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General model and toolkit for the ionization of three or more electrons in strongly driven molecules
using an effective Coulomb potential for the interaction between bound electrons
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We formulate a general three-dimensional semiclassical model for the study of correlated multielectron escape
during fragmentation of molecules driven by intense infrared laser pulses. We do so in the context of triple
ionization of strongly driven HeH2

+. Our model fully accounts for the singularity in the Coulomb potentials of a
recolliding electron with the core and a bound electron with the core as well as for the interaction of a recolliding
electron with a bound electron. This model also accounts for the magnetic field of the laser pulse. To avoid
artificial autoionization, our model employs effective potentials to treat the interaction between bound electrons.
We focus on triple and double ionization as well as frustrated triple and frustrated double ionization. In these
processes, we identify and explain the main features of the sum of the kinetic energies of the final ion fragments.
We find that frustrated double ionization is a major ionization process, and we identify the different channels
and hence different final fragments that are obtained through frustrated double ionization. Also, we discuss the
differences between frustrated double and triple ionization.
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I. INTRODUCTION

Multielectron ionization and the formation of highly ex-
cited Rydberg states are fundamental processes in molecules
driven by intense and infrared laser pulses. Rydberg states
have a wide range of applications, such as acceleration of
neutral particles [1], spectral features of photoelectrons [2],
and formation of molecules via long-range interactions [3].
Electron-nuclear correlated multiphoton resonance excitation
was shown to be the mechanism responsible for the forma-
tion of Rydberg states in weakly driven H2 [4]. This process
was shown to merge with frustrated double ionization for
H2 (strongly) driven by intense infrared laser fields [5,6]. In
frustrated ionization an electron first tunnel ionizes in the
driving laser field. Then, due to the electric field, this electron
is recaptured by the parent ion in a Rydberg state [7].

Most studies on strongly driven molecules address double
and frustrated double ionization of two-electron molecules
[5,6,8–18]. However, there are scarcely any theoretical studies
on three-electron ionization and formation of Rydberg states
during the fragmentation of strongly driven molecules. The
reason is that accounting for both multielectron and nuclear
motion is a formidable task. This is corroborated by the few
theoretical studies on three-electron ionization of strongly
driven atoms, a simpler but still highly challenging task.
Mostly formulated in the dipole approximation, these studies
on atoms employ lower-dimensionality classical [19,20] and
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quantum-mechanical [21,22] models to reduce the complex-
ity and computational resources required. However, lower
dimensionality results in an inaccurate description of electron-
electron interaction during triple ionization. Currently, only
classical or semiclassical three-dimensional (3D) models of
triple ionization of atoms are available [20,23–26].

In Refs. [27,28] we argued that the main disadvantage of
available classical and quantum models of triple ionization in
atoms is their softening of the Coulomb interaction of each
electron with the core. In quantum-mechanical models, this
interaction is softened to obtain a computationally tractable
problem. However, in classical and semiclassical models, soft-
ening the Coulomb singularity is fundamental and relates
to unphysical autoionization. Classically there is no lower
energy bound. Hence, when a bound electron undergoes a
close encounter with the core, the Coulomb singularity allows
this electron to acquire a very negative energy. Through the
Coulomb interaction, this energy can be shared by another
bound electron, potentially leading to its artificial escape.

To avoid artificial autoionization, most classical and semi-
classical models of triple ionization of strongly driven atoms
soften the Coulomb potential [20,23,24] or add Heisenberg
potentials [29] (effective softening) to mimic the Heisen-
berg uncertainty principle and prevent each electron from
having a close encounter with the core [25,26]. However,
softening the Coulomb potential does not allow for an accu-
rate description of electron scattering from the core [30,31].
This is due to the exponential decrease of the ratio of
the scattering amplitude for the soft-core potential over the
one for the Coulomb potential with increasing momentum
transfer [30,31]. For recollisions [32], this implies that soft
potentials are quite inaccurate for high-energy recolliding
electrons that backscatter. Indeed, we have shown [27,28] that
the ionization spectra obtained with the Heisenberg model

2469-9926/2024/109(3)/033106(18) 033106-1 Published by the American Physical Society

https://orcid.org/0000-0002-1211-3841
https://orcid.org/0000-0003-1660-3183
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.033106&domain=pdf&date_stamp=2024-03-12
https://doi.org/10.1103/PhysRevA.109.033106
https://creativecommons.org/licenses/by/4.0/


KATSOULIS, PETERS, AND EMMANOUILIDOU PHYSICAL REVIEW A 109, 033106 (2024)

differ from experimental ones obtained for driven Ne and Ar
[33–39].

Here we formulate a general 3D semiclassical model of
multielectron ionization and fragmentation of strongly driven
molecules while fully accounting for the magnetic field of
the laser pulse. The main premise in our model is that two
interactions are most important during a recollision or return
of an electron to the core and hence are treated exactly. We
account for the singularity in the Coulomb potential between
each electron, bound or quasifree, and the core. Quasifree
refers to a recolliding electron or an electron escaping to
the continuum. Also, we treat exactly the Coulomb poten-
tial between each pair of a quasifree and a bound electron
and hence the transfer of energy from a quasifree to a
bound electron. However, accounting for the singularity in the
electron-core interaction implies we need to avoid unphysical
autoionization that can take place through energy transfer
between bound electrons. We do so by approximating the
energy transfer from a bound to a bound electron via the
use of effective Coulomb potentials. We refer to this model
that accurately accounts for all Coulomb interactions and
only employs approximate effective Coulomb potentials to
describe the bound-bound electron interaction as the ECBB
model. This is a sophisticated model that identifies during
time propagation whether an electron is quasifree or bound,
that is, in the ECBB model, we decide on the fly if the full or
effective Coulomb potential describes the interaction between
a pair of electrons. We do so by using a set of simple criteria
detailed below.

The ECBB model for strongly driven molecules is a
generalization of the ECBB model we have previously de-
veloped for strongly driven atoms [27,28]. For atoms, we
have shown that the ECBB model results in triple ionization
spectra of strongly driven Ne that are in excellent agreement
with experiment [28]. The main difficulty in generalizing the
ECBB model to molecules is the formulation of the effective
Coulomb potential between a pair of bound electrons in the
presence of many nuclei. In atoms, the effective Coulomb
potential is obtained by assuming that a bound electron has
a charge distribution centered around the atomic core. In
molecules, we assume that an electron creates an effective
potential that is the sum of the effective Coulomb potentials
with respect to each nucleus separately, i.e., each effective
Coulomb potential is the same as for an atom. However, each
atomic effective Coulomb potential is weighted by an approx-
imate expression for the probability to find the electron that
creates this potential at a given position around this nucleus.

Using the ECBB model, we address triple and double ion-
ization in the triatomic molecule HeH2

+ when driven by a
linearly polarized laser pulse. We also address the formation
of Rydberg states via frustrated ionization. Employing the
HeH2

+ molecule allows us to directly compare the results for
triple, double, and frustrated triple ionization obtained with
the ECBB model in this study and with a predecessor of the
ECBB model obtained in previous work [40]. This previous
model determined on the fly whether an electron is quasifree
or bound, as the ECBB model does, but this was done using a
set of criteria less sophisticated than the ones employed in the
ECBB model for atoms [27,28] and molecules in the present
work. Also, in this previously employed model the interaction

of a pair of bound electrons was set equal to zero. As a result,
in Ref. [40] we could only address frustrated triple ionization
where two electrons ionize and one electron remains bound
in a Rydberg state. Here, since we account, via effective po-
tentials, for the interaction between bound electrons, we can
also address frustrated double ionization. In this process, one
electron ionizes, the other remains bound in the ground state
of one of the He or H fragments, and another electron remains
bound in a Rydberg state of one of the fragments.

Here we address both triple and double ionization as well
as frustrated triple and double ionization and obtain the sum
of the kinetic energies of the atomic fragments, referred to
as kinetic energy release. We find that the atomic fragments
are moving faster when fragmentation of HeH2

+ is described
with the ECBB model compared to its predecessor [27,28].
This is consistent with our finding that the electron-electron
escape to the continuum is more correlated when the process
is described with the ECBB model, since it allows for energy
transfer between bound electrons. Higher correlation results
in faster electron escape, leading to Coulomb explosion of
the nuclei at smaller distances, eventually resulting in higher
kinetic energies. While in frustrated triple ionization (FTI)
two electrons ionize and one remains bound in a Rydberg
state, in frustrated double ionization (FDI) one electron ion-
izes, one electron remains bound in the ground state with a
quantum number n = 1, and another electron remains bound
in a Rydberg state. We find that, in three-electron molecules,
FTI and FDI proceed via two pathways, first identified in FDI
of the strongly driven two-electron molecule H2 [6]. One elec-
tron ionizes early on (first step), while the remaining bound
electron does so later in time (second step). If the second
(first) ionization step is frustrated, we label the FTI and FDI
pathways as A and B, respectively.

