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In the human cardiovascular system (CVS), the interaction between the left
and right ventricles of the heart is influenced by the septum and the pericar-
dium. Computational models of the CVS can capture this interaction, but this
often involves approximating solutions to complex nonlinear equations
numerically. As a result, numerous models have been proposed, where
these nonlinear equations are either simplified, or ventricular interaction is
ignored. In this work, we propose an alternative approach to modelling
ventricular interaction, using a hybrid neural ordinary differential equation
(ODE) structure. First, a lumped parameter ODE model of the CVS (including
a Newton–Raphson procedure as the numerical solver) is simulated to gener-
ate synthetic time-series data. Next, a hybrid neural ODE based on the same
model is constructed, where ventricular interaction is instead set to be gov-
erned by a neural network. We use a short range of the synthetic data
(with various amounts of added measurement noise) to train the hybrid
neural ODE model. Symbolic regression is used to convert the neural network
into analytic expressions, resulting in a partially learned mechanistic model.
This approach was able to recover parsimonious functions with good
predictive capabilities and was robust to measurement noise.
1. Introduction
The development of biomechanical mathematical models is a vibrant area of
research which aims at enhancing our understanding of human physiology,
while also providing a tool to make clinically relevant predictions. Models of
the human cardiovascular system (CVS) are examples of such physiological
models. The simplest versions of these are often referred to as lumped-
parameter or pressure-volume models, whereby the CVS is divided into distinct
chambers which capture the main dynamics of the system. These lumped-
parameter models contain no spatial information and are usually mathemat-
ically prescribed as a system of ordinary differential equations (ODEs).
Higher fidelity models which incorporate spatial information are solved
using other numerical methods, for example finite-element analysis (FEA)
[1–4], and can provide very detailed and accurate representations of the
underlying dynamics. However, challenges remain around assigning model
parameter inputs, for example muscle fibre orientations or material parameters.

We restrict our ongoing discussion to temporal ODE models of the CVS,
early examples of which are inspired by electrical circuits [5,6]. Multi-compart-
ment alternatives such as the seminal models by Arthur C. Guyton based on
pig experiments conducted in the 1950s and 1960s, describe the CVS in more
detail [7]. Simplified versions of these frameworks which are still capable of
capturing the major governing dynamics of the CVS (and sometimes also the
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Figure 1. Schematic of the closed-loop model of the cardiovascular system. The governing equations for the flows (Q), volumes (V) and pressures (P) are defined in
appendix A, while the resistances (R), inertial effects (L) and the elastances (E) are parameters defined in table 3.
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respiratory system) are more commonly employed [8–10]. Extrapolating these models to predict the dynamics of the human CVS is
highly challenging, not least because it is difficult to directly measure variables such as blood flow and pressure inside a living
human heart, meaning that the models are rarely parametrized against human data. Despite this, such models may be extremely
useful in understanding human health and making predictions about the evolution of disease.

An important characteristic of the dynamics of the CVS is the interaction between the left and right ventricles of the heart, often
referred to as ventricular interaction (VI). This interaction is governed by the effects of the septum (a muscular membrane separ-
ating the left and right ventricles) and the pericardium (a passive fibrous sac that encapsulates the entire heart). Capturing VI
within these simplified models (as in [9]) often involves the calculation of the septum free wall volume (Vspt), given by the solution
to a complex nonlinear equation with no analytic solution. Hence, a numerical root-finding algorithm such as the Newton–Raph-
son method must be used. Due to this added complexity, various alternative approaches to modelling VI have been proposed. In
[10], the problem is simplified by employing a linearization, while in [11], a more accurate (but more complex) local linearization is
used. VI is modelled in a different way in [12], where the volume in the septum is defined as a linear function of the left and right
ventricular pressures. There are also a number of cases where VI is left out entirely [13–16].

Within the field of scientific machine learning, recent work has demonstrated the possibility of developing partially learned
models, sometimes referred to as ‘grey box’ models, wherein certain components of a mathematical (or ‘white box’) model are
set to be governed by a learned (or ‘black box’) system. These partially learned systems can take a wide range of structural
forms [17–21]. In the context of dynamical systems, universal differential equations (UDEs) [22] are an example of a partially
learned system, where specific terms in a system of ODEs or partial differential equations (PDEs) are replaced with a neural net-
work. Data are then used to train the model such that the network captures the dynamics missing from the system. This approach
allows for an inference step, where the trained neural network embedded in the system equations can be regressed down to math-
ematical expressions. This technique has been applied successfully to simple dynamical systems such as the Lotka–Volterra
equations [22] as well as more complex systems [23–26]. The architecture of this method can also be thought of as a hybrid
neural ODE and is hereafter referred to as such.

