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Impact of the continuum Coulomb interaction in quantum-orbit-based treatments of high-order
above-threshold ionization
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We perform a systematic comparison between photoelectron momentum distributions computed with the
rescattered quantum-orbit strong-field approximation (RQSFA) and the Coulomb quantum-orbit strong-field
approximation (CQSFA). We exclude direct, hybrid, and multiply scattered CQSFA trajectories and focus
on the contributions of trajectories that undergo a single act of rescattering. For this orbit subset, one may
establish a one-to-one correspondence between the RQSFA and CQSFA contributions for backscattered and
forward-scattered trajectory pairs. We assess the influence of the Coulomb potential on the ionization and
rescattering times of specific trajectory pairs, kinematic constraints determined by rescattering, and quantum
interference between specific pairs of trajectories. We analyze how the Coulomb potential alters their ionization
and return times, and their interference in photoelectron momentum distributions. We show that Coulomb effects
are not significant for high or medium photoelectron energies and shorter orbits, while for lower momentum
ranges or longer electron excursion times in the continuum, the residual Coulomb potential is more important.
We also assess the agreement of both theories for different field parameters and show that it improves with the
increase of the wavelength.
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I. INTRODUCTION

The laser-induced rescattering or recombination of an elec-
tron with its parent ion plays a huge role in intense-field
laser-matter interaction [1,2]. This physical picture has been
instrumental in explaining a wide range of phenomena, which
could not be interpreted by other means, and also in dictating
the attosecond (10−18 s) timescales for which they occur.
These processes may lead to the generation of high-order
harmonics [3–6], or photoelectrons with energies well above
the ionization threshold, in what is known as above-threshold
ionization (ATI) [7–9].

Besides the myriad applications, such as attosecond light
[10,11] and electron [12] pulses and photoelectron holography
[13,14], rescattering processes naturally call for orbit-based
approaches, both classical and quantum mechanical. Quantum
mechanically, electron orbits are associated with transition
amplitudes and describe the several pathways an electron can
take to the detector. This is the key ingredient in several semi-
analytic approaches, which have been formulated to describe
the dynamics of the liberated electron under the influence of
the driving field and the Coulomb potential of the residual
ion [15,16]. If the process is analyzed in terms of the Feyn-
man path-integral formalism [17], the ionization amplitude is
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written as the sum of the contributions of different quan-
tum orbits [18,19]. These quantum orbits have a well-known
space-time evolution, so the method allows us to investigate
different options available to the freed electron.

The most traditional and widespread of such approaches is
the strong-field approximation (SFA). The SFA assumes that
the driving field is so strong that the influence of the parent
ion on the liberated electron can be neglected during the
electron propagation upon eventual rescattering [20–24]. This
approximates the continuum by field-dressed plane waves
[7,25,26], which are analytically tractable, and rescattering
is incorporated by constructing a Born-type series around
these solutions [27,28]. This leads to a clear-cut definition of
scattering, which has influenced the main way of thinking in
the research area for decades.

Specifically for ATI, besides the scenario in which the
liberated electron goes directly to the detector (the so-called
direct electrons), the oscillatory character of the applied field
can return the electron to the vicinity of its parent ion and
rescattering may occur. If rescattering happens, the process is
referred to as high-order ATI (HATI) and its signature is a long
plateau with comparable peak intensities [29] (for a review
see, e.g., [30–32]). These electrons are known as rescattered
electrons. Quantum-orbit methods were employed within the
SFA to investigate the direct electrons (see, for example,
Ref. [21]), while the solutions for the rescattered electrons
were systematically presented and classified in Ref. [33] for
linearly polarized and in Ref. [34] for bicircular driving fields.

The SFA theory was applied to the HATI process in
Refs. [27,35], but the role of the residual Coulomb potential
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remained an open question. At first, the influence of the
Coulomb potential was accounted for through the Born series
analyzing the influence of the screening parameter [36],
while later approaches incorporated Coulomb distortions
in the resulting scattering waves [37], combined with the
Born series [38]. Eventually, the continuum propagation was
modified [39–42], although not all groups of orbits leading
to substantial contributions were taken into consideration
[39,40], or approximations have been made on the scattering
angle [41–43]. For the main methods beyond the SFA, see the
review article [14].

A Coulomb-distorted continuum invites a wide range of
questions, such as whether a distinction between direct and
rescattered electrons can still be made and, if so, what would
its validity range be. Many features identified in photoelectron
holography, such as the fan-shaped structure that occurs near
the ionization threshold [44,45] or the spiderlike structure
near the polarization axis [13], were observed in experiments
and in the full numerical solution of the time-dependent
Schrödinger equation, but not in the SFA. More recent ex-
amples are spiral-like structures [46] or twisted holographic
patterns that have been predicted for elliptically polarized
fields if the Coulomb potential is included [47].

An important breakthrough occurred in the past decade,
with the development of strong-field path-integral approaches
that incorporate the driving field and the Coulomb potential
on an equal footing [48–53]. These approaches do not resort
to Born-type expansions, which means that the distinction
between direct and rescattered electrons is blurred. This is
expected as, in reality, the interplay between the residual bind-
ing potential and the driving field is highly nontrivial, which
invites many questions. Would an electron, being deflected
by the potential, but whose perihelion is larger than the Bohr
radius be direct or rescattered? For instance, in [54,55] it was
shown that a fan-shaped holographic structure could only be
created if the Coulomb tail was accounted for, but for all
purposes, the interfering orbits were viewed as direct. Further-
more, in [48] whole sets of orbits were encountered which
had no SFA counterpart. What about the scenarios in which
an electron is trapped or recaptured by the ionic potential
[56–58]? Above all, how does one compare theories whose
structures are so different?

In our earlier publications [47,51,54,55,59] the compar-
ison between the results obtained using the SFA and the
Coulomb quantum-orbit strong-field approximation (CQSFA)
was made without considering the structural differences be-
tween the theories. For example, in the SFA theory, the
intermediate electron momentum changes abruptly at the mo-
ment of rescattering, which happens when the electron is at
the position of the core. In the CQSFA, this is not the case,
i.e., the trajectory can go very close to zero, but will never
be zero, while the change of the photoelectron momentum
is continuous. Furthermore, we focused on what the SFA
leaves out, instead of looking for similarities. The strong-field
approximation was presented as a limit for the CQSFA orbits
in specific parameter ranges [59] and comparisons with direct
SFA electrons were performed to emphasize the deflection
caused by the residual potential [47,55]. Up to recently, the
CQSFA was solved as a purely boundary problem, which
required some preknowledge of the orbits’ dynamics. This

excluded entire sets of orbits, which were revealed in a recent
publication in which hybrid and forward implementations of
the CQSFA were made [60]. These orbits led to annular intra-
cycle fringes that resembled those found for rescattered SFA
orbits [61].

In the present paper we systematically compare the results
obtained using our theories. We discuss how the CQSFA
trajectories which mimic the behavior of the SFA trajecto-
ries can be isolated and how good the agreement is between
the partial contributions to the probability density. Also, we
discuss how these differences depend on the photoelectron
energy by tracking the phase accumulated due to the Coulomb
potential. Our focus will be on the rescattered regime, as a
comparison with direct SFA electrons has been performed
elsewhere [54,55].