II. METHOD

In what follows, we describe in detail the formulation of
the ECBB model for strongly driven molecules. The ECBB
model resolves unphysical autoionization in 3D semiclassical
models that fully account for the Coulomb singularity. Also,
we formulate the ECBB model in the nondipole approxima-
tion fully accounting for the magnetic-field component of the
laser field. Finally, both electrons and the cores are propagated
in time.

A. Definition of the effective charge and potential

In what follows, the cores are assigned indices in the inter-
val [1, Nc], where Nc is the number of cores. The remaining
indices in the interval [Nc + 1, N], with N the number of
particles, are assigned to the electrons. For each electron j,
we define an effective charge ζ j,n(t ) associated with each core
n as [41]

ζ j,n(t ) =

⎧⎪⎨
⎪⎩

Qn, E j (t ) � En
1s

(Qn/En
1s)E j (t ), En

1s < E j (t ) < 0
0, E j (t ) � 0,

(1)

where Qn is the charge of the core n, En
1s is the ground-state

energy of a hydrogenic atom with core charge Qn, i.e., En
1s =
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−Q2
n/2, and E j (t ) is the energy of electron j given by

E j (t ) = [p̃ j − QjA(r j, t )]2

2mj
+

Nc∑
n=1

QnQj

|rn − r j | − Qjr j · E(r j, t )

+
Nc∑

n=1

N∑
i=Nc+1

i �= j

ci, j (t )Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)

× Veff(ζi,n(t ), |rn − r j |), (2)

where A(r j, t ) is the vector potential and E(r j, t ) = − ∂A(r j ,t )
∂t

is the electric field. The effective potential that an electron j
experiences at a distance |rn − r j | from the core n due to the
charge of electron i is given by [41]

Veff(ζi,n(t ), |rn − r j |)

= 1 − (1 + ζi,n|rn − r j |)e−2ζi,n|rn−r j |

|rn − r j | . (3)

Here Veff(ζi,n(t ), |rn − r j |) is a repulsive potential with lim-
iting value of ζi,n when |rn − r j | → 0. To avoid artificial
autoionization, we have to ensure that the charge ζi,n has a
fixed value in this limit. One way to do so is by setting ζi,n

equal to the nuclear charge Qn for electron energies E j (t ) less
than the hydrogenic ground-state energy En

1s [see Eq. (1)]. For
electron energies greater than En

1s, electron j is less bound,
which is accounted for by taking ζi,n to be only a fraction of
the charge Qn in Eq. (1).

To generalize this effective Coulomb potential to
molecules, in Eq. (2) we assume that an electron i screens
each core n separately as if it were an atom, with probability
|Ci,n|2 given by

Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|) = ρi,n∑Nc
n′=1 ρi,n′

, (4)

with

ρi,n(t ) = |ψ (ζi, |rn − ri|)|2 = ζ 3
i,n

π
e−2ζi,n (t )|rn−ri|. (5)

Hence, we approximate the wave function of each bound
electron i with a 1s hydrogenic wave function around each
core. In addition, we are distributing the charge of a bound
electron i among the different cores according to the proba-
bility density of electron i with respect to each core. Hence,
the total potential that a bound electron j experiences due to a
bound electron i is given by

Nc∑
n=1

Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)Veff(ζi,n(t ), |rn − r j |),

(6)

where Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|) is a function of the
energy of electron i and the distance between electron i and the
cores; Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|) can be more explic-
itly written as Ci,n(ζi,1, . . . , ζi,Nc , |r1 − ri|, . . . , |rNc − ri|), but
since ζi,n ∝ Ei we simplify the expression by only including
Ei.

The functions ci, j (t ) determine whether the full Coulomb
interaction or the effective Veff(ζi,n(t ), |rn − r j |) and

Veff(ζ j,n(t ), |rn − ri|) potential interactions are on or off
for any pair of electrons i and j during the time propagation.
Specifically, the limiting values of ci, j (t ) are zero and one.
The value zero corresponds to the full Coulomb potential
being turned on while the effective Coulomb potentials are
off. This occurs for a pair of electrons i and j where either
electron i or j is quasifree. The value one corresponds to
the effective Coulomb potentials Veff(ζi,n(t ), |rn − r j |) and
Veff(ζ j,n(t ), |rn − ri|) being turned on while the full Coulomb
potential is off. This occurs when both electrons i and j are
bound. For simplicity, we choose ci, j (t ) to change linearly
with time between the limiting values zero and one [27,28].
Hence, ci, j (t ) is defined as

ci, j (t ) =

⎧⎪⎨
⎪⎩

0, c(t ) � 0
c(t ), 0 < c(t ) < 1
1, c(t ) � 1,

(7)

where c(t ) = β(t − t i, j
s ) + c0 and c0 is the value of ci, j (t ) just

before a switch at time t i, j
s . We note that c0 ∈ [0, 1], with zero

corresponding to the effective potentials being switched off
and one to being switched on. Equation (7) shows that we
switch on and off the effective potentials according to c(t ).
When c(t ) reaches zero this means that the Coulomb potential
is fully switched on and hence there should be no further
change to ci, j (t ). This is the reason ci, j (t ) is equal to zero for
c(t ) � 0. Similarly, when c(t ) reaches one the full effective
potential is on and hence there should be no further change to
ci, j (t ), which is set equal to one. A switch at time t i, j

s occurs
if the interaction between electrons i and j changes from full
Coulomb to effective Coulomb potential or vice versa. Every
time during propagation that such a switch takes place, we
check whether for each pair of electrons the full Coulomb
force should be switched on and hence the effective potential
switched off or the full Coulomb force should be switched off
and the effective potential switched on. The former occurs if
at time t i, j

s one of the two electrons in a pair of bound electrons
changes to being quasifree, while the latter occurs if in a pair
of a quasifree electron and a bound electron the quasifree
electron becomes bound. At the start of the propagation at
time t0, t i, j

s is equal to t0 and c0 is one for pairs of electrons that
are bound and zero otherwise. To allow the effective Coulomb
potential to be switched on or off in a smooth way, we choose
β equal to ±0.1; plus corresponds to a switch on and minus to
a switch off of the effective Coulomb potential. The dipole
term −Qjr j · E(r j, t ) in Eq. (2) involving the electric field
does not appear in the Hamiltonian given in Eq. (8). There
is no contradiction. Indeed, the gauge-invariant energy of a
particle does not always coincide with the gauge-dependent
Hamiltonian, as discussed in Refs. [42,43].

B. Hamiltonian of the system

The Hamiltonian of the N-body molecular system, com-
prised of Nc cores and N-Nc electrons in the nondipole
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approximation, is given by

H =
N∑

i=1

[p̃i − QiA(ri, t )]2

2mi
+

Nc∑
n=1

N∑
j=n+1

QnQj

|rn − r j |

+
N−1∑

i=Nc+1

N∑
j=i+1

[1 − ci, j (t )]
QiQj

|ri − r j |

+
N−1∑

i=Nc+1

N∑
j=i+1

ci, j (t )Vi, j, (8)

where Qi is the charge, mi is the mass, ri is the position vector,
and p̃i is the canonical momentum vector of particle i. The
mechanical momentum pi is given by

pi = p̃i − QiA(ri, t ). (9)

The potential Vi, j is given as a sum of effective potentials as

Vi, j =
Nc∑

n=1

[Cj,n(E j, |r1 − r j |, . . . , |rNc − r j |)Veff(ζ j,n(t ),

× |rn − ri|) + Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)
× Veff(ζi,n(t ), |rn − r j |)]. (10)

We note that the Hamiltonian we consider in Eq. (8) fully
accounts for the magnetic field of the laser field via the space
dependence ri of the vector potential A(ri, t ). Investigating
the effect of the magnetic field of the laser pulse in triple
ionization of HeH2

+ is beyond the focus of the present work.
Such an investigation has been carried out for triple ionization
of Ne [44] and can be the focus of a future work addressing
triple ionization of molecules.

