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Abstract

CATH (https://www.cathdb.info) classifies domain structures from experimental protein structures in the
PDB and predicted structures in the AlphaFold Database (AFDB). To cope with the scale of the predicted
data a new NextFlow workflow (CATH-AlphaFlow), has been developed to classify high-quality domains
into CATH superfamilies and identify novel fold groups and superfamilies. CATH-AlphaFlow uses a novel
state-of-the-art structure-based domain boundary prediction method (ChainSaw) for identifying domains
in multi-domain proteins. We applied CATH-AlphaFlow to process PDB structures not classified in CATH
and AFDB structures from 21 model organisms, expanding CATH by over 100%. Domains not classified
in existing CATH superfamilies or fold groups were used to seed novel folds, giving 253 new folds from
PDB structures (September 2023 release) and 96 from AFDB structures of proteomes of 21 model organ-
isms. Where possible, functional annotations were obtained using (i) predictions from publicly available
methods (ii) annotations from structural relatives in AFDB/UniProt50. We also predicted functional sites
and highly conserved residues. Some folds are associated with important functions such as photosyn-
thetic acclimation (in flowering plants), iron permease activity (in fungi) and post-natal spermatogenesis
(in mice). CATH-AlphaFlow will allow us to identify many more CATH relatives in the AFDB, further char-
acterising the protein structure landscape.
� 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

The number of protein sequences increased
exponentially following the advent of next-
generation sequencing, and far outpaces the
number of experimentally solved 3D protein
structures in the Protein Data Bank (PDB). There
are �215,000 experimentally solved protein
structures in PDB1 while UniProtKB contains
�227 million protein sequences. To cope with the
massive sequence data, methods for accurate pro-
tein structure prediction (e.g. homology modelling
. Bordin, R. Alcraft, et al., CATH 2024: CATH-AlphaFlow Doubles

or(s). Published by Elsevier Ltd.This is an op
and ab initio approaches) have been pursued for
decades. The Protein Structure Prediction Center
hosts a biannual contest via CASP (Critical Assess-
ment of Structure Prediction) which rigorously
assesses the performance of these methods.2 In
the latest CASP14, AlphaFold2, a sequence-
based AI method (developed by Google’s
DeepMind) significantly outperformed all other 145
methods and provided good quality models.3

AlphaFold2 is trained with structures deposited in
the PDB, and co-evolution information learned from
multiple sequence alignments generated from
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sequence database searches. AlphaFold20s
breakthrough in CASP14 has revolutionised
structural biology research by narrowing the
protein sequence-structure gap. Subsequently, the
AlphaFold Database (AFDB) (https://alphafold.ebi.
ac.uk/) was established in a collaboration between
Google’s DeepMind and EMBL-EBI and the latest
release contains 3D-models for 214 million
UniProt sequence entries, a major step in bridging
the sequence-structure gap.4

AFDB provides a rich source of information for
structural classification and structure-based
function prediction. Protein structures can typically
reveal more distantly related homologues than
sequence alone as structure tends to be more
conserved than sequence in evolution. A number
of structural classifications have been established
(CATH, SCOP, SCOPe, ECOD) which focus on
the domain since domains are semi-independent
functional units of proteins that can independently
evolve and can be arranged in combination with
other domains to evolve new or modified protein
functions. Both CATH and ECOD have already
performed analyses of subsets of the AFDB
data5–7 and shown that there is a substantial
amount of good quality predicted structural data
which can expand the classification resources
significantly.
CATH is a Global Core Biodata Resource

(GCBR) which classifies domains into a hierarchy
of Class, Architecture, Topology/fold and
Homologous superfamily. Class classifies
domains based on the type of secondary structure
elements (i.e. alpha, beta, alpha/beta, few
secondary structures) whilst Architecture classifies
domains based on the arrangement of secondary
structure elements. Topology (fold) considers both
the arrangement and connectivity of secondary
structure elements. Homologous superfamily
classifies domains that share sufficient structural
and sequence similarity to infer homology from a
common ancestor. Within the superfamily, CATH
provides functionally coherent groups known as
CATH-Functional Families (FunFams).8,9 In its lat-
est release (version 4.3), CATH classifies 150,885
PDB structures, segregated into 495,811 domains,
classified into 5841 homologous superfamilies.10

