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Abstract

Heart rate and heart rate variability have enabled insight into a myriad of

psychophysiological phenomena. There is now an influx of research attempting using these

metrics within both laboratory settings (typically derived through electrocardiography or pulse

oximetry) and ecologically-rich contexts (via wearable photoplethysmography, i.e.

smartwatches). However, these signals can be prone to artifacts and a low signal to noise ratio,

which traditionally are detected and removed through visual inspection. Here, we developed an

open-source Python package, RapidHRV, dedicated to the preprocessing, analysis, and

visualization of heart rate and heart rate variability. Each of these modules can be executed with

one line of code and includes automated cleaning. In simulated data, RapidHRV demonstrated

excellent recovery of heart rate across most levels of noise (>= 10dB) and moderate-to-excellent

recovery of heart rate variability even at relatively low signal to noise ratios (>=20dB) and

sampling rates (>=20Hz). Validation in real datasets shows good-to-excellent recovery of heart

rate and heart rate variability in electrocardiography and finger photoplethysmography

recordings. Validation in wrist photoplethysmography demonstrated RapidHRV estimations were

sensitive to heart rate and its variability under low motion conditions, but estimates were less

stable under higher movement settings.
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RapidHRV: an open-source toolbox for extracting heart rate and heart rate

variability

Evidence has outlined a link between heart rate, heart rate variability, and health-related

risks, ranging from cardiac mortality to mental illness (Hillebrand et al., 2013; Jandackova et al.,

2016; Makovac et al., 2016a; Pham et al., 2021). Consequently, there is now an influx of

research looking into whether these measures can be derived in naturalistic settings to track

clinically-relevant outcomes, namely through wearable devices (Georgiou et al., 2018; Mulcahy

et al., 2019). However, a key issue when opting to use the measures in naturalistic settings are

the low signal to noise ratios (e.g. photoplethysmography (PPG), a typical measure for cardiac

monitoring in wrist wearables, Caizzone et al., 2017). Moreover, heart rate variability measures

generally require relatively longer windows for extraction compared to heart rate (Baek et al.,

2015). Thus, significant noise poses a problem for out-of-laboratory applications, as point

estimates can contain large errors from technological limitations and motion artifacts within

windows of extraction. In experimental settings, noise has often been dealt with through visual

inspection of data (Makovac et al., 2016b; Rae et al., 2020); but when approaching time courses

in relatively larger-scale samples, manual outlier detection is not a pragmatic solution.

Whilst some open-source packages are already available for the analysis of heart rate and

heart rate variability, these are typically modality-specific, and not targeted at wrist-worn

measures (e.g. pyVHR for video-based estimation, Boccignone et al., 2020). Some

modality-general packages do exist, but these often still require manual visual inspection and/or

can require custom scripting on the users end for tailoring to e.g. noisy, wrist-worn PPG

measures (‘Analysing_Smartwatch_Data’ in HeartPy, van Gent et al., 2019; NeuroKit2, Pham et

al., 2021). As such, these are often less suited for dealing with datasets collected across large

time frames. Consequently, we set out to develop a simple yet flexible toolbox for the extraction

of time-domain heart rate and heart rate variability measures with automated artifact rejection

applicable across recording modalities, including wrist-worn PPG. Here, we present the

development and validation of an open-source Python package, ‘RapidHRV’.
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Pipeline

RapidHRV was developed in Python (V 3.7.9). RapidHRV source code and tutorials are

available to download through PyPi (https://pypi.org/project/rapidhrv/) and GitHub

(https://github.com/peterakirk/RapidHRV). Below we provide an overview of RapidHRVs

preprocessing, analysis (figure 1), and visualization. Each of the three modules only requires one

function (one line of code) to run, for which we have embedded examples at the end of the

relevant sections below.

–Figure 1–

Preprocessing

First, data is upsampled with cubic spline interpolation (3rd order polynomial; default =

1kHz) to increase temporal accuracy of peak detection. To mitigate potential long-term drifts in

the signal, the pipeline then applies a high pass butterworth filter (0.5Hz) across the input data.