In this work, we investigate the application of a hybrid neural ODE to the closed-loop lumped parameter model of the CVS
from [9]. Specifically, we allow VI in this system to be governed by a neural network, providing an alternative means of modelling
these dynamics. This hybrid neural ODE is trained using synthetic time-series data (with various amounts of added measurement
noise) generated by simulating the original model as outlined in [9]. We subsequently use symbolic regression (SR) [27] to regress
the trained neural network back into symbolic form, allowing for the potential discovery of a more parsimonious function for the
septum free wall volume. Converting the trained network to mathematical expressions results in a more interpretable, partially
learned mechanistic model. The predictive capabilities of both the trained hybrid neural ODE (before SR) and the partially learned
mechanistic model are examined.
2. Methodology
An overview of the lumped parameter model of the CVS is given in §2.1 and the description of the hybrid neural ODE based on this
model is presented in §2.2. All simulations were carried out in Julia [28], using the Tsit5 ODE solver. Due to the discontinuities in the
dynamics (as a result of the opening/closing of the valves in the heart) a maximum step size of 10−2 was enforced. Furthermore, to achieve
accurate (non-negative) flow dynamics, an absolute tolerance of 10−7 and a relative tolerance of 10−4 were used.

2.1. Model of cardiovascular system
The model, as shown in figure 1 follows established approaches in the literature [9,10,29]. The CVS is divided into the following six elastic
pressure-volume chambers:

— Left ventricle (lv)
— Right ventricle (rv)
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Figure 2. Graph of the lumped-parameter model of the cardiovascular system. The notation is consistent with equation (2.1). U is the set of the 10 state variables in
the model, namely the six volumes of each of the elastic chambers (nodes) in figure 1 and the four flows where inertial effects are included. The relationship
between U and its derivative ( _U) is shown through the inter-dependencies among the intermediate variables in the model. The green region, which captures all of
these inter-dependencies, represents the system equations (F ) and consists of additional volumes, pressure and flows which are not state variables. The blue node
and arrows represent the cardiac driver function (e(t)), and the magenta node and arrow represents the constant parameters of the model (C, defined in table 3).
The red nodes and arrows within F represent the components of the model to be governed by a neural network, generating the structure of the hybrid neural ODE
studied in this work (outlined in §2.2).
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— Vena cava (vc)
— Aorta (ao)
— Pulmonary artery (pa)
— Pulmonary vein (pu)

In figure 1, the nodes represent the pressure-volume chambers. Since this is a lumped parameter model, each of these chambers cap-
tures the behaviour of the unit it contains (and this is not modelled at finer granularity). For example, the pulmonary artery chamber
encapsulates the elastance of the main arteries feeding the lungs.

These six chambers are connected in series by resistances, inductors, anddiodes. The resistances (R) capture thepressure drop of the blood as
it flows between chambers, the inductors represent the inertial effects (L) of the blood as it flows in and out of the ventricular chambers, and the
diodes represent the heart valves. Each chamber also has an elastance (E), with the ventricles being dynamically elastic (since they act as pumps)
and the remaining chambers being passively elastic. The flows are labelledQ, the volumes are labelledV and the pressures (intermediate quan-
tities in the model) are labelled P. The effects of VI, systemic circulation (sys) and pulmonary circulation (pul) are also captured.

The model consists of 10 state variables; the volumes in each of the six elastic chambers listed above, as well as the four flows for which
inertial effects are included. Thus, the 10 state variables are [Qmt, Qav, Qtc, Qpv, Vlv, Vrv, Vao, Vvc, Vpa, Vpu]. Here, Qmt, Qav, Qtc and Qpv are
the flows through the mitral, aortic, tricuspid and pulmonary valves, respectively.

