
Geodesic motion in a swirling universe: The complete set of solutions
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We study the geodesic motion in a space-time describing a swirling universe. We show that the geodesic
equations can be fully decoupled in the Hamilton-Jacobi formalism leading to an additional constant of
motion. The analytical solutions to the geodesic equations can be given in terms of elementary and elliptic
functions. We also consider a space-time describing a static black hole immersed in a swirling universe. In
this case, full separation of variables is not possible, and the geodesic equations have to be solved
numerically.
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I. INTRODUCTION

In 1968 Ernst proposed a method to obtain axially
symmetric solutions of the Einstein field equations [1,2].
In this approach, the field equations are replaced by an
equation—the so-called Ernst equation—for a complex-
valued gravitational potential, often referred to as Ernst
potential. The Ernst equation is invariant under a set of
transformations. This can be used to construct new sol-
utions starting from a seed solution (see e.g. [3] for an
introduction to this so-called Ernst generating technique).
Among the above mentioned transformations, the Harrison
transformation provides a mechanism to immerse seed
solutions, e.g. black holes, into nontrivial backgrounds,
such as the Melvin magnetic universe [4–6]. Recently, the
Ernst formalism has been used to derive a new solution,
describing black holes in a so-called swirling universe [7]
by using the Ehlers transformation. Furthermore, the
Ehlers transformations have also been used to immerse
wormhole solutions into the swirling background [8]. A
systematical study of composed Harrison and Ehlers
transformations have also been presented recently [9].
In this paper, we investigate the geodesic structure of this

swirling universe space-time. Solutions of the geodesic
equations are crucial in understanding the structure of the
space-time. Often, finding explicit solutions to the geodesic
equations is impossible, but in some cases this has been
achieved. An example are the solutions of the geodesic
equations in the Schwarzschild space-time in terms of the
Weierstrass ℘ function [10]. For the Kerr solution it was
shown by Carter [11] that the geodesic equations can be
completely decoupled when employing the Hamilton-
Jacobi approach. A new constant of motion, the Carter
constant, appears, when separating the radial and polar
angular motion. The underlying reason is the existence of

Killing and Killing–Yano tensors for vacuum Petrov type D
solutions in the absence of acceleration [12,13]. In particu-
lar, the approach can be used to describe the motion of
charged particles in the Reissner-Nordström space-time [14]
and the Kerr-Newman space-time [15], where particles no
longer move on geodesics.
This paper is organized as follows: in Sec. II we review

the swirling universe solution and derive the geodesic
equations. In Sec. III we present the complete set of
solutions to the geodesic equations. We show examples
of orbits for massless and massive particles, respectively, in
Sec. IV. In Sec. V, we present some results for the geodesic
motion in a space-time describing a Schwarzschild black
hole immersed in a swirling universe. We conclude with a
summary and outlook.

II. GEODESICS IN A SWIRLING UNIVERSE

The swirling universe solution is the rotating background
solution discussed in [7] and first presented in [16]. This
solution can be constructed by using the Ernst formalism,
in particular, by applying the Ehlers transformation to a
stationary and axisymmetric seed solution. This transfor-
mation then embeds the seed into a rotating background, the
swirling universe. In cylindrical coordinates ðt; ρ;ϕ; zÞ the
line element of the swirling universe reads [6,7]

ds2¼FðρÞð−dt2þdρ2þdz2Þþ ρ2

FðρÞðdϕþωðzÞdtÞ2; ð1Þ

whereFðρÞ¼ 1þ j2ρ4 andωðzÞ ¼ 4jz. This metric belongs
to the Petrov type D class. This space-time possesses an
ergoregion when [6]

j4jzρj > 1þ j2ρ4: ð2Þ
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To better understand the structure of the space-time, we
present the ergoregion for three different values of the
swirling parameter j in Fig. 1. This ergoregion is not
compact, unlike in the case of the Kerr space-time, but
extends infinitely in the z direction.
So far no detailed quantitative analysis of the geodesic

equations in this space-time has been given. This is what
we will do here.
The motion of a test particle in free fall in a given space-

time is given by

D2xλ

Dτ2
¼ ẍλ þ Γλ

μνẋμẋν ¼ 0; ð3Þ

where D=Dτ denotes the covariant derivative with respect to
the affine parameter τ, and the dot denotes an ordinary
derivative with respect to τ. In (3þ 1)-dimensional space-
time, this equation leads to four coupled nonlinear ordinary
differential equations. Equivalent formulations of (3) can be
given using the Lagrangian, Hamiltonian and the Hamilton-
Jacobi formulation, respectively.
For the swirling universe, two cyclic variables can be

directly found from the space-time symmetries. Since this
space-time is stationary and axially symmetric, the two
constants of motion are related to the conservation of a
particle’s total energy and angular momentum about the
symmetry axis, respectively. These read