Finally smoothing with a savitzky-golay filter (3rd order polynomial; default = 100ms) is applied

to reduce spiking (sharp increases in the signal caused by artifacts such as motion) whilst

retaining temporal precision.

Extracting Heart Rate and Heart Rate Variability

Following preprocessing, the pipeline scales the data (between 0 and 100) and runs peak

detection on every window (default width = 10s; for a methodological discussion and prior

validation of using ultra-short, 10s windows in heart rate variability estimation, see Munoz et al.,

2015). This outputs peaks and their properties (e.g. heights, amplitudes, width; SciPy

‘find_peaks’, Virtanen et al., 2020). For ECG data however, peak detection is vulnerable to

irrelevant prominent P and T waves. Specifically, traditional amplitude-based analyses may

occasionally detect non-R wave peaks that demonstrate a similar or greater amplitude than R

waves. Consequently, for ECG data, RapidHRV can implement k-means clustering (k = 3) to

https://pypi.org/project/rapidhrv/
https://github.com/peterakirk/RapidHRV
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discern R waves from P and T waves prevalent in the signal (scikit-learn ‘KMeans’, Pedregosa et

al., 2011). This is implemented by reducing the minimum amplitude threshold to near-zero (i.e.

5%), running amplitude-based peak detection, then sorting peaks into three clusters using

relevant properties (i.e. peak widths, heights, and prominences). R waves are then determined

based on cluster centroids for peak properties, expecting R waves to hold higher prominences

and lower widths compared to P and T waves. Figure 2 demonstrates an example (from dataset 3,

see Validation Methods) wherein amplitude-based analyses may incorrectly identify T waves as R

waves in an atypical ECG signal, and how RapidHRV’s peak clustering helps mitigate this.

–Figure 2–

As RapidHRV uses fixed movements for the sliding window, a window can start or end at

any point during the cardiac signal. This can occasionally result in underestimation of the

first/last peak’s amplitude as the baseline value may—for example—be set during the P wave.

Therefore, RapidHRV recalculates amplitudes of the first/last peaks using baseline imputation

from the neighboring peaks.

For extracting beats per minute (BPM) the number of peaks, k - 1, is multiplied by 60

(seconds), and divided by the difference in time between the first and last peaks, i and j:

The root mean square of successive differences is calculated by obtaining: (1) the

interbeat interval, IBIi, between neighboring peaks; (2) the successive differences in interbeat

intervals, IBIi - IBIi+1; (3) the square of differences; (4) the mean of squared differences (dividing

by the number peaks, N, - 1); and (5) the root of the mean square of successive differences

(RMSSD):
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BPM and RMSSD were selected as the primary measures as they appear to be the most

stable metrics when derived from ulta-short recordings (Baek et al., 2015). RapidHRV also

supplements these measures with the standard deviation of N-N intervals (SDNN), standard

deviation of successive differences (SDSD), proportion of successive differences greater than

20ms (PNN20), proportion of successive differences greater than 50ms (PNN50), and

high-frequency power (HF; note: as this requires more data points than time-domain analyses

NaN is returned if there is insufficient data).

Outlier Detection

The last phase of the pipeline is to pass measures derived from peak extraction to outlier

rejection (figure 3). This is applied at the level of the sliding window. If a window is declared an

outlier, heart rate and heart rate variability measures are removed from the cleaned time series.

By default, RapidHRV returns both the cleaned and the uncleaned time series. In addition to

default parameters listed below, the package has optional arguments embedded to allow users to

override these presets. Given that not all users may be entirely comfortable manually adjusting

these, RapidHRV additionally contains semantically-labeled arguments as inputs for outlier

constraints (‘liberal’, ‘moderate’ [default], and ‘conservative’; corresponding parameters are

parenthesized under Biological Constraints and Statistical Constraints).