C. Global regularization

We perform a global regularization [45] to avoid any nu-
merical issues arising from the Coulomb singularities. We
previously used this regularization scheme, for strongly driven
H2, to study double and frustrated double ionization within
the dipole approximation [46] as well as nondipole effects
in nonsequential double ionization [47]. Also, we have used
this regularization to study triple ionization in the nondipole
approximation in strongly driven Ar [27] and Ne [28]. In
this scheme, our new coordinates involve the relative position
between two particles i and j,

qi j = ri − r j, (11)

and their conjugate momenta

ρi j = 1

N

(
p̃i − p̃ j − mi − mj

M
〈ρ〉

)
, (12)

where

〈ρ〉 =
N∑

i=1

p̃i, M =
N∑

i=1

mi. (13)

The inverse transformation is given by

ri = 1

M

N∑
j=i+1

mjqi j − 1

M

i−1∑
j=1

mjq ji + 〈q〉 (14)

and

p̃i =
N∑

j=i+1

ρi j −
i−1∑
j=1

ρ ji + mi

M
〈ρ〉, (15)

where

〈q〉 = 1

M

N∑
i=1

miri. (16)

Next we define a fictitious particle k for each pair of particles
i and j as

k(i, j) = (i − 1)N − i(i + 1)

2
+ j, (17)

with j > i and the total number of fictitious particles being
equal to K = N (N − 1)/2. In addition, we define the param-
eters αik and βik as αik = 1 and βik = mj/M and as α jk = −1
and β jk = −mi/M when k = k(i, j); otherwise αik = βik = 0.
Given the above, Eqs. (14) and (15) take the simplified forms

ri =
K∑

k=1

βikqk + 〈q〉 (18)

and

p̃i =
K∑

k=1

αikρk + mi

M
〈ρ〉. (19)

D. Derivation of the time derivative of the effective charges

The Hamiltonian in Eq. (8) depends not only on positions,
momenta, and time but also on the effective charges. More-
over, the Hamiltonian depends on time through the vector
potential as well as through the effective charges that are
time dependent. Since the effective charge of electron j is
proportional to the energy E j (t ) [see Eq. (2)], it follows that
we must obtain the derivative with respect to time of E j (t ).
This is necessary at any time during propagation if at least
two electrons are bound. Following the same procedure as in
Ref. [27], we calculate the time derivative of the energy of
electron j. To do so, we apply the chain rule in Eq. (2) and
obtain

Ė j (t ) = ∂E j (t )

∂r j
· ṙ j + ∂E j (t )

∂p̃ j
· ˙̃p j +

Nc∑
n=1

∂E j (t )

∂rn
· ṙn +

N∑
i=Nc+1

i �= j

∂E j (t )

∂ri
· ṙi +

N∑
i=Nc+1

i �= j

∂E j (t )

∂Ei
Ėi + ∂E j (t )

∂t

= ∂[E j (t ) − H]

∂r j
· ṙ j +

Nc∑
n=1

∂E j (t )

∂rn
· ṙn +

N∑
i=Nc+1

i �= j

∂E j (t )

∂ri
· ṙi +

N∑
i=Nc+1

i �= j

∂E j (t )

∂Ei
Ėi + ∂E j (t )

∂t
, (20)
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where we use ṙ j = ∂E j (t )
∂p̃ j

and ˙̃p j = − ∂H
∂r j

. In Appendix A we derive each of the terms in the chain rule in Eq. (20). Furthermore,

we group together all the terms in Eq. (20) that do not depend on Ėi as

Ė j (t ) = f j +
N∑

i=Nc+1
i �= j

g j,iĖi, (21)

where

g j,i =
Nc∑

n=1

ci, j (t )

[
Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)∂Veff(ζi,n, |rn − r j |)

∂ζi,n

∂ζi,n

∂Ei

+ Veff(ζi,n, |rn − r j |)
(

Nc∑
b=1

∂Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)
∂ζi,b

∂ζi,b

∂Ei

)]
(22)

and

∂ζi,n

∂Ei
=

⎧⎨
⎩

0, Ei(t ) � En
1s

Qn/En
1s, En

1s < Ei(t ) < 0
0, Ei(t ) � 0.

(23)

The derivatives ∂Ci,n(Ei,|r1−ri|,...,|rNc −ri|)
∂ζi,b

and ∂Veff (ζi,n,|rn−r j |)
∂ζi,n

are obtained in Eqs. (B1) and (B9) of Appendix B, respectively. These
derivatives are obtained in terms of the relative coordinates qk , since we propagate in the regularized coordinates system. We
also find that

f j =
N−1∑

i=Nc+1

N∑
m=i+1

[1 − ci,m(t )]
QiQm(ri − rm)

|ri − rm|3 (δi, j − δm, j ) · ṙ j

−
N∑

i=Nc+1
i �= j

Nc∑
n=1

ci, j (t )
∂Cj,n(E j, |r1 − r j |, . . . , |rNc − r j |)

∂r j
Veff(ζ j,n, |rn − ri|) · ṙ j

+
N∑

i=Nc+1
i �= j

Nc∑
n=1

ci, j (t )

(
Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)∂Veff(ζi,n, |rn − r j |)

∂rn

+
Nc∑

b=1

Veff(ζi,b, |rb − r j |)∂Ci,b(Ei, |r1 − ri|, . . . , |rNc − ri|)
∂rn

)
· ṙn

+
Nc∑

n=1

(
−QnQj (rn − r j )

|rn − r j |3
)

· ṙn +
N∑

i=Nc+1
i �= j

Nc∑
n=1

ci, j (t )

(
Veff(ζi,n, |rn − r j |)∂Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)

∂ri

)
· ṙi

+
N∑

i=Nc+1
i �= j

Nc∑
n=1

ċi, j (t )Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)Veff(ζi,n, |rn − r j |) − Qjr j · Ė(r j, t ), (24)

where ṙn = pn

mn
, ṙi = pi

mi
, and ṙ j = p j

m j
. The derivatives of Cj,n and Veff in Eq. (24) can be found in Eqs. (B3), (B2), and (B10).

These derivatives and all the terms in Eqs. (22) and (24) are obtained in terms of the relative coordinates qk since we propagate
in the regularized coordinates system. For each electron we obtain an equation similar to Eq. (21). Hence, at any time during
time propagation, we solve a system of N-Nc equations to obtain the derivative in terms of the energy of each electron, so that it
does not depend on the derivatives of the other electron energies. We solve this system of linear equations using Cramer’s rule
[48,49].

E. Hamilton’s equations of motion

Substituting Eqs. (11) and (19) in Eq. (8), we find that the Hamiltonian in regularized coordinates is given by

H =
K∑

k,k′=1

Tkk′ρkρk′ + 〈ρ〉2

2M
+

K∑
k=1

[1 − ck (t )]
Uk

qk
+

N∑
i=1

Q2
i

2mi
A2(ri, t ) −

N∑
i=1

Qi

mi
p̃i · A(ri, t ) +

K∑
k=1

Nc∑
n=1

ck (t )Vk,n, (25)
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where Uk(i, j) = QiQj . The term Vk(i, j),n is now given by

Vk(i, j),n = Cj,n(E j, |r1 − r j |, . . . , |rNc − r j |)Veff(ζ j,n(t ), |rn − ri|)
+ Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)Veff(ζi,n(t ), |rn − r j |) (26)

and p̃ and r are expressed in terms of ρ and q via Eqs. (19) and (18). Moreover, we set ck (t ) = 0 when k corresponds to the
relative distance between an electron and a core. This is the case since in our model the Coulomb potential between an electron
and a core is given by the full Coulomb potential. Using Eq. (25), we find that Hamilton’s equations of motion are given by

dqk

dt
= 2

K∑
k′=1

Tkk′ρk′ −
N∑

i=1

Qi

mi
αikA(ri, t ),

d〈q〉
dt

= 1

M
〈ρ〉 −

N∑
i=1

Qi

M
A(ri, t ),

dρk

dt
= [1 − ck (t )]

Ukqk

q3
k

−
K∑

k′=1

ck′ (t )hk′
k +

N∑
i=1

Qi

mi
[p̃i − QiA(ri, t )] · ∂A(ri, t )

∂qk
, (27)

d〈ρ〉
dt

=
N∑

i=1

Qi

mi
[p̃i − QiA(ri, t )] · ∂A(ri, t )

∂〈q〉 ,

where
K∑

k′=1

ck′ (t )hk′
k =

K∑
k′=1

Nc∑
n=1

ck′ (t )
∂Vk′,n

∂qk
. (28)

We find
∂Vk′ ,n
∂qk

to be given by

∂Vk′(i′, j′ ),n

∂qk(i, j)
= δi′, j

(
δn,iCj′,n(E j′ , |r1 − r j′ |, . . . , |rNc − r j′ |)∂Veff(ζ j′,n, |rn − ri′ |)

∂qk

+ ∂Ci′,n(Ei′ , |r1 − ri′ |, . . . , |rNc − ri′ |)
∂qk

Veff(ζi′,n, |rn − r j′ |)
)

+ δ j′, j

(
δn,iCi′,n(Ei′ , |r1 − ri′ |, . . . , |rNc − ri′ |)

× ∂Veff(ζi′,n, |rn − r j′ |)
∂qk

+ ∂Cj′,n(E j′ , |r1 − r j′ |, . . . , |rNc − r j′ |)
∂qk

Veff(ζ j′,n, |rn − ri′ |)
)

. (29)

Thus, for hk′
k we obtain

hk′
k =

Nc∑
n=1

∂Vk′(i′, j′ ),n

∂qk(i, j)
= δi′, j

(
Cj′,i(E j′ , |r1 − r j′ |, . . . , |rNc − r j′ |)∂Veff(ζ j′,i, |ri − ri′ |)

∂qk

+
Nc∑

n=1

∂Ci′,n(Ei′ , |r1 − ri′ |, . . . , |rNc − ri′ |)
∂qk

Veff(ζi′,n, |rn − r j′ |)
)

+ δ j′, j

(
Ci′,i(Ei′ , |r1 − ri′ |, . . . , |rNc − ri′ |)

× ∂Veff(ζi′,i, |ri − r j′ |)
∂qk

+
Nc∑

n=1

∂Cj′,n(E j′ , |r1 − r j′ |, . . . , |rNc − r j′ |)
∂qk

Veff(ζ j′,n, |rn − ri′ |)
)

, (30)

where the derivatives of Veff and C can be found in Appendix B
in Eqs. (B11) and (B4), respectively. Note that when Nc = 1,
Hamilton’s equations in Eq. (27) reduce to the corresponding
equations for an atom [27].