−E ≔ pt ¼ gttṫþ gtϕϕ̇; L ≔ pϕ ¼ gϕϕϕ̇þ gtϕ ṫ: ð4Þ

In addition, the normalization condition gives rise to a third
constant of motion and is related to the conservation of the
particle’s rest mass:

gμνẋμẋν ¼ χ; ð5Þ

where χ ¼ −1 for timelike orbits and χ ¼ 0 for lightlike
orbits, respectively.
Solving (4) for ṫ and ϕ̇ we then find

Fṫ ¼ Eþ 4jLz;

Fϕ̇ ¼ L
ρ2

F2 − 4jzðEþ 4jLzÞ: ð6Þ

A fourth constant of motion can be obtained by making use
of the separability of the Hamilton-Jacobi equation:

2
∂S
∂τ

¼ gμνð∂μSÞð∂νSÞ; ð7Þ

where S is the Hamilton principal function. If the Hamilton-
Jacobi equation allows a separable solution, then it takes
the form

S ¼ 1

2
χτ − Etþ Lϕþ SρðρÞ þ SzðzÞ: ð8Þ

Inserting this ansatz into (7), we find

ð∂ρSρÞ2 − ð1þ j2ρ4Þχ þ L2ð1þ j2ρ4Þ2
ρ2

þ ð∂zSzÞ2 − ðEþ 4jLzÞ2 ¼ 0; ð9Þ

which leads to the equations

ρ2ð∂ρSρÞ2 ¼ RðρÞ; RðρÞ ¼ ρ2ðkþ FχÞ − L2F2;

ð∂zSzÞ2 ¼ ΞðzÞ; ΞðzÞ ¼ −kþ ðEþ ωLÞ2; ð10Þ

FIG. 1. The ergoregion of the swirling universe solution for different values of the parameter j in the z-ρ plane (left) and rotated around
the symmetry axis (right).

CAPOBIANCO, HARTMANN, and KUNZ PHYS. REV. D 109, 064042 (2024)

064042-2



where k is the separation constant, itself a constant
of motion, which is akin to the Carter constant for the
Kerr(-Newman) space-time [11]. The solution for S then
reads

S ¼ 1

2
χτ − Etþ Lϕþ

Z
ρ

ffiffiffiffi
R

p

ρ
dρþ

Z
z

ffiffiffiffi
Ξ

p
dz: ð11Þ

The basic equations governing the motion can be deduced
from Jacobi’s principal function by the standard procedure
of setting the partial derivative of S with respect to the four
constants of motions to zero. Alternatively, one can use the
expressions for the generalized momenta, which read

pμ ¼ gμνẋν ¼ ∂μS: ð12Þ

Using these, the motion in the swirling universe is
completely determined by the system of first-order differ-
ential equations:

dρ
dλ

¼ ξρ

ffiffiffiffiffiffiffiffiffiffi
RðρÞp
ρ

; ð13Þ

dz
dλ

¼ ξz
ffiffiffiffiffiffiffiffiffi
ΞðzÞ

p
; ð14Þ

dt
dλ

¼ Eþ 4jLz; ð15Þ

dϕ
dλ

¼ L
ρ2

ð1þ j2ρ4Þ2 − 4jzðEþ 4jLzÞ; ð16Þ

where we have defined the “Mino time” λ by Fdλ ¼ dτ (a
construction akin to that in [17]). The expressions ξρ ¼ �1

and ξz ¼ �1 have been introduced to ensure the two
possible choices of sign for the motion. These can be
chosen independently but must be kept coherently for the
study of a given orbit.

III. COMPLETE SET OF SOLUTIONS
TO THE GEODESIC EQUATIONS

The general solution of the geodesic equations (13)–(16)
is determined by the behavior of the polynomials RðρÞ and
ΞðzÞ, which are fully characterized by the parameter j and
the four constants of motion: E, L, χ and k. The four
geodesic equations can be analytically integrated using
elementary functions, as well as the Weierstrass ℘−, ζ−,
and σ− functions, respectively. All solutions are given in
terms of λ. In Appendix A, we give the explicit relation
between λ and the affine parameter τ.

A. ρ-motion

The motion in the ρ direction is described by Eq. (13)
and reads

ρ2
�
dρ
dλ

�
2

¼ RðρÞ; RðρÞ ¼
X4
n¼0

anρ2n; ð17Þ

where

a0 ¼ −L2; a1 ¼ kþ χ; a2 ¼ −2j2L2;

a3 ¼ j2χ; a4 ¼ −j4L2: ð18Þ

This equation can be cast into a standard elliptical form by
the following transformation:

�
dq
dλ

�
2

¼QðqÞ; QðqÞ ¼ 4
X4
n¼0

anqn ¼
X4
n¼0

ãnqn; ð19Þ

where QðqÞ ¼ 4RðqÞ; therefore ãn ¼ 4an, is a fourth-
order polynomial in q ≔ ρ2. The differential equation
above has a mathematical structure similar to the equation
describing the radial motion in the Reissner-Nordström
and Kerr(-Newman) space-time, respectively, for both
uncharged and charged particles [14,15,18].
Here, we give the basic steps and refer the reader to