To keep the focus on how far a Born-type approach goes in
reproducing the full continuum dynamics, we have opted for
the simplest possible system: hydrogen in a linearly polarized
monochromatic field. Simulating a real experiment may re-
quire focal averaging, depletion, bound-state dynamics, and a
realistic pulse. These effects are potential sources of incoher-
ence [62] and they may skew the interference patterns one is
trying to assess (see [63,64] for examples in a two-electron
scenario) and modify the dynamical constraints associated
with rescattering. Assessing all these additional effects would
detract from the main purpose of the present work. However,
it is known that for pulses longer than ten optical cycles, a
flat envelope is a good approximation [21]. Furthermore, the
CQSFA has been successfully employed to explain experi-
ments in rare gases such as xenon [46] and argon [65,66],
as well as to detect parity in diatomic molecules [67]. In the
modeling of these experiments, a monochromatic wave was
assumed and still the theory reproduced subtle effects such as
multipath holographic interference [65,66].

The paper is organized as follows. In Sec. II we present
the two versions of the saddle-point method: one based on
the SFA and one based on the Coulomb-distorted CQSFA. In
Sec. III we discuss how the trajectories obtained in the SFA
theory can be extracted from the CQSFA theory. Moreover, we
discuss the behavior of some of the trajectories which do not
have an SFA analog. In addition, we briefly present the clas-
sification of the quantum orbits for both theories. In Sec. IV
we present our numerical results and discuss the similarities
and differences between the two theories. Section V contains
a summary of our work and our main conclusions. Atomic
units are used unless stated otherwise.

II. BACKGROUND

The probability amplitude for the transition from the initial
bound state |ψ0〉 to the free final state |ψp f 〉 with momentum
p f is given by [30]

Mp f = −i lim
t→∞

∫ t

−∞
dt0〈ψp f (t )|U (t, t0)r · E(t0)|ψ0(t0)〉, (1)

where U (t, t0) is the evolution operator which corresponds to
the total Hamiltonian H (t ) = H0 + HI (t ) of the system. Here
H0 is the time-independent part which describes the electron
exposed to the atomic potential, while the time-dependent part
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HI (t ) = r · E(t ) corresponds to the interaction of the electron
with the applied field E(t ).

A. Strong-field approximation

The evolution operator U (t, t0) can also be written as

U (t, t0) = UF(t, t0) − i
∫ t

t0

dt ′′U (t, t ′′)V (r)UF(t ′′, t0), (2)

where UF(t, t0) is the Volkov evolution operator, V (r) is the
atomic potential and an expansion around it can be con-
structed iteratively. Using only the first term of the previous
expansion, we obtain the amplitude of the direct electrons

M (0)
p f

= −i
∫ ∞

−∞
dt0〈p f + A(t0)|r · E(t0)|ψ0〉eiSd (p f ;t0 ), (3)

where A(t ) is the vector potential of the field E(t ) =
−dA(t )/dt and Sd (p f ; t0) = Sp f (t0) + Ipt0 is the modified
action for the direct electrons, with Sp f (t ) = ∫ t dt ′[p f +
A(t ′)]2/2 and Ip the ionization potential. The free final state
|ψp f 〉 is approximated by a plane wave. Finally, t0 is the ion-
ization time. On the other hand, the second term from Eq. (2)
gives the amplitude of the rescattered electrons

M (1)
p f

= −
∫ ∞

−∞
dt0

∫ ∞

t0

dt
∫

dk〈p f |V (r)|k〉

× 〈k + A(t0)|r · E(t0)|ψ0〉eiSr (p f ,k;t,t0 ). (4)

Here Sr (p f , k; t, t0) = Sp f (t ) − Sk(t ) + Sk(t0) + Ipt0 is the
modified action for the rescattered electrons, while t is the
rescattering time. For the remainder of this paper, this contri-
bution is referred to as the SFA.

The integral which appears in Eq. (4) can be solved numer-
ically or using the saddle-point (SP) method. The stationary
condition which corresponds to the momentum k is satisfied
for kst(t0, t ) = − ∫ t

t0
A(t ′)dt ′/(t − t0), while the conditions

which correspond to the ionization ∂Sr (p f , kst; t, t0)/∂t0 = 0
and rescattering time ∂Sr (p f , kst; t, t0)/∂t = 0 lead to the SP
equations

[kst + A(t0)]2 = −2Ip, (5)

[kst + A(t )]2 = [p f + A(t )]2, (6)

which represent the energy-conservation conditions at the
ionization and rescattering times, respectively. The solutions
were classified previously in [68] for high-order harmonic
generation (see Sec. III). The modified SP method (see
Appendix B in Ref. [21]) leads to the expression for the
rescattering amplitude

M (1),SP
p f

= 2iπ3/2κ5/2
∑
{t0s,ts}

〈p f |V |kst〉
[i(ts − t0s)]3/2

× 1

S′′
rs0

(
2π i

S′′
rs

)1/2

eiSrs , (7)

where we introduced Srs = Sr (p f , kst; ts, t0s), S′′
rs0 =

∂2Sr/∂t2
0 |t0s,ts , S′′

rs = ∂2Sr/∂t2|t0s,ts , and κ = (2Ip)1/2 and
the sum is over the solutions t0s and ts of the SP equations (5)
and (6).

B. Coulomb quantum-orbit strong-field approximation

For the approach that takes into account the Coulomb po-
tential, the probability amplitude (1) can be written as

Mp f = − i lim
t→∞

∫ t

−∞
dt0

∫
dp̃0〈p̃ f (t )|U (t, t0)|p̃0〉

× 〈p̃0|r · E(t0)|ψ0(t0)〉, (8)

with |p̃ f (t )〉 = |ψp f (t )〉, and p̃0 = p0 + A(t0) and p̃ f (t ) =
p f + A(t ) the initial and final velocities of the electron
at the times t0 and t , respectively. The matrix element
〈p̃ f (t )|U (t, t0)|p̃0〉 can be calculated using the path-integral
method, leading to the expression [51,69–71]

Mp f = − i lim
t→∞

∫ t

−∞
dt0

∫
dp̃0

∫ p̃ f (t )

p̃0

D′p̃
∫ Dr

(2π )3

× eiS(p̃,r,t,t0 )〈p̃0|r · E(t0)|ψ0〉, (9)

where D′p and Dr are the integration measures for the path
integrals, the prime indicates a restriction, and the action reads

S(p̃, r, t, t0) = Ipt0 −
∫ t

t0

[ṗ(t ′) · r(t ′) + H (t ′)]dt ′, (10)

with H (t ′) = H [r (t ′), p (t ′), t ′] = [p(t ′) + A (t ′)]2/2 + V
[r(t ′)]. The stationary conditions for the variables t0, p, and
r lead to the equation

[p(t0) + A(t0)]2 + 2V [r(t0)] = −2Ip, (11)

as well as to the classical equations of motion of the electron

ṗ = −∇rV [r(t ′)], ṙ = p + A(t ′). (12)

The integral and the saddle-point equations are solved using
a two-pronged contour. The first part of the contour is chosen
along the imaginary-time axis, from t ′ to Ret ′, and the second
part of the contour is taken along the real-time axis, from
Ret ′ to a final time t → ∞. In the first part of the contour,
the momentum is assumed to be constant and the binding
potential in Eq. (11) is neglected. This makes the sub-barrier
contribution to the action dependent on the tunnel trajectory

r0(τ ) =
∫ τ

t ′
[p0 + A(τ ′)]dτ ′, (13)

which can be used to define the tunnel exit

z0 = Re[r0‖(t ′
r )], (14)

where r0‖(t ′
r ) is the component of the tunnel trajectory

[Eq. (13) for τ = t ′
r] parallel to the driving-field polariza-

tion. One should note that setting the tunnel exit to be real
is an approximation, which renders the continuum propaga-
tion equations real. This approximation leads to practically
no changes in the interference patterns and has been used
in almost all our publications. Solving the full complex
problem will involve branch cuts and has been discussed
elsewhere [72].