This model can be written as a system of ODEs, as follows:

(2:1)

where U is the 10-dimensional vector of state variables, F is the set of system equations, e(t) is the cardiac driver function, t is time and C is
the set of constant parameters used in the model. Figure 2 shows a graph of the model, where the dependencies between the state vari-
ables, the cardiac driver function and the other intermediate variables are shown. The colours of the letters in equation (2.1) match the
corresponding colours in figure 2.
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This model (including Vspt as defined in algorithm 1) is simulated to generate the synthetic data that is used for training and vali-
dation. The full set of model equations, the initial condition and the set of constant parameters are given in appendix A. The
simulation generates figure 3a–k, which show the temporal evolution of the 10 states, along with the septum-free wall volume and the
pressure in the pericardium (the components which govern VI).
cietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230710
2.2. Hybrid neural ODE
A hybrid neural ODE leverages partial mechanistic knowledge of the system to aid in the convergence of the neural network during the
training process. As such, a hybrid neural ODE generally requires less training data than a neural ODE [30] (where the entire system of
equations would be governed by a neural network). Figure 4 shows the structure of a hybrid neural ODE, highlighting how it is related to
regular ODEs and neural ODEs.

As mentioned in §1, the volume of the septum free wall (a theoretical volume) is defined as the solution of a nonlinear equation with
no analytic solution. The numerical solution of this equation is the main source of complexity in the model. The pressure in the septum is
calculated as the difference between the ventricular pressures, and since the ventricles sit inside the pericardium, the pericardium pressure
(Pperi) also contributes to the VI. The original form of Pperi (as in [9]) is defined in equation (2.2)

: ð2:2Þ

A hybrid neural ODE is constructed wherein Vspt and Pperi are replaced with a neural network. Pperi is selected to be approximated by
a network, partly to examine the network’s ability to capture the dynamics of more than one component of the model, but also since it
contributes to VI, and alternative models tend to leave out Vspt and Pperi together [13–16]. This architecture means that the nonlinear
equation for Vspt need not be solved when simulating the model, while also allowing for a more parsimonious function with good
predictive capabilities to be discovered via SR.

We use a fully connected neural network parametrized by a set of randomly initialized weights and biases. Although the model out-
lined in §2.1 has 10 state variables, the network takes in five volume states as inputs, namely [Vlv, Vrv, Vao, Vvc, Vpa]. This is because Vspt

and Pperi depend on volumes rather than flows. Although they depend only on Vlv and Vrv, using a network with just these two states as
inputs was experimentally found to be less expressive. Vpu is omitted as an input to the network, as it was found that for the network
architecture described, its inclusion hindered performance. There are three hidden layers of 10 neurons each, with exponential linear
unit (ELU) activation functions. Finally, the network has two outputs, one for each of the components of the model (Vspt and Pperi) it
approximates. Vspt and Pperi are shown in red in figure 2 to highlight that they are governed by a neural network. Figure 5 shows the
architecture of the network used in this work.
Figure 6 summarizes the method in a flowchart. The details of the training process and the implementation of SR are given in §§2.2.1
and 2.2.2, respectively.

2.2.1. Training
Of the 10 s of synthetic data (hereafter referred to as ground truth) shown in figure 3, the first 0.3 s is selected for training. Since the
dynamics are periodic, 0.3 s is selected to ensure the range of training data is less than one full period of the dynamics. This highlights
an advantage of this type of hybrid modelling over black box models in that a short training range (and hence less data) is often sufficient
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Figure 3. Synthetic time-series data generated from simulating the model outlined in figures 1 and 2. The model equations, the initial condition and the parameter
values used in the simulation are given in appendix A. (a) Left ventricular volume (Vlv), (b) right ventricular volume (Vrv), (c) vena cava volume (Vrv), (d ) pulmonary
vein volume (Vpu), (e) aorta and pulmonary artery volumes (Vao, Vpa), ( f ) mitral and tricuspid valve flow rates (Qmt, Qtc), (g) aortic and pulmonary valve flow rates
(Qav, Qpv), (h) left ventricular, aortic and pulmonary vein pressures (Plv, Pao, Ppu), (i) right ventricular, pulmonary artery and vena cava pressures (Prv, Ppa, Pvc),
( j ) septum free wall volume (Vspt), (k) pericardium pressure (Pperi).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230710

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 A

pr
il 

20
24

 



u1

un

Nθ

u∙1

u∙n

F

+

Figure 4. Hybrid neural ODE structure for a system with n dimensions. The state vector is passed to both a neural network Nu (where θ is the set of weights and
biases of the network) and a vector of mathematical operators F. The outputs are then combined to represent the derivative of the state vector. The green path
represents a regular ODE, whereas the red path represents a neural ODE.