CATH has grown steadily since it was established
in the early 1990 s, but the release of >200 million
AlphaFold predicted models is likely to represent a
400-fold or more expansion in domain structures
and requires the development of new pipelines to
process this data in a timely manner. Since the
first release of AlphaFold2, various groups have
introduced new computational methods and
pipelines for clustering and segmenting
AlphaFold2 chains. For example, the Steinegger
group has clustered full-chain AlphaFold2 models
from AFDB (version 3) into 2.27 million structure
clusters and suggested 31% of these do not
2

match any structure deposited in PDB.11 Durairaj
and colleagues analysed AFDB (version 4) dataset
and used the structural data to find new families and
functional relationships providing novel functional
insights into several protein families associated with
the dark proteome.12 Recently, the Grishin group
developed DPAM, a novel domain predictor to pro-
cess AFDB chains and provide structural assign-
ments for domains in 48 proteomes, including
human.6,7

Our group developed a new protocol (CATH-
Assign) for processing AFDB models. This
includes domain detection, evaluation of model
quality and subsequent classification in CATH.
CATH-Assign uses a combination of approaches
involving new deep-learning methods for protein
structure comparison (Foldseek13) and protein lan-
guage model based methods for remote homology
detection (CATHe, developed in-house.14 It was
used to perform a preliminary analysis of AFDB
models from 21 model organisms, classifying
341,213 domain structures in CATH superfamilies
and revealing 25 novel folds with at least one
human representative.5

In this study, we report the extension of CATH-
Assign with new deep learning based methods for
domain detection (Chainsaw).15 To cope with the
scale of the data, Chainsaw is faster and more sen-
sitive than previous algorithms used by CATH. We
also report the development of a novel pipeline
(CATH-AlphaFlow, Figure 1) which encodes major
steps of the CATH-Assign protocol in a NextFlow
workflow. CATH-AlphaFlow were applied to all
novel structures in the PDB not currently classified
in CATH. It was also applied to the AFDB structures
from the 21 model organisms to refine domain
boundaries and improve classification of domains.
Application of CATH-AlphaFlow to the PDB and

AFDB structures expanded CATH by 112% to
1,060,659 domain structures and brought 349 new
folds into CATH (253 from PDB structures and 96
from AFDB). We used various public resources
and tools to obtain functional annotations for these.
CATH-AlphaFlow and the functional annotation

strategies outlined here are robust and fast and
will assist in mining the vast data released by
AFDB and related platforms (e.g. 3D-Beacons
https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/).
The novel domain assignments and fold groups
enabled by CATH-Assign/AlphaFlow will be
available from the CATH-beta daily snapshot
(ftp://orengoftp.biochem.ucl.ac.uk/).
Materials and Methods

We updated CATH by applying CATH-
AlphaFlow, which includes a new domain
detection algorithm (Chainsaw15 to all the protein
structures in the PDB not classified in CATH

https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/
http://orengoftp.biochem.ucl.ac.uk/


Figure 1. Outline of the CATH classification pipeline.
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(v4.3). Our dataset included PDB structures depos-
ited up to September 2023.
We also applied CATH-AlphaFlow with Chainsaw

to improve domain boundary assignment and
validate the classification of AFDB structures from
21 model organisms.
1. Domain detection
Domain boundaries were assigned for both PDB

structures and AFDB structures using Chainsaw,15

a novel state-of-the-art deep-learning algorithm
benchmarked against other widely used methods
(e.g. UniDoc16). Low-probability assignments were
subsequently validated with UniDoc16 and manual
curation. As expected, Chainsaw gave significantly
better domain boundaries than our previous
method for detecting domains in UniProt proteins,
CATH-resolve-hits (CRH),17 which relies purely on
sequence data. Chainsaw has various advantages
over CRH, including better accuracy, higher speed
when GPU-accelerated and requires a single PDB
or MMCIF file as input. Domain boundaries
detected by Chainsaw were subsequently used
to extract the domain regions from PDB and
AFDB files using the pdb-selres module from
pdb-tools.18

Supplementary Figure 1 shows how the
agreement between CRH and Chainsaw
boundaries falls as the sequence similarity
between the query and the closest relative in
CATH falls. Structure-based methods like
Chainsaw will also be much better at detecting
boundaries for domains with no homologues in
CATH.
3

Removing low quality structures

Domains from the PDB chains or AFDB were
assessed for quality using the metrics described in
Bordin et al.5 Well-packed globular domains with
an average pLDDT of 70 or more, more than 3 sec-
ondary structure elements, less than 30% of the
domain residues in Long Unordered Regions, and
less than 65% of residues in unordered regions
were subsequently processed by CATH-
AlphaFlow.
2. Domain Processing with CATH-AlphaFlow
Using CATH-AlphaFlow, segmented domains

from AFDB models and PDB structures were
assigned to CATH. CATH-AlphaFlow is a series of
Python modules created to perform consistent
processing of protein chains (either from models
or from experimental data), many of which have
been orchestrated in NextFlow (https://github.com/
UCLOrengoGroup/cath-alphaflow). The steps
involved are discussed as follows and highlighted
in Figure 1.
CATH assignment using Foldseek