A classification of the solutions to the system of equa-
tions (11) and (12) was introduced in [51] based upon the
initial conditions and the final momentum of the photoelectron
trajectory. However, this classification was found to be incom-
plete [60] because more information about the intermediate
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momentum and position is necessary for a full characteriza-
tion of the qualitative nature of the trajectory (see Sec. III).
Using the solutions t0s, ps, and rs of these Coulomb-corrected
SP equations, the probability amplitude can be written as

MCSP
p f

∝ lim
t→∞

∑
s

D−1/2C(t0s)eiSs−iπνs/2, (15)

where Ss = S(p̃s, rs, t, t0s), D = det[∂ps(t )/∂ps(t0s)],

C(t0s) =
√

2π i

S′′
0

〈p f + A(t0s)|r · E(t0s)|ψ0〉, (16)

S′′
0 = ∂2S(p̃s, rs, t, t0s)/∂t2

0s, and νs is the Maslov phase asso-
ciated with a solution s as calculated by the prescription given
in [73,74]. Here we use the hybrid CQSFA implementation
discussed in [60].

In the following section we compare our results obtained
using the SFA and CQSFA theories using the example of
the hydrogen atom exposed to a linearly polarized field. The
ionization potential is 0.5 a.u. Our driving field is E(t ) =
E0 sin(ωt )êx, with E0 the amplitude, and we define the emis-
sion angle θe as the angle between the final photoelectron
momentum and the unit vector êx.

III. MOMENTUM MAPPING
AND ORBIT CORRESPONDENCE

In this section we explain how the two theoretical models
are related to each other. The SFA and CQSFA theories are
different in a way that the SFA is a Born-expansion-based
theory, meaning that the electrons which go directly to the de-
tector, as well as the electrons which experience one or more
rescattering events, are clearly identifiable. The continuum is
approximated by laser-dressed plane waves and the electron
rescatters with the potential when it returns to the site of its
release, namely, the origin. Spatially, this assumption locates
the interaction at a single point.

On the other hand, the CQSFA approach treats the
Coulomb and the laser-field potentials equally. Because of
the spatial range of the Coulomb potential, it is not straight-
forward to determine whether the electron can be viewed as
direct, undergoing a mere deflection, a soft collision, or a hard
collision. Furthermore, the potential may trap the outgoing
electron or lead to multiple collisions. This makes the dif-
ference between the direct and rescattered electrons blurred
and also means that not every orbit in the CQSFA will exhibit
an SFA counterpart. Therefore, we must identify those that
do. The main goal of this section is to understand what types
of orbits can be compared between these methods and the
procedure one must follow in order to do this.

A. Orbit classification

We start with a short reminder about the classification of
the SP solutions for both theories. In the SFA theory, the
rescattering solutions occur in pairs associated with a longer
and a shorter orbit, which coalesce for maximal classically
allowed rescattering energies. These energies are associated
with sharp decreases in the photoelectron signal, which are
known as cutoffs [75]. They are classified into two groups:
the backward- and forward-scattering solutions. In the former

case, the electron is rescattered in approximately the opposite
direction with respect to the direction of its motion before
the scattering event, while in the latter case, the electron
is only deflected during this event. Therefore, within the
SFA, the parameter used to enforce this distinction is the
rescattering angle.

The backward-scattering solutions are classified using the
multi-index (α, β, m). For the return times within one optical
cycle, there are infinitely many solutions with different travel
times τ = t − t0. The index m gives the approximate value of
the travel time in units of laser-field period T = 2π/ω, with
ω the angular frequency. For −(m + 1

2 )T < t0 < −(m − 1
2 )T ,

m = 0, 1, 2, . . ., there are two pairs of solutions distinguished
by the index β in such a way that β = −1 (β = +1) corre-
sponds to the longer (shorter) travel time. Furthermore, the
two solutions of one pair are distinguished by the index α.
The long (short) solution is denoted by α = −1 (α = +1).

The forward-scattering solutions were classified in [33] us-
ing the multi-index (μ, ν) in such a way that μ = 0, 1, 2, . . .

measures the travel time, while the index ν = ±1 is used to
distinguish the two solutions of one pair. The positions of
the cutoff for these solutions were classically found in [76],
while those positions with quantum corrections were given in
[77]. Besides the shortest and the second-shortest pair, other
forward-scattering solutions contribute only in a low-energy
part of the spectra (Ep f < 0.04Up, with Up = E2

0 /(4ω)2 the
ponderomotive energy).

For the CQSFA theory, the classification of the solutions
was introduced in [51,55] based upon the initial conditions
and the final momentum of the photoelectron trajectory. The
solutions with p f ,y p0,y > 0 are referred to as orbit 1 for
z0 p f ,x > 0 and orbit 2 for z0 p f ,x < 0, while for p f ,y p0,y < 0
the solutions are referred to as orbit 3 for z0 p f ,x < 0 and orbit
4 for z0 p f ,x > 0, where z0 is the tunnel exit. In those early
publications, orbit 1 was identified with a direct SFA orbit in
which the electron is freed in the direction of the detector and
orbits 2 and 3 behave as field-dressed hyperbolas starting half
a cycle earlier or later, with the difference that orbit 2 interacts
less with the core and can still be viewed as direct, while
orbit 3 has a hybrid character. Orbit 4 goes around the core
before reaching the detector and is identified as backscattered.
In more recent publications [59,60], however, we found that
these distinctions are blurred and a wide range of behaviors
for each of the four types of orbit can be identified by applying
spatial filters. If the orbit’s distance of closest approach rc is
larger than the radius rT determined by the tunnel exit, the
CQSFA orbit is considered direct. If the orbit’s perihelion lies
between the tunnel exit and the Bohr radius, that is, rT �
rc � r0, we refer to the orbit as soft scattered, while if rc < r0

the CQSFA orbit is hard scattered. A thorough analysis using
these filters was performed in [60].

Here, instead of using a spatial filter, in order to
compare the CQSFA with the SFA, we eliminate all orbits
which do not have analogous SFA solutions by ruling out
multiple-scattering events or single-scattering events induced
significantly by the long range of the Coulomb potential.
The simple criterion which was used is keeping only the
solutions which correspond to the trajectories that cross the
ry = 0 axis once. It turns out that this criterion allows one to
recover families of solutions which may be compared with
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TABLE I. Main types of orbits identified using the CQSFA ap-
proach. The + (−) sign on each cell indicates a positive (negative)
value of the product. The fourth column contains the SFA orbits
which can be extracted from the corresponding CQSFA orbits.

Orbit z0 pf ,x p f ,y p0,y SFA orbit

1 + + direct
2 − + direct
3 − − (β, m) = (1, 1), (1, 2),

forward scattering
4 + − (β, m) = (−1, 0), (−1, 1)

the single-rescattering SFA solutions. Additional constraints
have been imposed by matching the CQSFA rescattering
times to their SFA counterparts, as will be discussed below.

Following the approximations stated above, the rescatter-
ing solutions found in the SFA theory can be reproduced from
the orbit 3 and orbit 4 solutions from the CQSFA theory.
Orbit 1 and orbit 2 solutions mainly correspond to the direct
electrons. The relation between the solutions obtained using
our theories is summarized in Table I.

B. Extracting SFA solutions

Here the SFA orbits that can be extracted from the cor-
responding CQSFA orbits are given in the fourth column of
Table I. For the SFA solutions (β, m) = (1, 0) [33], we have
not found the CQSFA analog. Finally, it is worth mention-
ing that the CQSFA orbits are classified using the boundary
conditions of the trajectories that specify the four types of
orbits, while the SFA orbits are classified using the value of
the electron’s velocity just before rescattering.

