational limits and ramping limits of 
micro-turbine units, respectively. 

Pmin
MT ≤ Pt

MT ≤ Pmax
MT (C.5)  

ΔPmin
MT ≤ Pt

MT − Pt− 1
MT ≤ ΔPmax

MT (C.6)  

where Pmin
MT and Pmax

MT are the minimum and maximum generation output 
limits. ΔPmin

MT and ΔPmax
MT are the minimum and maximum ramping limits. 

3.2.5. Microgrid coordination agents 
The microgrid coordination agent is responsible for optimizing 

objective function Eq. (22) with operational information from other 
agents. 

Γ =
∑24

t=1

(
ξMT ⋅Pt

MT + ξWT ⋅Pt
WT + ξPV ⋅Pt

PV + ξLAES⋅
⃒
⃒Pt

LAES

⃒
⃒+ λt⋅Pt

gird

)
(22)  

Where Γ denotes the system operation cost; ξMT denotes the operating 
cost coefficient of micro-turbines; Pt

MT denotes the output power of 
micro-turbine at time t; ξWT denotes the operating cost coefficient of 
wind power generation; Pt

WT denotes the output power of wind power 
generation at time t; ξPV denotes the operating cost coefficient of 
photovoltaic power generation; Pt

PV denotes the output power of 
photovoltaic power generation at time t; ξLAES denotes the operating cost 
coefficient of LAES; Pt

LAES denotes the charge and discharge power of 
LAES at time t, when Pt

LAES ≥ 0, it is considered that the LAES is in a 
discharging state, when Pt

LAES < 0, the LAES is in a charging state; λt 

denotes the market price of electricity at time t; Pt
gird denotes the tie line 

transition power at time t, when Pt
gird ≥ 0 the microgrid purchases power 

from the upper grid. 
Once the objective function Eq. (22) is established, the microgrid 

coordination agent considers decision-makers’ risk preferences, 
including risk-averse and risk-taking options. Risk-averse decision- 
makers are concerned with the system robustness that can be quantified 
with the robustness function of IGDT. The robustness function value 
α̂(P,Caverse) represents the maximum uncertainty level corresponding to 
the risk-averse cost target Caverse. On the other hand, risk-taking deci-
sion-makers aim to spend as little cost as possible to keep the system 
running smoothly. The decision is based on the opportunity function, 
where the opportunity function value β̂

(
P,Ctaking

)
represents the mini-

mum level of uncertainty under the risk-taking cost target Ctaking.  

• Problem formulation with risk-averse decision-makers 

For risk-averse decision-makers, the micro-grid coordination agent 
considers the uncertainty of electricity prices to establish a robustness 
function for the microgrid system. According to the uncertainty model 
Eq. (2), the high market electricity price can be expressed as: 
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λt = (1+α)λ̂t (23) 

Substituting Eq. (23) into the operating cost function Eq. (22): 

Γaverse =
∑24

t=1

(
ξMT

(
Pt

MT

)
+ ξWT

(
Pt

WT

)
+ ξPV

(
Pt

PV

)
+ ξLAES

(
Pt

LAES

)

+(1+ α)λ̂t⋅Pt
gird

)
(24) 

Substitute the given maximum cost target Caverse into Eq. (24):  

Caverse is the target system cost that risk-averse decision-makers are 
willing to pay. As explained in Section 2.1, the principle of risk-averse 
strategy is to obtain the maximum robustness function value 
α̂(P,Caverse) under the cost target Caverse. The microgrid coordination 
agent optimizes the following optimization problem (26):  

subject to Constraints (C.1) to (C.6), as well as: 

Pt
MT +Pt

WT +Pt
PV +Pt

LAES +Pt
grid = Pt

load (C.7)  

Pmin
grid ≤ Pt

grid ≤ Pmax
grid (C.8)    

• Problem formulation with risk-taking decision-makers 

For risk-taking decision-makers, the micro-gird coordination agent 

aims to minimize the opportunity function value β̂
(
P,Ctaking

)
, which 

solves the minimum fluctuation range of electricity market price. Ac-
cording to uncertain model of IDGT, the expression of low market 
electricity price can be expressed as: 

λt = (1 − α)λ̂t (27) 

Substituting Eq. (27) into operating cost function Eq. (22): 

Γtaking =
∑24

t=1

(
ξMT

(
Pt

MT

)
+ ξWT

(
Pt

WT

)
+ ξPV

(
Pt

PV

)
+ ξLAES

(
Pt

LAES

)

+(1 − α)λ̂t⋅Pt
gird

)
(28) 

Substitute the given minimum cost target Ctaking into the Eq. (28):  

Then, the micro-grid coordination agent solves the optimization 
problem (30):  

subject to Constraints (C.1) to (C.8). 
Subsequently, the micro-grid coordination agent uses STA to opti-

mize the optimization problem (26) or (30), based on the risk preference 
of decision-makers. 