Biological Constraints. RapidHRV first applies restrictions to exclude data that are

highly unlikely given known physiology:

1. Screening for sufficient peaks in a window (default: number of peaks > (window

width / 5) + 2), floored at 3; default at 10s = 3 peaks). This is primarily for

computational applicability and efficacy, screening data prior to further

processing. The minimum number of peaks required to enable calculation of

RMSSD is 3. As such, this is also applied to the uncleaned time series.
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2. Minimal and maximal heart rate (‘moderate’ [default]: 30 > BPM > 190; ‘liberal’:

20 > BPM > 200; ‘conservative’: 40 BPM > 180). These boundaries were based

on typical heart rate at rest and during exercise in the healthy population (Pierpont

& Voth, 2004; Sandvik et al., 1995; Savonen et al., 2006).

3. Minimal and maximal heart rate variability (‘moderate’ [default]: 5 > RMSSD >

262; ‘liberal’: 0 > RMSSD > 300; ‘conservative’: 10 > RMSSD > 200). Default

arguments correspond to the minimum/maximum 2nd/98th percentiles of resting

RMSSD across ages 16-89 years (van den Berg et al., 2018).

Statistical constraints. RapidHRV next applies statistical constraints to account for noisy

data that may otherwise appear to provide measures within the range of known physiology:

4. Median absolute deviation (MAD) of peak heights (distance from minimum value

of signal in window; i.e. 0) and prominence (amplitude from baseline height;

‘moderate’ [default] = 5 MAD units; ‘liberal’ = 7; ’conservative’ = 4). Unlike

Z-scoring, this quantifies each peak’s height and prominence in a given window

in terms of its deviation from the median value in the same window (for a

discussion of median absolute deviation see Leys et al., 2013). Applying these

constraints to height and prominence helps exclude windows with noise-driven

inaccuracies in peak detection.

5. Median absolute deviation of interbeat intervals (‘moderate’ [default] = 5 MAD

units; ‘liberal’ = 7; ’conservative’ = 4). This was also implemented to account for

inaccuracies in peak detection, either where spiking may cause detection of an

irrelevant peak shortly after e.g. an R wave, or low signal to noise ratio may result

in missing relevant peaks.

6. Time from the first peak to the last peak does not recede 50% of the fixed window

width. This is to ensure the user that the actual length of time for extracting

HR/HRV is not less than half of that which is specified in the window width

argument. Given debates surrounding adequacy of different window lengths for

HRV extraction (Baek et al., 2015; Munoz et al., 2015), this was implemented
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primarily as a theoretical constraint (rather than for just cleaning per se) to ensure

the user is not provided data that deviated significantly from their specified

window.

Analysis can be executed with one line of code, which returns a pandas DataFrame

(McKinney, 2012; Reback et al., 2022) containing the analyzed data.

–Figure 3–

Visualization

To allow for selected manual inspection, we have also implemented optional interactive

visualizations via matplotlib (Hunter, 2007) which allow the user to plot the time course of heart

rate and heart rate variability. The user can then select and view specific data points to see the

window of extraction (figure 4). We have provided an example pipeline below:

import rapidhrv as rhv

example_signal = rhv.get_example_data()  # Load example data

preprocessed = rhv.preprocess(example_signal)  # Preprocess data

analyzed = rhv.analyze(preprocessed)  # Analyze data

rhv.visualize(analyzed)  # Visualize data

–Figure 4–

Validation Methods

Datasets
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To validate the above pipeline we subjected it to a series of tests across both simulated

and real data (table 1). We first started by testing RapidHRV’s estimations in two sets of

simulated data (PPGSynth; Tang et al., 2020). Next, we ran validation in real data across

successively noisier modalities: electrocardiography (ECG), finger infrared

photoplethysmography (IR PPG), and wrist PPG data. Database information and code generated

in validation tests are available through the open science framework (https://osf.io/7zvn9/).

–Table 1–

1. Simulations Across Noise and Sampling Rates. We first took the pipeline forward to

validation using simulated photoplethysmography (PPG) data from PPGSynth (Tang et

al., 2020) in MATLAB. This allowed us to test how well RapidHRV recovered known

parameters under specified conditions, such as sampling rate and noise. We produced 5

minute long synthetic datasets (1000Hz), each of which varied according to the following

cardiac features:

● Mean heart rate (BPM range 60-120, increments of 5). These were selected to

allow us to check the sensitivity of the pipeline for detecting values across typical

resting heart rate, as well as elevations of these values.