Now we illustrate how we extracted the earlier-mentioned
SFA solutions from the CQSFA theory. In Fig. 1(a) we present
the values of the initial momentum of semiclassical trajecto-
ries calculated using the CQSFA theory whose final momenta
belong to a uniform grid. Different types of orbits (see Table I)
are coded with different colors as indicated in the legend.
For simplicity, we have considered only solutions with the
ionization time in the second half cycle. The half-cycle sym-
metry that is inherent to this field [78,79] guarantees that
there will be no loss of information. Both half cycles were
considered in [60]. The solutions with the final momentum
in the first (second) quadrant of the final momentum plane
correspond to orbit 1 (2). On the other hand, the solutions with
the final momentum in the third (fourth) quadrant of the final
momentum plane, shown in Fig. 1, correspond to orbit 3 (4).
The island close to the origin leads to the rescattering ridges,
while the island centered at (p0,x, p0,y ) = (−2U 1/2

p , 0.2U 1/2
p )

gives rise to caustics [60]. Both of these islands are visible in
Fig. 1(a), while in Fig. 1(b) only the central island, which is
responsible for the ridges shown in Fig. 1(c), is presented.

Using specific subsets of the initial momentum points,
rescattered trajectories analogous to those obtained in the SFA
can be obtained. In Fig. 1(b) we display these subsets in such
a way that the red (gray), blue (dark gray), orange (light gray),
and pink (bright gray) regions lead to the backward-scattering
SFA solutions listed in order of increasing travel time. For
example, the solutions represented by the red (gray) points

FIG. 1. (a) Values of the initial momentum of semiclassical tra-
jectories calculated using the CQSFA whose final momenta belong to
a uniform grid. Different types of orbits are presented with different
colors as indicated in the legend. The results are obtained for the sec-
ond half cycle of the monochromatic field. Also shown are the values
of the (b) initial and (c) final momenta of semiclassical trajectories
for orbits 3 and 4, obtained using the CQSFA theory, which have
analogous counterparts in the SFA backward-scattered solutions.
They are coded in different colors as indicated in the legend in (c).
The intensity of the applied field is I = E 2

0 = 2 × 1014 W/cm2 and
the angular frequency ω corresponds to a wavelength of 800 nm.

correspond to the backward-scattered SFA solutions with the
shortest travel time. Since these solutions can all be classified
as orbit 3 or orbit 4, only the solutions classified as such are
displayed in Figs. 1(b) and 1(c). For the CQSFA we choose
the rescattering time to be the time at which the trajectory
reaches its perihelion. Physically, this is the most appropriate
assumption one can make to compare with the SFA, which is
a Born-type expansion for which rescattering times are well
defined according to Eq. (6).

The range of these solutions regarding the final momentum
is shown in Fig. 1(c), with rescattering ridges marking the
maximal classical momenta associated with specific orbits.
The rescattering ridges formed by the first- and third-shortest
solutions intersect the p f ,x = 0 axis, while this is not the case
for the second- and fourth-shortest solutions. The first- and
third-shortest solutions with the final momentum p f ,x < 0
(not shown in the figure) correspond to the SFA forward-
scattering solutions. Similar solutions do not exist for the
second- and fourth-shortest pairs, so the forward-scattering
SFA solutions can only be extracted from the orbit 3 CQSFA
solutions. The solutions represented by the black dots [see
Fig. 1(b)] account for the remaining CQSFA trajectories.
These include the forward-scattering solutions and the so-
lutions which include multiple-scattering events. A detailed
study of the initial-to-final momentum mapping of the CQSFA
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FIG. 2. Values of the (a) initial and (b) final photoelectron
momenta of the semiclassical orbit 1 trajectory calculated using
the CQSFA theory for the situation in which the trajectories make
one loop in the clockwise [blue (dark gray) regions] or counterclock-
wise [red (gray) regions] directions around the core, as well as for
the trajectories which do not make any loop around the core [orange
(light gray) regions]. (c) Examples of orbit 1 trajectories for given
values of the initial conditions.

orbits, with and without SFA counterparts, was performed in
[60], using different versions of the CQSFA and the spatial
filtering mentioned in Sec. III A.

C. Counterexamples: Orbits with no SFA analogy

Despite the fact that the direct SFA orbits can be extracted
from orbits 1 and 2, this does not mean that orbits classified
as 1 and 2 correspond only to the direct electrons. To illustrate
this, we show a few examples of the rescattering trajectories
corresponding to either orbit 1 or orbit 2 CQSFA solutions. In
Fig. 2 we present the values of the initial [Fig. 2(a)] and final
[Fig. 2(b)] photoelectron momenta of the semiclassical orbit 1
trajectories calculated using the CQSFA theory. Among all so-
lutions, we extract those which correspond to the trajectories
which make a loop in the clockwise [blue (dark gray) regions]
or counterclockwise [red (gray) regions] direction around the
core. The regions which correspond to the trajectories which
do not make a loop around the core are denoted by the orange
(light gray) color. The three regions of the final momentum
which correspond to these trajectories partiality overlap [see
Fig. 2(b)]. However, the ridges of these trajectories can still be
easily noticed. The ridge associated with the trajectory which

makes a loop in the clockwise direction has the highest energy,
while the lowest-energy ridge corresponds to the trajectory
which makes a loop in the counterclockwise direction around
the core. The examples of these trajectories are shown in
Fig. 2(c). The values of the initial-momentum components
for the trajectory which makes a loop in the clockwise (coun-
terclockwise) direction are p0,x = 0.002 14 and p0,y = 0.212
(p0,x = 0.3679 and p0,y = 0.0711), while for the trajectory
that does not make a loop around the core, these values are
p0,x = −0.0254 and p0,y = 0.135, in units of U 1/2

p . For clar-
ity, although the field dressing means that initially some of the
trajectories shown in Fig. 2(c) travel into the second quadrant
of the plane, they are indeed orbit 1 trajectories and will even-
tually move into the first quadrant outside the position ranges
shown in the figure. Clearly, these are rescattering trajectories
even though they correspond to the orbit 1 solutions. Addi-
tionally, the radial vector of the perihelion of the trajectory
which loops around the core in a counterclockwise direction
[see the red (gray) line in Fig. 2(c)] makes an angle of 55◦ with
the negative rx axis. This shift of the perihelion is what allows
the photoelectron to scatter into the first quadrant and is an
effect which relies entirely upon the presence of a long-range
Coulomb potential. Similar conclusions are valid for the orbit
2 solutions.

The examples discussed above focus on the specific sce-
narios for which there is hard scattering, in the sense that the
orbit’s distance of closest approach is smaller than that defined
by the tunnel exit. However, in previous publications we have
provided examples of many orbits which do not have SFA
counterparts. For instance, in [54] we showed that the near-
threshold fan-shaped structure encountered in experiments
occurs due to a Coulomb distortion of orbit 2, which is angle
dependent and resembles a laser-dressed Kepler hyperbola.
Upon interference with orbit 1, it gives rise to a radial set of
fringes centered at (p f ,x, p f ,y ) = (0, 0). A direct orbit 2 in the
SFA sense, instead of the CQSFA orbit, leads to nearly vertical
structures and fails to reproduce the fan [55]. Furthermore,
orbit 3 cannot always be understood as forward scattered and
under some circumstances exhibits a hybrid character. This is
important for an accurate description of the spiderlike fringes
[55,59]. In [59] we reported several overlooked holographic
structures, whose existence is determined by the existence of
the residual potential in the continuum. One of these struc-
tures, the spiral, has been identified in experiments [46] and
has been shown not to be reproduced by either direct or
rescattered ATI using the standard SFA.