α(P,Caverse) =

∑24

t=1

(
ξMT

(
Pt

MT

)
+ ξWT

(
Pt

WT

)
+ ξPV

(
Pt

PV

)
+ ξLAES

(
Pt

LAES

)
+ λ̂tPt

gird

)
− Caverse

−
∑24

t=1
λ̂tPt

gird

(25)   

Maximize

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑24

t=1

(
ξMT

(
Pt

MT

)
+ ξWT

(
Pt

WT

)
+ ξPV

(
Pt

PV

)
+ ξLAES

(
Pt

LAES

)
+ λ̂tPt

gird

)
− Caverse

−
∑24

t=1
λ̂tPt

gird

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(26)   

α
(
P,Ctaking

)
=

∑24

t=1

(
ξMT

(
Pt

MT

)
+ ξWT

(
Pt

WT

)
+ ξPV

(
Pt

PV

)
+ ξLAES

(
Pt

LAES

)
+ λ̂tPt

gird

)
− Ctaking

∑24

t=1
λ̂tPt

gird

(29)   

Minimize

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑24

t=1

(
ξMT

(
Pt

MT

)
+ ξWT

(
Pt

WT

)
+ ξPV

(
Pt

PV

)
+ ξLAES

(
Pt

LAES

)
+ λ̂tPt

gird

)
− Ctaking

∑24

t=1
λ̂tPt

gird

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(30)   
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4. Case studies 

In this study, the optimization of microgrid operation strategy with 
LAES is formulated under different target costs while considering the 
uncertainty of market electricity prices. The microgrid system analyzed 
in this study is a grid-connected one. It comprises a photovoltaic system, 
a wind power system, a micro gas turbine system and an LAES system. In 
the case of the LAES system, it is assumed that the pressure ratio of the 
compressor and expander in each stage remains constant. 

4.1. Data preparation 

The predicted market price of electricity is shown in Fig. 4. This 
study assumes that the electricity price sold to the grid is equal to the 
electricity price purchased from the grid. The system parameters are 
presented in Table 1. The efficiencies of the LAES plant are obtained 
from LAES performance research [13,54]. The load power data comes 
from a microgrid in Northwest China, as shown in Fig. 5. The forecast 
data for wind power and photovoltaic power are shown in Fig. 6. 

4.2. Risk-neutral results 

As illustrated in the Section 2.3, the first stage of the IGDT-STA 
method is to obtain a risk-neutral strategy. In other words, the robust-
ness and opportunity function values are 0 (α̂ = β̂ = 0). This risk- 
neutral strategy is obtained by assuming the realized electricity prices 
are equal to the predicted electricity prices. To demonstrate the effec-
tiveness of the proposed IGDT-STA method, this study uses the Genetic 
Algorithm (GA) as a reference optimization technique. In addition, this 
study also compares the risk-neutral strategy with the stochastic method 
and Monte Carlo method, as demonstrated in [56–58]. 

Table 2 shows the expected system operation cost of IGDT-STA, 
IGST-GA, stochastic method, and Monte Carlo method. IGDT-STA 
method yields a lower operation cost than the remaining methods. 
Comparing with IGDT-GA, IGDT-STA can reduce the system operation 
cost for $1538.6. This result demonstrated that STA have better per-
formance than GA for IGDT optimization. It should be noted that the risk 
neutral strategy means that α̂($7848.0) = β̂($7848.0) = 0 for IGDT-STA 
and α̂($9386.6) = β̂($9386.6) = 0 for IGST-GA. Furthermore, IGDT-STA 
also yields lower system operation costs than the stochastic method and 
Monte Carlo method with $900.7 and $892.3 reductions, respectively. 

Table 1 
System specifications.  

Parameter Value Parameter Value 

WT system  LAES system  
Prated

WT 3000 kW Pmax
LAES 5 MW 

ωcut
in 3 ms− 1 Pmin

LAES − 5 MW 
ωcut

out 25ms− 1 SOCmax
LAES 20 MW 

ωrated 13 ms− 1 SOCmin
LAES 0.5 MW 

ξWT 0.029 $/kWh ηKapitza 85 % 
PV system  ηcryo− pump 80 % 
Prated

PV 3000 kW ηturbines 80 % 
fpv 80 % γloss 2 % 
αp − 0.5 ξLAES 0.025$/kWh 
Tc,NOCT 47 ◦ C MT system  
Tc,STC 25 ◦ C Pmax

MT 3000 kW 
ηc 13 % Pmin

MT 500 kW 
τ 0.0148 MW m− 2 K− 1 ξMT 0.044 $/kWh 
αabsorb 30 % Other parameters  
ηinv 90 % Pmax

grid 3000 kW 
ξPV 0.026 $/kWh Pmin

grid − 3000 kW  

Fig. 3. Schematic diagram of the microgrid with multi-agent system.  