Appendix B for more details. First, we define a new
variable u via q ¼ 1

u þ q0, where q0 is a root of QðqÞ.
Note that, since physical orbits in the swirling universe are
bounded, a real value for q0 can always be obtained; this is
discussed in detail in Sec. IV. The differential equation (19)
then reads

�
du
dλ

�
2

¼
X3
j¼0

bjuj ¼ P3ðuÞ; ð20Þ

where P3ðuÞ is a third-order polynomial in u. Applying a

further coordinate transformation u ¼ 1
b3

�
4v − b2

3

�
we get

�
dv
dλ

�
2

¼ 4v − g2v − g3 ¼ PWðvÞ: ð21Þ

The right-hand side of the equation is given such that the
solution to (21) can be given in terms of the Weierstrass ℘
function:

vðλÞ ¼ ℘
�
λ − λðρÞin ; g2; g3

�
; ð22Þ

where λðρÞin depends exclusively on the initial conditions as
follows:

λðρÞin ¼ λ0 þ ξρ

Z
∞

v0

dv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðv0Þ

p ; v0 ¼
1

4

�
b3

ρ2in − q0
þ b2

3

�
;

ð23Þ
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ρin ¼ ρðλ0Þ is the initial radial value for a given orbit, and
the Weierstrass invariants are

g2 ¼ −
1

4

�
b1b3 −

b22
3

�
;

g3 ¼ −
1

16

�
b0b23 þ

2b32
27

−
b1b2b3

3

�
: ð24Þ

Therefore, the solution to the radial geodesic
equation (13) is

ρðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b3

4℘
�
λ − λðρÞin ; g2; g3

�
− b2

3

þ q0

vuut : ð25Þ

B. z-motion

The motion in the z direction is described by (14) and
reads

dz
dλ

¼ ξz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ ðEþ 4jLzÞ2

q
: ð26Þ

For k > 0 the z motion is restricted to

z ≤ z− ¼ −ð ffiffiffi
k

p jjjjLj þ jELÞ
4j2L2

;

and z ≥ zþ ¼
ffiffiffi
k

p jjjjLj − jEL
4j2L2

;

with the equal signs defining the turning points. The
equation can be directly integrated:Z

λ

λ0

dλ0 ¼ ξz
4jL

Z
z̃

z̃0

dz̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ z̃0

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z̃0

p ¼ ξz
4jL

cosh−1ðz̃0Þjz̃z̃0 ;

ð27Þ

with z̃ ¼ Eþ4jLzffiffi
k

p ; hence,

λ − λðzÞin ¼ 1

4jL
cosh−1

�
Eþ 4jLzffiffiffi

k
p

�
; ð28Þ

where λðzÞin ¼ λ0 −
ξz
4jL cosh

−1
�
Eþ4jLzinffiffi

k
p

�
and zin ¼ zðλ0Þ is

the initial value of z for a given orbit. Thus, one finds

zðλÞ ¼ 1

4jL

� ffiffiffi
k

p
cosh

�
4jL
�
λ − λðzÞin

��
− E

�
: ð29Þ

C. t-motion

The motion in the t-direction is given by Eq. (15) and
reads as

dt
dλ

¼ Eþ 4jLz: ð30Þ

Using (29) this equation can be straightforwardly inte-
grated, and one finds

tðλÞ ¼
ffiffiffi
k

p

4jL
sinh ð4jLλÞ þ tin; ð31Þ

where tin ¼ t0 −
ffiffi
k

p
4jL sinh ð4jLðλ0 − λðzÞin ÞÞ with t0 ¼ tðλ0Þ

the initial value for the time coordinate.

D. ϕ-motion

The motion in the ϕ direction is given by Eq. (16) and
reads

dϕ
dλ

¼ L
ρ2

ð1þ j2ρ4Þ2 − 4jzðEþ 4jLzÞ; ð32Þ

and therefore can be integrated considering two
contributions:

Z
ϕ

ϕin

dϕ0 ¼ ϕðλÞ − ϕin ¼ Iρ − Iz; ð33Þ

where ϕðλ0Þ ¼ ϕin is the initial value of the ϕ component,
and

Iρ ¼ L
Z

λ

λ0

ð1þ j2ρ4Þ2
ρ2

dλ; I z ¼ 4j
Z

λ

λ0

zðEþ 4jLzÞdλ:

ð34Þ

These two contributions can be directly integrated using the
solutions (25) and (29). The first is then cast into an elliptic
integral of the third kind; see Appendix C for more details.
The second one can be integrated directly.
First, note that the integral Iρ can be rewritten by

performing the same set of transformations as described
in Sec. III A; thus it becomes