● Heart rate variability (RMSSD range 0-100, increments of 5). Again, these were

selected based on typical resting heart rate variability and moderate

increases/decreases.

Following simulation of the data, we introduced noise via:

● White gaussian noise filtering (signal to noise ratios = 0.01, 10, 20, 30, 40, 50,

and 60dB). Here, we selected a range of values starting from near-zero to

ascertain at which level of noise the pipeline could no longer recover parameters

(with near-zero expected to prevent the extraction of any meaningful metrics).

https://osf.io/7zvn9/
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● Downsampling (frequencies = 20, 50, 100, and 250Hz). These were selected: A)

to capture the range of sampling rates currently used in photoplethysmography

studies (typically >= 20Hz); and B) because prior work has suggested sensitivity

to RMSSD deteriorates dramatically between 20-100Hz (Choi & Shin, 2017).

This offered the opportunity to test the effects of cleaning on what would

otherwise be considered poor quality data.

2. Simulated ‘Anxiety’. Again, we simulated data using PPGSynth. However,

simulations were based on prior anxiety literature to emulate experiment-specific effects. We

wanted to validate the sensitivity of the pipeline across specified sampling rates and levels of

noise but in the context of a known psychophysiological effect. For this, we used an estimated

Cohen’s d of .384, which was derived from a previous within-subjects threat-of-shock study

(RMSSD, t25 = 1.96, polarity flipped for readability; Gold et al., 2015). To reflect decisions in

experimental design, we ran a power calculation using the ‘pwr’ package (Champely et al., 2017)

in R, leading us to simulate a sample of N = 171 (α=.001, 1-β=.95). These ‘experiments’ were

simulated 10 times to ascertain confidence intervals around estimated effect sizes.

For each ‘subject’, we generated a 5 minute simulated time series (1kHz) using typical

resting heart rate and heart rate variability (BPM: μ = 74, σ = 13, Savonen et al., 2006; RMSSD:

μ = 23, σ = 7, bounded between 5-262, Nunan et al., 2010). These simulations were intended to

emulate the ‘safe’ condition (no anxiety induction) in a threat-of-shock study. Next, we

simulated another time series for each subject that deviated from their ‘safe’ RMSSD (heart rate

held constant) based on our effect size estimate (d = .384). This emulated our ‘threat’ (anxiety

induction) condition and contained general reductions in heart rate variability. Each time series

was finally submitted to downsampling and noise filtering using the same parameters as in the

previous simulations (white gaussian noise filtering to 0.01, 10, 20, 30, 40, 50, 60dB;

downsampling to 20, 50, 100, and 250Hz).
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3. Estimation via ECG. Following simulations, we wanted to clarify that our package

was able to adequately extract measures from one of the highest standards for heart rate

variability recordings, ECG. Here, we tested whether our package was able to recapitulate known

age-related effects of heart rate variability. For this, we used the Fantasia database (Iyengar et

al., 1996). This consisted of 40 subjects (20 ‘Young’ Age Range = 21-34 years; 20 ‘Old’ Age

Range = 68-81 years) watching the movie ‘Fantasia’ (duration ≈ 2 hours) whilst undergoing

ECG recordings. Automated peak detection was previously run on this dataset, with every beat

annotation verified by visual inspection. The full dataset and description is available on

PhysioNet (https://physionet.org/content/fantasia/1.0.0/; Goldberger et al. 2000).

4. Estimation via Wrist Photoplethysmography. We next took the pipeline forward to

validation in a modality considered relatively noisier than ECG, wrist photoplethysmography.

Here, we used a dataset of 39 subjects (Age: Mean = 22.67; Range = 18–38 years; demographics

reported prior to N=1 exclusion) watching 2 x 28 minute blocks of documentary and horror

video clips undergoing finger IR PPG recording (1000Hz, de Groot et al., 2020). This allowed us

to contrast psychological conditions of the experiment, testing whether RapidHRV was able to

detect effects of anxiety. Moreover, in the original study, data had been preprocessed and

analyzed using a commercially available software (Labchart; ADInstruments, Sydney, Australia;

analyzed using built-in ‘Peak Analysis’ module). This allowed us to benchmark RapidHRV

against another software. The full dataset and description is available via the Open Science

Framework (https://osf.io/y76p2/).