Fig. 4. Forecasted market electricity price.  
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As a result, IGDT-STA shows satisfactory results for decision-making 
under uncertainties. 

The hourly expected operating costs based on the four methods are 
shown in Fig. 7. It can be seen from the figures that the expected 
operating costs of the IGDT-STA method are mainly reduced during the 
13th and 15th hour of the day compared with the remaining three 
methods. The microgrid operation strategies corresponding to the four 
methods are shown in Fig. 8(a) to Fig. 8(d), respectively. With respect to 
the utilization of the LAES plant, all four operation strategies actively 
use the storage facility to throughout the day. It can be seen from Fig. 8 
(a) that IGDT-STA operation strategy changes LAES in the morning and 
discharges the stored power during the peak load in the noon and eve-
ning time. In addition, compared with the IGDT-GA method, the oper-
ation strategy based on the IGDT-STA method has more output of the 
micro gas turbine, thereby reducing the purchase of electricity from the 
main grid. 

4.3. Risk-based results 

The robustness α̂( • ) and opportunity β̂( • ) function explained in 

Section 2.1 were employed to form the risk-averse strategy and risk- 
taking strategy. The results of the risk-averse strategy and risk-taking 
strategy with different target costs are shown in Fig. 9. A risk-taking 
decision-maker aims to maximize the opportunity function with a 
smaller target cost than the risk-neutral cost. The trend of β̂

(
Ctaking

)
with 

respect to Ctaking is plotted in Fig. 9(a). In this study, the cost step is set to 
3 % of the risk-neutral operating cost, i.e. $281.60 for the IGDT–GA 
method and $235.44 for the IGDT–STA method. It is evident that 
β̂
(
Ctaking

)
increases with risk-taking targe cost Ctaking decreseas for both 

IGDT-STA and IGDT-GA. Upon comparing the results of IGDT-STA and 
IGDT-GA, the IGDT-STA method yields a lower β̂

(
Ctaking

)
than IGDT- 

STA. For instance, at an opportunity cost of $7612.0, the IGDT-STA 
method has an opportunity coefficient of 0.1399, while the IGDT-GA 
method has an opportunity coefficient of 0.3744. These results show 
that IGDT-STA could obtain a risk-taking strategy with less uncertainty 
compared to the IGDT-GA method. 

Fig. 9(b) shows the relationship curve between the robustness cost 
and the robustness coefficient α̂(Caverse), which can be obtained based on 
optimization problem (26). In this study, the cost step is set to 3 % of the 
risk-neutral operating cost. It is evident that the robustness coefficient 
rises α̂(Caverse) as the robustness cost increases, regardless of the meth-
odology employed. This suggests that the robustness of the system is 
enhanced with increased operation costs. Notably, the proposed IGDT- 
STA approach displays greater robustness than IGDT-GA. For example, 
at a robustness cost of $10,089.0, the IGDT-STA method has a robustness 
coefficient of 0.3741, while the IGDT-GA method only has a coefficient 
of 0.0567. Thus, if the decision-maker favors risk aversion, they can 
make resilient choices by accepting higher operating costs. 

5. Conclusions 

Because the LAES system is a promising large-scale energy storage 
technology without geographical limitation, this study researches the 
optimal operation strategy of a microgrid with LAES. When formulating 
the optimal operation strategy to reduce the operation cost of the system 
and considering the impact of the uncertainty of market electricity price, 
a day-ahead optimal operation method of microgrid with LAES based on 
IGDT-STA is proposed. The method is mainly divided into two stages. 
Firstly, the STA method is used to optimize the risk-neutral strategy. 
Then, based on the obtained operation strategy, the STA method is used 
to optimize the robustness and opportunity function in the IGDT 
method. The case study results show that compared with the IGDT-GA 
method, stochastic method, and Monte Carlo method, the IGDT-STA 
method obtains a lower system operation cost of $7848. In the second 
stage, the IGDT-STA method shows a higher robustness coefficient and 
lower opportunity coefficient than IGDT-GA, offering stronger robust-
ness and better opportunity. Future research could further investigate 
the following two directions: 1) The information gap decision theory is 
only used for the uncertainties in the market electricity price in this 
study. Future studies could investigate the potential applications of 
IGDT on the coupled uncertainties from renewable energy generation 
and market electricity price. 2) This study treats liquid air energy stor-
age as a steady system. Future research could treat the LAES system as a 
dynamic system to investigate the dynamic performance of compressors 
and expanders between different dispatch strategies. 

Fig. 5. Power load demand.  

Fig. 6. The output power of PV and WT.  

Table 2 
Expected operation cost comparison.   

IGDT–STA 
method 

IGDT–GA 
method 

Stochastic 
method 

Monte carlo 
method 

Expected operation cost 
($) 

7848.0 9386.6 8748.7 8740.3  
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Fig. 7. hourly cost of (a) IGDT-STA method; (b) IGDT-GA method; (c) Stochastic method; (d) Monte Carlo method.  
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