F. Time derivative of the Hamiltonian

During propagation, besides other criteria used that we do
not detail here, we check the accuracy of our propagation also
by comparing the propagated Hamiltonian with the Hamilto-
nian obtained by substituting the propagated variables. The

time derivative of the Hamiltonian in Eq. (25) is given by

dH

dt
=

K∑
k=1

(
∂H

∂qk
q̇k + ∂H

∂ρk
ρ̇k

)
+ ∂H

∂〈q〉 〈q̇〉 + ∂H

∂〈ρ〉 〈ρ̇〉 + ∂H

∂t

=
K∑

k=1

(−ρ̇kq̇k + q̇k ρ̇k ) − 〈ρ̇〉〈q̇〉 + 〈q̇〉〈ρ̇〉 + ∂H

∂t

= ∂H

∂t
. (31)
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The partial derivative of the Hamiltonian with respect to time
is given as

∂H

∂t
=

N−1∑
i=Nc+1

N∑
j=i+1

g j,iĖi +
K∑

k=1

Nc∑
n=1

ċk (t )Vk,n

−
K∑

k=1

ċk (t )
Uk

qk
+

N∑
i=1

Qi
2

mi
A(ri, t )

∂A(ri, t )

∂t

−
N∑

i=1

Qi

mi
p̃i · ∂A(ri, t )

∂t

=
N−1∑

i=Nc+1

N∑
j=i+1

g j,iĖi +
K∑

k=1

Nc∑
n=1

ċk (t )Vk,n

−
K∑

k=1

ċk (t )
Uk

qk
+

N∑
i=1

Qi

mi
pi · E(ri, t ).

(32)

G. Propagation technique

In our formulation, we fully account for the Coulomb
singularities. Hence, an electron can approach infinitely close
to the nucleus during time propagation. To ensure the accu-
rate numerical treatment of the N-body problem in the laser
field, we perform a global regularization [45] as described in
Sec. II C. Here we integrate the equations of motion using
a leapfrog technique [50,51] jointly with the Bulirsch-Stoer
method [52,53]. This leapfrog technique allows integration of
Hamilton’s equation when the derivatives of the positions and
the momenta depend on the quantities themselves. We pre-
viously employed this technique in our studies of nondipole
effects in nonsequential double ionization of strongly driven
H2 [47] and in our studies of nonsequential triple ionization
in atoms [27]. The steps involved in this technique, employed
in this work, are described in detail in Ref. [27].

H. Tunneling during propagation

During time propagation, we allow for each bound electron
to tunnel at the classical turning points along the axis of
the electric field using the Wentzel-Kramers-Brillouin (WKB)
approximation [54]. For the transmission probability we use
the WKB formula for transmission through a potential bar-
rier [54],

T ≈ exp

(
−2

∫ rb

ra

{2[Vtun(r, ttun ) − εi]}1/2dr

)
, (33)

with Vtun(r, ttun ) the potential a bound electron i can tunnel
through given by

Vtun(r, ttun ) =
Nc∑

n=1

QnQi

|rn − ri| − Qiri · E(ri, ttun )

+
Nc∑

n=1

N∑
j=Nc+1

j �=i

ci, j (ttun )Cj,n(E j, |r1 − r j |, . . . , |rNc

− r j |)Veff(ζ j,n(ttun ), |rn − ri|). (34)

Here εi is the energy of the electron at the time of tunneling
ttun, and ra and rb are the classical turning points. We find that
accounting for tunneling during time propagation is necessary
in order to accurately describe phenomena related to enhanced
ionization [55–59] during the fragmentation of strongly driven
molecules.

I. Definition of quasifree and bound electron

In the ECBB model, the interaction between a pair of
electrons where at least one is quasifree is described with the
full Coulomb potential. Effective Coulomb potentials are used
to describe the interaction between bound electrons. At the
start of time propagation, the tunneling electron is considered
quasifree and the other two electrons are bound. We decide
on the fly, during time propagation, whether an electron is
quasifree or bound using a simple set of criteria briefly de-
scribed below [27].

A quasifree electron i transitions to bound if, following a
minimum approach to the cores, the position of the electron
along the field axis is influenced more by the cores than by
the electric field. We assume that the electron is influenced
more by the cores if its position along the electric field has at
least two extrema of the same kind in a time interval less than
half a period of the laser field. The minimum approach to the
cores is identified by a maximum in the Coulomb potential of
the quasifree electron with the cores. Also, at the end of the
laser pulse, if the quasifree electron has negative compensated
energy [60], this electron transitions to bound. In our studies,
we use a compensated energy of an electron i that includes the
effective potentials as well and is given by

ε
comp
i (t ) = p̃2

i

2mi
+

Nc∑
n=1

QnQi

|r1 − ri| +
Nc∑

n=1

N∑
j=Nc+1

j �=i

ci, j (t )

× Cj,n(E j, |r1 − r j |, . . . , |rNc − r j |)
× Veff(ζ j,n(t ), |rn − ri|). (35)

A bound electron i transitions to quasifree if either of the
following two conditions is satisfied: (i) The compensated
energy of the bound electron converges to a positive value
or (ii) the magnitude of the total Coulomb potential of the
electron i with the cores is smaller than a threshold value and
it continuously decreases. The criteria are discussed in detail
and illustrated in Ref. [27].

J. Initial conditions

1. Nuclei

In the initial state of HeH2
+, all three atoms are placed

along the z axis. The two hydrogen atoms are at −3.09 and
−1.02 a.u., respectively, and the helium atom is at 1.04 a.u.,
with the origin of the coordinate system set to be the center of
mass of the molecule. We refer to H farther away from He as
H left and the one closest to He as H middle (see Fig. 1). We
compute the distance between the two hydrogen atoms and
the hydrogen and helium atoms using the quantum chemistry
package MOLPRO [61], employing the Hartree-Fock method
with the augcc-pV5Z basis set. The Hartree-Fock method
overestimates by a small amount the distance between the
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FIG. 1. Schematic illustration of the molecule under consider-
ation, HeH2

+, at the time t0 when we initialize our system. The
origin of the coordinate system is set to be the center of mass of
the molecule. Here Zc.m. is the distance between the center of mass
of the molecule and the middle of the distance between H left and H
middle.

hydrogen and the helium atoms [62]. However, we employ
this method for consistency with the Hartree-Fock wave func-
tions that we use in the potential energy terms involved in
computing the exit point of the tunnel-ionizing electron [46].
All three nuclei are initiated at rest.

2. Tunnel-ionizing electron

The electric field is along the axis of the linear molecule,
i.e., the z axis with a field strength within the below-the-
barrier ionization regime. As a result, one electron (electron
1) tunnel ionizes at time t0 through the field-lowered Coulomb
potential. We employ a quantum-mechanical calculation to
compute this ionization rate as described in Ref. [40]. We
find t0, using importance sampling [63] in the time interval
[−2τ, 2τ ] where the electric field is nonzero; τ is the full
width at half maximum of the pulse duration in intensity. The
importance sampling distribution is given by the ionization
rate. We assume that electron 1 exits along the direction of
the laser field; for details on the exit point, see Ref. [46]. We
compute the first ionization energy of HeH2

+ (with MOLPRO)
and find it equal to 1.02 a.u. The tunnel ionizing electron
exits the field-lowered Coulomb barrier with a zero momen-
tum along the direction of the field. The transverse electron
momentum is given by a Gaussian distribution. The latter
arises from standard tunneling theory [64–66] and repre-
sents the Gaussian-shaped filter with an intensity-dependent
width.

3. Microcanonical distribution

In the ECBB model we obtain the initial position and
momentum of each bound electron i at time t0 using a mi-
crocanonical distribution with an energy

Ei(t0) = p2
i

2mi
+ Wi, (36)

where

Wi =
Nc∑

n=1

QnQi

|rn − ri|

+
Nc∑

n=1

N∑
j=Nc+1

i �= j

ci, j (t )Cj,n(E j, |r1 − r j |, . . . , |rNc − r j |)

× Veff(ζ j,n(t ), |rn − ri|). (37)

FIG. 2. Configuration of the triatomic molecule we use to set up
the microcanonical distribution. The origin of the coordinate system
is set to be the middle of the distance between the A and B nuclei.