IV. RESCATTERED ELECTRONS: SFA VS CQSFA

In this section we present numerical results for the ion-
ization and rescattering times as well as the photoelectron
momentum distributions obtained using the strong-field ap-
proximation and the Coulomb quantum-orbit strong-field
approximation theories.

A. Times and orbits

First, we investigate and classify the solutions for the ion-
ization and rescattering times obtained using the SFA and
CQSFA theories. The low-energy region is dominated by the
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FIG. 3. (a) and (c) Ionization and (b) and (d) rescattering times for the SP solutions relevant in the medium- and high-energy regions of the
spectrum calculated using the (a) and (b) SFA and (c) and (d) CQSFA theories. The intensity and frequency of the applied field are the same as
in Fig. 1. The emission angle is θe = 0◦. The values of the multi-index (β, m) are indicated above (a), while the values of index α are indicated
within (a) and (b).

contribution of direct electrons, which means that the rescat-
tered solutions, which we consider here, are most relevant in
the medium- and high-energy regions of the spectra.

In Fig. 3 we present the SP solutions for the ionization
[Figs. 3(a) and 3(c)] and rescattering times [Figs. 3(b) and
3(d)] obtained using the SFA and CQSFA theories. All solu-
tions exhibit archlike structures associated with pairs of orbits
that coalesce at specific energies. These energies correspond
to maxima of the electron’s classical kinetic energy and give
kinematic constraints that may be associated with a cutoff in
the photoelectron spectra. The highest cutoff energy, at 10Up,
is associated with the shortest pair of orbits [80]. The SFA
classification of the solutions is presented in Fig. 3(a). More
precisely, the values of the multi-index (β, m) are indicated
above Fig. 3(a), while the values of index α are indicated
within Figs. 3(a) and 3(b). Nonetheless, at first glance, there
are a few differences between the SFA and CQSFA results.
For example, the ionization and rescattering times calculated
using the CQSFA theory are shifted with respect to those ob-
tained using the SFA. Also, the archlike structures, calculated
using the CQSFA, are closed for the low-energy values. In
order to better assess the aforementioned differences, in Fig. 4
we present the results for the ionization and rescattering times
for the shortest (β, m) = (−1, 0) [Figs. 4(a) and 4(b)] and
second-shortest (β, m) = (1, 1) [Figs. 4(c) and 4(d)] solutions
of the SP equations calculated using the SFA (dashed lines)
and CQSFA (solid lines) theories. Both the ionization and
rescattering times are shifted when the Coulomb effects are
taken into consideration. For the ionization time, this shift is
approximately the same for both pairs of solutions, while for
the rescattering time, the shift is different for the two pairs.
In addition, the effect of the Coulomb potential is generally
different for the two solutions of one pair. The difference
between the rescattering times of the solutions of the shortest
pair [see Fig. 4(b)] is more pronounced than the correspond-

ing difference for the solutions of the second-shortest pair
[see Fig. 4(d)], particularly in the medium- and high-energy
regions of the spectrum. For the first return, the difference
in travel time calculated using the SFA and CQSFA theories
is small for all values of the photoelectron energy. We have
checked that this shift becomes more pronounced for later
rescattering occurrences. This happens due to the fact that,
for the later rescattering events, the electron spends more
time close to the core, thus increasing the significance of the
Coulomb potential.

In the low-energy region of the spectrum, the shift of the
rescattering time, due to the Coulomb effect, is larger. This
can be explained by the fact that the low-energy electrons
spend more time in close proximity to the core than the high-
energy electrons. The Coulomb potential energy V (r) [see
Eq. (12)] of the liberated electron is sensitive to the small
oscillations of the electron subjected to the laser field. In order

FIG. 4. (a) and (c) Ionization and (b) and (d) rescattering times
for (a) and (b) the shortest and (c) and (d) the second-shortest SP
solutions calculated using the SFA (dashed lines) and CQSFA (solid
lines) theories.
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FIG. 5. Coulomb potential as a function of time for (a) the short-
est and (b) the second-shortest pair of solutions from Fig. 4. The
values of the photoelectron energy are indicated in the panels; the
solid and dashed lines correspond to the short and long trajectories,
respectively.

to illustrate this, in Fig. 5 we present V (r) as a function of time
for the shortest [Fig. 5(a)] and the second shortest [Fig. 5(b)]
pair of solutions. We present the potential for the values of the
photoelectron energy Ep f as indicated in the legends and for
both the short (solid lines) and long (dashed lines) solutions.
The rescattering events happen around 0.5T . By comparing
the values of the potential during the rescattering event for dif-
ferent values of the photoelectron energy, we see that, for the
high and medium values of the energy, the potential rapidly
goes to a large negative value [see the blue (dark gray) and
orange (light gray) lines in Fig. 5]. On the other hand, for the
small value of the photoelectron energy, the behavior of the
potential during rescattering is different for the shortest and
second-shortest pairs of solutions. In the case of the second-
shortest pair, the photoelectron does not closely approach the
core and the potential well is approximately as deep as it
is at the tunnel exit [see the red (gray) lines in Fig. 5(b)].
In addition, the potential exhibits oscillations which continue
long after rescattering [see the red (gray) lines in Fig. 5]. This
explains the fact that the deviation of the rescattering time
calculated using the CQSFA from the time calculated using
the SFA theory is more pronounced in the low-energy region.

Finally, the two branches of the second-shortest (as well
as for the fourth-shortest) set of solutions approach each
other for low energy in a similar manner as they do for the
high-energy cutoff [see Fig. 4(d)]. This can be related to
the results shown in Fig. 1(c). As we already mentioned in
Sec. III, the sets of saddle-point solutions corresponding to
the second- and fourth-shortest pairs do not intersect with the
p f ,y axis. Therefore, as the energy of solutions goes to zero in
the direction of emission θe = 0◦, they approach the caustic
and coalesce. This low-energy caustic also passes through
the origin in the SFA theory and, equivalently, a coalescence
of saddles occurs. However, we do not observe the same
low-energy coalescence of the rescattering and ionization
times since the coalescence is only visible on extremely-
low-energy scales. This happens because the presence of a
long-range Coulomb potential implies that the photoelectron

requires a certain minimum energy to escape this
interaction.

It is also worth noting that, although the rescattering and
ionization times of the third-shortest pair of solutions begin
to approach for low energies, they do not actually coalesce.
The coalescence occurs, as is the case for the shortest pair,
in the half plane with opposite sign of p f ,x . This is the
momentum region occupied by the solutions analogous to
the SFA forward-scattered solutions. It has been excluded
by the restrictions imposed in the CQSFA to match its
orbits with the backscattered SFA solutions. For the short-
est pair, this region will give rise to the μ = 0 solution,
and for the third-shortest pair it corresponds to the μ = 1
forward-scattered solutions. There are no forward-scattering
orbits corresponding to the remaining pairs. The begin-
ning of this coalescence is visible for the third-shortest
pair of solutions because the intersection of the set of
saddle-point solutions for the third-shortest pair intersects
with the p f ,y axis at a much smaller perpendicular mo-
mentum than the set of saddle-point solutions for the
shortest pair.

B. Photoelectron momentum distributions

After analyzing the differences between the solutions of the
SP equations obtained using the two methods, we now turn
our attention to the differences in the photoelectron momen-
tum distributions. We devote particular attention to the three
pairs of solutions with the shortest travel time.