Vlv

Vrv

Vao

Vvc

Vpa

Vspt

Pperi

Figure 5. The neural network used in the hybrid neural ODE. The hidden layers consist of 10 neurons each, with ELU activation functions.

mathematical
model

replace Vspt
and Pperi

with a neural
network

hybrid
neural ODE

train model
symbolic
regression

partially
learned

mechanistic
model

data

Figure 6. Flowchart of the method. The green cells represent the model at three different stages: the original mathematical model, the hybrid neural ODE and the
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to produce accurate generalizations, as the known components of the system are able to guide the model in its predictions. During each
iteration of training, the hybrid neural ODE is simulated for 0.3 s to generate a prediction, which is then used in tandem with the ground
truth to calculate a loss value. The loss function used in this work is mean squared error (m.s.e.) and is defined as

L ¼ 1
N

XN
i¼1

ðyi � ŷiÞ2, ð2:3Þ

where L is the loss value, N is the number of data points, y is the ground truth data and ŷ is the prediction. In this work, a sampling
rate of 0.01 is used (100 Hz), meaning a training range of 0.3 s corresponds to 30 data points per state variable, generating a training
set of 300 data points. Hence, we have N = 300. The training then consists of minimizing this loss function by optimizing over the weights
and biases of the network. The training is done using the Adam optimizer [31], which is a very common choice for optimization in
machine learning because it is computationally efficient, easy to implement, and often works well on a wide range of tasks with little
hyper-parameter tuning. A learning rate of 0.01 is used for 1000 iterations, followed by an additional 100 iterations with a learning
rate of 0.0001.

The training process is carried out three times, at three different levels of noise. In particular, 0%, 2% and 5% of the standard deviation
of the ground truth data is added to the ground truth in each case. In this work, an ensemble of 10 hybrid neural ODE models is used in
the training process. This means that at each level of noise, the same hybrid neural ODE structure is trained 10 times. Due to the random
initialization of the network parameters, each training process results in a different set of learned parameters and hence different predic-
tions. The predictions of each of the 10 neural networks are then averaged. Averaging over the network outputs can increase predictive
accuracy and allow for desired results to be achieved more consistently. There are many ways to average outputs, but in this work, a
simple mean of the network predictions is taken. Furthermore, the random initialization of the network parameters results in a different
rate of convergence for each training process. Therefore, for 0% noise, the selection criteria for the 10 models used in the ensemble was a
maximum m.s.e. value of 1.0. For 2% and 5% noise, the maximum m.s.e. was selected to be 8.0 and 50.0, respectively.
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2.2.2. Symbolic regression
After training, the embedded neural network is regressed down from the high parameter space to mathematical expressions. This step
results in a partially learned mechanistic model, which is more interpretable than the hybrid neural ODE and can often also help with
achieving more accurate extrapolations. Here, an extrapolation refers to a simulation of the model beyond the time frame of the available
data used to train the model (0.3 s). Although the extrapolations are expected to be superior to that of a black box model (due to the phys-
ical knowledge encoded in system equations), they can still lack some predictive accuracy, particularly if the training data only captures a
very small portion of the dynamics. This motivates the use of a sparse regression technique in order to construct a partially learned, fully
mechanistic model, with potentially improved extrapolation capabilities. Common choices for this regression step are SR and the sparse
identification of nonlinear dynamical systems (SINDy) [32].

In this work, SR is used rather than SINDy due to the flexibility SR has in fitting nested expressions with real-valued arguments/
exponents. SINDy, however, is an efficient alternative algorithm and a good choice when the user has some idea of the functional forms that
may be required to explain the data. SR is a machine learning technique used to fit analytic expressions to data. It requires as input a set of
unary operators (e.g. sin, cos, exp) and binary operators (e.g. addition, subtraction, multiplication, division). The function space defined by
these operators is then searched in a ‘brute force’manner via genetic programming. Processes such as mutations, crossovers and tournaments
encourage a ‘survival of the fittest’ environment among different candidate expressions. For a more detailed description of SR, see [33,34].