Iρ ¼
Z

v

v0

fðv0Þ dv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðv0Þ

p ;

where the function fðv0Þ written in terms of the partial
fraction decomposition is

fðvÞ ¼ K0 þ
K1

v− α
þ K2

ðv− αÞ2 þ
K3

ðv− αÞ3 þ
C1

v− β
; ð35Þ

where α ¼ b2
12

and β ¼ b2
12
− b3

4q0
are the roots of

DðvÞ ¼ ðb2 − 12vÞ3ð−3b3 þ ðb2 − 12vÞq0Þ, and the
coefficients are
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K0 ¼
Lð1þ j2q20Þ2

q0
; K1 ¼

3b3Lð2þ 3j2q20Þj2
12

; C1 ¼
3b3L
12q20

;

K2 ¼
27j4b23q0L

144
; K3 ¼

27b23j
4L

1728
:

From Sec. III Awe know that the solution of dλ ¼ dvffiffiffiffiffi
PW

p is given by vðλÞ ¼ ℘ðλ − λðρÞin Þ. Thus fðλÞ ¼ fð℘ðλÞÞ is an elliptic
function with the same half periods of ℘ðλÞ and therefore is an elliptic integral, whose solution is

Iρ ¼ γ0ðλ− λ0Þ þ γ1
�
℘ðλ− λðρÞin þ yαÞ−℘ðλ− λðρÞin − yαÞ−℘ðλ0 − λðρÞin þ yαÞ þ℘ðλ0 − λðρÞin − yαÞ

�
þ γ2

�
ζ
�
λ− λðρÞin − yα

�
þ ζ
�
λ− λðρÞin þ yα

�
− ζ
�
λ0 − λðρÞin − yα

�
− ζ
�
λ0 − λðρÞin þ yα

��

þ γ3

"
ln

 
σðλ− λðρÞin − yβÞ
σðλ− λðρÞin þ yβÞ

!
− ln

 
σðλ0 − λðρÞin − yβÞ
σðλ0 − λðρÞin þ yβÞ

!#
þ γ4

"
ln

 
σðλ− λðρÞin − yαÞ
σðλ− λðρÞin þ yαÞ

!
− ln

 
σðλ0 − λðρÞin − yαÞ
σðλ0 − λðρÞin þ yαÞ

!#
; ð36Þ

where the values of the constants are given by

γ0 ¼
�
K0 þ

2ζðyαÞK1

℘0ðyαÞ
þ 2ζðyβÞC1

℘0ðyβÞ
−

K3

℘0ðyαÞ2
�
1þ 12℘ðyαÞζðyαÞ

℘0ðyαÞ
�

þ 1

℘0ðyαÞ2
�
℘ðyαÞ þ

℘00ðyαÞζðyαÞ
℘0ðyαÞ

��
3K3℘00ðyαÞ
℘0ðyαÞ2

− 2K2

��
;

γ1 ¼
K3

2℘0ðyαÞ3
;

γ2 ¼
1

℘0ðyαÞ2
�
−K2 þ

3K3℘00ðyαÞ
2℘0ðyαÞ

�
;

γ3 ¼
C1

℘0ðyβÞ
;

γ4 ¼
K1

℘0ðyαÞ
þ K2℘00ðyαÞ

℘0ðyαÞ3
−

3K3

℘0ðyαÞ3
�
2℘ðyαÞ −

℘00ðyαÞ2
2℘0ðyαÞ2

�
;

and yα and yβ are values of the inverse of the Weierstrass ℘
function. Hence ℘ðyαÞ ¼ α and ℘ðyβÞ ¼ β:ζðyÞ and σðyÞ
are, respectively, the Weierstrass ζ function and σ function.
Note that special attention is required when evaluating

the logarithm in (36) in order to produce a continuous
implementation of ϕðλÞ ensuring that we use the strategy
discussed in [19].
Now, we consider the integral Iz, which can be directly

integrated using (29). One finds

Iz ¼
1

16jL2

�
8jLkðλ− λ0Þ þ kðsinhð8jLλÞ

− sinhð8jLλ0ÞÞ− 4E
ffiffiffi
k

p
ðsinhð4jLλÞ− sinhð4jLλ0ÞÞ

�
:

ð37Þ

Hence, the solution of the geodesic equation in the
ϕ direction is fully described by (33) together with
(36) and (37).

IV. EXAMPLES OF ORBITS

Using the complete set of solutions to the geodesic
equations given in Sec. III, we can now present examples of
orbits in the swirling universe space-time.
The motion of particles is characterized by the constants

of motion, E, L, and k, together with the normalization
condition, χ. Inspection of the equations for ρ (13) and
z (14) gives us information on the possible choices of these
constants. Equation (13) leads to the inequality

k ≥
L2F2

ρ2
− χF; ð38Þ
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and since −χF ≥ 0 everywhere, this gives a lower bound
on k. Besides it corroborates that k must be positive.
Equation (14), on the other hand, leads to the inequality