In Fig. 6 we present the photoelectron momentum distribu-
tions (PMDs) for the shortest [Fig. 6(a)], the second-shortest
[Fig. 6(b)], and the third-shortest [Fig. 6(c)] backward-
scattering solutions of the SP equations. The upper half of
the panels corresponds to the SFA distributions, while the
lower half of the panels is calculated using the CQSFA theory.
The results shown in different panels are normalized inde-
pendently. The solutions obtained using the SFA appear in
pairs and the divergent contribution beyond the cutoff has
been discarded [68]. The rescattering ridges which appear
in the PMDs, calculated using our two theories, appear at
roughly the same place in the momentum plane. Each ridge
is associated with the maximal classical energy available for
a pair of backscattered orbits, and the fringes characterize
the interference between the long and short orbits in a pair.
They are well known in the SFA [80] and have recently been
identified in the CQSFA context [60]. Throughout, we see
that the SFA fringes are perfectly circular, while their CQSFA
counterparts exhibit distortions close to (p f ,x, p f ,y ) = (0, 0).
There are also mismatches in the positions of the fringes,
which depend on the pair of orbits taken into consideration.

For the shortest pair of solutions [see Fig. 6(a)], the
agreement between the results obtained using the two earlier-
mentioned theories is good except for the regions p f ,x ∈
[±0.5U 1/2

p ,±1.8U 1/2
p ] and |p f ,y| < 0.7U 1/2

p . More specifi-
cally, the positions of the minima, caused by the interference
of the two contributions of the pair, appear for approximately
the same energy in both cases. In contrast, in the low-energy
region, the CQSFA fringes become tear shaped and there
are mismatches with regard to the SFA. The main difference
appears for the emission in the direction close to θe = ±90◦.
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FIG. 6. Photoelectron momentum distributions for (a) the shortest, (b) the second shortest, and (c) the third shortest backward-scattering
solutions of the SP equations. The upper half of the panels corresponds to the SFA-obtained distributions, while the lower half of the panels
is calculated using the CQSFA theory. Multi-indices (β, m) which correspond to the SFA-obtained results are indicated in the top left corner
of the panels. (a i) and (a ii) Linear photoelectron spectra calculated using the SFA (orange solid line) and the CQSFA (blue dashed line) for
the values of final momentum denoted by the white dashed and red dash-dotted lines in (a). The vertical axis near the color bar refers to the
right-hand side as well. The driving-field parameters are the same as in Fig. 1.

In this case, the photoelectron yield calculated using the
CQSFA theory is increased with respect to the yield obtained
for other values of the emission angle. This increase in the
photoelectron yield was discussed in [59] and it is not present
in the photoelectron momentum distribution obtained using
the SFA theory. Finally, for energy higher than that of the
cutoff, the applied SFA theory leads to a probability density
which decreases exponentially as a function of the photoelec-
tron energy. On the other hand, for the CQSFA, there are no
trajectories with energy beyond the cutoff. In order to include
the solutions beyond the classical cutoff, complex trajectories
are required. These trajectories can be included as shown in
[72].

In order to discuss the agreement between the SFA and
CQSFA theories as functions of the photoelectron energy, in
Fig. 6(a i) we present the photoelectron momentum spectra for
a fixed value of the momentum component p f ,y = ±0.5U 1/2

p
as functions of the momentum component p f ,x [along the
white dashed lines in Fig. 6(a)]. Clearly, the agreement be-
tween the results obtained using our theories is excellent in
the medium- and high-energy parts of the spectrum. As the
momentum component p f ,x decreases, the agreement between
the positions of the minima and maxima calculated using our
theories becomes slightly worse. On the other hand, the agree-
ment is not good for p f ,x < U 1/2

p , i.e., in the low-energy part
of the spectra. Similar results are presented in Fig. 6(a ii) but
for a fixed p f ,x = 1.32U 1/2

p [along the red dash-dotted line in
Fig. 6(a)] and for changing p f ,y. In this case, the photoelectron

spectrum is shorter, but the discrepancies between the results
calculated using our two theories are still not pronounced
except for values p f ,y < 0.5U 1/2

p . The agreement between the
results becomes better with the increase of p f ,y.

For the second-shortest pair of solutions [see Fig. 6(b)],
the agreement between the results obtained using SFA and
CQSFA theories is much weaker than for the shortest pair.
In particular, the positions of the interference minima do not
coincide very well, indicating that the accumulated phase
differences are not the same. Intuitively, this makes sense
because the contribution of this pair of solutions is mostly
significant in the low- and medium-energy parts of the spec-
tra where the Coulomb effects are particularly pronounced.
Furthermore, for p f ,x ≈ ±1.85U 1/2

p and a small p f ,y, caustics
appear in the results obtained using the CQSFA theory. These
caustics are associated with orbits clustering, but are overesti-
mated due to an artifact of the theory, which fails to work well
in the vicinity of coalescing saddle points. Similarly as for the
shortest pair of solutions, the increase of the photoelectron
yield is predicted by the CQSFA theory, for the emission in
the direction close to the θe = ±90◦. In the end, we mention
that the solutions of the second-shortest pair (and all other
backward-scattering solutions with β = 1) have irregular be-
havior for the energy close to zero in the SFA approach [77].

Finally, for the third-shortest pair, the agreement between
the results obtained using our two theories is reasonable, not
as good as for the shortest pair but better than that observed
for the second-shortest pair. However, the fringes’ positions
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FIG. 7. Real part of the difference between the actions SL and
SS , corresponding to the long (superscript L) and short (superscript
S) orbits of the (a) and (b) shortest and (c) second-shortest pair of
solutions, with modulus 2π as a function of the momentum compo-
nent. The results are calculated using the SFA (red dotted lines) and
CQSFA (blue dotted lines) theories along the lines pf ,y = 0.5U 1/2

p

and pf ,x = 1.32U 1/2
p for the shortest and pf ,x = 2.2U 1/2

p for the
second-shortest pair.

are mismatched and the CQSFA exhibits a larger number of
interference minima (six versus the five minima encountered
for the SFA). There are also caustics which now appear for
p f ,x ≈ ±1.5U 1/2

p and small p f ,y. Besides that, the increase of
the photoelectron yield in the close to orthogonal direction
exists, but it is not pronounced as for the second-shortest pairs.

Up to now, we have discussed the rings which appear in the
photoelectron momentum distributions calculated using SFA
and CQSFA theories. We have concluded that, for the shortest
pair of solutions, there is close agreement between the results
in the medium- and high-energy parts of the spectra, while it is
the case that for the solutions of the second-shortest pair, there
is disagreement across the entirety of the spectra. In order to
explain this, in Fig. 7 we present the real part of the difference
between the actions SL and SS modulus 2π (remainder after
dividing by 2π ), which correspond to the long (superscript L)
and short (superscript S) orbits of the shortest [Figs. 7(a) and
7(b)] and the second-shortest [Fig. 7(c)] pair of solutions for
the fixed values of one momentum component as indicated
in the panels [along the white dashed, red dash-dotted, and
orange dotted lines in Figs. 6(a) and 6(b)]. The results are
calculated using the SFA (red squares) and CQSFA (blue dots)
theories along the lines p f ,x = 1.32U 1/2

p and p f ,y = 0.5U 1/2
p

for the shortest and p f ,x = 2.2U 1/2
p for the second-shortest

pair. When the difference between the real parts of the actions
is equal to an even (odd) multiple of π , maxima (minima)
appear in the spectrum. For the shortest pair of solutions, the
difference ReSL − ReSS becomes smaller as the longitudinal
component of the photoelectron momentum p f ,x increases
[see Fig. 7(a)]. For small values of p f ,x, the differences be-
tween the results obtained using the SFA and CQSFA theories
are pronounced. This is in agreement with the results shown

in Fig. 6(a i). The increased number of minima in the CQSFA
spectrum compared to the SFA spectrum can be understood
by analyzing the behavior of the difference ReSL − ReSS in
the vicinity of p f ,x ≈ 1.3U 1/2