5. Estimation via PPG. Finally, we analyzed the PPG-DaLiA dataset, which consists of

15 subjects (Age: Mean = 30.60 years; Range = 21-55) completing various activities whilst

having wrist PPG recorded with an Empatica E4 device (Hz = 64) and simultaneous ECG

measures with a RespiBAN (Hz = 700, Reiss et al., 2019). Over the course of 2.5 hours,

participants engaged in a range of activities designed to elicit low and high motion. These were:

sitting and reading; ascending/descending stairs; 1 v 1 table soccer; cycling on pavements and

gravel; driving a car; lunch break (queuing, purchasing, and eating food in a cafeteria); walking;

https://physionet.org/content/fantasia/1.0.0/
https://osf.io/y76p2/
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and working at a desk (typically on a computer). This allowed us to test whether RapidHRV was

able to extract heart rate and variability measures from wrist PPG and how these compared to

ECG measurements. Moreover, this enabled us to highlight under what conditions estimations

are optimal. For the full dataset and description, see Reiss et al. (2019).

Analyses

Unless otherwise stated, all analyses were conducted using RapidHRV’s default

arguments: window width = 10s; window movement = 10s; outlier method = ‘moderate’

(peak/height median absolute deviation = 5, interbeat interval median absolute deviation = 5,

BPM range = 30-190, RMSSD range = 5-262); minimum window successful extraction = 5s,

minimum amplitude for peak detection = 50, minimum distance between peaks = 250ms; for

ECG data, ecg_prt_clustering = True). To assess performance across datasets, we used:

visualizations; intraclass correlation coefficients (ICC; two-way mixed effects, absolute

agreement, single measure); root-mean-square-error (RMSE); and sensitivity to experimental

effects (Cohen’s d). For ICC values, we used the following semantic labels for interpretation:

ICC < .5 as ‘poor’, .5 < ICC < .75 as ‘moderate’; .75 < ICC < .90 as ‘good’, and .90 < ICC as

‘excellent’ (Koo & Li, 2016).

In our PPG dataset, we also calculated motion estimates as a proxy for the severity of

noise present in PPG across conditions. We derived mean jerk magnitude (square root of the sum

of squared changes in acceleration; Eager et al., 2016), which aimed to pick up on oscillatory

(‘jerk’) motions in the wrist for each condition. Across all axes (x, y, and z; m/s^2), jerk vector, j,

was calculated as the change in acceleration, a, divided by the change in time, t, between

samples:

Finally, we derived jerk magnitudes by calculating the square root of the sum of squared

jerks, j, for axes x, y, and z:
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For each subject, jerk magnitudes were averaged across time for each condition.

Validation Results

1. Parameter Recovery in Simulated PPG

RapidHRV was able to accurately recover heart rate across most sampling frequencies

and noise in our initial simulations. Accurate detection of BPM primarily started to degrade

when signal to noise ratios were less than 10dB (figure 5; table 2). RapidHRV cleaning provided

improvements in simulations with a signal to noise ratio of 10dB.

–Table 2–

Performance in recovery of heart rate variability was again primarily based on signal to

noise ratio. At 20dB RapidHRV recovery of RMSSD was good-to-excellent for higher sampling

rates (>=100Hz), whereas lower sampling rates (<100Hz) required slightly lower levels of noise

(>30dB) for excellent recovery. RapidHRV cleaning provided clear improvements when signal to

noise ratio was below 30dB (figure 3).

–Figure 5–

Key points

● RapidHRV’s estimation of simulated BPM was good-to-excellent when signal to noise

ratio was 10dB or above.
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● RapidHRV’s estimation of simulated RMSSD was good-to-excellent when signal to noise

ratio was 20dB and sampling rate was 100Hz or higher. Across all sampling rates,

RMSSD recovery was excellent at 30dB or above.

● Cleaning appeared particularly helpful when noise was high and/or sampling rate was

low.