Implementing SR involves setting the inputs to the network ([Vlv, Vrv, Vao, Vvc, Vpa]) as the inputs to SR, and setting the outputs of the
network (the learned dynamics for Vspt and Pperi) as the targets for SR. The Python package (with a Julia back-end) PySR [35,36] is used for
the implementation of SR. We apply it to the averaged prediction of the networks in the ensemble. The details of the user-defined
hyper-parameters for PySR used in this work are given in appendix B.
3. Results
Upon training the 10 models in the ensemble, a single model is randomly selected and an extrapolation to 10 s is made to examine
the model’s ability to generalize beyond the training data. In the case of 5% noise, model 6 was selected and the extrapolation is
shown in figure 7. For comparison, the dynamics of the model without VI (by omitting algorithm 1 and equation (2.2) from the
original model) are also shown.
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Figure 8. Vspt and Pperi predictions of the 10 neural networks in the ensemble, at each level of noise added to the ground truth data. (a) 0% noise, (b) 2% noise,
(c) 5% noise.
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Figure 7 shows that the hybrid neural ODE tracks the ground truth very well. The use of a small training range highlights the
advantage of leveraging physical knowledge of the system over employing a black box approach, insofar as black box models typi-
cally struggle with extrapolations in this small data regime. However, the predictions of the hybrid neural ODE in figure 7 still
deviate from the ground truth slightly in some cases, namely the Vvc and Vpu predictions.

To carry out SR, the hybrid neural ODE prediction is first generated in order to collect the temporal evolution of the five states
[Vlv, Vrv, Vao, Vvc, Vpa], which the neural network takes as input. Next, the neural network is isolated from the hybrid neural ODE
and the five states are given as inputs to the network. The two outputs of the network then correspond to the learned dynamics for
Vspt and Pperi. This is done at each level of noise. The learned dynamics of the 10 neural networks at each level of noise is shown in
figure 8.

From figure 8, it can be seen that the neural networks generally approximate Pperi more accurately than Vspt, although the over-
all climate of the dynamics is captured well in both cases. The curves generated from algorithm 1 and equation (2.2) are shown by
the black curves. As mentioned in §2.2.2, the predictions of the 10 networks are averaged before applying SR. The input data for SR
are the averaged inputs ([Vlv, Vrv, Vao, Vvc, Vpa]) of each of the 10 networks, while the target data for SR are the averaged outputs of
the 10 networks. The functions learned via SR are given in table 1. The PySR algorithm assigns a score to a list of candidate func-
tions, calculated based on a trade-off between accuracy and complexity [35]. In this work, the candidate function with the highest
score was selected in each case.



Table 1. Learned functions via SR at each level of noise added to the ground truth data. The target data for SR was the averaged prediction (shown in red in
figure 9).

term noise learned function

Pperi 0% (Vrv(Vrv− 105.56)/3227.84)− 3.72

2% (1/Vpa)(Vrv− 91.49)− 4.11

5% (1/Vpa)(Vrv− 88.13)− 4.21

Vspt 0% (970.58/(Vao− Vpa)) + (12.83/(Vao− Vrv + 2.54))− 7.33

2% (1/(Vao− Vpa))(exp[(Vrv/(Vpa− 10.05))] + 1080.36)− 8.63

5% exp[exp[(Vrv/0.29(Vpa)
2)]]((Vvc/(Vao− Vpa)) + 2.46)
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Figure 9 shows the averaged outputs (red curves) of each of the networks in the ensemble, along with the corresponding
learned function from table 1.

Equation (2.2) contains a term Pth which has a value of −4, as in table 3. Although the recovered functions for Pperi in table 1 are
different at each noise level, they all contain a constant (−3.72, −4.11, −4.21) relatively close to –4. In figure 9, it is once again clear
that Pperi is approximated more accurately than Vspt. This is confirmed in table 2, where the m.s.e. between the averaged predic-
tions of the networks (red curves in figure 9) and the original dynamics (black curves in figure 9), as well as the MSE between
learned functions (green curves in figure 9) and the original dynamics is given. The values in table 2 under ‘learned MSE’
refer to the corresponding functions in table 1.