k ≤ ðEþ 4jzLÞ2; ð39Þ

which puts an upper bound on k. If the angular momentum
of a massive particle vanishes, L ¼ 0, the combined bounds
reduce to 1þ j2ρ4 ≤ k ≤ E2. This corresponds to a turning
point in ρ and no restriction in z. In particular, the equatorial
plane can be traversed in this oscillatory motion. For finite
angular momentum L, on the other hand, there will also be
an inner turning point for the ρ motion that depends on k,
since the inequality (38) contains a 1=ρ2 term. Then, the
only motion possible is that between these two turning
points. Moreover, the inequality (39) can give two turning
points in the z motion such that only motion outside these
two turning points is possible. A typical orbit will thus
oscillate in the ρ direction between the two turning points
and escape to infinity in the z direction. A Wolfram
Mathematica notebook implemented to plot the orbits
described in the above section is available at [20].
We find that there are only two possibilities for the

motion in the z direction depending on the sign of the initial
velocity: (a) considering a particle starting at z0 ≥ zþ with
an initial velocity ż > 0 the particle escapes directly toþ∞,
(b) if it has an initial velocity ż < 0 it moves until it reaches
the turning point at zþ and then escapes to þ∞. The
description is completely analogous for a particle that starts
at z0 ≤ z−.
The turning points of RðρÞ define the regions where

motion can exist in the ρ direction. Since this is a
biquadratic eighth-order polynomial, all zeros have, at
least, multiplicity 2. Thus, there is no loss of generality
by studying the zeros of the equivalent fourth-order
polynomial. This can have two or four real zeros, and
only the positive real roots have physical relevance. The
full classification in that direction is discussed below for the
motion of massless and massive particles, respectively.

A. Massless particles

For massless particles we have χ ¼ 0; thus the motion in
the ρ direction is described by

�
dq
dλ

�
2

¼ −j4L2q4 − 2j2L2q2 þ kq − L2 ¼ QðqÞ: ð40Þ

The regions where orbits are allowed to exist will
strongly depend on the zeros of the above polynomial.
Orbits can exist only between two real zeros, where the
polynomial QðqÞ has positive values. The discriminant of
the above polynomial is

Δ ¼ j6ξk2ð256ξ − 27k2Þ: ð41Þ

There are always two distinct real roots for ξ ¼
j2L4 < 27

256
k2. Orbits exist when these roots are positive.

Then the radial coordinate oscillates between these two
values. An orbit of this type is shown in Fig. 2. For
ξ ¼ 27

256
k2, the function QðqÞ has multiple roots; however,

since Q00ðqÞ is negative, it will turn back again to negative
values. Therefore the only possible motion is an orbit with
constant radius ρðλÞ ¼ 4L

3
ffiffi
k

p . Such an orbit is shown in Fig. 2.

Moreover, for the cases ξ > 27
256

k2 and k ¼ 0, respectively,
there are no real turning points of the polynomial QðqÞ,
which is negative for all values of q > 0, and thus no orbits
of massless particles are allowed.

B. Massive particles

For massive orbits, one has χ ¼ −1 thus the motion in
the ρ direction is described by the equation

�
dq
dλ

�
2

¼ −j4L2q4 − j2q3 − 2j2L2q2

þ ðk − 1Þq − L2 ¼ QðqÞ: ð42Þ

The zeros of the polynomial QðqÞ define the regions where
QðqÞ ≥ 0 and hence enclose the regions where orbits are
allowed to exist.
The polynomial QðqÞ can either have four real distinct

roots, two real distinct and two complex conjugate roots,
two complex conjugate pairs of roots, or multiple (real and
complex) roots. Physical orbits only exist between two real
positive roots. The existence of zeros can be studied by
making use of the discriminant

ΔξðkÞ ¼ j6ð−27ξk4 þ ð72ξþ 4Þk3 þ 4ð64ξ2 − 14ξ4 − 3Þk2
− 4ð8ξ4 − 3Þkþ 16ξ− 4Þ; ð43Þ

which can be studied as a fourth-order polynomial in k.
Thus, there are different combinations of k and ξ¼ j2L4>0
for which the above discriminant can be positive, negative,
or zero.
Therefore, we distinguish the regions of allowed orbits as

follows:
(1) Region 1—ΔξðkÞ > 0: Four real distinct roots of

QðqÞ can exist. There are two different possibilities:
(a) k < 1, then 0 < ξ < 3

16
, but ξ ≠ 1

16
and

k1 < k < k2, and (b) k > 1 and ξ < 3
16ðkþ1Þ but

ξ ≠ 1
16

and k1 < k < k2; notice that k ¼ 2 is ex-
cluded for this region. An example of such an orbit is
shown in Fig. 3 (left).