p . In this region, the mentioned
difference reaches a deeper minimum for the CQSFA than
for the SFA such that it extends to the value π and forms
an additional interference minimum. On the other hand, for
p f ,x = 1.32U 1/2

p , the difference ReSL − ReSS remains almost
constant as a function of p f ,y except for a low-energy region
where the Coulomb effects are pronounced [see Fig. 7(b)].
The chosen vertical slice is in the energy region for which
the continuous Coulomb interaction is less significant and the
accumulated phase difference is similar for both theories. Fi-
nally, for the second-shortest pair of solutions, the difference
ReSL − ReSS remains quite pronounced for the broad range
of values of the photoelectron momentum [see Fig. 7(c); in
accordance with results presented in Fig. 6(b)]. The difference
ReSL − ReSS still decreases with the increase of the photo-
electron momentum, but, due to the lower position of the
cutoff for this solution, the Coulomb effects remain significant
for most parts of the photoelectron momentum distribution.
In addition, the shape of the Coulomb potential V [r(t )] may
influence the action [see Eq. (10)]. In particular, for the
second-shortest pair, the Coulomb potential V (r) exhibits a
rich structure prior to the rescattering (see Fig. 5), which is
not the case for the shortest solution. This implies that, due
to this effect, the difference between the CQSFA-calculated
action and the SFA-calculated action may be more significant
than for the shortest pair of solutions.

Besides the backward-scattering solutions, which are
prevalent in the high-energy part of the spectra, the forward-
scattering solutions should also be taken into consideration.
The classification of these solutions is presented in Sec. III.

In Fig. 8 we present the photoelectron momentum distri-
butions for the shortest [Fig. 8(a)] and the second-shortest
[Fig. 8(b)] forward-scattering solutions of the SP equations.
The upper half of the panels corresponds to the SFA distri-
butions, while the lower half of the panels is calculated using
the CQSFA theory. The results shown in different panels are
normalized independently. For the shortest pair of solutions,
the photoelectron momentum distributions calculated using
our theories qualitatively agree well. However, the positions
of the minima caused by the interference of two contributions
are not at the same place. This is particularly the case for the
minima with a small energy. The fact that the interference
minima do not appear at the same place in the photoelectron
momentum plane can be explained in a similar manner as for
the backward-scattering solutions. In addition, for the emis-
sion close to the polarization direction, the CQSFA calculation
leads to an increase in the photoelectron yield in comparison
with the one obtained using the SFA theory. Finally, similarly
to the backward-scattering solutions, the CQSFA does not
give any nonzero probability density after the cutoff because
the complex trajectories are not included.

In Fig. 8(b) we see that, for the second-shortest pair of
solutions, the differences between the presented results are
much more pronounced than for the shortest pair. This is
expected due to the fact that the contribution of this solution
is significant only in the low-energy part of the spectra. In
conclusion, since the contributions of the forward-scattering

033115-10



IMPACT OF THE CONTINUUM COULOMB INTERACTION … PHYSICAL REVIEW A 109, 033115 (2024)

FIG. 8. Photoelectron momentum distributions for (a) the short-
est and (b) the second-shortest forward-scattering solutions of the SP
equations. The index μ used in the SFA classification is shown in the
top left corner of the panels. The upper half of the panels corresponds
to the SFA-obtained distributions, while the lower-half panels are
calculated using the CQSFA theory. The driving-field parameters are
the same as in Fig. 1.

solutions are significant for low- or medium-energy regions,
the Coulomb effects should be taken into consideration.

C. Probing a wider parameter range

In this section we check if and how the derived conclusions
about the SFA and CQSFA results depend on the driving-
field parameters, for the shortest and the second-shortest
pair of orbits. First, we investigate how the difference be-
tween the SFA and CQSFA saddle-point solutions for the
ionization and rescattering times depends on the laser-field
parameters.

In Fig. 9 we present the ionization [Figs. 9(a) and 9(c)] and
rescattering [Figs. 9(b) and 9(d)] times for the driving-field
intensity I = 2 × 1014 W/cm2 and wavelengths of 2000 nm
[pink (bright gray) lines], 1300 nm [orange (light gray) lines],
and 800 nm [red (gray) lines]. In addition, the blue (dark gray)
lines correspond to the saddle-point solutions obtained using
the driving field with intensity I = 1.5 × 1014 W/cm2 and a
wavelength of 800 nm. The dashed (solid) lines denote the so-
lutions obtained using the SFA (CQSFA) theory. Figures 9(a)
and 9(b) and Figs. 9(c) and 9(d) show the shortest and the
second-shortest pair of SP solutions, respectively. The change
of the driving-field parameters affects the difference between
the saddle-point solutions obtained using our two theories,
which is particularly visible for the ionization time. In partic-
ular, as the driving-field wavelength increases, the difference
between the results becomes less pronounced. For example,

FIG. 9. (a) and (c) Ionization and (b) and (d) rescattering times
for the driving-field intensity I = 2 × 1014 W/cm2 and wavelengths
of 2000 nm [pink (bright gray) lines], 1300 nm [orange (light gray)
lines], and 800 nm [red (gray) lines] and for the driving field with
intensity I = 1.5 × 1014 W/cm2 and a wavelength of 800 nm [blue
(dark gray) lines], for (a) and (b) the shortest and (c) and (d) the
second-shortest pair of the SP solutions. The dashed and the solid
lines correspond to the SFA and the CQSFA theory, respectively.

the difference between the ionization-time SP solutions for a
wavelength of 800 nm is far larger than for a wavelength of
2000 nm, for the same laser-field intensity [cf. the difference
between the red (gray) solid and dashed lines and the pink
(bright gray) solid and dashed lines in Figs. 9(a) and 9(c)].
This is more pronounced for the shortest pair of SP solutions.
Moreover, the difference between the SFA and CQSFA results
is less affected by the change in the driving-field intensity [cf.
the difference between the red (gray) solid and dashed lines
and the blue (dark gray) solid and dashed lines in Figs. 9(a)
and 9(c)]. This happens because the electron excursion in the
laser field is directly proportional to the square root of the
driving-field intensity and directly proportional to the square
of the applied-field wavelength. Because the Coulomb effects
fade away at the large distance of the core, the agreement
between the SFA and CQSFA results becomes better much
more rapidly with the increase of the wavelength than with
the increase of the intensity. Nonetheless, there are subtle
differences observed for different driving-field intensities, in
particular for the second-shortest pair of orbits. For the lower
intensity, the range of ionization times is slightly narrower
and the low-energy ends of the archlike structures associated
with the rescattering times close at marginally larger values.
This is due to the increased influence of the Coulomb po-
tential. Finally, we note that the curves which correspond
to the ionization and rescattering times as functions of the
photoelectron energy are closed regardless of the values of
the driving-field parameters for the second-shortest pair of the
SP solutions. As the photoelectron energy approaches zero,
the two solutions coalesce. This coalescence is not sudden
since the photoelectron requires a certain minimum energy
to escape the Coulomb interaction. The reason for this be-
havior being restricted to the second-shortest pair (it also
occurs for the fourth-shortest pair, which is not shown in
Fig. 9) was elaborated on earlier using the results shown in
Fig. 1(c).