Domains were scanned against CATH
superfamilies using Foldseek and tentatively
assigned to CATH superfamilies using thresholds
benchmarked on a set of curated CATH/SCOP
assignments as described in.5 We consider valid
hits at 5% error rate against a library of CATH clus-
tered at 95% sequence identity (S95) from 5,841
Superfamilies in CATH classes 1 to 4, with a 60%

https://github.com/UCLOrengoGroup/cath-alphaflow
https://github.com/UCLOrengoGroup/cath-alphaflow
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overlap between query and target and a bitscore
cutoff of 130 for homology (CATH superfamily-
level, H) and 98 for fold detection (Topology-level,
T) (Figure 1B).
Validation of Foldseek structural matches by

structure comparisons with SSAP.
Structural matches by Foldseek were confirmed

by re-comparing the matched pairs with SSAP19

against the S95 representative hit in the Foldseek
search (Figure 1C). Pairs with a SSAP score >=70
and a residue overlap of 60% (of the larger domain)
were considered valid hits. Higher SSAP scores
(>=80) suggest homology which was subsequently
validated by sequence based approaches
described below.

Validation of superfamily assignment by
sequence-based methods

Domain sequences for H-hits were extracted from
the PDB or AFDB files using the pdb_tofasta
module from pdb-tools and further validated by
scanning them against Hidden Markov Models
built using HMMER320 from S95 representatives
of CATH (Figure 1C). We used thresholds estab-
lished for CATH-Gene3D,10 an e-value cut-off of
1e-3 for homology assignments with a minimum bit-
score cutoff of 25 and overlap of 80%. Query
domains matching the same superfamily by
HMMER3 scan and Foldseek/SSAP, were
assigned to that superfamily.
We also validated homology using CATHe,14 a

CATH superfamilies predictor based on embed-
dings from the ProtT5 protein language model.
Structural matches which had CATHe predictions
with a probability of 90% were considered valid
superfamilies assignments (Figure 1C).
3. Clustering domains assigned to the same

CATH fold group into new CATH SuperFamilies
Query domains which matched a particular fold

group in CATH were compared against each other
all-versus-all using TMalign21 with a minimum over-
lap of 60% and TMscore cutoff of 0.7 normalised by
the length of the largest domain (as benchmarked
in5(Figure 1D). The resulting score matrix was clus-
tered with complete linkage clustering using cath-
cluster, from the cath-tools suite (https://cath-
tools.readthedocs.io/en/latest/). This gave a set of
putative new superfamilies.
4. Clustering domains with no match to a CATH

superfamily or fold group to identify putative novel
fold groups
Domains not meeting our criteria for inclusion in a

CATH fold group or superfamily were clustered by
performing an all-vs-all scan with Foldseek with an
overlap of 60% and a bitscore cutoff of 130, and
the resulting output clustered with complete
linkage using cath-cluster. Since TMalign is more
sensitive than Foldseek, each cluster
representative was subsequently scanned with
TMalign against all CATH S95 representatives
with an TMscore cutoff of 0.5 and a minimum
4

overlap of 60% to check for fold hits missed by the
initial Foldseek scans. Cluster representatives
without a CATH fold assignment after this step
were compared against each other using TMalign
and clustered using cath-cluster with complete
linkage, a TMscore cutoff of 0.5 and an overlap of
60%, to give a set of putative novel fold groups
(Figure 1E).
FoldCheck: Representatives from putative novel

fold groups were superposed to the closest
domain in CATH identified by TMalign using cath-
superpose (https://cath-tools.readthedocs.io/en/
latest/tools/cath-superpose/) and visualised in
UCSF Chimera22 to assess whether they were
novel architectures. Fold novelty was further
assessed by searching for matches in other classi-
fication resources (ECOD, SCOPe) with TMalign
(TMscore = 0.5, overlap 60%) and SSAP (SSAP
score >=70, overlap 60%) followed by extensive
manual curation by the CATH curator (Figure 1F).
5. Identification of structural relatives for novel

folds/superfamilies in AFDB/UniProt50
Putative novel folds from AFDB and PDB were

searched against representatives from AFDB
clustered at 50% sequence identity (AFDB/
UniProt50) via the Foldseek web server (https://
search.foldseek.com/search) to identify all
structural relatives. This information was used to
determine the size of the structural superfamily
and analyse the taxonomic distribution. The
multiple sequence alignment generated from all
the relatives (TM-score � 70) was used to identify
conserved sites using the Scorecons program.23