2. Sensitivity to ‘Anxiety’ in Simulated PPG

RapidHRV’s ability to estimate simulated effects was again primarily impacted by the

level of SNR, where changes in RMSSD were not reliably detected at 0.01 and 10dB (figure 6;

table 3). Effects were detected at signal to noise ratios of 20dB and 30dB, but this was estimated

at around half that of the true value. Maximal effect sizes plateaued following 40dB for

uncleaned data and 30dB for cleaned data. Moreover, reliable detection of effects in some

scenarios (e.g. 50Hz, 10dB) appeared dependent on cleaning. This was consistent with our

previous validation results, in that cleaning was beneficial at lower signal to noise ratios and

sampling rates, but was not necessary (or could be relaxed) in cleaner data.

–Figure 6–

–Table 3–

Key points

● RapidHRV’s estimation for simulated effects of Anxiety on RMSSD was excellent when

signal to noise ratio was 30dB or above. Moreover, this estimation was robust at a low

sampling rate (i.e. 20Hz).

● Cleaning was beneficial when noise was high, but was not necessary when noise was low.
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3. Estimation via ECG

As expected, visual inspection suggested ECG data to hold a high signal to noise ratio. In

line with our simulation findings, we adjusted the outlier rejection method accordingly so as not

to excessively exclude data (i.e. ‘liberal’). The dataset had previously been analyzed using an

automated peak detection algorithm, with every beat annotation verified by visual inspection

(Iyengar et al., 1996). Subject-specific heart rate estimates were not available from the original

database. However, RapidHRV heart rate estimations were able to recapitulate sample-wide

summary statistics (figure 7; table 4).

–Table 4–

The analytical method used for extraction of heart rate variability in the original database

(power spectral density analysis) was inconsistent with RapidHRV's time-domain heart rate

variability measure (RMSSD). Despite this discrepancy, RapidHRV was able to capture

previously reported effects of age on heart rate variability (Iyengar et al., 1996; estimated

Cohen’s d of short-term heart rate variability (i.e. αs) ≈ 1.32), such that—in cleaned

data—younger participants demonstrated higher RMSSD (M = 58.94, SD = 28.82) than older

participants (M = 25.54, SD = 13.02, Cohen’s d = 1.49; figure 6). Effects were not apparent in the

uncleaned data (Cohen’s d = -0.31).

–Figure 7–

Key points
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● In a movie-watching ECG dataset, RapidHRV was able to recapitulate previously

reported summary statistics of BPM.

● RapidHRV was able to reproduce previously reported effects of age on RMSSD as

measured by ECG.

● Cleaning was vital for detecting effects of age on RMSSD in ECG.

4. Estimation via Finger IR PPG

Sensitivity to anxiety

In our finger IR PPG data, RapidHRV was able to capture previously reported (de Groot

et al., 2020) effects of anxiety on BPM (table 5). RapidHRV additionally demonstrated an

influence of anxiety on RMSSD. Effects on BPM were greater following cleaning, whereas

detection of effects on RMSSD was entirely dependent on cleaning.

–Table 5–

Benchmarking

Overall, there was excellent agreement between RapidHRV and previous estimates (de

Groot et al., 2020; implemented using LabChart, ADInstruments, Sydney, Australia) of BPM

(ICC > .99; figure 8). For heart rate variability, there was good agreement between the two when

using the cleaned time series (ICC = .89), but poor agreement when using the uncleaned time

series (ICC = .32).

–Figure 8–
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Key points

● RapidHRV was able to recapitulate previously reported effects of anxiety on BPM and

RMSSD as measured by finger IR PPG.

● Cleaning was vital to the detection of effects of anxiety on RMSSD.

5. Estimation via Wrist-PPG During Activities

We first derived motion estimates (mean jerk magnitude; Eager et al., 2016) as a proxy

for the severity of noise present in PPG. This enabled us to split conditions into low (Reading,

Working, Lunch Break, Driving) and high motion activities (Table Soccer, Stairs, Walking,

Cycling; figure 9).