It is worth highlighting that although the Pperi function from the original model (equation (2.2)) is within the function space
defined by the unary and binary operators used in SR, table 1 shows that this function is not recovered. This is probably due to the
short range of dynamics that is available and the little variation within this range (approx. between −4.4 and −3.5), since many
functions can describe this curve. A further detail here is that as Vpcd is not one of the inputs to SR, the relationship Vpcd =
Vlv +Vrv would also need to be recovered for equation (2.2). The true equation was only correctly recovered when applying SR
directly to the ground truth (black curve in figures 8 and 9), using a training range of 0.5 s or longer.

The embedded neural network in the hybrid neural ODE is then substituted with the recovered functions in the case of 5%
noise, resulting in a partially learned mechanistic model. An extrapolation is subsequently made with this partially learned
model, shown in figure 10. These predictions show a slight improvement from that of the trained hybrid neural ODE
(figure 7). This improvement can also be quantified, as the root mean squared error (RMSE) between the hybrid neural ODE extra-
polation in figure 7 and the ground truth is 6.393, while the RMSE between the extrapolation of the partially learned model and the
ground truth is 3.680. As a result, we have a partially learned mechanistic model which captures VI in a more parsimonious
fashion and has strong predictive capabilities.
4. Discussion
In this work, we show a novel means of modelling VI in the human CVS. We demonstrate the hybrid neural ODE’s ability (with
robustness to some measurement noise) to discover alternative functions for Pperi, and in the case of Vspt, alternative and more
parsimonious functions. The resulting partially learned mechanistic model of the CVS has good extrapolation capabilities. It is
worth highlighting the primary reason for the different learned functions in table 1 is probably not the varying amounts of
noise added to the ground truth data, but rather the randomness within the SR method. The randomly initialized populations
of candidate functions often results in different learned functions upon completion.

A key rationale for the use of this methodology is to challenge modelling assumptions. This approach can either verify the
structure of the model (by recovering the same equations as were originally proposed), or discover alternative functions to
model the missing dynamics. This can be particularly useful within biomechanical modelling, as there is often uncertainty
when modelling human physiology. The alternative approaches to modelling VI outlined in §1 motivate the use of this technique.
We were able to recover functions for Vspt which are more parsimonious and interpretable than algorithm 1. The hybrid neural
ODEs are more computationally expensive than the original model; however, partially learned models are more computationally
efficient than the original model. These differences in simulation times only become significant when generating long ranges of
synthetic data. For example, a 10min simulation at a sampling rate of 0.01 takes 1.4569 s for the original model, 21.0804 s for a
randomly selected hybrid neural ODE and 0.2960 s for the partially learned model.

An important clarification is that, while it is possible to forgo the use of a hybrid neural ODE and simply apply SR directly to
the ground truth data, this is likely to be a much greater challenge. A short range of training data and a model with complex,
nested ODEs (when expressed as functions of the states) greatly limits the possibility of SR to recover the governing equations.
Alternative (more parsimonious) equations would be recovered, but this learned model would not provide any insight into VI,
and would probably have problems when extrapolating.

Given the architecture of the hybrid neural ODE, it was expected that accurate extrapolations would be achieved when trained
on only a small range of the dynamics, since the known equations provide information about the system. Given the periodic nature
of the dynamics, the training range (0.3 s) was selected to be less than one period of the data. This is to highlight the advantage of



Table 2. The m.s.e. of averaged network outputs and learned functions, at each level of noise added to the ground truth data.

term noise averaged m.s.e. learned m.s.e.

Pperi 0% 0.000664 0.000988

2% 0.000944 0.00124

5% 0.00171 0.00158

Vspt 0% 0.0467 0.0476

2% 0.0313 0.0345

5% 0.0912 0.102
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Figure 9. Averaged prediction of the 10 neural networks in the ensemble (red) and the dynamics of the corresponding learned functions via SR (green), at each
level of noise added to the ground truth data. Table 1 shows the learned functions. (a) 0% noise, (b) 2% noise, (c) 5% noise.
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the hybrid modelling approach, since extrapolations on periodic dynamics with a training range which captures more than one
period can probably also be achieved with a black box model. This particular hybrid neural ODE was able to produce accurate
extrapolations (similar to figure 7) with training ranges both significantly less than and greater than 0.3 s. These extremes, however,
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can be problematic for the SR step; a very short range of learned dynamics for Vspt and Pperi increases the challenge for SR
to recover meaningful functions, while a long training range would require a significantly more expressive network in order to
capture the Vspt and Pperi dynamics closely.