6. Functional annotation of novel folds
For putative novel folds from AFDB domains we

used fold representatives to annotate functions
using various approaches described below.
Curation of available functional information

We extracted functional annotations from
InterPro, Pfam and UniProt (i.e. GO terms, EC
number, information on interactions, functional site
information or literature evidence of function).
Assigning predicted functions using sequence
and structure based methods

We predicted functional annotations using a
number of sequence-based and structure-based
methods.
1) DeepFRI, structure-based (threshold score

>0.50),24

2) PROST, embedding-based method (default
parameters).25

3) Foldseek scans on the AFDB/UniProt50
database, inheriting GO annotations from
structural relatives (TM-Score >0.70).
4) Information on functional partner proteins (from

STRING/IntAct).

https://cath-tools.readthedocs.io/en/latest/
https://cath-tools.readthedocs.io/en/latest/
https://cath-tools.readthedocs.io/en/latest/tools/cath-superpose/
https://cath-tools.readthedocs.io/en/latest/tools/cath-superpose/
https://search.foldseek.com/search
https://search.foldseek.com/search


V.P. Waman, N. Bordin, R. Alcraft, et al. Journal of Molecular Biology xxx (xxxx) xxx
Predicting functional sites

We predicted functional sites using DeepFRI
(score >0.5) and P2RANK26 (Score >0.50). Addi-
tionally, we identified conserved sites by analysing
the multiple sequence alignment of structural rela-
tives in AFDB/UniProt50 database using the Score-
cons program (threshold score >0.7023).
Results

1. Classification of protein structures in the
Protein Databank (PDB) currently unclassified in
CATH
A total of 108,130 PDB structures, unclassified in

CATH, were analysed using CATH-AlphaFlow.
CATH-AlphaFlow consists of multiple steps
illustrated in Figure 1. Chainsaw identified 212,942
constituent domains within the protein chains.
Subsequent scanning of the domain structures
against the S95 representatives from the
CATHv4.3 superfamilies by Foldseek algorithm
gave a total of 151,648 matches to the CATH
superfamily (H-level) or fold group (T-level).
Further validation of the Foldseek matches was

performed by verifying the structural similarity
using TMalign and the in-house SSAP algorithm
(see Methods). Assignment to CATH
superfamilies was subsequently verified by
scanning against CATH S95 HMMs and also by
CATHe (see Methods). Overall, 137,193 could be
assigned to CATH superfamilies and a further
14,455 to CATH fold groups, whilst the remaining
61,294 are putative novel folds in CATH (see
Supplementary Figure 2).
These were compared all-against-all using

Foldseek and subsequently clustered into 6944
clusters (see Methods 4). Representatives from
these clusters were scanned against CATH S95
domain structure representatives using the slower
but more sensitive TMalign. This step assigned
3,238 clusters to known fold groups in CATH.
Clustering of domains assigned to these fold
groups (see Methods 3) gave 1697 additional
putative CATH superfamilies.
The remaining 3706 domain representatives

were subjected to quality checks, the FoldCheck
protocol (see Methods 4) and manual inspection
for further evaluation of domain quality and
verification of new folds. We removed �92%
which had problematic features (e.g. poor
resolution, high proportion of long regions of
residues with no secondary structure and poor
packing i.e. lacking globularity), multi-domain and
synthetic proteins (see supplementary Figure 3).
A total of 253 domains were validated as non-

problematic globular folds, new to CATH. A
significant proportion of these (161/253 i.e. 64%),
had already been classified in other resources
such as ECOD and SCOPe, giving 92 folds newly
identified in our analyses.
5