–Figure 9–

In our initial analysis using default arguments, RapidHRV was not able to produce

estimates across many of the activities for both cleaned and uncleaned data (conditions

estimated: M = 22.5%, SD = 5.18%). Visual inspection confirmed this was due to high levels of

noise and variable peak amplitude present in the signal. Therefore, we adjusted window

movement to 1s (to increase the number of extraction windows in each condition), reduced

minimum amplitude threshold for peak detection (30), and—in line with our simulation results

above (figure 3)—tightened outlier rejection (‘conservative’). Following this, RapidHRV was

able to produce estimates for all conditions in the uncleaned data and across most activities for

cleaned data (conditions estimated: M = 87.5%, SD = 11.57%). Missing estimates from the latter

were predominantly limited to high motion activities (1 missing estimate for a single subject in

the driving condition).

Across low motion activities, RapidHRV PPG-based estimates converged with

simultaneous (visually verified) ECG measures (Reiss et al., 2019). Agreement with low motion



RapidHRV 18

activities was excellent for BPM (ICC > .90) and agreement with RMSSD was moderate-to-good

(.57 < ICC < .82; table 6; figure 10). Under high motion conditions, heart rate and heart rate

variability estimates showed poor agreement (ICC < .32), except for heart rate within the cycling

condition (ICC = .75).

–Table 6–

–Figure 10–

Key point

● Following calibration to the data, cleaned RapidHRV wrist PPG-based estimates

demonstrated moderate-to-excellent convergence with a simultaneous ECG-based

analysis whilst under low motion conditions. Agreement was generally poor under high

motion conditions.

Discussion

RapidHRV is an open-source toolbox for extracting heart rate and heart rate variability

measures. RapidHRV was developed in response to the need for software dedicated to dealing

with extensive cardiac data collected across large time frames, such as out-of-laboratory PPG

recordings, which may require point estimates from very short time windows (~10 seconds).

Python packages currently exist which can analyze cardiac data (e.g. Systole, Legrand & Allen,

2020; NeuroKit2, Pham et al., 2021; pyHRV, Gomes et al., 2019). However, outlier rejection

algorithms often require visual inspection and/or extensive scripting on the user's end. While

suitable for the cardiac data collected during laboratory experiments, this may not be feasible

when dealing with data collected across large time-scales, such as weeks or months. Here, we
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have attempted to fill this gap by developing a programmatically easy-to-use toolbox which

extracts HRV measures from ultra-short windows and automates artifact detection and rejection.

In general, this is applied via a series of biological and statistical constraints. Moreover, for ECG

data, we have also implemented a k-means clustering algorithm for delineating P, R, and T

waves. Across simulated and real datasets, we scrutinized RapidHRV, testing scenarios where it

was and was not able to extract meaningful metrics. We show that signal to noise ratio, sampling

rate, and recording modality had a clear impact on sensitivity of estimation. Here, we summarize

these  validation tests and make modality-specific recommendations for users.

Simulations

Within simulated data, RapidHRV was able to recover heart rate across most levels of

noise (white gaussian noise filter >=10dB), even at relatively low sampling rates (>=20Hz).

RapidHRV’s recovery of heart rate variability was excellent at relatively low levels of signal to

noise ratio (>=20dB), though there was degradation of performance as sampling rate decreased.

Additional simulations of cardiac responses to an anxiety induction demonstrated RapidHRV

estimations fully captured effects at moderate levels of noise (>=30dB) even at relatively low

sampling rates (i.e. 20Hz). RapidHRV was able to partially capture effects (~50% reduction in

effect size) at very high levels of noise (>=10dB when Hz >50). Simulations revealed RapidHRV

cleaning was particularly beneficial at lower sampling rates and higher levels of noise, but was

not necessary (or could be relaxed) when signal and sampling rates were high. Moreover, these

simulations were able to clarify the validity of RapidHRV’s default window (10s) for estimation

of heart rate variability across a longer time period (i.e. 5 minutes).

Electrocardiography

In our electrocardiography analyses, we were able to recapitulate previously reported

effects of age on heart rate and heart rate variability. In line with previous analyses (Iyengar et

al., 1996), RapidHRV-estimates suggested older participants had lower heart rate variability than

younger participants during movie-watching. Importantly, cleaning was vital to this detection.