We take the energy of each electron to be equal to −Ip,2,
with Ip,2 the second ionization potential of the molecule under
consideration. We note that the potential energy Wi of each
electron i in Eqs. (36) and (37) depends not only on the coordi-
nates of the bound electron i but also on the coordinates of all
other bound electrons. This dependence is due to the function
Cj,n(E j, |r1 − r j |, . . . , |rNc − r j |). Hence, the microcanonical
distributions of all bound electrons are interrelated, unlike the
case for atoms [27]. For a triatomic molecule, as is HeH2

+
(the molecule considered here), indices 1–3 are reserved for
the nuclei, index 4 is for the electron that tunnels in the initial
state, and indices 5 and 6 are for the bound electrons. The
microcanonical distribution for the two bound electrons is
given by

f (r5, p5, r6, p6)

= N
6∏

i=5

δ

(
p2

i

2
+ Wi(λ5, μ5, φ5, λ6, μ6, φ6) − (−Ip,2)

)
,

(38)

where N is a normalization constant. To set up the micro-
canonical distribution we place the origin of our coordinate
system in the middle of the distance between the nuclei A and
B (see Fig. 2). As discussed at the end of this section, once we
obtain the initial conditions for the position of the electrons
in this coordinate system, we shift the positions with respect
to the center of mass of the triatomic molecule. Moreover, λ

and μ are the confocal elliptical coordinates defined using two
of the nuclei as the foci of the ellipse with λ ∈ [1,∞) and
μ ∈ [−1, 1] and are given by

λ = ra + rb

Rab
, (39)

μ = ra − rb

Rab
, (40)
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with ra and rb the relative position between the electron and
the two nuclei labeled A and B, as shown in Fig. 2. Here Rab is
the distance between the two nuclei that are used to define the
elliptical coordinates. The coordinate φ is the angle between
the projection of the position vector ri of the bound electron i
on the xy plane and the +x axis. The z axis goes through the
two nuclei that define the elliptical coordinates. Hence, the
angle φ defines the rotation angle around the z axis (for more
details see [9]). Transforming from Cartesian to elliptical co-
ordinates, we find that the microcanonical distribution has the
form

ρ(λ5, μ5, φ5, λ6, μ6, φ6)

= N ′
(

R3
ab

8

)2 6∏
i=5

(
λ2

i − μ2
i

)
×

√
2[Ei − Wi(λ5, μ5, φ5, λ6, μ6, φ6)]δ(Ei + Ip,2).

(41)

As in our previous derivation of the microcanonical distri-
bution for one bound electron in the presence of three nuclei
[9], we find that the distribution ρ in Eq. (41) becomes infinite
only when an electron is placed on top of the third nucleus,
labeled C. Hence, as for our derivation in Ref. [9], to elimi-
nate this singularity we introduce an additional transformation
tγ
i = μi − μc, where

μc = Rac − Rbc

Rab
, (42)

with Rac the distance between nuclei A and C, and similarly
for the other distances. We select the value γ = 3 as the lowest
one which eliminates the singularity mentioned above [9]. The
final form of the microcanonical distribution is

ρ̃(λ5, t5, φ5, λ6, t6, φ6)

=
{∏6

i=5 |tγ−1
i |[λ2

i − (tγ
i + μc)2]

√
Pi for all Pi � 0

0 for any Pi < 0,

(43)

where

Pi = 2[−Ip,2 − Wi(λ5, t5, φ5, λ6, t6, φ6)], (44)

with

Wi = QiQ1

|r1 − ri| + QiQ2

|r2 − ri| + QiQ3

|r3 − ri|

+
Nc∑

n=1

N∑
j=Nc+1

j �=i

ci, j (t0)Cj,n
(
E j, |r1 − r j |, . . . ,

∣∣rNc − r j |
)

× Veff(ζ j,n(t0), |rn − ri|), (45)

where

|r1 − ri| = Rab
(
λi + tγ

i + μc
)

2
,

|r2 − ri| = Rab
(
λi − tγ

i − μc
)

2
,

|r3 − ri| = Rab

2

([
λ2

i + (
tγ

i + μc
)2 − 1

] − 4zc

Rab
λi

(
tγ

i + μc
)

+ 4
(
x2

c + z2
c

)
R2

ab

− 4xc cos(φi )

Rab

×
√(

λ2
i − 1

)[
1 − (

tγ

i + μc
)2])1/2

. (46)

The parameters xc and zc are given by

xc = ±
√

R2
ac −

(
R2

ac − R2
bc + R2

ab

2Rab

)2

, (47)

zc = R2
ac − R2

bc

2Rab
. (48)

The new distribution ρ̃ goes to zero when one of the electrons
is placed on top of the nucleus C, i.e., when λi = λc = Rac+Rbc

Rab
,

ti = 0, and φi = 0, 2π .
Next we generate initial conditions for the linear triatomic

molecule HeH2
+ assuming the nuclei A, B, and C correspond

to the hydrogen atom on the left, to the hydrogen atom in the
middle, and the helium atom, as shown in Fig. 1. We now iden-
tify the range of values of λi, ti, and φi so that Pi � 0 for each
bound electron i. We find that ti ∈ [tmin, tmax], and φi ∈ [0, 2π ]
for each electron, with tmin = −(1 + μc)1/γ and tmax = (1 −
μc)1/γ , that is, Pi � 0 is satisfied for the whole range of values
of φi and ti. In addition, for Pi � 0 to be satisfied we find
that λi cannot be larger than λmax, i.e., λi ∈ [1, λmax]. The
value λmax is the same for both bound electrons. For this
range of values then, we find the maximum value ρ̃max of
the microcanonical distribution ρ̃(λ5, t5, φ5, λ6, t6, φ6) given
in Eq. (43). Next we generate the uniform random numbers
λi ∈ [1, λmax], ti ∈ [tmin, tmax], φi ∈ [0, 2π ] for each electron,
and χ ∈ [0, ρ̃max]. If ρ̃(λ5, t5, φ5, λ6, t6, φ6) > χ then the gen-
erated values of λi, ti, and φi are accepted as initial conditions;
otherwise, they are rejected and the sampling process starts
again. Once we find the λi, ti, and φi, we obtain the po-
sition vector ri = (rx,i, ry,i, rz,i ) and the momentum vector
pi = (px,i, py,i, pz,i ) of each electron i as

rx,i = Rab cos(φi)

2

√(
λ2

i − 1
)[

1 − (
tγ
i + μc

)2]
, (49)

ry,i = Rab sin(φi)

2

√(
λ2

i − 1
)[

1 − (
tγ
i + μc

)2]
, (50)

rz,i = Rabλi
(
tγ

i + μc
)

2
, (51)

px,i = √
Pi cos(φp,i)

√
1 − ν2

p,i, (52)

py,i = √
Pi sin(φp,i )

√
1 − ν2

p,i, (53)

pz,i = √
Piνp,i, (54)

where φp,i ∈ [0, 2π ] and νp,i ∈ [−1, 1] define the momentum
pi in spherical coordinates. Following the above-described
formulation, we obtain the initial conditions of the electron
with respect to the origin of the coordinate system. However,
for our computations we need to obtain the initial conditions
for the position of the electron with respect to the center
of mass of the triatomic molecule. To do so, we shift the
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coordinates by Rc.m. = (Xc.m., 0, Zc.m.) with

Xc.m. = mcxc

ma + mb + mc
, (55)

Zc.m. = (mb − ma)Rab/2 + mczc

ma + mb + mc
. (56)

For HeH2
+, ma and mb are the masses of the hydrogen atoms

and mc is the mass of the helium atom. We also note that
since HeH2

+ is a linear molecule, xc is zero in Eqs. (45),
(46), and (55). The Zc.m. can be seen in Fig. 1. Also, we
use the parameters Ip,2 = −1.73 a.u., Rab = |r1 − r2| = 2.07
a.u., Rbc = |r2 − r3| = 2.06 a.u., Rac = |r1 − r3| = 4.12 a.u.,
Q1 = Q2 = 1 a.u., and Q3 = 2 a.u. The distances and the
second ionization energy of HeH2

+ were obtained using the
quantum chemistry package MOLPRO [61], with the Hartree-
Fock method employing the aug-cc-pV5Z basis set.

III. RESULTS

Here we employ a vector potential of the form

A(y, t ) = −E0

ω
exp

[
−2 ln(2)

(
ct − y

cτ

)2
]

sin(ωt − ky)ẑ,

(57)

where k = ω/c is the wave number of the laser field and τ

is the full width at half maximum of the pulse duration in
intensity. The direction of both the vector potential and the
electric field is along the z axis. We take the propagation
direction of the laser field to be along the y axis and hence
the magnetic field points along the x axis. The intensity of the
field is 2 × 1014 W/cm2 with a pulse duration in intensity of
τ = 40 fs at 800 nm.

Using the ECBB model for molecules, we focus on triple
ionization (TI), FTI, double ionization (DI), and FDI. Out
of all events, we find that TI events account for roughly
1.2% and FTI events with n > 2 account for 0.3%, while
DI and FDI with n > 2 events account for 54% and 9.5%,
respectively. Hence, FDI is a major ionization process in
strongly driven molecules. In triple ionization, three electrons
escape and He2+ and two H+ ions are formed. In frustrated
triple ionization, two electrons escape and one electron fi-
nally remains bound at a Rydberg state either at He2+ or
at one of the two H+ ions. We also find that the formation
of He+∗ + 2H+ is roughly 2.5 times more likely than the
formation of He2+ + H+ + H∗.