As a final check on novelty and to assign
architectures, we compared the representatives of
these folds with their close structural matches in
CATH obtained from the TMalign search. The
highest-scoring matches were superposed with
the query domain using the cath-superpose tool
(https://cath-tools.readthedocs.io/en/latest/tools/
cath-superpose/) to confirm the domains were not
extremely remote homologues and assess
whether there were similarities in architecture.
Matches to the core regions were examined
particularly carefully as the core (typically >40% of
the structure) is typically conserved even between
very remote homologues. No representatives
were sufficiently structurally similar, nor had
functional evidence to suggest an evolutionary
relationship with, or same fold as, any CATH
domain.
For novel folds where the closest matches had

different architectures, new architectures were
assigned. Some interesting novel architectures
and topologies were identified (see Figure 2),
discussed below.
2. Processing AFDB chains from 21 model

organisms using CATH-AlphaFlow
Earlier pilot work analysing 369,512 high-quality

AF2 domains from 21 model organisms5 reported
that 92.3% (341,213 domains) could be assigned
to CATH superfamilies. Unassigned domains were
clustered into 4,235 structural clusters. Preliminary
manual analysis of 610 clusters containing human
relatives revealed 25 globular domain structures
likely to be novel folds. Many of the remainder com-
prised sequence-based matches to Pfam and
CATH families which had problematic domain
boundary assignments.
To improve the domain segmentation process,

we re-processed all cluster representatives using
Chainsaw. The resulting 6,266 domains were then
processed using CATH-AlphaFlow modules (e.g.
Foldseek, SSAP, CATH-HMM, CATHe) for
assignment to CATH (as for the unclassified PDB
structures above). The improved domain
boundary assignments allowed us to assign 431
domains existing CATH superfamilies and a
further 496 to CATH fold groups. The remaining
5,835 domains were scanned in an all-vs-all
fashion using Foldseek and clustered into 4,644
structural clusters (see Methods Section 4).
Cluster representatives were scanned against

CATH using TMalign which is slower but more
sensitive than FoldSeek. 1836 representatives
matched to CATH superfamilies. 2,478
representatives matched to CATH fold groups and
were clustered into 2,477 putative novel
superfamilies. Expanding to all domains, 347,479
AFDB domains could be assigned to CATH
superfamilies.
Combining these AFDB domains with the

212,942 experimental domain structures from the
PDB which we bring into CATH (see above)

https://cath-tools.readthedocs.io/en/latest/tools/cath-superpose/
https://cath-tools.readthedocs.io/en/latest/tools/cath-superpose/


Figure 2. Illustration of novel folds with unusual topologies/architectures. The top panel are PDB domains, lower
panel AFDB domains.
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represented an increase in CATH domain
structures by 560,421 to 1,060,659, a 112%
increase. This also gave an increase in the
number of CATH superfamilies (i.e. for PDB and
AFDB domains with T-hits but not H-hits) from
5,481 to 9,655. We expect these
superfamily numbers to reduce in the future (see
discussion).
We manually evaluated the remaining 330

putative novel fold clusters. As with the PDB
structures, many representatives had problematic
features such as remaining segmentation issues,
high proportion (or long regions) of residues with
no secondary structure, poor packing i.e. lacking
globularity. We also used FoldCheck to see
6

whether any were extremely remote homologues
of a CATH superfamily. In total, 75 AFDB domains
were identified as new folds in addition to the 21
identified in our pilot work, giving a total of 96
novel folds identified in the AFDB dataset of 21
model organisms.
3. Analysis of the novel folds identified in the PDB

and AFDB domain structure clusters
We examined all 253 (from PDB) and 96 (from

AFDB) novel folds identified. Some (161/253) of
the PDB domains had already been classified in
SCOPe (version 2.08) and ECOD (version
20230309). A selection of novel folds from PDB
and AFDB with highly unusual
architectures/topologies are shown in Figure 2.
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Predicting function and mapping functional sites
for AFDB domains.
Where possible, we obtained functional

annotations for the novel folds. Pfam annotations
indicate that most are associated with membrane
proteins and involved in transmembrane transport
(e.g. potassium transporter) iron permease, and
oxidoreductase activities (see Supplementary
Table 1).
For 63 with no annotations, we predicted their

function using the structure-based method
DeepFRI, identified putative functional sites using
P2RANK/Scorecons/DeepFRI as well as
additional annotations by literature and UniProt
searches.
Their predicted function suggests an association

with important biological processes such as
spermatogenesis (in mice); photosynthetic
acclimation, pollen development and proteasomal
degradation in flowering plants; iron permease
activity in yeast; odontogenesis in human and
female meiosis pathway in Caenorhabditis
elegans (Further details in Supplementary Tables
1–3). In bacteria, novel domain folds are involved
in functions such as pentosyltransferase activity; 4
iron 4 sulfur cluster binding and cytochrome c
oxidase assembly. Supplementary Tables 2–3
provides details of annotations from DeepFRI and
PROST, and also UniProt GO terms inherited
from other structural relatives in the AFDB.
Figure 3 shows a selection of examples where the
AFDB structures provided useful functional insights.
Functional insights into UniProt O64379 -
AT1G22750 protein