Finger PPG
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Using RapidHRV-estimates, we noted effects of anxiety on heart rate and heart rate

variability in a database of participants watching horror and documentary videos while

undergoing finger infrared PPG recordings. Notably, the estimated effect size was analogous to

that noted in threat-of-shock studies (Gold et al., 2015). Moreover, when contrasting

subject-specific estimates, we found good-to-excellent agreement between RapidHRV and a

previous analysis using a commercially available software. Effect sizes between conditions and

convergence of estimates between softwares was significantly improved following RapidHRV

cleaning.

Wrist PPG

In our wrist PPG validation, we noted RapidHRV was not able to produce estimates for

the majority of conditions due to limitations of the default arguments. Despite applying scaling

(0-100) at the level of a sliding window, PPG signals showed variable peaks amplitudes.

Following alterations [rhv.analyze(preprocessed, outlier_detection_settings="conservative",

amplitude_threshold=30, window_overlap=9)], RapidHRV-estimates during low motion

activities (e.g. reading, eating lunch) demonstrated good-to-excellent agreement with a

manually-verified analysis of ECG data. During high wrist-movement activities (e.g. table

soccer), estimates were generally poor-to-moderate. We do note however that in one of the high

motion conditions, cycling, RapidHRV-estimation of heart rate was good (though heart rate

variability estimation was poor). This may reflect our proxy for motion-related artifacts (jerk

magnitude), which may not always be as good an estimator of artifacts during activities which

involve changes in acceleration but relatively low movements in the wrists (i.e. cycling, as hands

are gripping the handle bars). Future work should seek to correlate RapidHRV quality assurance

metrics with a wider range of motion estimation methods. Overall, we found adjustments to

parameter arguments beneficial to PPG data, but we also note there are contextual factors and

limitations (i.e. motion-related artifacts) influencing the feasibility of accurate estimation.

Overall User Recommendations
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For ECG data, users may find traditional, amplitude-based analyses will not work for

subjects who demonstrate atypical signal morphologies (e.g. particularly prominent P and T

waves). RapidHRV includes the use of k-means clustering to help discern these components of

the ECG signal, though this is not enabled by default (ecg_prt_clustering = False). Additionally,

the cleanliness of signal, namely the stability of peak prominences, means the data may be low in

artifacts, and that minor deviations could be detected as outliers. As such, when dealing with

already-clean data, users may find that outlier rejection can be omitted or relaxed (e.g. outlier

method = ‘liberal’).

Results from the finger IR PPG data used in the present study did not suggest the need for

alterations to default RapidHRV arguments, but did suggest that automated cleaning should be

used.

Lastly, PPG data collected from naturalistic settings is typically low in signal to noise

ratio, which can constrain peak detection. Consequently, lowering the minimum amplitude

threshold for peak detection and decreasing window movement may help improve extraction.

Furthermore, given the large amount of motion-related artifacts and the results from our

simulation analyses, we recommend: a) the use of relatively conservative cleaning (e.g. outlier

method = ‘conservative’), and b) inspection of motion across conditions as an indicator of

estimation accuracy (table 7).

–Table 7–

Conclusion

In the present paper, we have outlined RapidHRV: an open-source Python pipeline for the

estimation of heart rate and heart rate variability. Across simulated datasets, RapidHRV showed

good-to-excellent recovery of heart rate and heart rate variability at relatively high levels of

noise. Estimates in electrocardiography and finger IR PPG demonstrated RapidHRV was able to
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recapitulate known effects of age and anxiety, and showed excellent agreement with

visually-inspected analyses and commercial software. Lastly, performance in wrist

photoplethysmography data was good-to-excellent when participants were engaged in low

motion activities, but we noted poor-to-moderate estimations when motion was high. Given the

increased interest in the use of wearable measures of heart rate metrics and how they relate to

other domains such as mental health, we hope that this toolbox will be of wide use to the

community, and that the simulation and benchmarking tests provided may help inform the design

and analysis of such studies.
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