In double ionization, two electrons escape while one re-
mains bound. For the vast majority of DI events, we find
that the bound electron has principal quantum number n = 1.
Also, it is three times more likely for the final fragments to
be He+ + 2H+ rather than He2+ + H+ + H, that is, in DI, it
is three times more likely for the electron to remain bound at
He2+. In frustrated double ionization, an electron escapes, an
electron remains bound at an n = 1 state, and another electron
remains bound at a Rydberg state. In FDI, we have several
possibilities for the formation of different ions depending on
which ions the bound electrons are attached to. We find that
it is roughly four times more likely for the deeply bound
electron to remain bound at He2+ versus at H+. Here, in FTI
and FDI we do not include the Rydberg n = 2 states, since

FIG. 3. Distribution of the sum of the final kinetic energies
(black solid lines) of the ions produced in (a) triple ionization and
(b) frustrated triple ionization. The gray dash-dotted lines depict the
distribution of the final kinetic energy of the He2+ ion for TI and
He+∗ for FTI. The purple dashed (light blue dotted) lines depict the
distribution of the final kinetic energy of the middle (left) H+ ion for
TI and FTI. All distributions are normalized to one.

an electron from the n = 1 state of H+ tunnels to the n = 2
state of He2+, resulting in a large number of n = 2 states.
These states were also not included in our previous work on
the strongly driven heteronuclear molecules HeH+ [67] and
HeH2

+ [40].
Finally, we identify the principal quantum number n for

each Rydberg electron by first calculating the classical princi-
pal quantum number

nc = 1√
2|εi(t f )| , (58)

with εi(t f ) the energy of a bound electron at the end of the time
propagation. Then we assign a quantum number n so that the
following criterion is satisfied [68]:

[
(n − 1)

(
n − 1

2

)
n
]1/3 � nc �

[
n
(
n + 1

2

)
(n + 1)

]1/3
. (59)

A. Kinetic energy release distributions

In Fig. 3 we plot the kinetic energy release (KER) of the
final ion fragments for triple ionization and the most probable
route to frustrated triple ionization. As expected, we find that
the KERs for TI and FTI are very similar. This is consistent
with the Rydberg electron in FTI remaining bound in a highly
excited state. Hence, the Rydberg electron does not signifi-
cantly screen the core it remains bound to. Given the similarity
of the KER distributions for FTI and TI, for simplicity, we
next focus on describing the features of the KER for TI. As
in our previous work [40], we find that the left H+ ion is the
fastest one, followed by He+ and the middle H+ ion. This
is consistent with both Coulomb forces exerted on the left
H+ ion being along the −z axis. Similarly, both repulsive
forces acting on He+ are along the +z axis. However, the
mass of He is four time larger than the mass of H. This
results in He+ having a smaller acceleration and hence kinetic
energy compared to the left H+ ion. Also, the middle H+ ion
experiences repulsive forces from the left H+ ion and from
the He+ ion in opposite directions. This small net Coulomb
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FIG. 4. Distribution of the sum of the final kinetic energies
(black solid lines) of the ions produced in (a), (c), and (e) double
ionization and (b), (d), and (f) frustrated double ionization with the
n = 1 electron (a) and (b) bound at He2+, (c) and (d) bound at the
left H+ ion, and (e) and (f) bound at the middle H+ ion. The gray
dash-dotted lines depict the distribution of the final kinetic energy of
(a) and (b) the He+ ion for DI and FDI and (c)–(f) He2+ for DI and
He+∗ for FDI. The purple dashed (light blue dotted) lines depict the
distribution of the final kinetic energy of (a) and (b) the middle (left)
H+ ion fragment for DI and H∗ or H+ for FDI, (c) and (d) the H+ (H)
ion for DI and FDI, and (e) and (f) the H (H+) ion for DI and FDI.
All distributions are normalized to one.

force on the middle H+ ion results in its kinetic energy being
smaller compared to the other two ions.

In Fig. 4 we plot the kinetic energy release of the final
ion fragments for double and frustrated double ionization. In
what follows, we focus on the most probable channels of FDI,
namely, He+ + H+ + H∗ [see Fig. 4(b)], which accounts for
65% of FDI, and the channel He+∗ + H+ + H [see Figs. 4(d)
and 4(f)], which accounts for 17% of FDI. We plot the KER
when the bound n = 1 electron is attached to the He2+ ion
[Figs. 4(a) and 4(b)], to the left H+ ion [Figs. 4(c) and 4(d)],
and to the middle H+ ion [Figs. 4(e) and 4(f)]. As for TI
and FTI, we find that the KER distributions for DI and FDI
are very similar. Hence, for simplicity, we next focus on
describing the features of the KER distribution for DI. When
the deeply bound electron is attached to He2+ [Figs. 4(a) and
4(b)], we find that the left H+ is the fastest ion, followed by
He+ and the middle H+ ion. Indeed, the Coulomb repulsive
forces on the left H+ ion from the other two ions are both
along the −z axis, on He+ both forces are along the +z axis,
and on the middle H+ ion the two forces are in opposite
directions. When the deeply bound electron is attached to
the left H+ ion [Figs. 4(c) and 4(d)], the electron screens the
charge of the core, resulting in a smaller Coulomb repulsion
between the left H fragment and He2+. Hence, the kinetic
energy of each of the two fragments is smaller than their

FIG. 5. Distribution of the z component of the final velocity of
the ions vz (black solid lines) and of the change of vz in the time
interval [t0, t f ] due to the forces from the electric field �vE

z (green
dashed lines), from the effective potential �vVeff

z (light blue dotted
lines), and from the Coulomb potential �vC

z (dark gray dash-dotted
lines) for (a)–(c) TI and (d)–(f) DI with the n = 1 electron bound at
He2+.

kinetic energy when the deeply bound electron is attached to
He+. The reduction in kinetic energy is larger for the left H
fragment since both the Coulomb forces from the other two
ions are now smaller. This is clearly seen by comparing the
gray dash-dotted and light blue dotted lines in Fig. 4(b) with
the ones in Fig. 4(a). In contrast, the total Coulomb repulsion
on the middle H+ ion is increased. Indeed, the repulsion from
the left H fragment towards the z axis is decreased while the
repulsion from He2+ towards the −z axis is increased (the
n = 1 electron is no longer attached to He2+). Hence, the
kinetic energy of the middle H+ is increased [compare the
purple dashed line in Fig. 4(b) with the one in Fig. 4(a)]. When
the deeply bound electron is attached to the middle H+ ion,
the repulsive forces on this fragment are smaller, resulting in
its smaller kinetic energy [compare the purple dashed line in
Fig. 4(e) with the one in Fig. 4(c)]. Also, the kinetic energy of
the left H+ ion increases since the deeply bound electron now
screens the middle H fragment [compare the light blue dotted
line in Fig. 4(e) with the one in Fig. 4(c)]. Finally, the kinetic
energy of He2+ is smaller since the deeply bound electron is
attached to the H+ ion that is closer to He2+ [compare the gray
dash-dotted lines in Figs. 4(e) and 4(c)].

Moreover, we find that the KER distribution of the left
H+ ion has a pronounced double-peak structure for DI and
FDI when the deeply bound electron is attached to He2+ [see
the light blue dotted lines in Figs. 4(a) and 4(b)]. To identify
the origin of this double peak, it suffices to focus on the DI
process. In Fig. 5 we plot the final z component of the velocity
of the ions along the electric field, vz, for TI [Figs. 5(a)–5(c)]
and DI [Figs. 5(d)–5(f)]. Also, we plot the contribution to this
velocity from the electric field, �vE

z , and from the forces due
to the Coulomb, �vC

z , and the effective, �vVeff
z , potentials. For

both TI and DI we find that the velocity vz of the left H+ ion
is mostly determined by the Coulomb forces acting on this
ion. For DI, the contribution of the Coulomb forces to the
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FIG. 6. (a) Distribution of the final kinetic energy of the left
H+ ion for DI when the n = 1 electron is bound at He2+. Angular
distributions of the left H+ and middle H+ and He+ ions are shown
for DI when the kinetic energy of the left H+ is (b) low and (c) high.

velocity of the left H+ ion has a clear double-peak structure
[see Fig. 5(d)]. This gives rise to the double-peak structure in
the kinetic energy of the left H+ ion in Fig. 4(a). In contrast,
the velocities vz of the middle H+ and of the He2+ (He+)
ion for TI (DI) are determined by the forces from both the
Coulomb and the effective potential. The role of the effective
potential is more pronounced for the DI process, consistent
with one electron remaining bound.