(2) Region 2—ΔξðkÞ < 0: Two distinct real roots of
QðqÞ. There are three possibilities: (a) ξ > 1

4
and

k > k2, (b) ξ ≤ 1
4
and 0 < k < k1 or k > k2, and

CAPOBIANCO, HARTMANN, and KUNZ PHYS. REV. D 109, 064042 (2024)

064042-6



(c) ξ ¼ 1
16
and k > 2. An example of such an orbit is

shown in Fig. 3 (middle).
(3) Region 3—ΔξðkÞ ¼ 0:QðqÞ has multiple roots. This

region is accessible once k is chosen to be a root of
ΔξðkÞ for a given value of ξ. However, since QðqÞ
only reaches zero and then turns again to be
negative, the only possible orbit is ρðλÞ ¼ ρð0Þ,
where ρ0 is the root of RðρÞ. A special choice
satisfying this is ξ ¼ 1

16
and k ¼ 2, and then the

motion is allowed for ρðλÞ ¼ 2jLj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
− 1

p
. An

example of such an orbit is shown in Fig. 3 (right).

V. GEODESIC MOTION IN A SPACE-TIME
DESCRIBING A BLACK HOLE
IN A SWIRLING UNIVERSE

Application of the Ehlers transformation using a black
hole as a seed leads to a solution describing a black hole in
a swirling universe [7]. This works akin to applying the
Harrison transformation to a black hole seed leading to a
black hole immersed in a Melvin magnetic universe. Using
the Ehlers transformation with a Schwarzschild black hole
seed, the following metric was presented in spherical
coordinates ðt; r; θ;φÞ [7]:

ds2 ¼ Fðr; θÞ
�
−NðrÞdt2 þ dr2

NðrÞ þ r2dθ2
�

þ r2sin2θ
Fðr; θÞ ðdφþ ωðr; θÞdtÞ2; ð44Þ

where Fðr;θÞ¼1þj2r4 sin4θ, NðrÞ¼1− 2M
r and ωðr; θÞ ¼

4jðr − 2MÞ cos θ þ ω0. For M ¼ 0, this space-time
reduces to the space-time (1). For M ≠ 0, it has an
event horizon at r ¼ 2M, which for j ≠ 0 is prolate-shaped
rather than perfectly spherically symmetric as in the
Schwarzschild case. Besides, similarly to the background,
this space-time also has an ergoregion defined by

−Fðr; θÞ2NðrÞ þ r2sin2θωðr; θÞ2 ¼ 0: ð45Þ

Note that the event horizon r ¼ 2M fulfills this relation, but
is not an ergosurface. We hence require for the ergoregion
that r > 2M. In Fig. 4 we show the ergoregions for this
space-time for M ¼ 1 and three different values of j.
Now, trying to solve the geodesic equations, we note that

unlike (1) the space-time (44) is of Petrov type I, and
therefore it is not expected to have additional constants of
motion. Hence, we will not be able to separate the geodesic
equations fully. The geodesic Lagrangian reads

FIG. 2. We show examples of orbits for massless particles. The left and middle figures are for j ¼ 2, L ¼ 0.4 and k ¼ 5, and E ¼ 5
and hence the radial motion has two turning points (see the discussion in the text). The left figure shows the projection of the orbit onto
the x-y-, x-z and the y-z plane, respectively, and the middle figure shows the motion in three dimensions. The right figure is for

j ¼
ffiffiffiffiffiffi
27
256

q
, L ¼ 1 and k ¼ 1, and E ¼ 2, such that the only possible motion is when choosing the initial condition as ρ0 ¼ 4

3
. Note that

both orbits have żð0Þ < 0, and hence the particle starting at zð0Þ ¼ 2 moves downward toward the turning point zþ and then escapes
to infinity.
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FIG. 4. We show the ergoregions for the space-time describing a Schwarzschild black hole of mass M ¼ 1 immersed in a swirling
universe for three different values of j. On the left, we give the projection of the ergoregions onto the r-θ plane, while the right figure
shows the ergoregions rotated around the symmetry axis.

FIG. 3. Examples of orbits for massive particles. The figure on the left shows an orbit from Region 1 with j ¼ ffiffiffiffiffiffiffiffiffiffi
1=20

p
, L ¼ 1, k ¼ 2.2

and E ¼ 3. The figure in the middle shows an orbit from Region 2 with j ¼ 0.5, L ¼ 1.2, k ¼ 5 and E ¼ 5. For these two cases the radial
motion is restricted to take place between the turning points. The figure on the right shows an orbit from Region 3 with j ¼ 1=16, L ¼ 2,

k ¼ 2 and E ¼ 3 for which we have to choose ρð0Þ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
− 1

p
such that ρ stays constant throughout the motion.
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2L ¼ Fðr; θÞ
�
−NðrÞṫ2 þ ṙ2

NðrÞ þ r2θ̇2
�
þ r2sin2θ

Fðr; θÞ ðφ̇þ ωðr; θÞṫÞ2 ¼ χ; ð46Þ

where we have set ω0 ¼ 0, since it does not influence the geodesic motion. There are two constants of motion given by the
cyclic variables, which are the particle’s total energy E, and angular momentum L, Eq. (4). Solving for ṫ and ϕ̇ we find