When employing an ensemble of networks, it is common to use varying architectures. The overarching idea is that with mul-
tiple architectures, the networks make errors in different regions of the parameter space, increasing the significance of the
averaging step as the errors ‘cancel’ each other out. However, this work uses a single architecture for all 10 models in the ensemble,
as outlined in §2.2. The reason for this is because of the proposed network’s superior performance over many alternative
architectures.

A limitation of this approach is associated with the time required to complete the training process. During each iteration, the
hybrid neural ODE must be simulated using an ODE solver. Therefore, if the model is computationally expensive (and/or a large
range of the dynamics is simulated), training times can increase drastically. While this is not strictly a shortfall of the method itself,
it has practical implications, especially if a more powerful network with more hidden layers is required. Another limitation is
associated with the learned functions, in that the most accurate function recovered by SR does not guarantee the best performance
of the corresponding partially learned model.

Potential avenues for future work include employing a Bayesian neural network structure. This way, training would be carried
out once and generating multiple predictions of the hybrid neural ODE model would be done by sampling from the posterior
distribution of the network parameters. Also, non-periodic dynamics can be generated if certain parameters in the model are
allowed to vary with time (in a physiologically meaningful way), allowing for experiments to be carried out with varying lengths
of the training range. We also plan to examine the performance of this method against real data, while simultaneously investi-
gating whether the learned functions provide any physiological insight. This would involve gathering patient data on the 10
state variables, to be used as ground truth. The added challenge here is that alongside training the neural network, the parameters
of the model would also need to be calibrated to fit the data, using a technique such as Bayesian history matching. Lastly, com-
parisons of the learned VI dynamics can be made with that of three-dimensional finite-element methods to further investigate the
hybrid neural ODEs’ predictive capabilities.
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Appendix A. Cardiovascular model details
The system of 10 ODEs that define the original model as proposed in [9], including the intermediate variables that have not been
defined in the main text, are given below.

_Qmt ¼
1
Lmt

½Ppu � Plv �QmtRmt�,
Qmt . 0 or

Ppu . Plv

0; otherwise

8<
:

_Qav ¼
1
Lav

½Plv � Pao �QavRav�;
Qav . 0 or

Plv . Pao

0; otherwise

8<
:

_Qtc ¼
1
Ltc

½Pvc � Prv �QtcRtc�;
Qtc . 0 or

Pvc . Prv

0; otherwise

8<
:

_Qpv ¼
1
Lpv

½Prv � Ppa �QpvRpv�;
Qpv . 0 or

Prv . Ppa

0; otherwise

8<
:

_Vlv ¼ rðQmtÞ � rðQavÞ,
_Vrv ¼ rðQtcÞ � rðQpvÞ,
_Vao ¼ rðQavÞ � rðQsysÞ,
_Vvc ¼ rðQsysÞ � rðQtcÞ,
_Vpa ¼ rðQpvÞ � rðQpulÞ,
_Vpu ¼ rðQpulÞ � rðQmtÞ,

where

Qsys ¼ 1
Rsys

ðPao � PvcÞ,

Qpul ¼ 1
Rpul

ðPpa � PpuÞ,

Plv ¼ Plvf þ Pperi,

Prv ¼ Prvf þ Pperi,

Pao ¼ EaoðVao � Vd,aoÞ,
Pvc ¼ EvcðVvc � Vd,vcÞ,
Ppa ¼ EpaðVpa � Vd,paÞ þ Pth,

Ppu ¼ EpuðVpu � Vd,puÞ þ Pth,

Vlvf ¼ Vlv � Vspt,

Vrvf ¼ Vrv þ Vspt,

Vpcd ¼ Vlv þ Vrv,

eðtÞ ¼ e�B1 mod t, 60HRð Þ�C1ð Þ2 ,

rðxÞ ¼ x, x � 0

0, otherwise:

�

https://doi.org/10.5281/zenodo.10679484


Table 3. Parameters for the closed-loop model of the cardiovascular system, as in [29]. These values were used for the simulation of the original cardiovascular
model, the hybrid neural ODE and the partially learned model. EDPVR, end diastolic pressure volume relationship.