Next, for DI we show how the Coulomb forces exerted on
the left H+ ion, when the deeply bound electron is attached at
He2+, result in a low- and a high-energy peak in the KER of
the left H+ ion [see the light blue dotted line in Fig. 4(a)]. To
do so, we plot the angle of escape of each ion with respect
to the z axis. The angular distributions that correspond to
the low- and high-energy peaks [see Fig. 6(a)] are shown in
Figs. 6(b) and 6(c), respectively. We find that the two peaks in
the kinetic energy distribution of the left H+ ion are associated
with a different range of angles of escape of the middle H+
as well as of the He+ ions. For both peaks, the left H+ ion
escapes along the −z axis [see the dark gray dotted lines in
Figs. 6(b) and 6(c)]. Moreover, all ions have roughly the same
charge and the middle H+ ion is closer compared to He+ to the
left H+ ion. Hence, it is the Coulomb repulsion between the
two H+ ions that mostly determines the final kinetic energy
of the left H+ ion. We find that for the lower-energy peak
the middle H+ ion escapes with a very wide range of angles
away from the −z axis, compared to a much smaller range
for the high-energy peak. When the middle H+ ion escapes
with larger angles with respect to the −z axis and, hence
with respect to the left H+, the Coulomb repulsion between
the two H+ ions is smaller, resulting in a smaller kinetic
energy of the left H+ ion. In Fig. 7(b) we show that for TI
the distributions of the angles of escape of the ions are very
similar to the angles corresponding to the high-energy peak
for DI [compare Fig. 7(b) with Fig. 6(c)]. As a result, the
kinetic energy distribution of the left H+ ion for TI is similar
to the part of the distribution for DI that corresponds to the
high-energy peak.

Finally, a comparison of the KER for TI, FTI, and DI
obtained with the ECBB model and with the previous model
in Ref. [40] reveals that the KERs have larger values for
the ECBB model. This is consistent with taking into account
the repulsion between the bound electrons using effective

FIG. 7. (a) Distribution of the final kinetic energy of the left H+

ion for TI. (b) Angular distributions of the left H+ and middle H+

and He2+ ions for TI.

potentials in the ECBB model. In our previous more primitive
model, the repulsion between bound electrons is turned off.
Due to this repulsion via the effective potentials, the electrons
are less bound to the nuclei they are attached to. Hence, the
electrons screen the nuclei less, leading to higher Coulomb
repulsion between the nuclei and therefore to larger values of
the KER. Other differences in the KER of the left and middle
H+ ions when using the ECBB model versus our previous
model in Ref. [40] are due to the effective potentials in the
ECBB model significantly influencing the final velocities of
the middle H+ and He+ ions (see Fig. 5).

B. Correlation in electron escape

In Fig. 8 we plot the distribution of the difference of the
ionization times between the fastest and second fastest elec-
trons as well as the fastest and slowest electrons in TI and
between the fastest and slowest electrons in FTI and DI. We
find that the electron that ionizes second has a significant
probability to do so with a small time difference from the
fastest one, with the time difference being the smallest in TI,
followed by DI and then by FTI. The distributions in all three
processes extend up to ten periods (T) of the laser field. In
contrast, compared to the fastest electron, the time the last
electron ionizes in TI has a distribution that peaks roughly

FIG. 8. Distribution of the difference of the ionization times be-
tween the fastest and second fastest electrons as well as the fastest
and slowest electrons in TI and between the fastest and slowest
electrons in FTI and DI.
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FIG. 9. Distribution of the principal n quantum number for path-
ways (a) A and (b) B of FDI and for pathways (c) A and (d) B of FTI
(black solid lines with diamonds). The distribution of the n quantum
number is also plotted separately when the Rydberg electron remains
attached to He2+ for FTI and He+ for FDI (light gray lines with
upward pointing triangles) and when it remains attached to H+ (dark
gray lines with downward pointing triangles).

around three periods of the laser field. This suggests that the
last to ionize electron escapes mainly due to enhanced ioniza-
tion and not due to a recollision, i.e., the electronic correlation
is weak. This is consistent with HeH2

+ being driven by a long
and intense laser pulse in the present study.

A comparison between the distributions of the difference
of the ionization times for TI, FTI, and DI of HeH2

+ ob-
tained with the ECBB model versus its predecessor model in
Ref. [40] reveals that these distributions for the ECBB model
peak at smaller times and are less wide. This is consistent
with the interaction between bound electrons being accounted
for via effective potentials in the ECBB model. As a result,
following a return of an electron to the core, energy transfer
between bound electrons can take place, leading to possible
ionization or excitation. This in turn leads to electrons escap-
ing faster, which is consistent with the KER of the fragments
having larger values for the ECBB model, as discussed above.

C. n quantum numbers

Next we investigate the distribution of the principal n quan-
tum number of the two main pathways A and B of FTI and
FDI (see Fig. 9). We find that FDI with n > 2 is a major
ionization process accounting for roughly 9.5% of all events,
while FTI is an order of magnitude less probable. Also, we
find that pathways A (54%) and B (46%) with n > 2 con-
tribute roughly the same to FTI, while for FDI pathway B
contributes significantly more (70%) than pathway A. This
can be understood in terms of electronic correlation. Frus-
trated TI, most likely, occurs when the slowest electron finally
remains bound in an excited state. As for the slowest electron
in TI (see the black solid line in Fig. 8), the slowest elec-
tron in FTI can gain energy both from the initially tunneling
electron returning to the molecular ion and from an enhanced

ionization process. Hence, when this electron remains bound
in a Rydberg state, it does so either through pathway B, related
to energy gain from the returning electron, or through pathway
A, related to energy gain from an enhanced ionization process
[6]. Frustrated DI, most likely, occurs when the slowest of the
two electrons that ionize in DI finally remains in an excited
state. However, the slowest electron in DI mainly gains energy
from the electron returning to the molecular ion, associated
with pathway B of FDI. This is supported by the significantly
faster ionization time of the second electron in DI and TI
(dark gray dashed and light gray dash-dotted lines in Fig. 8)
compared to the ionization times of the slowest electron in TI
(black solid line in Fig. 8).

For FDI, we find that it is significantly more likely for
the Rydberg electron to be attached to the H+ ion versus the
He2+ ion. Indeed, in Figs. 9(a) and 9(b) it can be clearly seen
that the probability for the Rydberg electron to be attached to
He2+ (area under the light gray lines with upward pointing
triangles) is much smaller than the probability to be attached
to one of the H+ ions (area under the dark gray lines with
downward pointing triangles). This is consistent with 65% of
FDI events having the Rydberg electron attached to one of
the H+ ions, while the deeply bound electron is attached to
the He2+ [see Fig. 4(b)]. Only 21% of FDI events have the
Rydberg electron attached to He2+, while the deeply bound
electron is attached to one of the H+ ions [see Figs. 4(d)
and 4(f)]. The significantly higher probability for the Rydberg
electron to be attached to one of the H+ ions is consistent
with the bound n = 1 electron staying mostly attached to the
He2+ ion for both DI and FDI. In this case, all nuclei have
a charge of roughly 1. In addition, the bound n = 1 electron
repels the Rydberg electron from the He+ ion, resulting in the
Rydberg electron being more likely to stay bound in one of the
two H+ ions. The Rydberg electron can also remain bound
at He+, a less likely process that we do not show in Figs. 4
and 9.

For FTI, in contrast to FDI, it is roughly 2.5 times more
likely for the Rydberg electron to remain attached to He2+

versus the H+ ions [compare the area under the light gray lines
with upward pointing triangles and the area under the dark
gray lines with downward pointing triangles in Figs. 9(c) and
9(d)]. This is consistent with an electron being significantly
more likely to be attracted and remain bound at He2+ with
charge 2 versus at H+ with charge 1.

Also, for FDI and FTI, we find that for both pathways the
distribution of the n quantum number peaks around n = 18
when the Rydberg electron is attached to He2+ compared to
the significantly smaller n values when the Rydberg electron is
attached to H+. This comes as no surprise. Indeed, we assume
that the electron that tunnel ionizes last and remains bound in
a Rydberg state has roughly the same energy for attachment
at He2+ or at H+. Given that He2+ has twice the charge of
H+, it follows that a Rydberg n state of H+ corresponds to
roughly a Rydberg 2n state of He2+. In addition, we find
that the distribution of the n number peaks at higher values
for pathway A of FDI versus FTI. This is consistent with an
n = 1 electron remaining bound in FDI, resulting in a higher
screening of the cores in FDI compared to FTI and hence
higher energies of the Rydberg electron for FDI.
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IV. CONCLUSION

We have developed a general three-dimensional semiclas-
sical model for the study of correlated multielectron escape
during fragmentation of molecules driven by intense infrared
laser pulses. This model fully accounts for the motion of
all electrons and nuclei. Moreover, it is developed in the
nondipole approximation, fully accounting for the magnetic
field of the laser pulse. This model is a generalization of
a model we previously developed for atoms. In this model,
referred to as the ECBB model for molecules, the interaction
of each quasifree or bound electron with the cores and each
quasifree electron with a bound electron is treated exactly,
fully accounting for the Coulomb singularity. To avoid artifi-
cial autoionization, the interaction of a pair of bound electrons
is treated through effective Coulomb potentials. We employed
the ECBB model in the context of the linear triatomic HeH2