ṫ ¼ rðEþ 4jLðr − 2MÞ cos θÞ
ðr − 2MÞð1þ j2r4 sin4 θÞ ;

φ̇ ¼ L − jr3 sin2 θð4 cos θðE − 8jML cos θÞ − Lj3r5 sin6 θ þ 2jLrð9 cos2 θ − 1ÞÞ
r2 sin2 θð1þ j2r4 sin4 θÞ : ð47Þ

A description of the motion in this space-time requires a full numerical integration of the coupled system of geodesic
equations. Here we present some preliminary results with a full analysis being presented elsewhere [21].
Interestingly, we find that even a small deviation of the swirling parameter j from zero can change the qualitative

features of the orbits significantly as compared to those in the Schwarzschild space-time. In Fig. 5(a) we show a bound

FIG. 5. Two timelike orbits sharing the same constants of motion E ¼ ffiffiffiffiffiffiffiffiffi
0.93

p
and L ¼

ffiffiffiffiffiffiffiffi
1

0.072

q
. The initial conditions were chosen such

that the positions are the same. Moreover, the initial polar velocity and the initial radial velocity are defined to satisfy the normalization
condition for each case. The top left panel (a) shows a bound orbit for M ¼ 1, j ¼ 4 × 10−5 in the x-y plane (solid orange). For
comparison the orbit in the Schwarzschild space-time (M ¼ 1, j ¼ 0) is also shown (black dashed). Panel (b) shows the orbit of panel
(a) in three dimensions. Panel (c) shows an escape orbit with M ¼ 1 and j ¼ 4 × 10−4. The colors in (b) and (c), respectively, indicate
the location above or below the equatorial plane (z ¼ 0), while the surface of the black sphere indicates the horizon of the black hole.
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orbit of a massive particle for M ¼ 1 and j ¼ 4 × 10−5 in
comparison to the bound orbit obtained for M ¼ 1, j ¼ 0,
i.e. in the Schwarzschild space-time. The initial conditions
were chosen such that the orbits are starting on the
equatorial plane with θ̇ð0Þ ¼ 0, and then ṙð0Þ is found
by satisfying the normalization condition for each case.
Note that while the Schwarzschild orbit (dashed black) is
in the equatorial plane and has a perihelion shift, this
is very different for j ≠ 0 (orange solid line). The orbit is
nonplanar [see Fig. 5(b)] and shows no regular behavior. In
Fig. 5(c) we show an orbit forM ¼ 1 but for j ¼ 4 × 10−4.
In contrast to the cases with j ¼ 0 and j ¼ 4 × 10−5,
respectively, this orbit is no longer bounded and escapes to
infinity in the z direction.

VI. CONCLUSIONS

We have considered geodesics in a swirling universe with
and without a black hole immersed into it, which was
obtained recently via an Ehlers transformation by Astorino
et al. [7]. We have focused on the case of the pure swirling
universe, i.e., without the black hole, since in this case the
geodesic equations can be solved analytically. In addition to
the two cyclic variables present in any stationary and axially
symmetric geometry, and the normalization condition, a
fourth constant of motion has been obtained by making use
of the Hamilton-Jacobi formulation. In this formalism, the
four geodesic equations can be completely uncoupled and
solved using elementary and elliptic functions.
The geodesic equations themselves allow already for a

qualitative analysis of the types of motion possible,
showing that the motion in the ρ direction is bounded,
whereas the motion in the z direction is unbounded, unless
the angular momentum of the particle vanishes. We have
presented a number of examples of orbits for massless and
massive particles, illustrating their spiraling motion. When
the ergoregions of the swirling universe are approached,
the rotational direction of the spiraling motion is
changed [6].
When immersing a black hole into the swirling universe

the space-time is no longer of Petrov type D. In that case,
the geodesic equations can no longer be decoupled and
solved by well-known analytical techniques. Therefore we
have obtained sample solutions numerically, showing that
already rather small values of the swirling parameter j
will produce substantial changes with respect to the
Schwarzschild orbits for vanishing j.
Next, we will study the geodesics in the swirling universe

with a black hole immersed inside in full detail and analyze
the possible types of motion for massless and massive
particles. The nonseparability of the geodesic equations
suggests that chaotic motion is present in this space-time.
Thus, a full description of the motion will require a
qualitative and quantitative classification of the emergence
of chaos in this system as well. Subsequently, the space-time

describing a Kerr black hole immersed in a swirling
universe [7] is waiting for analysis.
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APPENDIX A: AFFINE PARAMETER