Let us now investigate how the difference between
the photoelectron momentum distributions obtained using
the SFA and CQSFA theories is affected by the change of
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FIG. 10. Photoelectron momentum distributions for (a) and (c) the shortest and (b) and (d) the second-shortest solutions of the SP
equations calculated using the SFA (upper half of the panels) and CQSFA (lower half of the panels) theories. The driving-field intensity
and wavelength are (a) and (b) 1.5 × 1014 W/cm2 and 800 nm and (c) and (d) 2 × 1014 W/cm2 and 1300 nm, respectively.

the applied-field parameters. In Fig. 10 we present the photo-
electron momentum distributions for the shortest [Figs. 10(a)
and 10(c)] and the second-shortest [Figs. 10(b) and 10(d)]
solutions of the SP equations calculated using the SFA
(upper half of the panels) and the CQSFA (lower half of
the panels) theories. The driving-field intensity and wave-
length are 1.5 × 1014 W/cm2 and 800 nm in Figs. 10(a)
and 10(b) and 2 × 1014 W/cm2 and 1300 nm in Figs. 10(c)
and 10(d), respectively. For both cases, the agreement be-
tween the calculated results is good and the differences are
mainly restricted to narrow regions in the photoelectron mo-
mentum plane. However, the agreement is better for the
larger intensity and longer wavelength [cf. Fig. 10(a) with
Fig. 10(c), and Fig. 10(b) with Fig. 10(d)]. For the case
of the long wavelength and the high intensity, the minima
caused by the interference of the contributions of the two
solutions of one pair coincide very well for both the short-
est and second-shortest pairs. The only difference appears
in the narrow region around (p f ,x, p f ,y ) = (±1.4U 1/2

p , 0) for
the shortest and around (p f ,x, p f ,y ) = (±1.6U 1/2

p , 0) for the
second-shortest pair. On the other hand, for the smaller inten-
sity and shorter wavelength, the agreement is not excellent,
particularly for the second-shortest pair of SP solutions in
which case the minima obtained using the SFA and CQSFA
theories do not appear at the same place in the photoelectron
momentum plane. Finally, we mention that we did not choose
the laser field with a wavelength of 2000 nm for our illustra-
tion since in this case the number of interference minima is
so large that it is difficult to access the agreement between the
results obtained using our theories.

V. CONCLUSION

In this work we compared two semianalytical theories
based on the saddle-point method, which allows one to get
clear insight into the underlying physics of the strong-field
ionization process. The first one is the strong-field approxi-
mation, which assumes that the driving field is so strong that
the Coulomb attraction between the liberated electron and the
residual ion can be neglected during the electron propagation
in the continuum. The second theory is the Coulomb quantum-
orbit strong-field approximation, for which the Coulomb
potential and the driving-field potential are treated equally.
These theories are structurally very different. The former is a
Born-type-expansion theory for which the rescattering times
and conditions are well defined because the interactions with
the parent ion during rescattering are localized at a single
point, namely, the origin. In contrast, the latter has a Coulomb-
distorted continuum, which consequently makes it impossible
to clearly define when the rescattering starts or ends.

A comparison of the results obtained using the SFA and
CQSFA is not as trivial a task as it sounds at first. In particular,
for a systematic comparison, it is not sufficient to remove the
Coulomb coupling or make it short range due to the structural
differences between the two theories. These differences make
it hard to establish a one-to-one correspondence between
the orbits obtained with each method. In order to make this
comparison, we have identified the CQSFA trajectories that
mimic the behavior of the Born-type SFA trajectories with a
single act of rescattering. This means that among all orbits that
appear in the CQSFA theory, we have extracted only those
with SFA counterparts. We also provided an example of an
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orbit for which this correspondence does not hold, although
CQSFA orbits with no SFA counterparts have been studied in
far more detail in previous publications [54,55,59,60].

Here we have also focused on the simplest possible system:
hydrogen in a linearly polarized monochromatic field. This
was purposefully done in order to not introduce other effects,
which would mask what we intended to single out. Focal
averaging may distort the interference patterns of interest
[64,81] or be a source of incoherence [62]. Short pulses will
exhibit unequal cycles, which would give rise to rescattering
ridges of unequal energies [61,82] and holographic patterns
that may look quite different from those obtained with longer
pulses or monochromatic fields [83–85]. Averaging over the
carrier-envelope phase will also weaken or wash out sub-
tler interference patterns [86,87]. Bi- or polychromatic fields
would break symmetries and lead to additional solutions to
those in Table I, even for very weak fields [78]. These distor-
tions increase for two-color fields with comparable amplitudes
[88]. For a thorough study of symmetries in the context of
the SFA, see [79]. Furthermore, although the CQSFA has
been successfully used to study rare gases or small molecules
[46,65–67] employing effective potentials, the extra phase
shifts arising from them are not useful for our problem. They
have been used, however, to detect the parity of orbitals [67].
Different targets will also introduce additional momentum
biases stemming from the bound-state geometries [82,89,90].

In the present paper we have found that the agreement
between the results obtained using our theories is fairly good
if the solutions used in the CQSFA theory are restricted to
only those which we expect to have a counterpart in the SFA
theory. This happens because the compared orbits accumulate
similar phases in the continuum, although their dynamics can
be very different. For example, before the rescattering, the
SFA trajectories are one dimensional for a linearly polarized
driving field, while for the CQSFA theory the corresponding
orbits are always two dimensional. More generally, the SFA
trajectories follow the field, which is not the case with their
CQSFA counterparts due to the always present Coulomb in-
teraction.

In order to systematically investigate the influence of the
Coulomb effects, we have analyzed the photoelectron momen-
tum distributions for different solutions of the saddle-point
equations. We have found that the positions of the ridges
for different solutions are approximately the same for both
theories, while the positions of the minima caused by the
interference of the contributions may be different, depend-

ing on the value of the photoelectron energy. Whether the
positions of these minima are reproduced well in the SFA
or not depends on two counterbalancing effects: the time the
electron spends in the continuum and the electron’s energy.
A longer time in the continuum means that the accumulated
Coulomb phase will be larger as well, but a higher kinetic
energy means that the electron will be less sensitive to the
Coulomb potential. These effects are clearly visible in the
photoelectron momentum distributions for the three shortest
pairs of orbits. The best agreement is for the shortest pair
because the corresponding trajectories have a short travel time
in the continuum and the corresponding energy is the highest.
The worst agreement is with the second-shortest pair, because
the travel time is longer than for the shortest pair and the cor-
responding energy is the lowest. Finally, the third-shortest pair
has reasonable agreement because, although the orbits spend a
longer time in the continuum, their energy is higher than those
of the second-shortest pair, which partly counterbalances this
effect. These conclusions have been confirmed by explicit
calculation and comparison between the accumulated phases
in the SFA and CQSFA theories.

In conclusion, even though the SFA theory does not in-
clude many possible cases of the electron trajectories and
the included trajectories are treated by neglecting the existing
Coulomb potential, it is still a reasonably good approximation
which accounts for many of the key dynamics. The obtained
results are usually sufficiently accurate for various purposes.
Finally, one expects the level of agreement between the theo-
ries to depend on the parameters of the driving laser field and
the potential. A systematic study of this dependence could
help precisely establish the range of values in the parameter
space for which the application of the SFA theory is accept-
able. Also, the study of the structural differences between the
two theories presented in the present paper could be utilized
as the groundwork for establishing future hybrid theories.
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Photoelectron holography of atomic targets, Phys. Rev. A 99,
013413 (2019).

[83] M. Murakami and G.-P. Zhang, Observation of attosecond elec-
tron dynamics in the photoelectron momentum distribution of
atoms using few-cycle laser pulses, Phys. Rev. A 101, 053439
(2020).

[84] M.-H. Yuan, A. D. Bandrauk, and X.-B. Bian, Exploring rec-
ollision of ultrafast electrons from photoelectron momentum

distributions using single-cycle near-infrared laser pulses, Phys.
Rev. A 103, 013108 (2021).
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