parameter value

left ventricular end systolic elastance (Ees,lvf ) 2.8798 mmHg ml−1

left ventricular end systolic elastance (Ees,rvf ) 0.585 mmHg ml−1

end systolic septum elastance (Ees,spt) 48.754 mmHg ml−1

aortic elastance (Eao) 0.6913 mmHg ml−1

vena cava elastance (Evc) 0.0059 mmHg ml−1

pulmonary artery elastance (Epa) 0.369 mmHg ml−1

pulmonary vein elastance (Epu) 0.0073 mmHg ml−1

mitral valve resistance (Rmt) 0.0158 mmHg s ml−1

aortic valve resistance (Rav) 0.018 mmHg s ml−1

tricuspid valve resistance (Rtc) 0.0237 mmHg s ml−1

pulmonary valve resistance (Rpv) 0.0055 mmHg s ml−1

pumonary circulation resistance (Rpul) 0.1552 mmHg s ml−1

systemic circulation resistance (Rsys) 1.0889 mmHg s ml−1

mitral valve inertia (Lmt) 0.000077 mmHg s2 ml−1

aortic valve inertia (Lav) 0.000121 mmHg s2 ml−1

tricuspid valve inertia (Ltc) 0.000080 mmHg s2 ml−1

pulmonary valve inertia (Lpv) 0.000149 mmHg s2 ml−1

unstressed left ventricular volume (Vd,lvf ) 0 ml

unstressed right ventricular volume (Vd,rvf ) 0 ml

unstressed septum volume (Vd,spt) 2 ml

unstressed aortic volume (Vd,ao) 0 ml

unstressed vena cava volume (Vd,vc) 0 ml

unstressed pulmonary artery volume (Vd,pa) 0 ml

unstressed pulmonary vein volume (Vd,pu) 0 ml

zero-pressure left ventricular volume (V0,lvf ) 0 ml

zero-pressure right ventricular volume (V0,rvf ) 0 ml

zero-pressure septum volume (V0,spt) 2 ml

zero-pressure pericardium volume (V0,pcd) 200 ml

left ventricular EDPVR gradient (P0,lvf ) 0.1203 mmHg

right ventricular EDPVR gradient (P0,rvf ) 0.2517 mmHg

zero-volume septum pressure (P0,spt) 1.1101 mmHg

zero-volume pericardium pressure (P0,pcd) 0.5003 mmHg

left ventricular EDPVR curvature (λlvf ) 0.033 1/ml

right ventricular EDPVR curvature (λrvf ) 0.023 1/ml

septum EDPVR curvature (λspt) 0.435 1/ml

pericardium EDPVR curvature (λspt) 0.03 1/ml

heart rate (HR) 80 1/min

cardiac driver width (B1) 80

cardiac driver offset (C1) 30/80 s

thoracic cavity pressure (Pth) −4 mmHg
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Vspt, Plvf, Prvf and Pspt are defined in algorithm 1, while Pperi is defined in equation (2.2). The values of the constant parameters (C)
are given in table 3 and the initial condition of the system used in the simulation is given in table 4.



Table 4. Initial condition of simulation. These values were used for the simulation of the original cardiovascular model, the hybrid neural ODE and the partially
learned model.

state value

Qmt 245.581

Qav 0.0

Qtc 190.066

Qpv 0.0

Vlv 94.681

Vrv 90.730

Vao 133.338

Vvc 329.780

Vpa 43.012

Vpu 808.458
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Appendix B. PySR details
Table 5 defines the hyper-parameters used in the implementation of PySR. The process begins with a given number of subpopu-
lations (100), each containing a number (33) of randomly generated expressions from the function space defined by the binary and
unary operators. Over a number of iterations (100), all the expressions are evolved and the ones which fit the target data best
(m.s.e.) are more likely to survive. While we use 100 iterations as the stopping criteria for the process, alternative stopping criteria
can be used, such as an amount of elapsed time or a desired fitness achieved.
Table 5. PySR hyper-parameters.

unary operators {e}

binary operators fþ, � , 4 , �g
functions per population 33

populations 1000

iterations 200

performance metric m.s.e.
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