The relation between the Mino time (λ) and the affine
parameter τ reads

dτ
dλ

¼ 1þ j2ρðλÞ4: ðA1Þ

Inserting (25) we get

τ − τ0 ¼
Z

λ

λ0

2
64ϵ0 þ ϵ1

℘
�
λ0 − λðρÞin

�
− b2

12

þ ϵ2�
℘
�
λ0 − λðρÞin

�
− b2

12

�
2

3
75dλ0 ðA2Þ

with

ϵ0 ¼ 1þ j2q20; ϵ1 ¼
j2q0c3

2
; ϵ2 ¼

j2c23
16

: ðA3Þ

Thus

τðλÞ ¼ τ0 þ ϵ0ðλ− λ0Þ þ ϵ1I1ðλ; yαÞ þ ϵ2I2ðλ; yαÞ: ðA4Þ

APPENDIX B: TRANSFORMATION
TO WEIERSTRASS FORM

Equation (19) allows for a solution in terms of the
Weierstrass ℘ function. Here, we give all details of the
necessary transformations. We start by reducing the poly-
nomialQðqÞ from fourth to third order by the transformation

q − q0 ¼
1

u
⇒ dq ¼ −

du
u2

; ðB1Þ

where q0 is a root of QðqÞ. Thus, the differential equation
becomes

�
du
dλ

�
2

¼ P3ðuÞ; P3 ¼
X3
j¼0

bjuj; ðB2Þ
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with the coefficients

b0 ¼ ã4; b1 ¼ ã3 þ 4ã4q0;

b2 ¼ ã2 þ 3ã3q0 þ 6ã4q20;

b3 ¼ ã1 þ 2ã2q0 þ 3ã3q20 þ 4ã4q30: ðB3Þ

A general third-order polynomial can be cast into
Weierstrass form by the transformation

u ¼ 1

b3

�
4v −

b2
3

�
⇒ du ¼ 4

b3
dv; ðB4Þ

thus giving

�
dv
dλ

�
2

¼ 4v3 − g2v − g3 ≔ PWðvÞ; ðB5Þ

with

g2 ¼ −
1

4

�
b1b3 −

b22
3

�
;

g3 ¼ −
1

16

�
b0b23 þ

2b32
27

−
b1b2b3

3

�
: ðB6Þ

Hence, in addition to an initial value vðλ0Þ ¼ v0 the
solution is fully determined by

vðλÞ¼℘ðλ−λin;g2;g3Þ; λin¼ λ0þ
Z

∞

v0

dv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PWðv0Þ

p : ðB7Þ

APPENDIX C: INTEGRATION OF ELLIPTIC
INTEGRALS OF THE THIRD KIND

Here we give the formulas for the evaluation of integrals
of the type In ¼

R
v
v0

1
ð℘ðv0Þ−γÞn, with n ¼ 1; 2 or 3. Note that

γ ¼ ℘ðyγÞ is a single pole of the above expression. A table
with these and other relations can be found in [19].
The starting point is to consider the expansion of the

denominator as

℘0ðyÞ
℘ðvÞ − ℘ðyÞ ¼ ζðv − yÞ − ζðvþ yÞ þ 2ζðyÞ; ðC1Þ

which can then be directly integrated using ln σðxÞ ¼R
ζðxÞdx to get

I1ðv; yÞ ¼
Z

dv
℘ðvÞ−℘ðyÞ ¼

1

℘0ðyÞ
�
2ζðyÞvþ ln

σðv− yÞ
σðvþ yÞ

�
:

ðC2Þ

Considering (C1), taking the derivative with respect to y,

and using dζðyÞ
dy ¼ −℘ðyÞ one gets

1

ð℘ðvÞ − ℘ðyÞÞ2 ¼
1

℘0ðyÞ2
�
℘ðv − yÞ þ ℘ðvþ yÞ þ 2℘ðyÞ

−
℘00ðyÞ

℘ðvÞ − ℘ðyÞ
�
; ðC3Þ

which can be directly integrated leading to

I2ðv; yÞ ¼
Z

dv
ð℘ðvÞ − ℘ðyÞÞ2

¼ −
℘00ðyÞ
℘0ðyÞ2 I1 −

1

℘0ðyÞ2 ðζðvþ yÞ

þ ζðv − yÞ þ 2℘ðyÞvÞ: ðC4Þ

Repeating this and taking the second derivative with respect
to y from (C1), we find

1

ð℘ðvÞ−℘ðyÞÞ3 ¼
1

2℘ðyÞ3
�
℘0ðv− yÞþ℘0ðvþ yÞ− 2℘0ðyÞ

−
12℘0ðyÞ℘ðyÞ
℘ðxÞ−℘ðyÞ −

3℘0ðyÞ℘00ðyÞ
ð℘ðvÞ−℘ðyÞÞ2

�
; ðC5Þ

where we have used ℘ð3ÞðyÞ ¼ 12℘ðyÞ℘0ðyÞ. Remember
that the primes denote the derivatives with respect to y.
Integrating the above expression leads to

I3ðv; yÞ ¼
Z

1

ð℘ðvÞ − ℘ðyÞÞ3

¼ 1

2℘ðyÞ3 ½℘ðvþ yÞ − ℘ðv − yÞ

− 2℘0ðyÞv − 12℘0ðyÞ℘ðyÞI1 − 3℘0ðyÞ℘00ðyÞI2�:
ðC6Þ
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