O64379 (domain 1–242) is from a functionally
uncharacterised Pfam family (DUF1475/
PF07343) containing relatives from Arabidopsis
thaliana. UniProt annotations suggest it is present
in plant vacuoles and membranes. Foldseek
scans identified 63 structural relatives in AFDB/
UNIPROT50 (TM-score >0.70) from other
flowering plants including common tobacco,
sunflower, maize, winter squash, peanut, pepper,
etc. DeepFRI provides high confidence predictions
for ion channel activity (GO:0005216), redox
activity (GO:0022900) and electron transport chain
(GO:0022900) processes (>0.80), whilst STRING
data suggests co-expression with a lipid
dehydrogenase having oxidoreductase activity
and localised on membranes including vacuoles.
Overall, the evidence supports a transmembrane
transporter with electron transport chain/
oxidoreductase activity in plant vacuoles. Some of
the DeepFRI predicted sites (score >0.80), are
also highly conserved (Scorecons >0.85) (Asp 53,
Gly86, Trp170, Leu115, Trp46) (see Figure 3A)
and overlap with P2RANK predicted pocket sites
(0.80) suggesting a role in function.
7

Functional insights into af_P39293_20_216

Domain af_P39293_20_216 (from YjfK protein) is
found in pathogenic bacteria including E.Coli,
Salmonella. IntAct data suggests interaction with
yhjD, involved in lipopolysaccharide transport
(https://www.ebi.ac.uk/intact/search?query=id:
P39293*#interactors). DeepFRI predicts ion
binding activity for this protein (0.80). Again there
is good correlation of predicted sites among the
different methods (P2RANK, DeepFRI and
Scorecons) (see Figure 3B).
iii. Structural insights into mutations linked to

human disease
The SSUH2 gene is associated with a pathogenic

missense variant (P118Q), involved in the genetic
disorder Dentin Dysplasia Type I (which causes
dentin defects in humans.27 Foldseek scans found
74 structural relatives in AFDB, the alignment of
which revealed several high-confidence conserved
sites (Score >0.70) (see Figure 3C). The patho-
genic mutation lies close to two Scorecons pre-
dicted sites (121 and 148, score = 0.70). Analyses
of the impact using Dynamut2 and mCSM (�0.85
Kcal/mol), suggested that the mutation affects
atomic interactions with the proximal conserved
sites and is de-stabilising.

Discussion

We applied a novel computational workflow
(CATH-AlphaFlow) to classify domains from PDB
in CATH, bringing 212,942 PDB domains into
CATH and giving 253 novel CATH folds (92 of
which are not observed in other classifications).
We also applied CATH-AlphaFlow to the AFDB
predicted structures for 21 model organisms. This
confirmed the previous assignments of 341,213
domain structures to CATH superfamilies.5

Improved domain assignments by ChainSaw
enabled a further 6,266 domains to be accurately
detected and assigned to CATH superfamilies.
Analysis of the remaining AFDB domains revealed
96 new folds/superfamilies (including the 21 identi-
fied in earlier pilot work.5

For those folds not annotated in Pfam and other
databases, we used a variety of state-of-the-art
tools to predict functions and functional site
information. High-confidence DeepFRI-predictions
were available for 50 novel folds, some of which
are associated with important biological processes
in mice (fertility), flowering plants (photosynthetic
acclimation, proteasomal degradation), and yeast
(iron permease).
Although studies of the PDB in 2012 suggested

the domain fold library was nearly complete, the
identification of 349 novel folds in this study
(increasing CATH folds >25% to 1739) suggests
more novelty remains to be elucidated in the
AFDB database.
By applying our new classification workflow

(CATH-AlphaFlow) we doubled the number of

https://www.ebi.ac.uk/intact/search?query


Figure 3. AFDB annotations using DeepFRI (red), P2RANK (orange) and Scorecons (green). The SSUH2 domain
is linked with a human genetic disorder caused by the impact of missense mutation (P118Q) which lies close to a
conserved site (shown in C).
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domains in CATH to over one million. 212,942 of
these are experimental and mean that CATH is
now up-to-date with the September-2023 version
of PDB. We are now applying CATH-AlphaFlow to
all AFDB entries to expand CATH further by
processing all AFDB entries. Assigning AFDB
domains to CATH superfamilies will help in
bringing functional annotations to the UniProt
sequences.
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