+
molecule. We focused our study on triple and double as well as
frustrated triple and double ionization. We found that the sum
of the final kinetic energies of all ion fragments is larger when
described by the ECBB model versus a predecessor of the
ECBB model that does not account for the interaction between

bound electrons. This suggests that the interaction between
bound electrons allows for a more correlated electron-electron
escape which occurs faster, leading to a Coulomb explosion
of the nuclei at shorter distances. Finally, the ECBB model
allows for the study of frustrated double ionization, a major
ionization process. This process was not accessible with our
previous models, since it has two bound electrons and the
interaction between bound electrons was not accounted for.
We expect that the ECBB model for strongly driven molecules
will pave the way for previously inaccessible studies of multi-
electron ionization processes during fragmentation of strongly
driven molecules.
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APPENDIX A: DERIVATION OF TERMS IN THE CHAIN RULE

We find that the terms in the chain rule in (20) are given by

∂[E j (t ) − H]

∂r j
· ṙ j =

∂
(
−Qjr j · E(r j, t ) − ∑N−1

i=Nc+1

∑N
m=i+1[1 − ci,m(t )] QiQm

|ri−rm|
)

∂r j
· ṙ j

−
∑N

i=Nc+1
i �= j

∑Nc
n=1 ci, j (t )Cj,n(E j, |r1 − r j |, . . . , |rNc − r j |)Veff(ζ j,n, |rn − ri|)

∂r j
· ṙ j

= −QjE(r j, t ) · ṙ j +
N−1∑

i=Nc+1

N∑
m=i+1

[1 − ci,m(t )]
QiQm(ri − rn)

|ri − rm|3 (δi, j − δm, j ) · ṙ j

− Qjr j ·
(

∂E(r j, t )

∂r j
· ṙ j

)
−

N∑
i=Nc+1

i �= j

Nc∑
n=1

ci, j (t )
∂Cj,n(E j, |r1 − r j |, . . . , |rNc − r j |)

∂r j
Veff(ζ j,n, |rn − ri|) · ṙ j,

(A1)
Nc∑

n=1

∂E j (t )

∂rn
· ṙn =

Nc∑
n=1

N∑
i=Nc+1

i �= j

ci, j (t )
Nc∑

b=1

(
δn,bCi,b

∂Veff(ζi,b, |rb − r j |)
∂rn

+ Veff(ζi,b, |rb − r j |)∂Ci,b

∂rn

)
· ṙn

+
Nc∑

n=1

Nc∑
b=1

(
−δn,b

QbQj (rb − r j )

|rb − r j |3
)

· ṙn

=
Nc∑

n=1

N∑
i=Nc+1

i �= j

ci, j (t )

(
Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)∂Veff(ζi,n, |rn − r j |)

∂rn
+

Nc∑
b=1

Veff(ζi,b, |rb − r j |)∂Ci,b

∂rn

)
· ṙn

+
Nc∑

n=1

(
−QnQj (rn − r j )

|rn − r j |3
)

· ṙn, (A2)

033106-14



GENERAL MODEL AND TOOLKIT FOR THE IONIZATION … PHYSICAL REVIEW A 109, 033106 (2024)

N∑
i=Nc+1

i �= j

∂E j (t )

∂ri
· ṙi =

N∑
i=Nc+1

i �= j

N∑
l=Nc+1

l �= j

Nc∑
n=1

cl, j (t )

(
Veff(ζl,n, |rn − r j |)δi,l

∂Cl,n(El , |r1 − rl |, . . . , |rNc − rl |)
∂ri

)
· ṙi

=
N∑

i=Nc+1
i �= j

Nc∑
n=1

ci, j (t )

(
Veff(ζi,n, |rn − r j |)∂Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)

∂ri

)
· ṙi, (A3)

N∑
i=Nc+1

i �= j

∂E j (t )

∂Ei
Ėi =

N∑
i=Nc+1

i �= j

Ėi

N∑
l=Nc+1

l �= j

Nc∑
n=1

cl, j (t )δi,l

(
Cl,n(El , |r1 − rl |, . . . , |rNc − rl |)∂Veff(ζl,n, |rn − r j |)

∂Ei

+Veff(ζl,n, |rn − r j |)∂Cl,n(El , |r1 − rl |, . . . , |rNc − rl |)
∂Ei

)

=
N∑

i=Nc+1
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Ėi

Nc∑
n=1

ci, j (t )

(
Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)∂Veff(ζi,n, |rn − r j |)

∂Ei

+Veff(ζi,n, |rn − r j |)∂Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)
∂Ei

)

=
N∑

i=Nc+1
i �= j

Ėi

Nc∑
n=1

ci, j (t )Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)∂Veff(ζi,n, |rn − r j |)
∂ζi,n

∂ζi,n

∂Ei

+
N∑

i=Nc+1
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Ėi

Nc∑
n=1

ci, j (t )Veff(ζi,n, |rn − r j |)
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(
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∂ζi,b

∂ζi,b

∂Ei

)

=
N∑

i=Nc+1
i �= j

g j,iĖi, (A4)

∂E j (t )

∂t
=

N∑
i=Nc+1

i �= j

Nc∑
n=1

ċi, j (t )Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)Veff(ζi,n, |rn − r j |) + ∂

∂t

(
[p̃ j − QjA(r j, t )]2

2mj

)
− Qjr j · ∂E(r j, t )

∂t

=
N∑

i=Nc+1
i �= j

Nc∑
n=1

ċi, j (t )Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)Veff(ζi,n, |rn − r j |) + Qj ṙ j · E(r j, t ) − Qjr j · ∂E(r j, t )

∂t
. (A5)

APPENDIX B: DERIVATIVES OF THE FUNCTIONS OF THE EFFECTIVE CHARGES

1. Derivatives of Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)
The function Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|) has the following derivative with respect to ζi,b:

∂Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)
∂ζi,b

= 1(∑Nc
n′=1 ρi,n′

)2

∂ρi,b

∂ζi,b

(
δn,b

Nc∑
n′=1

ρi,n′ − ρi,n

)
. (B1)

The function Ci,b(Ei, |r1 − ri|, . . . , |rNc − ri|) has the following derivative with respect to rn:

∂Ci,b(Ei, |r1 − ri|, . . . , |rNc − ri|)
∂rn

= 1( ∑Nc
n′=1 ρi,n′

)2

∂ρi,n

∂rn

(
δn,b

Nc∑
n′=1

ρi,n′ − ρi,b

)
. (B2)

The function Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|) has the following derivative with respect to ri:

∂Ci,n(Ei, |r1 − ri|, . . . , |rNc − ri|)
∂ri

=
∂ρi,n

∂ri

( ∑Nc
n′=1 ρi,n′

) − (∑Nc
n′=1

∂ρi,n′
∂ri

)
ρi,n(∑Nc

n′=1 ρi,n′
)2 . (B3)
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The function Cj′,n(E j′ , |r1 − r j′ |, . . . , |rNc − r j′ |) has the following derivative with respect to qk , assuming that k can only
represent electron-nucleus pairs:

∂Cj′,n(E j′ , |r1 − r j′ |, . . . , |rNc − r j′ |)
∂qk(i, j)

= δ j′, j( ∑Nc
n′=1 ρ j′,n′

)2

∂ρ j′,i

∂qk

(
δn,i

Nc∑
n′=1

ρ j′,n′ − ρ j′,n

)
. (B4)

The function ρi,n has the following derivatives with respect to ri, rn, qk , and ζi,n:

∂ρi,n

∂ri
= 2ζi,n

rn − ri

|rn − ri|ρi,n = 2ζi,n
qk(n,i)

qk(n,i)
ρi,n, (B5)

∂ρi,n

∂rn
= −2ζi,n

rn − ri

|rn − ri|ρi,n = −2ζi,n
qk(n,i)

qk(n,i)
ρi,n, (B6)

∂ρi,n

∂qk(i′, j′ )
= δi′,nδ j′,i

∂ρi,n

∂rn
, (B7)

∂ρi,n

∂ζi,n
=

(
3

ζi,n
− 2qk(n,i)

)
ρi,n. (B8)

2. Derivatives of Veff(ζi,n, |rn − r j|)
The function Veff(ζi,n, |rn − r j |) has the following derivative with respect to ζi,n:

∂Veff(ζi,n, |rn − r j |)
∂ζi,n

= e−2ζi,n|rn−r j |(1 + 2ζi,n|rn − r j |). (B9)

The function Veff(ζi,n, |rn − r j |) has the following derivative with respect to rn:

∂Veff(ζi,n, |rn − r j |)
∂rn

= −1 + [1 + 2ζi,n|rn − r j |(1 + ζi,n|rn − r j |)]e−2ζi,n|rn−r j |

|rn − r j |3 (rn − r j ). (B10)

Finally, the function Veff(ζi,n, |rn − r j |) has the following derivative with respect to qk:

∂Veff(ζ j′,i, |ri − ri′ |)
∂qk

= δi′, j
−1 + [1 + 2ζ j′,iqk (1 + ζ j′,iqk )]e−2ζ j′ ,iqk

q3
k

qk . (B11)
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